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Abstract

In the k-Disjoint Shortest Paths (k-DSP) problem, we are given a graph G (with positive edge
weights) on n nodes and m edges with specified source vertices s1, . . . , sk, and target vertices
t1, . . . , tk, and are tasked with determining if G contains vertex-disjoint (si, ti)-shortest paths.
For any constant k, it is known that k-DSP can be solved in polynomial time over undirected
graphs and directed acyclic graphs (DAGs). However, the exact time complexity of k-DSP
remains mysterious, with large gaps between the fastest known algorithms and best conditional
lower bounds. In this paper, we obtain faster algorithms for important cases of k-DSP, and
present better conditional lower bounds for k-DSP and its variants.

Previous work solved 2-DSP over weighted undirected graphs in O(n7) time, and weighted
DAGs in O(mn) time. For the main result of this paper, we present optimal linear time algo-
rithms for solving 2-DSP on weighted undirected graphs and DAGs. Our linear time algorithms
are algebraic however, and so only solve the detection rather than search version of 2-DSP (we
show how to solve the search version in O(mn) time, which is faster than the previous best
runtime in weighted undirected graphs, but only matches the previous best runtime for DAGs).

We also obtain a faster algorithm for k-Edge Disjoint Shortest Paths (k-EDSP) in DAGs, the
variant of k-DSP where one seeks edge-disjoint instead of vertex-disjoint paths between sources
and their corresponding targets. Algorithms for k-EDSP on DAGs from previous work take
Ω(mk) time. We show that k-EDSP can be solved over DAGs in O(mnk−1) time, matching the
fastest known runtime for solving k-DSP over DAGs.

Previous work established conditional lower bounds for solving k-DSP and its variants via
reductions from detecting cliques in graphs. Prior work implied that k-Clique can be reduced to
2k-DSP in DAGs and undirected graphs with O((kn)2) nodes. We improve this reduction, by
showing how to reduce from k-Clique to k-DSP in DAGs and undirected graphs with O((kn)2)
nodes (halving the number of paths needed in the reduced instance). A variant of k-DSP is the
k-Disjoint Paths (k-DP) problem, where the solution paths no longer need to be shortest paths.
Previous work reduced from k-Clique to p-DP in DAGs with O(kn) nodes, for p = k+k(k−1)/2.
We improve this by showing a reduction from k-Clique to p-DP, for p = k + ⌊k2/4⌋.

Under the k-Clique Hypothesis from fine-grained complexity, our results establish better con-
ditional lower bounds for k-DSP for all k ≥ 4, and better conditional lower bounds for p-DP
for all p ≤ 4031. Notably, our work gives the first nontrivial conditional lower bounds 4-DP
in DAGs and 4-DSP in undirected graphs and DAGs. Before our work, nontrivial conditional
lower bounds were only known for k-DP and k-DSP on such graphs when k ≥ 6.
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1 Introduction

Routing disjoint paths in graphs is a classical problem in computer science. For positive integer k,
in the k-Disjoint Paths (k-DP) problem, we are given a graph G with n vertices and m edges, with
specified source nodes s1, . . . , sk and target nodes t1, . . . , tk, and are tasked with determining if G
contains (si, ti)-paths which are internally vertex-disjoint. Beyond being a natural graph theoretic
problem to study, k-DP is important because of its deep connections with various computational
tasks from the Graph Minors project [RS95].

Following a long line of research, the polynomial-time complexity of k-DP has essentially been
settled: in directed graphs the 2-DP problem is NP-hard [FHW80, Lemma 3], and so is unlikely to
admit a polynomial time algorithm, while in undirected graphs k-DP can be solved in Õ(m + n)
time for k = 2 [Tho05], and in O(n2) time or m1+o(1) time for any constant k ≥ 3 [KKR12, KPS24].

In this work we study an optimization variant of k-DP, the k-Disjoint Shortest Paths (k-DSP)
problem. In k-DSP we are given the same input as in k-DP, but are now tasked with determining
if the input contains (si, ti)-shortest paths which are internally vertex-disjoint. This problem is
interesting both because it is a natural graph algorithms question to investigate from the perspective
of combinatorial optimization, and because understanding the complexity of k-DSP could lead to
a deeper understanding of the interaction between shortest paths structures in graphs (analogous
to how studying k-DP helped develop the rich theory surrounding forbidden minors in graphs).

Compared to k-DP, not much is known about the exact time complexity of k-DSP. In directed
graphs, 2-DSP can be solved in polynomial time [BK17], but no polynomial-time algorithm (or
NP-hardness proof) is known for k-DSP for any constant k ≥ 3. In undirected graphs, it was
recently shown that for any constant k, k-DSP can be solved in polynomial time [Loc21]. However,
the current best algorithms for k-DSP in undirected graphs run in nO(k·k!) time, so in general this
polynomial runtime is quite large for k ≥ 3. For example, the current fastest algorithm for 3-DSP
in undirected graphs takes O(n292) time [BNRZ21].

Significantly faster algorithms are known for detecting k = 2 disjoint shortest paths. The
paper which first introduced the k-DSP problem in 1998 also presented an O(n8) time algorithm
for solving 2-DSP in weighted1 undirected graphs [ET98]. The first improvement for this problem
came over twenty years later in [Akh20], which presented an algorithm solving 2-DSP in weighted
undirected graphs in O(n7) time, and in unweighted undirected graphs in O(n6) time. Soon after,
[BNRZ21, Theorem 1] presented an even faster O(mn) time algorithm for solving 2-DSP in the
special case of unweighted undirected graphs.2

The main result of our work is an optimal algorithm for 2-DSP in weighted undirected graphs.

Theorem 1. The 2-DSP problem can be solved in weighted undirected graphs in O(m + n) time.

This result pins down the true time complexity of 2-DSP in undirected graphs, and (up to
certain limitations of our algorithm, which we discuss later) closes the line of research for this
specific problem, initiated twenty-five years ago in [ET98].

As discussed previously, over directed graphs the 2-DP problem is NP-hard, and the complexity
of k-DSP is open even for k = 3. This lack of algorithmic progress in general directed graphs has
motivated researchers to characterize the complexity of disjoint path problems in restricted classes
of directed graphs. In this context, studying algorithms for routing disjoint paths in directed acyclic
graphs (DAGs) has proved to be particularly fruitful. For example, the only known polynomial
time algorithm for 2-DSP on general directed graphs works by reducing to several instances of 2-DP

1Throughout, we assume that weighted graphs have positive edge weights.
2It seems plausible that the method of [BNRZ21] could be adapted to handle weighted undirected graphs as well,

but such a generalization does not appear to currently be known.
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on DAGs [BK17]. Similarly, the fastest known algorithm for k-DSP on undirected graphs works by
reducing to several instances of disjoint paths on DAGs [BNRZ21].

It is known that 2-DP in DAGs can be solved in linear time [Tho12]. More generally, since
1980 it has been known that k-DP in DAGs can be solved in O(mnk−1) time, and this remains the
fastest known algorithm for these problems for all k ≥ 3 [FHW80, Theorem 3].

As observed in [BK17, Proposition 10], the algorithm of [FHW80] for k-DP on DAGs can be
modified to solve k-DSP in weighted DAGs in the same O(mnk−1) runtime. This is the fastest
known runtime for k-DSP in DAGs. In particular, the fastest algorithm for 2-DSP from previous
work runs in O(mn) time.

The second result of our work is an optimal algorithm for 2-DSP in weighted DAGs.

Theorem 2. The 2-DSP problem can be solved in weighted DAGs in O(m + n) time.

This settles the time complexity of 2-DSP in DAGs, and marks the first improvement over the
O(mn) time algorithm implied by [FHW80] from over thirty years ago. The 2-DSP problem in
weighted DAGs generalizes the 2-DP problem in DAGs, and so Theorem 2 also offers an alternate
linear time algorithm for 2-DP in DAGs, which is arguably simpler than the previous approaches
leading up to [Tho12], many of which involved tricky case analyses and carefully constructed data
structures.

Our algorithms for solving 2-DSP in undirected graphs and DAGs are algebraic, and work by
testing whether certain polynomials, whose terms encode pairs of disjoint shortest paths in the
input graph, are nonzero. As a consequence, the algorithms establishing Theorems 1 and 2 are
randomized, and solve 2-DSP with high probability. Moreover, these algorithms determine whether
the input graph has a solution, but do not explicitly return solution paths. So while our algorithms
solve the decision problem 2-DSP, they do not solve the search problem of returning two disjoint
shortest paths if they exist. This is a common limitation for algebraic graph algorithms.

The 2-DSP problem does admit a search to decision reduction – with O(m) calls to an algorithm
which detects whether a graph contains two disjoint shortest paths, we can actually find two disjoint
shortest paths if they exist. Thanks to the algebraic nature of our algorithms, we can get a slightly
better reduction, and find two disjoint shortest paths when they exist with only O(n) calls to the
algorithms from Theorems 1 and 2.

Theorem 3. We can solve 2-DSP over weighted DAGs and undirected graphs, and find a solution
if it exists, in O(mn) time.

So we can find two disjoint shortest paths in weighted undirected graphs in O(mn) time (which
still beats the previous fastest O(n7) time algorithm for weighted undirected graphs, and matches
the previous fastest algorithm for unweighted undirected graphs), and in weighted DAGs in O(mn)
time (which only matches, rather than beats, the previous fastest runtime for 2-DSP in DAGs).

Finally, one can also consider edge-disjoint versions of all the problems discussed thus far.
The k-Edge Disjoint Paths (k-EDP) and k-Edge Disjoint Shortest Paths (k-EDSP) problems are the
same as the respective k-DP and k-DSP problems, except the solutions paths merely need to be
edge-disjoint instead of internally vertex-disjoint.

For any constant k, there is a simple reduction from k-EDSP on n nodes and m edges to k-DSP
on O(m + n) nodes and O(m) edges (see Appendix A for the details). Combining this reduction
with Theorems 1 and 2, we get that we can solve 2-EDSP over weighted DAGs and undirected
graphs in linear time as well.

Corollary 4. We can solve 2-EDSP over weighted DAGs and undirected graphs in O(m+n) time.

2



More generally, for all k ≥ 3 the fastest known algorithms for k-EDSP on DAGs in the literature
work by reducing this problem to k-DSP using the reduction mentioned in the previous paragraph.
Consequently, the current fastest algorithm for k-EDSP in DAGs runs in O(mk) time, which in
dense graphs is much slower than the O(mnk−1) time algorithm known for k-DSP. For the same
reason, the fastest known algorithm for k-EDP in DAGs for k ≥ 3 runs in O(mk) time.

Our final algorithmic result is that we can solve k-EDSP in weighted DAGs as quickly as the
fastest known algorithms for k-DSP.

Theorem 5. The k-EDSP problem can be solved in weighted DAGs in O(mnk−1) time.

Since k-EDSP in weighted DAGs generalizes the k-EDP problem in DAGs (see Appendix A for
details), Theorem 5 also implies faster algorithms for this latter problem. Our algorithm is simple
and employs the same general approach used by previous routines [FHW80, BK17] for this problem.

Lower Bounds

For k ≥ 3, the known O(mnk−1) algorithms for k-DP and k-DSP in DAGs have resisted any
improvements over the past three decades. Thus, it is natural to wonder whether there is complexity
theoretic evidence that solving these problems significantly faster would be difficult. Researchers
have presented some evidence in this vein, in the form of reductions from the conjectured hard
problem of detecting cliques in graphs.

Let k = Θ(1) be a positive integer. A k-clique is a collection of k mutually adjacent vertices in
a graph. In the k-Clique problem,3 we are given a k-partite graph G with vertex set V1 ⊔ · · · ⊔ Vk,
where each part Vi has n vertices, and are tasked with determining if G contains a k-clique.

We can of course solve k-Clique in O(nk) time, just by trying out all possible k-tuples of vertices.
Better algorithms for k-Clique are known, which employ fast matrix multiplication. Let ω denote
the exponent of matrix multiplication (i.e., ω is the smallest real such that two n × n matrices
can be multiplied in nω+o(1) time). Given positive reals a, b, c, we more generally write ω(a, b, c) to
denote the smallest real such that we can compute the product of an na×nb matrix and an nb×nc

matrix in nω(a,b,c)+o(1) time. Then it is known that k-Clique can be solved in

C(n, k) = Θ(nω(⌊k/3⌋,⌈(k−1)/3⌉,⌈k/3⌉))

time [EG04]. The current fastest matrix multiplication algorithms yield ω < 2.37156 [WXXZ23].
A popular fine-grained hardness hypothesis posits (e.g., in [Wil18, DW22]) that current algorithms
for k-Clique are optimal.

Hypothesis 6 (k-Clique Hypothesis). For any integer constant k ≥ 3, solving k-Clique requires at
least C(n, k)1−o(1) time.

In this context, previous work provided reductions from k-Clique to disjoint path problems.
For example, [BNRZ21] presents a reduction from k-Clique to 2k-DSP on undirected graphs with
O((kn)2) vertices (and this reduction easily extends to DAGs). Our first conditional lower bound
improves this result for DAGs, by halving the number of paths needed in the reduction.

Theorem 7. There is a reduction from k-Clique to k-DSP on unweighted DAGs with O((kn)2)
vertices, that runs in O((kn)2) time.

3This problem is sometimes referred to in the literature as k-Multicolored Clique. A folklore argument reduces
from detecting a k-clique in an arbitrary n-node graph to the k-Clique problem as defined here, by making k copies
of the input graph, and only including edges between different copies, e.g. as in [CFK+15, Proof of Theorem 13.7].
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Corollary 8. Assuming the k-Clique Hypothesis, k-DSP requires C(n1/2, k)1−o(1) time to solve on
unweighted DAGs.

The previous reduction of [BNRZ21] yields a weaker bound of C(n1/2, ⌊k/2⌋)1−o(1) for the time
needed to solve k-DSP, assuming the k-Clique Hypothesis. If ω > 2, this earlier result only gives
nontrivial (that is, superquadratic) lower bounds for k ≥ 10, and if ω = 2 is only nontrivial for
k ≥ 14. In comparison, if ω > 2, Corollary 8 is nontrivial for k ≥ 5, and if ω = 2, Corollary 8 is
still nontrivial for k ≥ 7. See Table 1 for the concrete lower bounds we achieve for small k.

As mentioned before (and as shown in detail in Appendix A), the k-DSP problem in weighted
DAGs generalizes k-DP in DAGs. However, the current fastest algorithms for k-DP have the same
time complexity as the current best algorithms for the more general k-DSP problem. To explain
this behavior, it is desirable to show conditional lower bounds for k-DP in DAGs, which are similar
in quality to the known lower bounds for k-DSP in DAGs.

Such lower bounds have been shown by [Chi21]. In particular, [Chi21] together with standard
reductions in parameterized complexity [CFK+15, Proofs of Theorems 14.28 and 14.30] implies
that there is a reduction from k-Clique to 8k-EDSP on graphs with O((kn)4) nodes. One can easily
modify this reduction, using the idea in the construction from [BNRZ20, Section 6], to instead
reduce from k-Clique to 8k-DSP on graphs with O((kn)4) nodes.

This reduction implies that k-DSP requires C(n1/4, ⌊k/8⌋)1−o(1) time to solve on DAGs, assum-
ing the k-Clique Hypothesis. For large k, this is the current best conditional lower bound for k-DP
in DAGs. However, the blow-up in the graph size and parameter value in this reduction makes this
lower bound irrelevant for small k (in fact, the reduction only yields nontrivial lower bounds under
the k-Clique Hypothesis for k ≥ 96).

For small values of k, better conditional lower bounds are known for k-DP. In particular, [Sli10]
presents reductions from k-Clique to p-DP and p-DSP on DAGs with O(kn) vertices, for parameter
value p = k +

(

k
2

)

. For our final conditional lower bound, we improve this reduction, by reducing
the number of paths needed to k + ⌊k2/4⌋.

Theorem 9. Let k ≥ 3 be a constant integer, and set p = k + ⌊k2/4⌋. There are O((kn)2) time
reductions from k-Clique to p-DP and p-DSP on unweighted DAGs with O(kn) vertices.

For each integer p ≥ 5, we can find the largest integer k ≥ 3 such that k+ ⌊k2/4⌋ ≤ p, and then
apply Theorem 9 to obtain conditional lower bounds for p-DP and p-DSP on DAGs.

