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Abstract

A model’s capacity to generalize its knowledge to interpret unseen inputs
with different characteristics is crucial to build robust and reliable machine
learning systems. Language model evaluation tasks lack information met-
rics about model generalization and their applicability in a new setting
is measured using task and language-specific downstream performance,
which is often lacking in many languages and tasks. In this paper, we
explore a set of efficient and reliable measures that could aid in computing
more information related to the generalization capability of language mod-
els in cross-lingual zero-shot settings. In addition to traditional measures
such as variance in parameters after training and distance from initializa-
tion, we also measure the effectiveness of sharpness in loss landscape in
capturing the success in cross-lingual transfer and propose a novel and
stable algorithm to reliably compute the sharpness of a model optimum
that correlates to generalization. 1

1 Introduction

Generalization enables models to use prior knowledge to reasonably respond to previously
unseen stimuli. Although traditional machine learning evaluation is performed based on
a preselected set of prediction or generation tasks, accuracy on many public benchmarks
may often not be sufficient to extensively assess the ability to perform well in new settings.
Therefore, a majority of researchers have found it worthwhile to investigate measures
that could evaluate the generalization capability of models with properties, such as VC
dimension Vapnik & Chervonenkis (1971), cross-entropy Shannon (1948), complexity Mohri
et al. (2012) or variation in parameters during training Nagarajan & Kolter (2019). Among
these, recent findings support the smoothness in the loss curvature to correlate best with
generalization capability Chaudhari et al. (2019); Petzka et al. (2021); Kaddour et al. (2022),
motivating the development of learning methods that induce smoothness in the learning
trajectory such that the model becomes more robust; either through data perturbation
Jiang et al. (2020a); Aghajanyan et al. (2021); Liang et al. (2021); Hua et al. (2021); Park
et al. (2022); Zheng et al. (2021); Wang et al. (2021); Huang et al. (2021) or by integrating
the measure directly to the optimization objective Izmailov et al. (2018); Jastrzebski et al.
(2021); Cha et al. (2021); Foret et al. (2021); Hu et al. (2022); Zaken et al. (2022); Stickland &
Murray (2021). However it might often not be straightforward to compute such measures in
high-dimensional feature space in a stable fashion Nachum et al. (2024).

As models get larger and cover more languages, the possibility of improving the applicability
of NLP systems in many under-resourced languages gets more promising. An essential
requirement in studying the dynamics of cross-lingual knowledge transfer is to have an
evaluation methodology that can reliably measure the model’s capability in generalization
of knowledge under different scenarios. There is a common hypothesis that states that a
model demonstrating an extended flat optimum area of low loss value surrounding the

1Code: https://anonymous.4open.science/r/strikegen-7288
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minimized loss is indicative of better generalization capability. In this work, we study
the above hypothesis and present the first study to provide methods that can be used for
measuring the cross-lingual generalization capability of language models.

• We pick prominent measures that were previously shown to correlate well with
generalization performance Jiang et al. (2020b), such as the Frobenius distance of the
learned parameters after training Nagarajan & Kolter (2019), the margin between
model predictions and true labels Wei et al. (2018) and sharpness in loss minima
to test applicability to zero-shot cross-lingual generalization measurement Keskar
et al. (2017); Foret et al. (2021).

• We also extend the formulation of state-of-the-art sharpness computation methods
Keskar et al. (2017); Foret et al. (2021) to provide a sharpness prediction algorithm
such that the optimization of the parameters can converge in a more stable fashion.

2 Related work

Loss-landscape Minima One of the most promising indicators of generalization capability
to date seems to be related to the form of the loss landscape, in particular, the sharpness
in the loss curvature. A potential reason for this fallback is traced to stochastic gradient
descent (SGD) Bottou (2012) methods which often fall into sharp minima of the loss surface
Keskar et al. (2017); Chaudhari et al. (2019); Wang et al. (2021). Although clear conclusions
on the relationship between sharpness and generalization performance, such as whether
sharper Dinh et al. (2017) vs. flatter Li et al. (2018); Keskar et al. (2017) minima would
generally yield better generalization, are still due. The main idea behind these methods is
that their objective is to explicitly find flat minima, often using stochastic averaging methods
Polyak & Juditsky (1992); Izmailov et al. (2018), mini-max or sharpness-aware minimization
methods, which can be computed by direct formulation based on the Hessian matrix of the
loss function Chaudhari et al. (2019); Petzka et al. (2021) or Monte-Carlo approximations of
the minimizer’s neighborhood Foret et al. (2021); Cha et al. (2021).

Adversarial optimization Comparison of two approaches finds that for NLP tasks, mini-
max methods are more competitive over averaging-based optimization Kaddour et al. (2022).
Jastrzebski et al. (2021) hypothesize that regularizing the trace of the Fisher information
matrix amplifies the implicit bias of SGD, which prevents memorization. The Fisher infor-
mation Fisher (1925) measures local curvature, so a smaller trace implies a flatter minimum,
which gives the model more freedom to reach an optimum. Instead of explicitly minimizing
the values of parameters, Foret et al. (2021) propose minimizing both loss and sharpness
while optimizing the parameters such that they lie in neighborhoods with low loss values.
Perturbation is an auxiliary objective that encourages the model predictions to be similar
in the vicinity of the observed training samples Englesson & Azizpour (2021), usually by
penalizing the KL-divergence between the probability distribution of the perturbed and
normal model. Perturbations can be adversarial inputs Jiang et al. (2020a) or inputs with
Gaussian or uniform noise Aghajanyan et al. (2021). To improve cross-lingual generalization,
translations of the input generated by machine translation systems were used as perturbed
input Wang et al. (2021); Zheng et al. (2021). Other work also has found the benefit of en-
forcing consistency for perturbations within the model in addition to the input distribution
Liang et al. (2021); Hua et al. (2021).

3 Methodology

In this study, we undertake the development of a methodology that could benefit an accurate
assessment of the generalization capability of models for the purpose of cross-lingual
knowledge transfer into under-resourced languages. This section first presents approaches
to improving generalization performance and the selected measures that provide stable
results for measuring zero-shot cross-lingual transfer performance.
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3.1 Sharpness-based Optimization

We chose the following objective functions as fine-tuning methods for a given pre-trained
model as a means of comparison since their main purpose is to enhance the generalization