Corollary 10. Assuming the k-Clique Hypothesis, the p-DSP and p-DP problems require

max (C(n, keven(p)), C(n, kodd(p)))1−o(1)

time to solve on unweighted DAGs for all integers p ≥ 5, where

keven(p) = 2⌊
√

p + 1⌋ − 2

and

kodd(p) = 2

⌊√
p + 5 − 1

2

⌋

− 1

are the largest even and odd integers k such that k + ⌊k2/4⌋ ≤ p respectively.

Assuming the k-Clique Hypothesis, Corollary 10 shows that 5-DSP requires at least nω−o(1) time
and 8-DSP requires at least C(n, 4)1−o(1) time to solve. For the current value of ω, these yield lower
bounds of n2.371−o(1) for 5-DSP and n3.198−o(1) for 8-DSP, which are better than the lower bounds
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k
k-DSP Exponent Lower Bound
(for current ω) (if ω = 2)

5 2.042 Trivial
6 2.371 Trivial
7 2.794 2.5
8 3.198 3
9 3.557 3

Table 1: A list of lower bounds implied by Corollary 8 for k-DSP when 5 ≤ k ≤ 9. Each row
corresponds to a value of k. An entry of α in the left column of the row for a given k value
indicates that solving k-DSP in O(nα−δ) time for any constant δ > 0 would require refuting the
k-Clique Hypothesis or designing faster matrix multiplication algorithms. An entry of β in the
right column in the row for a given k value indicates that assuming the k-Clique Hypothesis, k-DSP
requires nβ−o(1) time to solve. The previous reduction of [BNRZ21] gave no nontrivial
lower bound for k-DSP for any value of k in this table, and the reduction of [Sli10] matches
our lower bound for k = 6, but is worse everywhere else. Table entry values are based off rectangular
matrix multiplication exponents from [WXXZ23, Table 1].

implied by Corollary 8 (see Table 1). If ω = 2 however, Corollary 10 does not yield better lower
bounds than Corollary 8 for k-DSP.

Previous reductions give nontrivial lower bounds for p-DP only when p ≥ 6 if ω > 2, and p ≥ 10
if ω = 2. In comparison, Corollary 10 yields nontrivial lower bounds for p-DP under the k-Clique
Hypothesis for p ≥ 5 if ω > 2, and p ≥ 8 if ω = 2.

Previously, the reduction of [Sli10] yielded the best lower bounds for p-DP for p ≤ 2016, and
otherwise the reduction of [Chi21] yielded better lower bounds. In comparison, Corollary 10 yields
lower bounds matching the reduction from [Sli10] for p ∈ {6, 7, 10}, and otherwise, for ω > 2, yields
strictly better lower bounds for p-DP for all p ≥ 5. Moreover, for ω = 2, Corollary 10 yields the
best lower bounds for p-DP for all p ≤ 4031 (with [Chi21] yielding better lower bounds only for
larger p).

To see quantitatively how Corollary 10 improves the best conditional lower bounds for p-DP
from previous work at various concrete values of p, see Table 2.

1.1 Comparison with Previous Algorithms

Previous algorithms for 2-DSP and 2-DP in DAGs are combinatorial in nature: they observe certain
structural properties of candidate solutions, and then leverage these observations to build up pairs
of disjoint paths. In the special case of unweighted undirected graphs, [BHK22] presented an
algebraic algorithm for solving a generalization of 2-DSP, but all other prior algorithms for 2-DSP
and 2-DP in undirected graphs are combinatorial. Our work is the first to employ algebraic methods
to tackle the general weighted 2-DSP problem: our algorithms for 2-DSP on undirected graphs and
DAGs work by checking that a certain polynomial, whose monomials correspond uniquely to pairs
of disjoint shortest paths in the input graph, is nonzero. To obtain the fast runtimes in Theorems 1
and 2, we evaluate this polynomial over a field of characteristic two, and crucially exploit certain
symmetries which make efficient evaluation possible when working modulo two.

Such “mod 2 vanishing” methods have appeared previously in the literature for algebraic graph
algorithms, but the symmetries we exploit in our algorithms for 2-DSP differ in interesting ways
from those of previous approaches. For example, previous methods tend to work exclusively in
undirected graphs (relying on the ability to traverse cycles in both the forwards and backwards
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p
p-DP Exponent Lower Bound (if ω = 2)

From Corollary 10 Reduction of [Sli10] Reduction of [Chi21]

9 3 Trivial Trivial
24 6 4 Trivial
89 12 8 Trivial
239 20 14 5
929 40 28 19.5
2016 58 42 42
2969 72 51 62
4031 84 60 84

Table 2: A list of lower bounds implied by Corollary 10 (and previous work) for p-DP at various
values of p. Rows correspond to values of p. For a given such row, the entries α, β, γ in the three
columns collected under the heading of “p-DP Exponent Lower Bound,” read from left to right,
indicate that Corollary 10, the reduction of [Sli10], and the reduction of [Chi21] imply that p-DP
requires nα−o(1), nβ−o(1), and nγ−o(1) time to solve respectively, assuming the k-Clique Conecture.

directions to produce terms in polynomials which cancel modulo 2), while our approach is able to
handle 2-DSP in both undirected graphs and DAGs. It is also interesting that our algorithms solve
2-DSP in weighted graphs without any issue, since the previous algebraic graph algorithms we are
aware of are efficient in unweighted graphs, but in weighted graphs have a runtime which depends
polynomially on the value of the maximum edge weight.

Below, we compare our techniques to previous algebraic algorithms in the literature.

Two Disjoint Paths with Minimum Total Length The most relevant examples of algebraic
graph algorithms in the literature to our work are previous algorithms for the MinSum 2-DP prob-
lem: in this problem, we are given a graph G on n vertices, with specified sources s1, s2 and targets
t1, t2, and are tasked with finding internally vertex-disjoint paths Pi from si to ti, such that the
sum of the lengths of P1 and P2 is minimized, or reporting that no such paths exists.

In unweighted undirected graphs, [BH19] showed that MinSum 2-DP can be solved in polynomial
time, with [BHK22, Section 6] providing a faster implementation of this approach running in
Õ(n4+ω) time. Similar to our work, these algorithms check if a certain polynomial enumerating
disjoint pairs of paths in G is nonzero or not. These methods rely on G being undirected, and are
based off computing determinants of n× n matrices.

Our approach for 2-DSP differs from these arguments because we seek linear time algorithms,
and so avoid computing determinants (which would yield Ω(nω) runtimes). We instead directly
enumerate pairs of intersecting paths and subtract them out. This alternate approach also allows us
to obtain algorithms which apply to both undirected graphs and DAGs, whereas the cycle-reversing
arguments of [BHK22] do not appear to extend to DAGs.

Paths and Linkages with Satisfying Length Conditions Given sets S and T of p source
and target vertices respectively, an (S, T )-linkage is a set of p vertex-disjoint paths, beginning at
different nodes in S and ending at different nodes in T . The length of such a linkage is the sum
of the lengths of the paths it contains. Recent work has presented algorithms for the problem of
finding (S, T )-linkages in undirected graphs of length at least k, fixed-parameter tractable in k. In
particular, [FGK+22, Section 4] presents an algorithm solving this problem in 2k+p poly(n) time.
Their algorithm enumerates collections of p walks beginning at different nodes in S and ending at
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different nodes in T . They then argue that all terms in this enumeration with intersecting walks
cancel modulo 2, leaving only the (S, T )-linkages. One idea used in the above cancellation argument
is that if two paths P and Q in a collection intersect at a vertex v, then we can pair this collection
with a new collection obtained by swapping the suffixes of P and Q after vertex v.

In the 2-DSP problem, solution paths must connect sources si to corresponding targets ti instead
of to arbitrary targets, and so we cannot use the above suffix-swapping argument to get cancellation.
So to enumerate disjoint shortest paths in our algorithms, we employ somewhat trickier cancellation
arguments than what was previously used.

More recently, [EKW23, Section 6] presented an algorithm solving the linkage problem discussed
above in 2k poly(n) time (with runtime independent of p). Their approach uses determinants to
enumerate (S, T )-linkages. As mentioned previously, we explicitly avoid using determinants so that
we can obtain linear time algorithms.

Additional Related Work There are many additional examples of algebraic graph algorithms
in the literature. For example, [BHT12] presents an efficient algorithm for finding shortest cycles
through specified subsets of vertices, [CGS15] presents algorithms for finding shortest cycles and
perfect matchings in essentially matrix multiplication time, and [BHK22] presents a polynomial
time algorithm for finding a shortest cycle of even length in a directed graph. Even more examples
of algebraic methods in parameterized algorithms are listed in [EKW23, Table 1].

Organization

In Section 2 we introduce notation and recall useful facts about graphs and polynomials used in our
results. In Section 3 we provide some intuition for the proofs of our results. In Section 4 we present
our linear time algorithms for 2-DSP in weighted undirected graphs and DAGs. In Section 5 we
present our algorithm for k-EDSP. In Section 6 we present our lower bounds. Finally, we conclude
in Section 7 by highlighting some open problems motivated by this work.

See Appendix A for proofs of some simple reductions between variants of disjoint path problems
which were mentioned previously.

2 Preliminaries

General Notation

Given a positive integer a, we let [a] = {1, . . . , a} denote the set of the first a positive integers.
Given positive integers a and b, we let [a, b] = {a, . . . , b} denote the set of consecutive integers from
a to b inclusive (if a > b, then [a, b] is the empty set).

Throughout, we let k denote a constant positive integer parameter.

Graph Notation and Assumptions

Throughout, we let G denote the input graph on n vertices and m edges. We let s1, . . . , sk denote
the source vertices of G, and t1, . . . , tk denote the target vertices of G. A terminal is a source
or target node. We assume without loss of generality that G is weakly connected (we can do
this because we only care about solving disjoint path problems on G, and if terminals of G are
in separate weakly connected components, we can solve smaller disjoint path problems on each
component separately).

7



Given an edge e = (u, v), we let ℓ(u, v) denote the weight of e in G. We assume all edge weights
are positive. We let dist(u, v) denote the distance of a shortest path (i.e., the sum of the weights
of the edges used in a shortest path) from u to v. When we write “path P traverses edge (u, v)”
we mean that P first enters u, then immediately goes to v.

We represent paths P = 〈v0, . . . , vr〉 as sequences of vertices. If the path P passes through
vertices u and v in that order, we let P [u, v] denote the subpath of P which begins at u and ends

at v. We let
 −

P denote the reverse path of P , which traverses the vertices of P in reverse order.
Given two paths P and Q such that the final vertex of P is the same as the first vertex of Q, we
let P ⋄Q denote the concatenation of P and Q.

Shortest Path DAGs

Given a graph G and specified vertex s, the s-shortest paths DAG of G is the graph with the
same vertex set as G, which includes edge (u, v) if and only if (u, v) is an edge traversed by an
(s, v)-shortest path in G. From this definition, it is easy to see that a sequence of vertices is an
(s, v)-shortest path of G if and only if it is an (s, v)-path in the s-shortest paths DAG of G. Indeed,
every edge of an (s, v)-shortest path in G is contained in the s-shortest paths DAG by definition,
and so forms a path in this graph. Conversely, if the sequence of vertices P = 〈v0, . . . , vr〉 is an
(s, v)-path in the s-shortest paths DAG of G, then we can inductively show that P [s, vi] is a shortest
path in G for each index i.

We observe that shortest paths DAGs can be constructed in linear time.

Proposition 11 (Shortest Path DAGs). Let G be a weighted DAG or undirected graph with
distinguished vertex s. Then we can construct the s-shortest paths DAG of G in linear time.

Proof. By definition, an edge (u, v) is in the s-shortest paths DAG of G if and only if (u, v) is the
last edge of some (s, v)-shortest path in G. This is equivalent to the condition that (u, v) is an edge
in G, and

dist(s, v) = dist(s, u) + ℓ(u, v). (1)

So, we can construct the s-shortest paths DAG of G by computing the values of dist(s, v) for all
vertices v, and then going through each edge (u, v) in G (if G is undirected, we try out both ordered
pairs (u, v) and (v, u) of an edge {u, v}) and checking if Eq. (1) holds.

So to prove the claim, it suffices to compute dist(s, v) for all vertices v in linear time.
When G is a weighted DAG, we can compute a topological order of G in linear time, and then

perform dynamic programming over the vertices in this order to compute dist(s, v) for all vertices
v in linear time (this procedure is just a modified breadth-first search routine).

When G is an undirected graph, we instead use Thorup’s linear-time algorithm for single-source
shortest paths in weighted undirected graphs [Tho97] to compute dist(s, v) for all vertices v. �

Finite Fields

Our algorithms for 2-DSP in undirected graphs and DAGs involve working over a finite field F2q

of characteristic two, where q = O(log n). We work in the Word-RAM model with words of size
O(log n), so that addition and multiplication over this field take constant time.

We make use of the following classical result, which shows that we can test if a polynomial is
nonzero by evaluating it at a random point of a sufficiently large finite field.

Proposition 12 (Schwartz-Zippel Lemma). Let f be a nonzero polynomial of degree at most d.
Then a uniform random evaluation of f over F is nonzero with probability at least 1 − d/|F|.

8



= −

Figure 1: To enumerate the family of disjoint pairs of paths on the left (the dashed borders around
the paths indicate that the paths do not intersect), it suffices to enumerate all pairs of paths and
subtract out those pairs in the family which intersect at some point.

3 Technical Overview

3.1 2-DSP Algorithms

We first outline a linear time algorithm solving 2-DP in DAGs. We then discuss the changes needed
to solve the 2-DSP problem in weighted DAGs, and then the additional ideas used to solve 2-DSP
in weighted undirected graphs.

Let G be the input DAG. For each edge (u, v) in G, we introduce an indeterminate xuv. We
assign each pair of paths in G a certain monomial over the xuv variables, which records the pairs
of consecutive vertices traversed by the paths. These monomials are constructed so that any pair
of disjoint paths has a unique monomial.

Let F be the sum of monomials corresponding to all pairs of paths 〈P1, P2〉 such that Pi is an
(si, ti)-path in G. Let Fdisj and F∩ be the sums of monomials corresponding to all such pairs of paths
which are disjoint and intersecting respectively. Since each disjoint pair of paths produces a distinct
monomial, we can solve 2-DP by testing whether Fdisj is a nonzero polynomial. We can perform
this test by evaluating Fdisj at a random point, by the Schwartz-Zippel lemma (Proposition 12).

Since every pair of paths is either disjoint or intersecting, we have

F = Fdisj + F∩

which implies that
Fdisj = F − F∩.

This relationship is pictured in Figure 1.
Thus, in order to evaluate Fdisj, it suffices to evaluate F and F∩. Since F enumerates pairs of

paths from the sources to their corresponding targets with no constraints, it turns out that F is
easy to evaluate. So solving 2-DP amounts to evaluating F∩ efficiently.

To evaluate F∩, we need a way of enumerating over all pairs of intersecting paths. Each pair
of intersecting paths overlaps at a unique earliest vertex v (with respect to the topological order
of G). Consequently, if we let Fv be the sum of monomials of pairs of intersecting paths with first
intersection at v, we have

F∩ =
∑

v∈V

Fv (2)

as depicted in Figure 2.
We evaluate each Fv by relating it to a seemingly simpler polynomial. Let F̃v be the polynomial

enumerating pairs of paths 〈P1, P2〉 where Pi is an (si, ti)-path in G such that

1. P1 and P2 intersect at vertex v, and

2. the vertices appearing immediately before v on P1 and P2 are distinct.

9



=
∑

v∈V
v

Figure 2: To enumerate the family of intersecting pairs of paths on the left, we can perform casework
on the earliest intersection point v for the paths (the dashed border on the subpaths on the right
indicates that the paths do not intersect before v).

We can think of property 2 as a relaxation of the condition that P1 and P2 have v as their
earliest intersection point: instead of requiring that P1[s1, v] and P2[s2, v] never overlap before v,
we merely require that these subpaths do not overlap at the position immediately before v. It turns
out evaluating F̃v is easy, because we can enforce property 2 above by enumerating over all pairs
of paths which intersect at v, and then subtracting out all such pairs which overlap at some edge
ending at v. Simultaneously evaluating all F̃v can then be done in O(m) time, roughly because we
perform one subtraction for each possible edge the paths could overlap at.

So far, we have explained how to compute all F̃v values in linear time. Now comes the key
idea behind our algorithm: over fields of characteristic two, the polynomials F̃v and Fv are actually
identical! Indeed, consider a pair of paths 〈P1, P2〉 enumerated by F̃v, which intersects before v.
Let the first intersection point of these paths be some vertex u. Then by condition 2 above, the
subpaths P1[u, v] and P2[u, v] are distinct, because their penultimate vertices are distinct. So if we
define new paths

Q1 = P1[s1, u] ⋄ P2[u, v] ⋄ P1[v, t1] and Q2 = P2[s2, u] ⋄ P1[u, v] ⋄ P2[v, t2]

obtained by swapping the u to v subpaths in P1 and P2, we get a new pair of paths 〈Q1, Q2〉
satisfying conditions 1 and 2 from before, such that each Qi is an (si, ti)-path in G, which produces
the same monomial as 〈P1, P2〉. This subpath swapping operation is depicted in Figure 4, for u = a
and v = b. Then modulo two, the contributions of the pairs 〈P1, P2〉 and 〈Q1, Q2〉 to F̃v will cancel
out. It follows that all pairs of paths which intersect before v have net zero contribution to F̃v , and
so F̃v = Fv as claimed. This congruence is depicted in Figure 3,

Given this observation, we can use our evaluations of F̃v in Eq. (2) to evaluate F∩ and thus, by
the previous discussion, solve the 2-DP problem.

From Disjoint Paths to Disjoint Shortest Paths

To solve 2-DSP in weighted DAGS, we can modify the 2-DP algorithm sketched above as follows.
First, for i ∈ [2], we compute Gi, the si-shortest paths DAG of G. We then construct polynomials
as above, but with the additional constraint that they only enumerate pairs of paths 〈P1, P2〉 with
the property that every edge in path Pi lies in Gi. This ensures that we only enumerate pairs of
paths which are shortest paths between their terminals.

With this change, the above algorithm for 2-DP generalizes to solving 2-DSP.

Remark 13 (Enumeration Makes Generalization Easy). Previous near-linear time algorithms for
2-DP in DAGs and undirected graphs do not easily generalize to solving 2-DSP. In contrast, as
outlined above, in our approach moving from 2-DP to 2-DSP is simple. Why is this?

Intuitively, this happens because our algorithms take an enumerative perspective on 2-DSP,
rather than the detection-based strategy of previous algorithms. Older algorithms iteratively build
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v
≡

v
(mod 2)

Figure 3: If we work modulo two, then we can enumerate pairs of paths which have common first
intersection at node v by enumerating pairs of paths which intersect at v and have the property
that the vertices appearing immediately before v on each path are distinct.

up solutions to 2-DP or 2-DSP. Depending on the problem, this involves enforcing different sorts
of constraints, since partial solutions to these problems may look quite different. In our approach,
we just need to enumerate paths to solve 2-DP and enumerate shortest paths to solve 2-DSP.
Enumerating paths and shortest paths are both easy in DAGs by dynamic programming. Hence
algorithms for these two problems end up being essentially the same in our framework.

From DAGs to Undirected Graphs

When solving 2-DSP in DAGs, we used the fact that DAGs have a topological order, so that any
pair of paths intersects at a unique earliest vertex v in this order. This simple decomposition does
not apply to solving 2-DSP in undirected graphs, since we cannot rely on a fixed topological order.

Instead, we perform casework on the first vertex v in P1 lying in P1 ∩ P2. We observe that in
undirected graphs, there are two possibilities: v is either the first vertex in P2 lying in P1 ∩ P2, or
it is the final vertex in P2 lying in P1 ∩P2. Intuitively, the paths either “agree” and go in the same
direction, or “disagree” and go in opposite directions.

We then argue that over a field of characteristic two, we can efficiently enumerate over pairs of
paths in each of these cases. As with DAGs, we make this enumeration efficient by arguing that
modulo 2 we can relax the (a priori difficult to check) condition of v being the first intersection
point on P1 to some simpler “local” condition. When the paths agree, this argument is similar to
the reasoning used for solving 2-DSP in DAGs.

For the case where the paths disagree, this enumeration is more complicated, because there is
no consistent linear ordering of the vertices neighboring v on the two shortest paths, but can still
be implemented in linear time using a more sophisticated local condition. Specifically, if we let ai
and bi denote the nodes appearing immediately before and after v on path Pi, then to enumerate
the ‘disagreeing paths” modulo two, we prove that it suffices to enumerate paths P1 and P2 which
intersect at v and have the properties that a1 6= a2, b1 6= b2, and a1 6= b2. Intuitively, using the
subpath swapping idea depicted in Figure 3, the conditions that a1 6= a2 and a1 6= b2 ensure that
v is the first vertex of P1 lying in P1 ∩ P2, and the condition that b1 6= b2 ensures that the paths
disagree. To implement this idea, we need a slightly more complicated subpath swapping argument,
which can also handle the case where two paths P1 and P2 intersect at vertices u and v, with u
appearing before v on P1 but u appearing after v on P2 (this situation does not occur in DAGs,
but can occur in undirected graphs). We do this by combining the previous subpath swapping
idea with the observation that in undirected graphs we can also traverse subpaths in the reverse
direction (so it is possible to swap the subpaths P1[u, v] and P2[v, u] in P1 and P2, even though u
and v appear in different orders on P1 and P2).

By combining the enumerations for both cases, we can evaluate Fdisj, and thus solve 2-DSP over
undirected graphs.
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3.2 k-EDSP Algorithm

The previous algorithm of [BK17, Proposition 10] for k-EDSP works by constructing a graph G′

encoding information about k-tuples of edge-disjoint shortest paths in the original graph G. This
new graph G′ has special nodes ~s and ~t, such that there is a path from ~s to ~t in G′ if and only if
G contains k edge-disjoint shortest paths connecting its terminals. The nodes of the new graph G′

are k-tuples of edges (e1, . . . , ek) where each ei is an edge in G. So constructing G′ already takes
Ω(mk) time.

Our algorithm for k-EDSP uses the same general idea. We construct an alternate graph G′

which still has the property that finding a single path between two specified vertices of G′ solves
the k-EDSP problem in G. However, we design G′ to have nodes of the form (v1, . . . , vk), where
each vi is a vertex in G. Our construction produces a graph with nk nodes and O(mnk−1) edges,
which yields the speed-up. We avoid the Ω(mk) bottleneck of the previous algorithm by showing
how to encode edge-disjointness information simply through the k-tuples of vertices, rather than
edges, that the k potential solution paths in G traverse.

3.3 Lower Bounds

Disjoint Shortest Paths

Our proof of Theorem 7 is based on the reduction of [BNRZ20, Proposition 1] from k-Clique to 2k-
DSP on undirected graphs, which also easily extends to DAGs. Our contribution is a transformation
that reduces the number of paths in their reduction from 2k to k by exploiting the symmetry of
the construction.

The reduction of [BNRZ20] maps each vertex v in the k-Clique instance to a horizontal path Pv

and a vertical path Qv, each of length n. These paths are arranged so that for each pair of vertices
(v,w) in the input graph, the paths Pv and Qw intersect if and only if (v,w) is not an edge in the
input graph. To achieve this, the paths are placed along a grid, and at the intersection point in
the grid between paths Pv and Qw, these two paths are modified to bypass each other to avoid
intersection if (v,w) is an edge in the input graph.

The main idea of our transformation is the following. Since the known reduction is symmetric
along the diagonal of the grid, it contains some redundancy. We remove this redundancy by only
keeping the portion of the grid below the diagonal. To do this, we only have one path Pv for each
vertex v in the input graph, and each such path has both a horizontal component and a vertical
component. Each path turns from horizontal to vertical when it hits the diagonal. As a result,
each pair of paths (Pv, Pw) has exactly one intersection point in the grid (which we bypass if (v,w)
is an edge in the input graph). Since we produce only a single path Pv for each vertex v, we obtain
a reduction to k-DSP instead of 2k-DSP.

Disjoint Paths

The starting point for Theorem 9 is the work of [Sli10], which reduces from k-Clique to p-EDP in a
DAG with O(kn) nodes, for p = k +

(k
2

)

. The parameter blows up from k to p in this way because
the reduction uses k solution paths to pick k vertices in the original graph, and then for each of
the

(k
2

)

pairs of vertices chosen, uses an additional solution path to verify that the vertices in that
pair are adjacent in the original graph.

We improve upon this by modifying the reduction graph to allow some solution paths to check
multiple edges simultaneously. This lets us avoid using

(k
2

)

solution paths to separately check for
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edges between each pair of nodes in a candidate k-clique. Instead, we employ just ⌊k2/4⌋ solution
paths in the reduction, roughly halving the number of paths needed.

To do this, we need to precisely identify which paths can check for multiple edges without
compromising the correctness of the reduction. To this end, we examine the structure of the
reduction and define a notion of a covering family which characterizes which paths can safely check
for multiple edges at once. Formally, a k-covering family is a collection L of increasing lists of
positive integers, with the property that for all integers i, j with 1 ≤ i < j ≤ k, some list in L
contains i and j as consecutive members.

We show that for any k, the smallest number of lists in a k-covering family is λ(k) = ⌊k2/4⌋
(note that merely obtaining asymptotically tight bounds would not suffice for designing interesting
conditional lower bounds). We then insert this construction of a minimum size covering family into
the framework of the reduction and prove that the reduction remains correct. Intuitively, given
lists in a covering family, we can map each list L to a path which checks edges between vertex parts
Vi and Vj for each (i, j) pair appearing as consecutive members of L.

The original reduction of [Sli10] corresponds to implementing this strategy with the trivial
k-covering family using

(

k
2

)

lists, achieved by taking a single increasing list of two elements for
each unordered pair of integers from [k]. Our improved reduction comes from implementing this
framework with the optimal bound of ⌊k2/4⌋ lists.

This yields reductions from k-Clique to p-DP and p-DSP for p = k + λ(k) = k + ⌊k2/4⌋.

4 2-DSP

In this section, we present our new algorithms for 2-DSP.
We begin in Section 4.1 by introducing notation and terminology used in our algorithms. We

also present a general “subpath swapping lemma,” which we repeatedly invoke to efficiently evaluate
polynomials modulo 2. Then in Section 4.2 we define and prove results about various polynomials
used in our algorithms. All the definitions and results in Section 4.1 and Section 4.2 apply to both
DAGs and undirected graphs.

Following this setup, in Section 4.3 we present an algorithm for 2-DSP in DAGs proving
Theorem 2, and in Section 4.4 we present an algorithm for 2-DSP in undirected graphs prov-
ing Theorem 1. We note that Section 4.4 can be read independently of Section 4.3 (but both
Sections 4.3 and 4.4 rely on the definitions and results from Sections 4.1 and 4.2).

4.1 Graph and Polynomial Preliminaries

Graph Notation

Let G denote the input graph on n vertices and m edges. Let V be the vertex set of G.
For each i ∈ [2], we define Gi to be the si-shortest paths DAG of G.
Given i ∈ [2] and vertex v, we let V i

in(v) denote the in-neighbors of v in Gi, and V i
out(v) denote

the out-neighbors of v in Gi. We further let Vin(v) = V 1
in(v)∩V 2

in(v) and Vout(v) = V 1
out(v)∩V 2

out(v)
be the sets of in-neighbors and out-neighbors respectively of node v common to both G1 and G2.
Furthermore, we define Vmix(v) = V 1

in(v) ∩ V 2
out(2) to be the “mixed neighborhood” of v.

We call a pair of paths 〈P1, P2〉 standard if each Pi is an (si, ti)-path in Gi.

Algebraic Preliminaries

For each edge e = (u, v), we introduce an indeterminate xuv.
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If G is undirected, we set xuv = xvu = x{u,v} to reflect that edges are unordered pairs of vertices.
Given a path P = 〈v0, . . . , vr〉, we assign it the monomial

f(P ) =
r−1
∏

j=0

xvjvj+1
.

Given a pair of paths P = 〈P1, P2〉, we assign it monomial

f(P) = f(P1, P2) = f(P1)f(P2).

Given a collection S of paths or pairs of paths, we say that a “polynomial F enumerates S,” or
equivalently “F is the enumerating polynomial for S,” if

F =
∑

S∈S

f(S).

Subpath Swapping

Lemma 14 (Shortest Path Swapping). Let P1 and P2 be shortest paths passing through vertices
a and b in that order. Then the walks obtained by swapping the a to b subpaths in P1 and P2 are
also shortest paths.

Proof. Since P1 and P2 are shortest paths, each of their a to b subpaths have length dist(a, b).
Since these subpaths have the same length, swapping the a to b subpaths of P1 and P2 produce
walks with the same endpoints and lengths as P1 and P2 respectively. Since all edge weights are
positive, these walks have no repeat vertices (since if one of the walks did have repeat vertices, then
it would contain a cycle which we could remove to produce a walk of shorter total length between
its endpoints, which would then contradict the assumption that P1 and P2 are shortest paths).
Thus these walks must be shortest paths as claimed. �

We will repeatedly make use of the following result, which gives a way of simplifying enumerating
polynomials for certain families of pairs of paths. Although the statement may appear technical,
the lemma simply formalizes the idea that for certain enumerating polynomials, we can pair up
terms of equal value and get cancellation modulo two.

Lemma 15 (Vanishing Modulo 2). Let F be a family of pairs of paths in G, and let S ⊆ F .
Suppose there exists maps α, β : S ! V and Φ : S ! S such that for all P = 〈P1, P2〉 ∈ S,

1. the vertices a = α(P) and b = β(P) lie in P1 ∩ P2, a appears before b in P1 and P2, and the
subpaths P1[a, b] and P2[a, b] are distinct;

2. we have Φ(P) = 〈Q1, Q2〉, where Q1 is obtained by replacing the a to b subpath in P1 with
P2[a, b], and Q2 is obtained by replacing the a to b subpath in P2 with P1[a, b]; and

3. we have Φ(Φ(P)) = P.

Then the enumerating polynomial for F is the same as the enumerating polynomial for F \ S.

Proof. Let F be the enumerating polynomial for F . By definition, we have

F =
∑

P∈F

f(P) =
∑

P∈F\S

f(P) +
∑

P∈S

f(P). (3)
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Figure 4: Given paths P1 and P2 which intersect at nodes a = α(P1, P2) and b = β(P1, P2), such
that a appears before b on both paths, if we swap the a to b subpaths of of P1 and P2 to produce new
paths Q1 and Q2 respectively, then these pairs f(P1, P2) = f(Q1, Q2) have the same monomials.
Moreover, swapping the a to b subpaths of Q1 and Q2 recovers P1 and P2.

Take any P = 〈P1, P2〉 ∈ S. By property 1 from the lemma statement, the subpaths from α(P) to
β(P) in P1 and P2 are distinct. Then by property 2, Φ(P) 6= P. Consequently, by property 3, we
can partition S = S1 ∪S2 into two equally sized pieces such that Φ is a bijection from S1 to S2. So
we can write

∑

P∈S

f(P) =
∑

P∈S1

f(P) +
∑

P∈S2

f(P) =
∑

P∈S1

(f(P) + f(Φ(P))) . (4)

By property 2, the multiset of edges traversed by the pair P is the same as the multiset of edges
traversed by Φ(P), for all P ∈ S. Consequently, f(P) = f(Φ(P)) for all P ∈ S.

The subpath swapping procedure determined by Φ is depicted in Figure 4.
Since we work over a field of characteristic two, this implies that

∑

P∈S1

(f(P) + f(Φ(P))) = 0.

Substituting the above equation into Eq. (4) implies that

∑

P∈S

f(P) = 0.

Then substituting the above equation into Eq. (3) yields

F =
∑

P∈F\S

f(P).

This proves that F is the enumerating polynomial for F \ S as desired. �

4.2 Helper Polynomials

In this section we define various enumerating polynomials which will help us solve 2-DSP. All of
the results in this section hold if the input graph G is a DAG or is undirected.

Paths to and from Terminals

For each i ∈ [2] and vertex v, let Li(v) be the enumerating polynomial for the set of (si, v)-paths
in Gi, and let Ri(v) be the enumerating polynomial for the set of (v, ti)-paths in Gi.
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Lemma 16 (Path Polynomials). For each i ∈ [2] and vertex v, we have

Li(v) =
∑

u∈V i
in
(v)

Li(u)xuv (5)

and
Ri(v) =

∑

w∈V i
out(v)

xvwRi(w). (6)

Proof. Since Li(u) enumerates (si, u)-paths in Gi, the polynomial

Li(u)xuv

enumerates (si, v)-paths in Gi, whose penultimate vertex is u. Every (si, v)-path in Gi has some
unique penultimate vertex u ∈ V i

in(v). Consequently

∑

u∈V i
in
(v)

Li(u)xuv

enumerates all (si, v)-paths in Gi, which proves Eq. (5) as desired.
Symmetric reasoning proves Eq. (6). �

Intersecting Paths

Let Fdisj be the enumerating polynomial for the collection of vertex-disjoint, standard pairs of paths.
Let F∩ be the enumerating polynomial for the collection of intersecting, standard pairs of paths.
Our algorithms for 2-DSP work by evaluating Fdisj at a random point. The following observation
shows that we can compute an evaluation of Fdisj by evaluating F∩ instead.

Lemma 17 (Disjoint Paths ≤ Intersecting Paths). We have

Fdisj = L1(t1)L2(t2) − F∩.

Proof. By expanding out the product, we see that L1(t1)L2(t2) enumerates all standard pairs of
paths 〈P1, P2〉. Each such pair is either vertex-disjoint or consists of paths intersecting at a common
node, so we have

L1(t1)L2(t2) = Fdisj + F∩

which implies the desired result. �

Linkages from Two Sources to a Common Vertex

Our algorithms will use the following “linkage” polynomials, which enumerate pairs of internally
vertex-disjoint paths beginning at the source nodes s1 and s2, and ending at a common vertex.

Definition 18 (Source Linkage). Given a vertex v, let D(v) be the set of pairs of paths 〈P1, P2〉
where each Pi is an (si, v)-path in Gi and the paths intersect only at v. Let D(v) be the enumerating
polynomial for D(v).

We now observe that for the purpose of enumeration modulo two, one can replace the “global
constraint” that a pairs of paths in D(v) has no intersection anywhere before v with the easier to
check “local constraint” that a pair of paths has no intersection immediately before v.
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Definition 19 (Linkage Relaxation). Given a vertex v, let D̃(v) be the set of pairs of paths 〈P1, P2〉,
where each Pi is an (si, v)-path in Gi, such that the penultimate vertices of P1 and P2 are distinct.

Lemma 20 (Relaxing Source Linkages). For each vertex v, the polynomial D(v) enumerates D̃(v).

Proof. For convenience, let F = D̃(v). Let S = F \ D(v) be the family of pairs of paths 〈P1, P2〉
where each Pi is an (si, v)-path in Gi, such that

1. the paths P1 and P2 intersect at some node other than v, and

2. the nodes immediately before v on P1 and P2 are distinct.

Take arbitrary 〈P1, P2〉 ∈ S. Let u be the vertex in P1 ∩ P2 maximizing the value of dist(u, v). By
condition 1 above, u 6= v. By condition 2 above, P1[u, v] and P2[u, v] are distinct.

Now define paths

Q1 = P1[s1, u] ⋄ P2[u, v] and Q2 = P2[s2, u] ⋄ P1[u, v].

By Lemma 14 each Qi is a shortest path, and thus an (si, v)-path in Gi.
The pair 〈Q1, Q2〉 satisfies condition 1 above, since Q1 and Q2 intersect at u. This pair also

satisfies condition 2 above, since the penultimate vertices of Q1 and Q2 are the same as the penul-
timate vertices of P2 and P1 respectively. Also, u is the node in Q1 ∩Q2 maximizing dist(u, v), so
we can perform the same subpath swapping operation as above to go from 〈Q1, Q2〉 to 〈P1, P2〉.

Then by the discussion in the previous paragraph, Lemma 15 implies that the enumerating
polynomial for F is the same as the enumerating polynomial for F \ S = D(v). The enumerating
polynomial for D(v) is D(v), so this proves the desired result. �

Lemma 21 (Enumerating Relaxed Linkages). For each vertex v, the polynomial

L1(v)L2(v) −
∑

u∈Vin(v)

L1(u)L2(u)x2uv

enumerates D̃(v).

Proof. By expanding out the product, we see that the polynomial L1(v)L2(v) enumerates all pairs
of paths 〈P1, P2〉 where each Pi is an (si, v)-path in Gi. We claim that

∑

u∈Vin(v)

L1(u)L2(u)x2uv (7)

enumerates all pairs of paths 〈P1, P2〉 such that each Pi is a path in Gi beginning at si and ending
at an edge (u, v) for some node u ∈ Vin(v).

Indeed, paths P1 and P2 from any such pair can be split along their final edges into

P1 = P1[s1, u] ⋄ (u, v) and P2 = P2[s2, u] ⋄ (u, v).

The paths Pi[si, u] are enumerated by the Li(u) factors in Eq. (7), and the two copies of (u, v) are
encoded by the x2uv factor in Eq. (7). Conversely, any monomial in the expansion of

L1(u)L2(u)x2uv (8)

is the product of monomials for some (si, u)-paths Qi in Gi and two occurrences of the edge (u, v),
so that if we define

P1 = Q1 ⋄ (u, v) and P2 = Q2 ⋄ (u, v)
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then the monomial we were considering is precisely the monomial for the pair 〈P1, P2〉. Summing
over all vertices u ∈ Vin proves that Eq. (8) enumerates the pairs of paths we described above.

From the discussion above, it follows that

L1(v)L2(v) −
∑

u∈Vin(v)

L1(u)L2(u)x2uv

enumerates all pairs of paths 〈P1, P2〉, where Pi is an (si, v)-path in Gi, such that P1 and P2 have
distinct penultimate vertices. Thus this polynomial enumerates D̃(v) as desired. �

Lemma 22 (Enumerating Source Linkages). For each vertex v, we have

D(v) = L1(v)L2(v) −
∑

u∈Vin(v)

L1(u)L2(u)x2uv.

Proof. This result follows by combining Lemmas 20 and 21. �

4.3 2-DSP in DAGs

In this subsection, assume that G is a weighted DAG, and recall the definitions from Section 4.1.
We fix an arbitrary topological order on the vertices of G.

Our main goal is to efficiently evaluate a polynomial encoding pairs of disjoint shortest paths
in G. By Lemma 17, it suffices to evaluate a polynomial enumerating pairs of intersecting shortest
paths in G. We do this by casework on the first intersection point of these paths.

Lemma 23 (Enumerating Intersecting Paths). We have

F∩ =
∑

v∈V

D(v)R1(v)R2(v).

Proof. For any fixed vertex v, we claim that

D(v)R1(v)R2(v) (9)

enumerates all standard pairs of paths 〈P1, P2〉 such that P1 and P2 have first intersection at v.
Indeed, given any such pair of paths 〈P1, P2〉, we can decompose

Pi = Pi[si, v] ⋄ Pi[v, ti]

and observe that the pair 〈P1[s1, v], P2[s2, v]〉 is enumerated by the D(v) factor in Eq. (9), and
the Pi[v, ti] paths are enumerated by the respective Ri(v) factors from Eq. (9). Conversely, any
monomial in the expansion of Eq. (9) is the product of monomials encoding the edges of a pair of
paths 〈A1, A2〉, where Ai is an (si, v)-path in Gi such that A1 and A2 only intersect at v, and paths
Bi from v to ti in Gi. Then if we define

Pi = Ai ⋄Bi

we see that the Pi are (si, ti)-paths in Gi with the property that P1 and P2 first intersect at v.
Here, we are using the fact that G is a DAG—this ensures that every node in A1 or A2 appears at
or before v in the topological order, and that every node in B1 or B2 appears at or after v in the
topological order, so that A1 ∩B2 = A2 ∩B1 = {v}.

Since every pair of intersecting paths intersects at a unique earliest vertex, it follows that
∑

v∈V

D(v)R1(v)R2(v)

enumerates all intersecting, standard pairs of paths 〈P1, P2〉. This proves the desired result. �
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Theorem 2. The 2-DSP problem can be solved in weighted DAGs in O(m + n) time.

Proof. Each pair of internally vertex-disjoint paths produces a distinct monomial in Fdisj. It follows
that disjoint (si, ti)-shortest paths exist in G if and only if Fdisj is nonzero as a polynomial.

So we can solve 2-DSP as follows. We assign each xuv variable an independent, uniform random
element of F2q , and then evaluate Fdisj on this assignment. If the evaluation is nonzero we return
YES (two disjoint shortest paths exist), and otherwise we return NO.

If two disjoint shortest paths do not exist, then Fdisj is the zero polynomial, and our algorithm
correctly returns NO. If two disjoint shortest paths do exist, then Fdisj is a nonzero polynomial of
degree strictly less than 2n, so by Schwartz-Zippel (Proposition 12) our algorithm correctly returns
YES with high probability for large enough q = O(log n).

It remains to show that we can compute Fdisj in linear time.
First, we can compute G1 and G2 in linear time by Proposition 11.
Then, by dynamic programming forwards and backwards over the topological order of G, we

can evaluate the polynomials Li(v) and Ri(v) for each i ∈ [2] and vertex v at our given assignment
in linear time, using the recurrences from Lemma 16.

Having computed these values, Lemma 22 shows that for any vertex v we can compute D(v) at
the given assignment in O(degin(v)) time. So we can evaluate D(v) for all v in O(m) time.

Given the above evaluations, we can compute F∩ at the given point in O(n) time by Lemma 23.
Finally, given the value of F∩, we can evaluate Fdisj in O(1) additional time by Lemma 17.
Thus we can solve 2-DSP in linear time. �

4.4 2-DSP in Undirected Graphs

In this subsection, we assume that G is a weighted undirected graph.
To solve 2-DSP in G, we will show how to efficiently evaluate a polynomial enumerating pairs of

disjoint shortest paths in G. To help construct this polynomial, it will first be helpful to characterize
the ways in which two shortest paths can intersect in an undirected graph.

Structure of Shortest Paths

We begin with the following simple observation about shortest paths in undirected graphs.

Proposition 24 (Shortest Path Orderings). Let G be an undirected graph. Suppose vertices a, b, c
appear in that order on some shortest path of G. Then on any shortest path in G passing through
these three nodes, b appears between a and c.

Proof. Since some shortest path in G passes through vertices a, b, c in that order, we know that
dist(a, b) and dist(b, c) are both less than dist(a, c).

Now, consider any shortest path in G which passes through these three vertices. If a appears
between b and c in this shortest path, then

dist(a, c) < dist(b, c)

which contradicts the observation from the first sentence.
Similarly, if c appears between a and b in this shortest path, then

dist(a, c) < dist(a, b)

which again contradicts the observation from the first sentence of this proof.
Thus b must appear between a and c on the shortest path as claimed. �
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Definition 25 (Intersection Types). Let P1 and P2 be intersecting shortest paths in an undirected
graph. Let v be the first vertex in P1 appearing in P1 ∩ P2.

• If P1 ∩ P2 = {v}, we say P1 and P2 have single intersection.

• If |P1 ∩ P2| ≥ 2 and v is also the first vertex of P2 in P1 ∩ P2, we say P1 and P2 agree.

• If |P1 ∩ P2| ≥ 2 and v is the last vertex of P2 in P1 ∩ P2, we say P1 and P2 are reversing.

If P1 and P2 do not agree, we say they disagree.

In other words, P1 and P2 disagree if the first vertex v of P1 appearing in P1 ∩ P2 is also the
last vertex of P2 appearing in P1 ∩ P2. Equivalently, paths P1 and P2 disagree if they have single
intersection or are reversing.

Lemma 26 (Intersection Types are Exhaustive). Let P1 and P2 be intersecting shortest paths in
an undirected graph. Then either P1 and P2 agree, are reversing, or have single intersection.

Proof. If |P1 ∩ P2| = 1, then the paths have single intersection.
Otherwise, |P1 ∩ P2| ≥ 2. Let v be the first vertex in P1 appearing in P1 ∩ P2. It suffices to

show v is either the first or last vertex in P2 appearing in P1 ∩ P2.
Suppose to the contrary this is not the case. Then let u and w be the first and last vertices

respectively in path P2 appearing in P1 ∩P2. By assumption, u, v, w are all distinct. By definition,
u, v, w appear in that order on P2. Since P2 is a shortest path, by Proposition 24, v must appear
between u and w on P1 as well. This contradicts the definition of v as the first vertex on P1 lying
in the intersection P1 ∩ P2.

Thus our original supposition was false, and the paths P1 and P2 must agree or be reversing
whenever |P1 ∩ P2| ≥ 2, which proves the desired result. �

Agreeing and Disagreeing Polynomials

Let Fagree be the enumerating polynomial for the collection of standard pairs of paths 〈P1, P2〉
which agree. Let Fdis be the enumerating polynomial for the collection of standard pairs of paths
〈P1, P2〉 which disagree. Any intersecting paths either agree or disagree, so

F∩ = Fagree + Fdis. (10)

Thus, to compute F∩, it suffices to compute Fagree and Fdis separately.

Agreeing Paths

We first show how to evaluate Fagree efficiently.

Lemma 27 (Common Final Intersection). If paths P1 and P2 agree, then they have a common
last intersection point, distinct from their common first intersection point.

Proof. Since P1 and P2 agree, they have a common first intersection point at some vertex v. Then
the vertex w ∈ P1 ∩P2 which maximizes dist(v,w) must be the last node on both paths in P1 ∩P2.
Since the paths agree, we have |P1 ∩ P2| ≥ 2, so w 6= v. �

We say a pair of paths 〈P1, P2〉 is edge-agreeing if Pi is an (si, ti)-path in Gi, and P1 and P2 traverse
a common edge in the same direction.
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Lemma 28 (Edge-Agreeing ⊆ Agreeing). Any edge-agreeing pair is agreeing.

Proof. Suppose pair 〈P1, P2〉 is edge-agreeing.
Let e = (a, b) be a common edge traversed by both P1 and P2.
Since {a, b} ⊆ P1 ∩ P2, we have |P1 ∩ P2| ≥ 2.
So by Lemma 26, P1 and P2 are either agreeing or reversing.
Suppose to the contrary that P1 and P2 are reversing. Let v be the first vertex on P1 in P1∩P2.

Then v 6= b, since a appears before b on P1.
Since the paths are reversing, v is the final vertex on P2 in P1∩P2. Then v 6= a, since b appears

after a on P2. Path P1 passes through v, a, b in that order. Then by Proposition 24, a must appear
between v and b on any shortest path containing these three vertices. However, this contradicts
the fact that b is between a and v on P2.

Thus P1 and P2 are not reversing, and so must agree as claimed. �

Lemma 29. The polynomial Fagree enumerates the collection of edge-agreeing paths in G.

Proof. By Lemma 28, the set of pairs Fagree enumerates includes all edge-agreeing pairs.
Let F be the family of standard pairs of paths 〈P1, P2〉 such that P1 and P2 agree.
By definition, Fagree enumerates F .
By Lemma 28, every edge-agreeing standard pair of paths is in F .
Let S be the collection of pairs which are agreeing but not edge-agreeing. To prove the desired

result, it suffices to show that the monomials corresponding to pairs in S have net zero contribution
to Fagree over a field of characteristic two.

To that end, take any pair 〈P1, P2〉 ∈ S. Since 〈P1, P2〉 is agreeing, P1 and P2 have a unique first
intersection point v. By Lemma 27, these paths also have a unique last intersection point w 6= v.

Hence, we can decompose the paths into

P1 = P1[s1, v] ⋄ P1[v,w] ⋄ P1[w, t1] and P2 = P2[s2, v] ⋄ P2[v,w] ⋄ P2[w, t2].

Define the paths

Q1 = P1[s1, v] ⋄ P2[v,w] ⋄ P1[w, t1] and Q2 = P2[s2, v] ⋄ P1[v,w] ⋄ P2[w, t2]

by swapping the v to w subpaths of P1 and P2.
By Lemma 14 the Qi are (si, ti)-shortest paths.
Since P1 and P2 are not edge-agreeing, the subpaths P1[v,w] and P2[v,w] are distinct.
The paths Q1 and Q2 have a common first intersection point of v, and so the pair 〈Q1, Q2〉 is

agreeing. Since 〈P1, P2〉 is not edge-agreeing, neither is 〈Q1, Q2〉. Thus 〈Q1, Q2〉 ∈ S. Finally, if we
swap the v to w subpaths of Q1 and Q2, we recover P1 and P2.

The above discussion implies that the map Φ from 〈P1, P2〉 to 〈Q1, Q2〉 described above satisfies
all conditions of Lemma 15, and so Fagree is the enumerating polynomial for F\S, which is precisely
the set of edge-agreeing pairs. �

Lemma 30 (Enumerating Agreeing Pairs). We have

Fagree =
∑

v∈V

∑

w∈Vout(v)

(

D(v)x2vw
)

R1(w)R2(w).

Proof. Let F be the family of edge-agreeing pairs. By Lemma 29, it suffices to show that
∑

v∈V

∑

w∈Vout(v)

(

D(v)x2vw
)

R1(w)R2(w)
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is the enumerating polynomial for F . To that end, the following claim about the individual terms
of the above sum will be useful.

Claim 31. For any choice of vertices v and w with w ∈ Vout(v), the polynomial

(

D(v)x2vw
)

R1(w)R2(w) (11)

enumerates all standard pairs of paths 〈P1, P2〉 such that P1 and P2 overlap at edge e = (v,w), and
have common first intersection at vertex v.

Proof. Take any pair 〈P1, P2〉 satisfying the conditions from the statement of the claim. Then we
can decompose these paths in the form

Pi = Pi[si, v] ⋄ (v,w) ⋄ Pi[w, ti]

such that the Pi[si, v] subpaths intersect only at v.
This means that the pair 〈P1[s1, v], P2[s2, v]〉 is enumerated by D(v), the two edges (v,w) are

enumerated by x2vw, and each path Pi[v, ti] is enumerated by Ri(v), so that the expansion of the
polynomial Eq. (11) includes some monomial corresponding to the given pair.

Conversely, any monomial in the expansion of Eq. (11) is the product of monomials recording
the edges traversed by a pair of paths 〈A1, A2〉 only intersecting at node v, where Ai is an (si, v)-
path in Gi, two copies of the edge (v,w), and some (w, ti)-paths Bi in Gi. This product is equal to
the monomial given by

f(A1 ⋄ (v,w) ⋄B1, A2 ⋄ (v,w) ⋄B2).

Define the paths Pi = Ai ⋄ (v,w) ⋄Bi for each i ∈ [2]. Since Ai and Bi are paths in Gi, and (v,w)
is an edge in both G1 and G2, we know that each Pi is an (si, ti)-shortest path.

We claim that A1 does not intersect B2. Indeed, suppose to the contrary that A1 and B2

intersect at some node u. Then P1 is a shortest path which passes through nodes u, v, w in that
order, yet P2 is a shortest path which passes through v,w, u in that order, which contradicts
Proposition 24.

Hence A1 does not intersect B2. Symmetric reasoning shows that A2 does not intersect B1.
Thus the paths P1 and P2 have common first intersection at v. Then the pair 〈P1, P2〉 satisfies

the conditions from the claim statement, so the polynomial from Eq. (11) enumerates all pairs of
paths described in the claim.

By Claim 31, the sum
∑

v∈V

∑

w∈Vout(v)

(

D(v)x2vw
)

R1(w)R2(w) (12)

enumerates all edge-agreeing pairs whose first intersection point v is the beginning of an edge
traversed by both paths in the pair. Let H be the set of such pairs, and let S = F \ H.

We claim that the set of pairs in S has net zero contribution to Fagree.
Indeed, take any pair 〈P1, P2〉 ∈ S. Since the pair is edge-agreeing, by Lemma 28 the pair is

agreeing. Hence P1 and P2 have a common first intersection at some node v. By Lemma 27, these
paths also have a common last intersection point at some node w 6= v. Since the pair is not in S,
the subpaths P1[v,w] and P2[v,w] are distinct. If we swap these subpaths to produce paths

Q1 = P1[s1, v] ⋄ P2[v,w] ⋄ P1[w, t1] and Q2 = P2[s2, v] ⋄ P1[v,w] ⋄ P2[w, t2]

then by Lemma 14 each Qi is still an (si, ti)-path in Gi. Since the Pi are edge-agreeing, and this
edge-overlap must occur in their v to w subpaths, the Qi are also edge-agreeing. By assumption,
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v is not the beginning of a common edge traversed by the Pi, so it is also not such a beginning
for Qi. These observations combined show that 〈Q1, Q2〉 ∈ S. Also, swapping v to w subpaths in
the Qi recover the Pi paths. It follows that the map Φ sending 〈P1, P2〉 to 〈Q1, Q2〉 satisfies all the
conditions of Lemma 15, so in fact Fagree enumerates F \ S = H.

Since Eq. (12) also enumerates H, this proves the desired result. �

Disagreeing Paths

Let Fdis be the family of disagreeing pairs of paths. Recall that Fdis enumerates Fdis. Our goal is
to show how to efficiently evaluate Fdis. To do this, we describe a subfamily of pairs in Fdis, and
argue that Fdis enumerates this subfamily.

Definition 32. For each node v, let B̃(v) be the set of standard pairs of paths 〈P1, P2〉 intersecting
at v, such that if we let ai and bi denote the nodes appearing immediately before and after v on Pi

respectively, then

1. a1 6= a2,

2. b1 6= b2, and

3. a1 6= b2.

Let B(v) ⊆ B̃(v) be the subfamily of such pairs such that v is the first vertex in P1 lying in P1∩P2.
Then define the collection

B =
⋃

v∈V

B(v).

Next, we prove some lemmas, which will help us prove that to enumerate Fdis, it suffices to
design enumerating polynomials for B̃(v) for each vertex v.

Lemma 33. For each vertex v, the enumerating polynomial for B̃(v) enumerates B(v).

Proof. Fix a vertex v. Let S = B̃(v) \ B(v).
Take any pair 〈P1, P2〉 ∈ S. Let u be the first vertex in P1 lying in P1 ∩ P2. Since the pair is

not in B(v), we know that u 6= v.
There are two cases to consider, based off the relative positions of u and v on P2.

Case 1: u before v Suppose that u appears before v in P2. In this case, we form paths

Q1 = P1[s1, u] ⋄ P2[u, v] ⋄ P1[v, t1] and Q2 = P2[s2, u] ⋄ P1[u, v] ⋄ P2[v, t2]

by swapping the u to v subpaths in P1 and P2. By Lemma 14, each Qi is still an (si, ti)-path in
Gi. After this subpath swap, the vertices immediately before v in the Qi are still distinct, and the
vertices immediately after v in the Qi are still distinct. Moreover, the vertex immediately before
v in Q1 is not equal to the vertex immediately after v in Q2, since these are distinct nodes on P2.
Then by Definition 32, 〈Q1, Q2〉 ∈ B̃(v). Also, since Q1 and Q2 intersect at u, 〈Q1, Q2〉 6∈ B(v).
Finally, since u is the first vertex in Q1 lying in Q1∩Q2, applying the same subpath swap procedure
as above to 〈Q1, Q2〉 recovers 〈P1, P2〉.

So the map Φ sending 〈P1, P2〉 to 〈Q1, Q2〉 as above satisfies all conditions of Lemma 15.
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Case 2: u after v Suppose that u appears after v on P2. In this case, we form paths

Q1 = P1[s1, u] ⋄ −P2[u, v] ⋄ P1[v, ti] and Q2 = P2[s1, v] ⋄ −P1[v, u] ⋄ P2[u, ti]

by swapping the u to v subpaths in P1 and P2 (and using the fact that G is undirected, so we can
traverse the edges in these subpaths backwards). Since the u to v subpaths of P1 and P2 both have
length dist(u, v), each path Qi has the same length as Pi, and is thus still an (si, ti)-path in Gi.

Let ai and bi denote the vertices on Pi immediately before and after v respectively.
Then the nodes immediately before and after v on Q1 are b2 and b1 respectively, and the nodes

immediately before and after v on Q2 are a2 and a1.
We know that bi 6= ai, since ai and bi are distinct vertices on the path Pi. Thus 〈Q1, Q2〉 satisfies

the first two conditions from Definition 32.
Since 〈P1, P2〉 ∈ S, by condition three of Definition 32, we know that b2 6= a1. Since b2 is the

node immediately before v in Q1 and a1 is the node immediately after v in Q2, we see that 〈Q1, Q2〉
satisfies condition three of Definition 32 as well.

Thus 〈Q1, Q2〉 ∈ B̃(v).
Furthermore, since u ∈ Q1 ∩Q2 appears before v in Q1, we have 〈Q1, Q2〉 6∈ B(v).
Thus 〈Q1, Q2〉 ∈ S.
This shows that the swapping procedure described above, sending 〈P1, P2〉 to 〈Q1, Q2〉, is a map

from S to itself. Moreover, because u is the first vertex on P1 lying in P1 ∩ P2 and the first vertex
on Q1 lying in Q1 ∩ Q2, performing the above swapping procedure on 〈Q1, Q2〉 recovers 〈P1, P2〉.
Finally, since the multisets of edges traversed by 〈P1, P2〉 and 〈Q1, Q2〉 are the same, we have

f(P1, P2) = f(Q1, Q2).

The above discussion shows that S can be partitioned into groups of size two, with each group
consisting of two pairs with the same monomial. Then the monomials from pairs in S have net
zero contribution to the enumerating polynomial for B̃(v) modulo two.

Hence the enumerating polynomial for B̃(v) actually enumerates B̃(v)\S = B(v), as claimed. �

Lemma 34. The enumerating polynomial for B is Fdis.

Proof. First, observe that Fdis ⊆ B. Indeed, suppose 〈P1, P2〉 ∈ Fdis is a standard pair of paths
which disagree. Let v be the first vertex of P1 in P1 ∩P2. Let ai and bi be the vertices immediately
before and after v in Pi. Then a1 6∈ {a2, b2} by the definition of v, and b1 6= b2 because P1 and P2

disagree. Thus 〈P1, P2〉 satisfies all the conditions from Definition 32, so this pair is in B. Since we
chose an arbitrary pair 〈P1, P2〉 from Fdis, we have Fdis ⊆ B as claimed.

Let S = B \ Fdis be the set of agreeing pairs in B.
Take any pair 〈P1, P2〉 ∈ S. Let v be the first common intersection point of the pair. Let w be

the last common intersection point of the pair. By Lemma 27, w 6= v. For each i ∈ [2], let

Qi = Pi[si, v] ⋄ Pi[v,w] ⋄ Pi[v, ti]

be the paths formed by swapping the v to w subpaths in P1 and P2.
We claim that 〈Q1, Q2〉 ∈ S as well.
By Lemma 14 each Qi is still an (si, ti)-path in Gi. The first and last intersection points of

these paths are still v and w, so the new pair is still agreeing.
Let vertices ai and bi be vertices immediately before and after v on each Pi respectively. Since

the ai occur before v, the nodes before v on Q1 and Q2 are distinct. Since the nodes after v on Q1

and Q2 are {b1, b2}, these nodes are also distinct. Finally, the node before v on Q1 is a1 and the
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node after v on Q2 is b1, and a1 6= b1 since a1 and b1 are distinct vertices on path P1, the node
before v on Q1 and after v on Q2 are distinct.

The discussion in the previous paragraph shows that 〈Q1, Q2〉 ∈ S.
Finally, if we apply the subpath swapping procedure above to 〈Q1, Q2〉, we recover 〈P1, P2〉.

Then the map Φ on S sending 〈P1, P2〉 to 〈Q1, Q2〉 satisfies the conditions from the statement of
Lemma 15, so the enumerating polynomial for B in fact enumerates B \ S = Fdis as claimed. �

By Lemmas 33 and 34, enumerating Fdis reduces to enumerating B̃(v) for each vertex v. Our
next goal is to perform this enumeration efficiently. To do this, we start by defining and establishing
formulas for some additional helper polynomials.

Definition 35 (Relaxed Target Linkages). For each vertex v, let T (v) be the enumerating poly-
nomial for the set of pairs of paths 〈P1, P2〉 where

1. each Pi is a (v, ti)-path in Gi, and

2. the second nodes of P1 and P2 are distinct.

Lemma 36. For each vertex v, we have

T (v) = R1(v)R2(v) −
∑

w∈Vout(v)

x2vwR1(w)R2(w).

Proof. This follows from symmetric reasoning to the proof of Lemma 21. �

Definition 37. For each vertex v, let H(v) be the enumerating polynomial for the set of standard
pairs of paths 〈P1, P2〉 intersecting at v, such that the vertex immediately before v on P1 is the
same as the vertex immediately after v on P2.

Intuitively, H(v) is a polynomial we use to enforce the a1 6= b2 condition from Definition 32.

Lemma 38. For each vertex v, we have

H(v) =
∑

u∈Vmix(v)

L1(u)xuvR1(v)L2(v)xvuR2(u).

Proof. For any pair of paths 〈P1, P2〉 satisfying the conditions from Definition 37, there exists a
unique vertex u such that u appears immediately before v on P1 and immediately after v on P2.
Any such u must lie in V 1

in(v) ∩ V 2
out(v) = Vmix(v) by definition.

Given v ∈ V and u ∈ Vmix(v), let F(u, v) be the set of all standard pairs of paths 〈P1, P2〉 such
that P1 traverses edge (u, v) and P2 traverses edge (v, u). The discussion in the previous paragraph
implies that to prove the lemma, it suffices to show that the polynomial

L1(u)xuvR1(v) · L2(v)xvuR2(u) (13)

enumerates F(u, v) for all v and u.
To that end, let 〈P1, P2〉 ∈ F(u, v). We claim the monomial f(P1, P2) appears in the expansion

of Eq. (13). Indeed, by definition, we can split

P1 = P1[s1, u] ⋄ (u, v) ⋄ P1[v, t1] and P2 = P2[s2, v] ⋄ (v, u) ⋄ P2[u, t2].

Then path P1[s, u] is enumerated by L1(u), edge (u, v) is enumerated by xuv, path P1[v, t1] is
enumerated by R1(v), path P2[s, v] is enumerated by L2(v), edge (v, u) is enumerated by xvu, and
path P2[u, t2] is enumerated by R2(u), so the expansion of Eq. (13) has the term f(P1, P2).
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Conversely, we claim that any monomial in the expansion of Eq. (13) corresponds to a pair of
paths in F(u, v). Indeed, any such monomial is the product of monomials from each of the factors
in Eq. (13). By definition, L1(u) enumerates (s1, u)-paths A1 in G1, R1(v) enumerates (v, t1)-paths
B1 in G1, L2(v) enumerates (s2, v)-paths A2 in G2, and R2(u) enumerates (u, t2)-paths B2 in G2.
So an arbitrary monomial in Eq. (13) is of the form

f(A1)xuvf(B1) · f(A2)xvuf(B2)

for Ai and Bi satisfying the conditions above.
Since u ∈ Vmix(v), if we define paths

P1 = A1 ⋄ (u, v) ⋄B1 and P2 = A2 ⋄ (v, u) ⋄B2

then we see that Pi is an (si, ti)-path in Gi. Moreover, P1 traverses (u, v) and P2 traverses (v, u).
So 〈P1, P2〉 ∈ F(u, v), and since

f(P1, P2) = f(P1) · f(P2) = f(A1)xuvf(B1) · f(A2)xvuf(B2)

we get that monomials of Eq. (13) correspond to pairs in F(u, v). Thus Eq. (13) enumerates
F(u, v).

By the discussion at the beginning of the proof, this proves the claim. �

Lemma 39 (Enumerating Disagreeing Pairs). We have

Fdis =
∑

v∈V

(D(v)T (v) −H(v)) .

Proof. By Lemma 34, Fdis is the enumerating polynomial for B. By Definition 32, the enumerating
polynomial for B is the sum of the enumerating polynomials for B(v) over all vertices v (here, we
are using the fact that the B(v) are disjoint for each v by definition). Applying Lemma 33, we see
this sum is equal to the sum of the enumerating polynomials for B̃(v) over all vertices v. So, it
suffices to show that for each vertex v, the polynomial

D(v)T (v) −H(v) (14)

enumerates B̃(v).
By Lemmas 20 and 21, the polynomial D(v) enumerates all pairs 〈A1, A2〉 where each Ai is an

(si, v)-path in Gi, and the vertices ai immediately before v in Ai are distinct. By Definition 35,
the polynomial T (v) enumerates all pairs 〈B1, B2〉 where each Bi is a (v, ti)-path in Gi, and the
vertices bi after v in Bi are distinct.

Then the product D(v)T (v) enumerates all pairs of paths

〈A1 ⋄B1, A2 ⋄B2〉

for Ai and Bi satisfying the conditions from the previous paragraph. Note that this pair satisfies
conditions 1 and 2 from Definition 32. Moreover, any standard pair of paths 〈P1, P2〉 satisfying
conditions 1 and 2 from Definition 32 can be decomposed into

Pi = Ai ⋄Bi

where Ai is an (si, v)-path in Gi, Bi is a (v, ti)-path in Gi, the penultimate vertices of the Ai are
distinct, and the second vertices of the Bi are distinct.
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Thus D(v)T (v) enumerates precisely all standard pairs of paths satisfying the first two condi-
tions from Definition 32.

By Definition 37, H(v) enumerates the standard pairs of paths 〈P1, P2〉 intersecting at v, such
that the node immediately before v on P1 is the same as the node immediately after v on P2. If we
let ai and bi again denote the nodes immediately before and after v on Pi respectively, this means
we are enumerating all standard pairs of paths intersecting at v such that a1 = b2. Note that all
such paths also have a1 6= a2 (since a2 and b2 are distinct nodes in P2) and b1 6= b2 (since a1 and
b1 are distinct nodes in P1).

Thus H(v) enumerates precisely the standard pairs of paths which satisfy the first two conditions
but fail the third condition of Definition 32.

Consequently, the difference Eq. (14) enumerates the standard pairs of paths which satisfy all
conditions from Definition 32. Thus the polynomial from Eq. (14) enumerates B̃(v) as claimed,
which proves the desired result. �

We are finally ready to prove our main theorem. Note that the first part of the proof is
completely identical to the proof of Theorem 2, since our algorithms for 2-DSP in DAGs and
undirected graphs have the same overall structure.

Theorem 1. The 2-DSP problem can be solved in weighted undirected graphs in O(m + n) time.

Proof. Each pair of internally vertex-disjoint paths produces a distinct monomial in Fdisj. It follows
that disjoint (si, ti)-shortest paths exist in G if and only if Fdisj is nonzero as a polynomial.

So we can solve 2-DSP as follows. We assign each xuv variable an independent, uniform random
element of F2q , and then evaluate Fdisj on this assignment. If the evaluation is nonzero we return
YES (two disjoint shortest paths exist), and otherwise we return NO.

If two disjoint shortest paths do not exist, then Fdisj is the zero polynomial, and our algorithm
correctly returns NO. If two disjoint shortest paths do exist, then Fdisj is a nonzero polynomial of
degree strictly less than 2n, so by Schwartz-Zippel (Proposition 12) our algorithm correctly returns
YES with high probability for large enough q = O(log n).

It remains to show that we can compute Fdisj in linear time.
First, we can compute G1 and G2 in linear time by Proposition 11.
Then, by dynamic programming forwards and backwards over the topological order of G, we can

evaluate the polynomials Li(v) and Ri(v) for each i ∈ {1, 2} and vertex v at our given assignment
in linear time, using the recurrences from Lemma 16.

Having computed these values, Lemmas 22 and 36 shows that for any vertex v we can compute
D(v) and T (v) at the given assignment in O(degin(v)) and O(degout(v)) time respectively. So we
can evaluate D(v) and T (v) for all v in O(m) time.

Then by Lemma 30, we can evaluate Fagree in O(m) time.
By Lemma 38, we can compute H(v) at any given vertex v in O(degin(v)) time. So we can

evaluate H(v) for all vertices v in O(m) time.
From the values for D(v), T (v), and H(v), by Lemma 39 we can compute Fdis in O(n) time.
Having computed Fagree and Fdis, by Eq. (10) we can compute F∩ as well in O(1) time.
Finally, given the value of F∩, we can evaluate Fdisj in O(1) additional time by Lemma 17.
Thus we can solve 2-DSP in linear time. �

4.5 Search to Decision Reduction

Theorem 3. We can solve 2-DSP over weighted DAGs and undirected graphs, and find a solution
if it exists, in O(mn) time.
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Proof. The proofs of Theorems 1 and 2 construct arithmetic circuits of size O(m) for the two
disjoint shortest paths polynomial Fdisj for DAGs and undirected graphs. By the Baur-Strassen
theorem (see [BS83] for the original proof, and [SY09, Theorem 2.5] for a more recent exposition),
we can construct arithmetic circuits of size O(m) which simultaneously compute all single-order
partial derivatives of Fdisj.

Given an edge (u, v), the polynomial (∂/∂xuv)Fdisj is nonzero if and only if edge (u, v) appears in
some solution to the 2-DSP problem. So by Schwartz-Zippel (Proposition 12), with high probability,
(∂/∂xuv)Fdisj has nonzero evaluation at a uniform random assignment over F2q if and only if (u, v)
is an edge occurring in some pair of disjoint shortest paths, for q = O(log n) sufficiently large.

We can compute all partial derivatives at some random evaluation point in O(m) time using
the arithmetic circuit for these polynomials. We pick an edge (s1, v) such that (∂/∂xs1v)Fdisj has
nonzero evaluation. Then we delete vertex s1 from G, and consider a smaller instance of 2-DSP
on the graph, where source s1 is replaced with v. We can repeat this process on the new instance,
to find the first edge on a (v, t1)-shortest path which is disjoint from some (s2, t2)-shortest path.
Repeating this process at most n times, we can recover an (s1, t1)-shortest path P1, which is disjoint
from some (s2, t2)-shortest path.

At this point, we just delete all vertices of P1 from the original graph G, find an (s2, t2)-shortest
path P2 in the resulting graph in linear time, and then return 〈P1, P2〉 as our answer.

Overall, we compute at most n evaluations of arithmetic circuits of size O(m), so the algorithm
runs in O(mn) time. �

5 Edge-Disjoint Paths Algorithm

In this section, we present our algorithm for k-EDSP in weighted DAGs and prove Theorem 5. The
algorithm works by constructing a large graph on nk nodes, whose paths correspond to collections
of edge-disjoint paths in the original graph. As we previously mentioned in Sections 1 and 3, our
algorithm uses the same framework as that of [FHW80].

Throughout this section, we let G be the input DAG on n nodes and m edges. For each i ∈ [k],
we let Gi denote the si-shortest paths DAG of G.

Fix a topological order (≺) of G.
We construct a graph G′ on nk nodes, whose paths encode k-tuples of paths in G.
The graph G′ has a node for each k-tuple of vertices from G.
Given a node ~v = (v1, . . . , vk) in G′ (where each vi is a vertex in G), let v = early(~v) be the

unique vertex v such that

• v = vi for some index i ∈ [k], and

• v � vj for all j ∈ [k].

In other words, early(~v) is the earliest coordinate of ~v with respect to the topological order of G.
Let I(~v) denote the set of indices i ∈ [k] such that vi = early(~v). Then we include an edge from
node ~v = (v1, . . . , vk) to node ~w = (w1, . . . , wk) in G′ precisely when

1. for all i ∈ I(~v), the pair (vi, wi) is an edge in Gi,

2. the vertices wi are pairwise distinct over all i ∈ I(~v), and

3. for all j 6∈ I(~v), we have wj = vj .
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t1

t2
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(s1, s2) (v, s2) (v, v) (t1, t2)

Figure 5: For k = 2, the paths 〈s1, v, t1〉 and 〈s2, v, t2〉 in G map to a single path in G′, pictured
on the right, with respect to the topological order s1 ≺ s2 ≺ v ≺ t1 ≺ t2. Since both coordinates of
the node (v, v) are equal, we can step from (v, v) to (t1, t2) with a single edge in G′.

We refer to the rules above as the conditions for edges of G′. Intuitively, the conditions say that
we can move from a node ~v consisting of k vertices vi by stepping from all of the earliest vertices
to new distinct vertices. An example of these edge transitions is depicted in Figure 5.

Let ~s = (s1, . . . , sk) and ~t = (t1, . . . , tk) be nodes in G′ containing all of the source and target
vertices in G respectively. As the following lemmas show, our conditions for including edges in G′

allow us to relate paths from ~s to ~t in G′ to solutions to the k-EDSP problem in G.

Lemma 40. If G contains edge-disjoint (si, ti)-shortest paths, then G′ contains a path from ~s to ~t.

Proof. For i ∈ [k], let Pi be (si, ti)-shortest paths in G which are all edge-disjoint. We show how
to simultaneously traverse these paths Pi to recover a path in G′ from ~s to ~t.

Initialize P  〈~s 〉 and ~v  ~s.
Suppose ~v = (v1, . . . , vk). Define the new node ~w = (w1, . . . , wk) in G′ by setting wi to be the

node after vi on Pi for each i ∈ I(~v), and setting wj = vj for all j 6∈ I(~v). Then append ~w to P ,
and update ~v  ~w.

Repeat the process in the above paragraph until ~v = ~t. We claim this procedure halts and
produces a path P from ~s to ~t in G′.

Indeed, an easy induction argument shows that the value of ~v = (v1, . . . , vk) always has the
property that vi is a vertex in Pi, and each step strictly decreases the value of

k
∑

i=1

dist(vi, ti).

The above quantity is a nonnegative integer, and so stops decreasing once it reaches zero, at which
point we must have ~v = ~t. Moreover, our procedure is designed so that each step from a node ~v
to a node ~w on P satisfies conditions 1 and 3 for edges in G′. Condition 2 for edges in G′ is also
satisfied, because the Pi are edge-disjoint, so P is a valid path in G′ as desired. �

Lemma 41. If G′ contains a path form ~s to ~t, then G contains edge-disjoint (si, ti)-shortest paths.

Proof. Let P be a path from ~s to ~t in G′. We show how to recover edge-disjoint paths in G by
reading off the edges traversed in P .

Initialize ~v  ~s. For each i ∈ [k], initialize Pi  〈si〉.
Suppose ~v = (v1, . . . , vk). Let ~w = (w1, . . . , wk) be the node after ~v on P . For each index i with

wi 6= vi, append wi to Pi. Then update ~v  ~w.
Repeat the process in the above paragraph until ~v = ~t. We claim this procedure produces

edge-disjoint shortest paths Pi from si to ti.
Indeed, an easy induction argument shows that at any time in the procedure, the ith coordinate

of ~v is the last vertex in path Pi. Since ~v begins at ~s and ends at ~t, and G is a DAG, each Pi is
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an (si, ti)-path. By condition 1 of edges in G′, any edge (~v, ~w) in G′ which changes the value of
the ith coordinate must change that coordinate by stepping along an edge lying in a shortest path
from si. It follows that each Pi is an (si, ti)-shortest path.

It remains to prove that the Pi are edge-disjoint. Suppose to the contrary that some of these
paths overlap at some edge. Without loss of generality, suppose paths P1 and P2 overlap at some
edge (a, b).

Let ~v = (v1, . . . , vk) be the last node in P which has v1 = a as its first coordinate. Such a node
exists since P1 passes through a. By condition 3 for edges in G′, we must have a = early(~v). We
claim that v2 = a as well.

Suppose v2 6= a. Then since a = early(~v), we must have v2 ≻ a.
In this case, define ~u to be the last node in P which has u2 = a as its second coordinate. Such

a node exists since P2 passes through a. By condition 3 for edges in G′, we have a = early(~u).
By the assumption that v2 ≻ a and condition 1 for edges of G′, node ~u occurs before ~v in P .

Then since v1 = a, by condition 1 for edges of G′, the first coordinate u1 of ~u must satisfy u1 � a.
Since a = early(~u), this forces u1 = a = early(~u).

Since u1 = early(~u), by conditions 1 and 2 for edges in G′, all nodes in P after ~u cannot have
first coordinate equal to a. This contradicts the fact that ~u occurs before ~v in P . So our initial
assumption was false, and in fact v2 = a as claimed.

Let ~w = (w1, . . . , wk) be the node after ~v on P . Since v1 = v2 = early(~v), by condition 2 for
edges of G′ we have w1 6= w2. Our procedure for constructing the paths Pi from P has P1 traverse
edge (a,w1) and P2 traverse edge (a,w2). Since w1 and w2 distinct, this contradicts the assumption
that paths P1 and P2 both traverse edge (a, b).

It follows that our original assumption was false, and the paths Pi are edge-disjoint as claimed.
This completes the proof. �

Theorem 5. The k-EDSP problem can be solved in weighted DAGs in O(mnk−1) time.

Proof. First, we compute a topological order of G in linear time. Then we compute the si-shortest
paths DAGs Gi of G for all i ∈ [k], which takes linear time by Proposition 11.

By Lemmas 40 and 41, we can solve k-EDSP on G by constructing the graph G′ described in
this section, and checking whether this graph contains a path from ~s to ~t. Checking whether there
is a path from ~s to ~t takes time linear in the size of G′, so to prove the theorem, it suffices to show
that we can construct G′ in O(mnk−1) time.

We can construct all nodes of G′ in O(nk) time. We then go through each node ~v in G, and
add in edges from ~v to ~w in the out-neighborhood of ~v according to the three conditions. Each
addition of an edge takes O(1) time, so it suffices to show that G′ has O(mnk−1) edges.

Consider a node ~v in G. Let v = early(~v) be the earliest coordinate of ~v, and let ℓ = |I(~v)|
denote the number of coordinates in ~v equal to this earliest vertex. There are at most nk−ℓ choices
for the coordinates of ~v not equal to v. By conditions 1 and 3 for edges in G′, the node ~v can have
edges to at most (degout(v))ℓ nodes in G′.

Summing over all possible values for ℓ = |I(~v)| and v = early(~v), we see that the number of
edges in G′ is bounded above by

k
∑

ℓ=1

∑

v∈V

nk−ℓ (degout(v))ℓ =
k
∑

ℓ=1

∑

v∈V

(

nk−ℓ (degout(v))ℓ−1 · degout(v)
)

.

Substituting the inequality degout(v) ≤ n in the right hand side above, we see that the number of
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Figure 6: An example of the reduction from k-Clique to k-DSP for k = 3 and n = 2. The k-Clique
instance G has vertex parts V1 = {a1, a2}, V2 = {b1, b2}, and V3 = {c1, c2}. The unique triangle
(a1, b1, c1) in G on the left has highlighted bold edges. The vertices in this triangle are mapped to
the disjoint highlighted paths in G′ on the right. For vertices v,w in different parts of G, if (v,w)
is an edge, the paths for v and w in G′ pass by each other with blue edges (since v(w) 6= w(v) in
G′), and if (v,w) is not an edge, the paths for v and w intersect at the orange node v(w) = w(v).

edges in G′ is at most

k
∑

ℓ=1

∑

v∈V

(

nk−ℓ · nℓ−1 · degout(v)
)

= knk−1

(

∑

v∈V

degout(v)

)

= kmnk−1.

For constant k, the above expression is O(mnk−1), which proves the desired result. �

6 Lower Bounds

6.1 Disjoint Shortest Paths

Our goal in this section is to prove the following theorem.

Theorem 7. There is a reduction from k-Clique to k-DSP on unweighted DAGs with O((kn)2)
vertices, that runs in O((kn)2) time.

Construction Let G = V1 ⊔ · · · ⊔ Vk be the input instance of k-Clique.
Order each of the vertices in each Vi. Order the set of all vertices V in the graph, by putting

all vertices of Vi before vertices of Vj for i < j (and within a part Vi using the order of Vi). For
each index i, let V i = V \ Vi. The order on V induces an order on each V i as well.

We now produce an instance G′ of k-DSP, depicted in Figure 6.
For each i ∈ [k], graph G′ has a source node si and a target node ti.
For each choice of vertices v,w from different parts, we introduce node v(w) in G′.
For every vertex v ∈ Vi, the graph G′ includes a path P (v) from si to ti, whose internal nodes

are all the nodes of the form v(w) where w ∈ V i, traversed according to the order of V i.
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Finally, for each pair (v,w) which is not an edge in G, we identify the nodes v(w) = w(v) in G′.
This completes the construction of G′.

Correctness To prove our reduction is correct, we characterize shortest paths in G′.

Lemma 42. The (si, ti)-shortest paths in G′ are precisely the P (v) paths for vertices v ∈ Vi.

Proof. Fix i ∈ [k].
Given a vertex w ∈ V i, let pos(w) denote the position of w in V from the end of this list. For

example, if w is the final vertex in V i we set pos(w) = 1, and if w is the first vertex in V i, we set
pos(w) = |V i| = (k − 1)n.

Given nodes a and b in G′, in this proof we let dist(a, b) denote the distance from a to b in G′.

Claim 43. For every v ∈ Vi and w ∈ V i, we have

dist(v(w), ti) ≥ pos(w) and dist(w(v), ti) ≥ pos(w). (15)

Proof. We prove the inequalities by induction on the value of pos(w).
For the base case, suppose pos(w) = 1. Then v(w) 6= ti and w(v) 6= ti, so the distance from

these nodes to ti is at least 1 as claimed.
For the inductive step, suppose now that pos(w) ≥ 2, and we have already proven the claim for

all vertices occurring after w in V i.
The only edges exiting v(w) and w(v) come from the paths P (v) and P (w). We consider these

two cases separately below.
Suppose we take a path from v(w) or w(v) which begins with an edge from P (v). Let w′ be the

node after w in V i. Then v(w′) is the second vertex in this path. By the induction hypothesis,

dist(v(w′), ti) ≥ pos(w′) = pos(w) − 1.

By the above equation, any path from v(w) or w(v) to ti in this case has length at least

dist(v(w′), ti) + 1 ≥ pos(w).

Suppose now instead that we take a path from v(w) or w(v) to ti which begins with an edge
from P (w). No such path exists if v is the final vertex in Vi, so we may assume that v is not the
final vertex in Vi. Let v′ be the vertex after v in Vi. Then w(v′) is the second vertex in our path.
By the induction hypothesis,

dist(w(v′), ti) ≥ pos(w)

which implies that the path in this case has length at least pos(w) as well.
So in either case, Eq. (15) holds. This completes the induction, and proves the desired result.

By Claim 43, for any v ∈ Vi and w ∈ V i we have

dist(v(w), ti) ≥ pos(w).

The v(w) to ti subpath of P (v) shows that dist(v(w), ti) ≤ pos(w), so in fact we have

dist(v(w), ti) = pos(w).

Now, every out-neighbor of si is of the form v(w⋆), where v ∈ Vi and w⋆ is the first node in V i.
Then by the above discussion,

dist(si, ti) = |V i| + 1. (16)
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This immediately implies that for all v ∈ Vi, each P (v) is an (si, ti)-shortest path.
It remains to show that these are the only (si, ti)-shortest paths in G′.
To that end, let Q be an (si, ti)-shortest path in G′. Then the the second vertex in Q is of the

form v(w⋆), for v ∈ Vi and w⋆ defined as above. Let w be the last vertex in V i with the property
that the si to v(w) subpaths of Q and P (v) agree.

Suppose w is not the final vertex in V i. In case, immediately after v(w), path Q must traverse
an edge of P (w).

If v is the final vertex in Vi, then this edge brings Q to a node of the form w(v′), where v′ ∈ Vj

for some j > i. However, there is no path from such a node w(v′) to ti. Since we assumed Q is a
path to ti, this case cannot occur.

So v is not the final vertex in Vi. Let v′ be the vertex after v in Vi.
Then using the edge of P (w), Q goes from node v(w) to w(v′). By Claim 43, we know that

dist(w(v′), ti) ≥ pos(w).

So the w(v′) to ti subpath of Q has length at least pos(w).
However, we know that P (v) and Q agree up to v(w), so the si to v(w) subpath of Q has length

|V i| − pos(w) + 1.

The path Q consists of these two subpaths and the edge from v(w) to w(v′).
Thus, Q has length at least

(

|V i| − pos(w) + 1
)

+ 1 + pos(w) = |V i| + 2

which is greater than dist(si, ti) by Eq. (16).
This violates the definition of Q as a shortest path. So w must be the final vertex in V i, which

forces Q = P (v). So all (si, ti)-shortest paths in G′ are of the desired form. �

We are now ready to prove our lower bound for k-DSP.

Theorem 7. There is a reduction from k-Clique to k-DSP on unweighted DAGs with O((kn)2)
vertices, that runs in O((kn)2) time.

Proof. Let G = V1 ⊔ · · · ⊔ Vk instance of k-Clique. Construct the graph G′ defined in this section
in O((kn)2) time. By definition, G′ has O((kn)2) nodes.

We claim that G contains a k-clique if and only if G′ contains disjoint (si, ti)-shortest paths.
Indeed, suppose G contains a clique of the form (v1, . . . , vk) ∈ V1 × · · · × Vk.
Take the P (vi) paths. By Lemma 42 these are (si, ti)-shortest paths.
The internal nodes of P (vi) are of the form vi(w), for w ∈ V i.
Thus the only way paths P (vi) and P (vj) could intersect for i 6= j is if vi(vj) = vj(vi) in G′.

However, vertices vi and vj belong to a clique, which means (vi, vj) is an edge in G, so vi(vj) 6= vj(vi).
Hence the P (vi) are vertex-disjoint paths.
Conversely, suppose G′ contains disjoint (si, ti)-shortest paths. By Lemma 42, these paths are

of the form P (vi) for some vertices vi ∈ Vi. Since these paths are vertex-disjoint, we must have
vi(vj) 6= vj(vi) for all i 6= j. This means that (vi, vj) are edges in G for all i 6= j.

Thus (v1, . . . , vk) forms a clique in G, which proves the desired result. �
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6.2 Disjoint Paths

Our goal in this section is to prove the following theorem.

Theorem 9. Let k ≥ 3 be a constant integer, and set p = k + ⌊k2/4⌋. There are O((kn)2) time
reductions from k-Clique to p-DP and p-DSP on unweighted DAGs with O(kn) vertices.

To establish these reductions, we first introduce the notion of a covering family of increasing
lists, and then apply the construction of such a family to the reduction framework of [Sli10].

Covering Pairs with Lists

Definition 44 (Covering by Increasing Lists). Given a positive integer k, we say a collection of
lists L of increasing integers is a k-covering family if for all integers i, j with 1 ≤ i < j ≤ k, the
integers i and j appear as consecutive members of some list in L. We let λ(k) denote the minimum
possible number of lists in a k-covering family.

The following lemma lower bounds the minimum possible size of a k-covering family.

Lemma 45. We have λ(k) ≥ ⌊k2/4⌋.

Proof. Partition the set of the first k positive integers into sets

[k] = A ⊔B

of consecutive positive integers

A = [1, ⌊k/2⌋] and B = [⌊k/2⌋ + 1, k]

of size ⌊k/2⌋ and ⌈k/2⌉ respectively. We claim that it cannot be the case that for a, a′ ∈ A and
b, b′ ∈ B both (a, b) and (a′, b′) appear consecutively in the same list L. This is because L must be
increasing, so both a and a′ must appear before both b and b′ in L. This means that whichever of
a or a′ appears first, cannot appear consecutively with b or b′.

It follows that the number of lists needed to cover all pairs (i, j) ∈ [k]2 with i < j is at least

|A||B| = ⌊k/2⌋⌈k/2⌉ = ⌊k2/4⌋

as claimed. �

In light of Lemma 45, the following lemma shows that we can efficiently construct a minimum
size k-covering family (and that λ(k) = ⌊k2/4⌋). This construction will be helpful in designing a
reduction from k-Clique. The proof of this lemma is due to an anonymous reviewer.

Lemma 46. There is an algorithm which, given a positive integer k, runs in O(k3) time and
constructs a k-covering family L of ⌊k2/4⌋ lists with elements from [k], with the property that each
integer in [k] appears in fewer than k lists of L.

Proof. For each pair (a, d) of positive integers with d ≤ k − 1 and a ≤ min(d, k − d), define La,d to
be the list of positive integers in [k] whose (j + 1)st term is (a + jd) for each j ≥ 0. Let L be the
collection of all the La,d lists, for the pairs (a, d) satisfying the aforementioned conditions.

We claim that any integer x ∈ [k] shows up in fewer than k lists of L. This is because for any
d ∈ [k− 1], we have x ∈ La,d only if a ≡ x (mod d). Since a ∈ [d], this means that for each d, there
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Figure 7: Given a vertex v ∈ Vi from G, the gadget graph Gv has top nodes aj = aj(v) and
bottom nodes bj = bj(v) for each j ∈ [l], where l = l(i) is the number of lists in L containing i.

is at most one a for which x ∈ La,d. Since d ∈ [k − 1] takes on fewer than k values, x appears in
fewer than k lists of L.

We now show that L is a k-covering family. Take arbitrary integers i, j ∈ [k] with i < j.
Set d = j − i, and take a to be the smallest positive integer with a ≡ i (mod d).
By construction, a ≤ d. Moreover, we have a + d ≤ i + d = j ≤ k, so a ≤ k − d as well.

So the pair (a, d) corresponds to a list La,d. Then i and j are both in La,d because j ≡ i ≡ a
(mod d). Finally, because d = j − i, we know that i and j are consecutive elements in La,d. So L
is a k-covering family as claimed.

The number of lists in L is

k−1
∑

d=1

min(d, k − d) =

⌊k/2⌋
∑

d=1

d +

k−1
∑

d=⌊k/2⌋+1

(k − d). (17)

We now perform casework on the parity of k.
Case 1: k is even
If k is even, we can write k = 2ℓ for some positive integer ℓ. Then Eq. (17) simplifies to

(1 + 2 + · · · + ℓ) + (1 + 2 + · · · + ℓ− 1) =
ℓ(ℓ + 1)

2
+

ℓ(ℓ− 1)

2
= ℓ2 = ⌊k2/4⌋.

Case 2: k is odd
If k is odd, we can write k = 2ℓ + 1 for some positive integer ℓ. Then Eq. (17) simplifies to

(1 + 2 + · · · + ℓ) + (1 + 2 + · · · + ℓ) = ℓ2 + ℓ = ⌊k2/4⌋.
In either case, we get that the number of lists in L is ⌊k2/4⌋ as claimed.
We can easily construct L in O(k3) time by going through each of the O(k2) pairs (a, d) defining

a list La,d and then listing its at most O(k) elements by starting at a, and incrementing by d until
we reach an integer greater than k. This completes the proof of the lemma. �

The Reduction

Let G = V1 ⊔ · · · ⊔ Vk be an instance of k-Clique on kn vertices.
We assume n ≥ 2, since otherwise the problem is trivial.
Set λ = ⌊k2/4⌋. By Lemma 46, there exist a collection L of λ increasing lists of integers from

[k], such that for every choice of i, j ∈ [k] with i < j, the integers i and j appear as consecutive
elements in some list of L. Moreover, we can construct L in O(1) time for constant k. We give this
collection of lists some arbitrary order.

Given i ∈ [k], let l(i) denote the number of lists in L containing i.
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Figure 8: Given an instance G of k-Clique for k = 3 and n = 2 on the left, with parts V1 = {u1, u2},
V2 = {v1, v2}, and V3 = {w1, w2}, and lists 〈1, 3〉 and 〈1, 2, 3〉 forming a k-covering family for k = 3,
we produce the instance G′ of p-DP on the right for p = 5. There are three rows of gadgets in G′,
corresponding to the parts of G. The gadgets in rows one and three have two columns because
the integers 1 and 3 are covered by two lists, while the gadgets in row two have a single column
because the integer 2 is covered by one list. Note that the paths Π13(u1, w1) and Π13(u2, w2) from
gadgets in row 1 to row 3 have length two. The triangle (u1, v1, w1) in G, highlighted on the left,
is mapped to the p-DP solution in G′ which takes the yellow highlighted paths P (u1), P (v1), P (w1)
and the blue highlighted paths from s13 to t13 and s123 to t123. These paths are disjoint because
the first three paths skip the gadgets for vertices u1, v1, w1 respectively, which leaves room for the
(s13, t13)-path checking for edge (u1, w1) in G, and the (s123, t123)-path checking for edges (u1, v1)
and (v1, w1) in G.

Vertex Gadgets
For each i ∈ [k] and vertex v ∈ Vi, we construct a gadget graph Gv as depicted in Figure 7.
For every r ∈ [l(i)], we include nodes ar(v) and br(v).
We call the ar(v) and br(v) the top and bottom nodes of Gv respectively.
For every r ∈ [l(i)], we include edges er(v) = (ar(v), br(v)). For each r ∈ [l(i) − 1], we include

edges from ar(v) to ar+1(v) and from br(v) to br+1(v).
This completes the description of Gv.
For convenience, if L is the rth list containing v, we write aL(v) = ar(v) and bL(v) = br(v).

Arranging Gadgets in Rows
For each i ∈ [k], we list the vertices of Vi in some arbitrary order

vi,1, . . . , vi,n.

For every j ∈ [n− 1], we connect Gvi,j to Gvi,j+1
by including edges from

al(i)(vi,j) to a1(vi,j+1) and bl(i)(vi,j) to b1(vi,j+1).

For every j ∈ [n−2], we additionally include the edge from al(i)(vi,j) to b1(vi,j+2), which we call
the skip edge for vi,j+1, because traversing this edge corresponds to skipping the gadget for vi,j+1.
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Skip edges are depicted with dashed lines in Figure 8. We view this construction as arranging the
Gv gadgets for all v ∈ Vi in the “ith row of G′.”

Terminal Vertices Checking Nodes
We now introduce source and target nodes and describe how they connect to the Gv gadgets.
For each i ∈ [k], we introduce new vertices si and ti.
We include edges from si to a1(vi,1) and from bl(i)(vi,n) to ti.
Additionally, we include skip edges from si to b1(vi,2) and from al(i)(vi,n−1) to ti (traversing

these edges corresponds to skipping Gvi,1 and Gvi,n respectively).

Paths Between Rows of Gadgets
For every choice of indices x, y ∈ [k] with x < y, list L ∈ L covering (x, y), and vertices u ∈ Vx

and w ∈ Vy such that (u,w) is an edge in G, we include a path ΠL(u,w) of length 2(y−x)−1 from
bL(u) to aL(w) in G′. These paths encode adjacency information about G. We say the ΠL(u,w)
are the paths between rows corresponding to list L.

Terminal Vertices Checking Edges
For each list L in our collection, we introduce source node sL and target node tL.
Suppose i is the first element in L. Then for all v ∈ Vi, we have edges from sL to aL(v).
Suppose j is the final element in L. Then for all v ∈ Vj , we have edges from aL(v) to tL.
We observe that any (sL, tL)-path in G′ must pass through nodes in row i of G′ for all i ∈ L.

This completes our construction of the graph G′, an example of which is depicted in Figure 8.
We claim that G′ has disjoint paths from its sources to its targets if and only if G has a k-clique.
To prove this result, it will be helpful to first identify some special paths in G′.
For any i ∈ [k] and v ∈ Vi, we let P (v) be the path which begins at si, passes through the top

nodes of Gu for all u ∈ Vi before v, then takes the skip edge skipping over Gv , passes through the
bottom nodes of Gw for all w ∈ Vi after v, and then finally ends at ti.

Lemma 47. For every v ∈ V , P (v) is a shortest path in G′.

Proof. Fix v ∈ V . Let i ∈ [k] be the index such that v ∈ Vi.
Recall that for any j ∈ [k], row j of G′ consists of the all gadgets Gu for vertices u ∈ Vi. The

graph G′ is structured so that there is no edge from row q to p whenever q > p. Then since si only
has edges to nodes in row i and ti only has edges from nodes in row i, any (si, ti)-path in G′ must
lie completely in row i. Such a path can use at most one skip edge, since a skip edge goes from a
top node to a bottom node, and there are no edges from bottom nodes to top nodes within row i.
If an (si, ti)-path uses no skip edges, it has exactly n · l(i) + 1 internal nodes. If instead the path
uses one skip edge, it has exactly (n− 1) · l(i) + 1 internal nodes, because it skips over one gadget.

This implies that any (si, ti)-path in G′ which uses a skip edge is a shortest path.
Since P (v) uses a skip edge, it is an (si, ti)-shortest path as claimed. �

Lemma 48 (Clique ⇒ Disjoint Shortest Paths). If G has a k-clique, then G′ has node-disjoint
shortest paths from its sources to its targets.

Proof. Let (v1, . . . , vk) ∈ V1 × · · · × Vk be a k-clique in G.
For each list

L = 〈i1, . . . , iℓ〉
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in L, let Q(L) be the path which begins at sL, passes through nodes

aL(vi1), bL(vi1), . . . , aL(viℓ), bL(viℓ)

in that order using the paths corresponding to list L, and then ends at tL. More precisely, Q(L)
goes from aL(vij ) to bL(vij ) for each j ∈ [ℓ] by taking the edge between these vertices in G′, and
goes from bL(vij ) to aL(vij+1

) for each j ∈ [ℓ− 1] by traversing the path Π(vij , vij+1
).

Claim 49. For every list L ∈ L, Q(L) is a shortest path.

Proof. The path Π(vij , vij+1
) has length 2(ij+1− ij)− 1. By telescoping, this means the sum of the

lengths of the paths of Π(vij , vij+1
) over all j ∈ [ℓ− 1] is 2(iℓ − i1) − ℓ. The only edges of Q(L) not

in the Π(vij , vij+1
) paths are the edge from sL to aL(vi1), the edges from aL(vij ) to bL(vij ) for each

j ∈ [ℓ], and the edge from bL(viℓ) to tL. It follows that the length of Q(L) is

2 + ℓ + (2(iℓ − i1) − ℓ) = 2(iℓ − i1 + 1).

To prove the claim, it suffices to show that any (sL, tL)-path in G′ has length at least

2(iℓ − i1 + 1).

To that end, take an arbitrary (sL, tL)-path Q in G′. Let j1, . . . , jr ∈ [k] be the sequence of
distinct rows Q visits in order. Since G′ only includes edges going from row x to row y for x < y,
we must have j1 < j2 < · · · < jr.

By construction the only way to go from row x to row y in G′ is to traverse a path ΠL′(u,w)
for some nodes u ∈ Vx and w ∈ Vy, and list L′ ∈ L. Such a path begins at the bottom of row x at
b′L(u), ends at the top of row y at a′L(w), and has length 2(y− x)− 1. So the sum of the lengths of
all such paths Q traverses to hit rows j1, . . . , jr is at least 2(jr − j1) − r by telescoping. Moreover,
Q must traverse at least one edge within each row it visits, to get from the top of that row to the
bottom of that row. This accounts for at least r additional edges, so Q has length at least

(2(jr − j1) − r) + r = 2(jr − j1).

Finally, Q also must contain an edge leaving sL, and an edge entering tL. This accounts for two
more edges, so Q has length at least 2(jr − j1 + 1).

By definition, i1 and iℓ are the first and final elements in list L respectively. Consequently,
edges exiting sL must go to row i1, and edges entering tL must depart from iℓ. This forces j1 = i1
to be the first row Q enters, and jr = iℓ to be the last row Q enters. Thus Q has length at least

2(jr − j1 + 1) = 2(iℓ − i1 + 1).

This lower bound for the length of an arbitrary (sL, tL)-path in G′ is equal to the length of Q(L).
Thus Q(L) is a shortest path in G′, as claimed.

We claim that the collection of paths obtained by taking P (vi) for each i ∈ [k] and Q(L) for
each L ∈ L is a collection of node-disjoint paths in G′.

Indeed, for each i ∈ [k], P (vi) is in the ith row of G′, so P (vi) and P (vj) are disjoint for i 6= j.
Similarly, for each choice of lists L 6= K in L, Q(L) and Q(K) pass through distinct vertices.

Take i ∈ [k] and L ∈ L. The only way Q(L) can intersect P (vi) is if i ∈ L. If i ∈ L, the only
nodes at which Q(L) can intersect P (vi) are aL(vi) and bL(vi). However, P (vi) skips Gvi , so neither
of these nodes occur in P (vi). Thus P (vi) and Q(L) are disjoint.

Since by Lemma 47 the P (vi) are shortest paths, and by Claim 49 the Q(L) are shortest paths,
we have proven the desired result. �
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Lemma 50 (Disjoint Paths ⇒ Clique). If G′ has node-disjoint paths from its sources to its targets,
then G has a k-clique.

Proof. Let F be a family of node-disjoint paths from the sources to the targets of G′.
For each i ∈ [k], let Pi denote the (si, ti)-path in F .
For each L ∈ L, let QL denote the (sL, tL)-path in F .
By construction of G′, each Pi must stay in row i. Since skip edges take us from the top of a

row to the bottom of a row, each Pi uses at most one skip edge.
We say a path Q “uses the edges corresponding to a list L ∈ L” if Q uses an edge of ΠL(u,w),

for some vertices u and w.

Claim 51. For each list L ∈ L, the path QL does not use edges corresponding to list L′ ∈ L, for
any L′ 6= L.

Proof. Suppose to the contrary that there does exist a list L ∈ L such that QL uses edges corre-
sponding to lists distinct from L. Pick such an L which occurs latest in the ordering of L.

Consider the first edge QL uses which corresponds to another list.
Suppose this edge belongs to ΠL′(u,w) for some list L′ 6= L, and vertices u and w. Let x ∈ [k]

be the index such that u ∈ Vx. Since the edge we are considering is the first edge QL uses which
corresponds to a list other than L, before this edge QL can only have entered rows with indices
contained in L. Thus x ∈ L, and QL must have entered row x at a vertex aL(v), for some v ∈ Vx.
We also know that x ∈ L′, since otherwise ΠL′(u,w) would not exist. Since QL uses an edge
of ΠL′(u,w), we know that the starting vertex of this path bL′(u) must occur after aL(v) in the
topological order of G′.

Previously, we observed that each Pi uses at most one skip edge. We claim that path Px uses
the skip edge to skip gadget Gv in row x. Suppose to the contrary that Px does not use this skip
edge. Since Px and QL are disjoint, Px must pass through bL(v) (otherwise it would hit aL(v)).
Since bL′(u) occurs after aL(v) in the topological order, this means that Px passes through bL′(u).
This contradicts our assumption that Px and QL are disjoint.

Thus Px uses the skip edge corresponding to Gv in row x, as claimed.
Since Px uses this skip edge, we know that Px passes through bK(v′) for all lists K containing

x and all v′ ∈ Vx after v in the order on Vx. Since bL′(u) is not in Px (because Px and QL are
disjoint), we must have u = v.

Then for aL(v) to occur before bL′(v) in the topological order, we must have L occur before L′

in the ordering for L.
Now, observe that QL′ cannot cross between rows while only using edges corresponding to L′.

Indeed, if QL′ only uses edges corresponding to L′ to go between rows, it would pass through a
column of row x, since x ∈ L′. To be disjoint from Px, this is only possible if QL′ uses a column of
Gv, since Px hits the columns of every other gadget in row x. But QL and QL′ are disjoint, and
we already said that QL hits the column of Gv corresponding to L′.

Thus, QL′ must use an edge corresponding to a list distinct from L′. We also observed earlier
that L′ occurs after L in the ordering on L.

This contradicts our choice of L as the final list in L with the property that QL uses an edge
corresponding to a list distinct from L.

Thus our initial assumption was false, and the claim holds.

Claim 52. For every i ∈ [k], Pi uses a skip edge.

Proof. Suppose to the contrary that there exists an index i ∈ [k] such that Pi does not use a skip
edge. Then for every v ∈ Vi and r ∈ [s(i)], the path Pi passes through at least one of ar(v) and
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br(v). Let L ∈ L be a list containing i (such a list exists because L is a k-covering family). By
Claim 51 and the fact that each Pi uses at most one skip edge, the path QL must pass through
vertices aL(v) and bL(v) for some v ∈ Vi. Consequently, QL intersects Pi, which contradicts the
assumption that paths in F are disjoint. So each Pi traverses a skip edge as claimed.

Since a skip edge moves a path from the top nodes to the bottom nodes of a row, by Claim 52
we know that each Pi traverses exactly one skip edge.

For each i ∈ [k], let vi ∈ Vi be the unique vertex such that Pi traverses the edge skipping Gvi .
Then we claim that (v1, . . . , vk) is a clique in G.

Indeed, take any pair (i, j) ∈ [k]2 with i < j. Let L ∈ L be a list covering (i, j).
By Claim 51, the path QL traverses a path ΠL(u,w) for some u ∈ Vi and w ∈ Vj.
Since the only gadgets skipped by Pi and Pj are Gvi and Gvj respectively, and QL is disjoint

from Pi and Pj, we see that in fact QL traverses the path ΠL(vi, vj).
But this path exists in G′ only if (vi, vj) is an edge in G.
So (vi, vj) is an edge in G for all i < j, and thus G contains a k-clique as claimed. �

Theorem 9. Let k ≥ 3 be a constant integer, and set p = k + ⌊k2/4⌋. There are O((kn)2) time
reductions from k-Clique to p-DP and p-DSP on unweighted DAGs with O(kn) vertices.

Proof. Construct a collection L of λ = ⌊k2/4⌋ lists which form a k-covering family using Lemma 46.
For constant k, this takes O(1) time. This collection has the property that each element of [k] shows
up in fewer than k list of L.

Let G be the input instance of k-Clique.
Using L and G, construct the graph G′ described previously in this section.
By Lemmas 48 and 50, solving p-DP or p-DSP on G′ solves k-Clique on G, where

p = k + λ = k + ⌊k2/4⌋.

Since G′ consists of 2(k + λ) terminals and kn gadget graphs Gv, each on fewer than 2k nodes,
the graph G′ has at most O(kn) nodes. Since we can construct G′ in time linear in its size, this
proves the desired result. �

7 Conclusion

In this work, we obtained linear time algorithms for 2-DSP in undirected graphs and DAGs. These
algorithms are based off algebraic methods, and as a consequence are randomized and only solve
the decision, rather than search, version of 2-DSP. This motivates the following questions:

Open Problem 1. Is there a deterministic linear time algorithm solving 2-DSP?

Open Problem 2. Given a DAG or undirected graph G with sources s1, s2 and targets t1, t2, is
there a linear time algorithm finding disjoint (si, ti)-shortest paths in G for i ∈ {1, 2}?

It is also an interesting research direction to see if algebraic methods can help design faster
algorithms for k-DSP in undirected graphs and DAGs when k ≥ 3, or help tackle this problem in
the case of general directed graphs.

In this work, we also established tighter reductions from finding cliques to disjoint path and
shortest path problems. There still remain large gaps however, between the current best conditional
lower bounds and current fastest algorithms for these problems.
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Open Problem 3. Is there a fixed integer k ≥ 3 and constant δ > 0 such that k-DSP in DAGs
can be solved in O(nk+1−δ) time? Or does some popular hypothesis rule out such an algorithm?

Since k-Clique admits nontrivial algorithms by reduction to matrix multiplication, it is possible
that k-DSP can be solved faster using fast matrix multiplication algorithms. On the other hand,
if we want to rule out this possibility and obtain better conditional lower bounds for k-DSP, we
should design reductions from problems which are harder than k-Clique. In this context, a natural
strategy would be to reduce from Negative k-Clique and 3-Uniform k-Hyperclique instead, since these
problems are conjectured to require nk−o(k) time to solve (and it is not known how to leverage matrix
multiplication to solve these problems faster than exhaustive search).

For all k ≥ 3, the current fastest algorithm for k-DSP in undirected graphs takes nO(k·k!) time,
much slower than the O(mnk−1) time algorithm known for the problem in DAGs. Despite this,
every conditional lower bound that has been established for k-DSP in undirected graphs so far also
extends to showing the same lower bound for the problem in DAGs. This is bizarre behavior, and
suggests we should try establishing a lower bound which separates the complexities of k-DSP in
undirected graphs and DAGs. If designing such a lower bound proves difficult, that would offer
circumstantial evidence that far faster algorithms for k-DSP in undirected graphs exist.

Open Problem 4. Can we show a conditional lower bound for k-DSP in undirected graphs, which
is stronger than any conditional lower bound known for k-DSP in DAGs?

Finally, for large k, the best conditional time lower bounds we have for k-DP in DAGs are far
weaker than the analogous lower bounds we have for k-DSP in DAGs. This is despite the fact that
the fastest algorithms we have for both problems run in the same time. It would nice to resolve this
discrepancy, either by designing faster algorithms for the latter problem, or showing better lower
bounds for the former problem.

Open Problem 5. Is there a fixed integer k ≥ 3 such that we can solve k-DP in DAGs faster than
we can solve k-DSP in weighted DAGs?

Open Problem 6. Can we show a conditional lower bound for k-DP in DAGs matching the best
known conditional lower bound for k-DSP in DAGs?
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[BNRZ20] Matthias Bentert, André Nichterlein, Malte Renken, and Philipp Zschoche. Using a
geometric lens to find k disjoint shortest paths, 2020. 4, 12
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A Standard Reductions

In this section, we collect proofs of some standard reductions that allow us to move between different
variants of disjoint path problems.

Proposition 53 (Edge-Disjoint ≤ Vertex-Disjoint). There is a reduction from k-EDSP on n vertices
and m edges to k-DSP on m + k(n + 2) nodes and 2k(m + 1) edges.

Proof. Let G be the instance of k-EDSP on n vertices and m edges, with sources s1, . . . , sk and
targets t1, . . . , tk. Let V and E be the vertex and edge sets of G respectively.

We construct a graph G′ as follows. For every vertex v ∈ V , G′ has k nodes v1, . . . , vk (we call
these the copies of v in G′). For every edge e ∈ E, G′ has a node e. For every edge e = (v,w) ∈ E,
we include edges in G′ from vi to e and from e to wi for all i ∈ [k]. If e = (v,w) had weight ℓ(v,w)
in G, then the (vi, e) and (e, wi) edges in G each have weight ℓ(v,w).

Finally, we introduce new sources s′1, . . . , s
′
k and targets t′1, . . . , t

′
k in G′. Then for every i, j ∈ [k],

we add edges from s′i to (si)j and from (ti)j to t′i of weight 1.
From this construction, G′ has m + kn + 2k nodes and 2km + 2k edges as claimed.
Suppose we have vertex-disjoint (s′i, t

′
i)-shortest paths P ′

i in G′. We can assume each P ′
i never

traverses two copies of the same vertex v ∈ V (otherwise, we could remove the subpath between
two copies of v and obtain a shorter path than P ′

i ). We map each P ′
i to an (si, ti)-shortest path Pi

in G, by having Pi pass through the vertices v ∈ V for which P ′
i contains a copy of v, in the order

the copies appear in P ′
i .

By construction, if Pi has length ℓ, then P ′
i has length 2ℓ+2. So since the P ′

i are shortest paths,
the Pi are also shortest paths. The Pi are also edge-disjoint, since if some Pi and Pj overlap at an
edge e, the paths P ′

i and P ′
j would overlap at node e in G′, which would contradict the assumption

that the P ′
i are vertex-disjoint.

So any solution to k-DSP on G′ pulls back to a solution to k-EDSP on G.
Conversely, given edge-disjoint (si, ti)-shortest paths Pi in G of the form

Pi = 〈vi,1, . . . , vi,ℓi〉

we can produce (s′i, t
′
i)-paths P ′

i in G′ of the form

P ′
i = 〈s′i, (vi,1)i, ((vi,1)i, (vi,2)i), (vi,2)i, . . . , (vi,ℓi)i, t

′
i〉.

Similar reasoning to the above shows that the P ′
i are shortest paths in G′. These paths are vertex-

disjoint because each P ′
i only uses the ith copies of v ∈ V , and the Pi were edge-disjoint, so the P ′

i

cannot overlap at any nodes of the form e ∈ E.
So any solution to k-EDSP in G has a corresponding solution to k-DSP in G′.
This proves the desired result. �

As mentioned in Section 1, Proposition 53 combined with Theorems 1 and 2 implies Corollary 4,
and Proposition 53 combined with the O(mnk−1) time algorithm for k-DSP in DAGs from [FHW80,
Theorem 3] implies that k-EDSP in DAGs can be solved in O(mk) time for constant k.

Proposition 54 (Disjoint Paths ≤ Disjoint Shortest Paths). There are reductions from k-DP on
DAGs to k-DSP on DAGs and from k-EDP on DAGs to k-EDSP on DAGs with the same number
of nodes and edges respectively.
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Proof. Let G be the DAG which is an instance of k-DP or k-EDP. Take a topological order v1, . . . , vn
of the vertices in G. Let G′ be the DAG with the same vertex and edge sets as G, but where each
edge (vi, vj) has weight (j − i). Then by telescoping, for any vertices vi and vj in G′, every path
from vi to vj in G′ has total length (j − i).

Consequently, every path in G becomes a shortest path in G′.
So solving k-DSP and k-EDSP in G′ corresponds to solving k-DP and k-EDP respectively in G,

which proves the desired result. �

As mentioned in Section 1, Proposition 54 shows that k-EDSP in weighted DAGs generalizes
the k-EDP problem in DAGs.

45


	Introduction
	Comparison with Previous Algorithms

	Preliminaries
	Technical Overview
	2-DSP Algorithms
	k-EDSP Algorithm
	Lower Bounds

	2-DSP
	Graph and Polynomial Preliminaries
	Helper Polynomials
	2-DSP in DAGs
	2-DSP in Undirected Graphs
	Search to Decision Reduction

	Edge-Disjoint Paths Algorithm
	Lower Bounds
	Disjoint Shortest Paths
	Disjoint Paths

	Conclusion
	Standard Reductions

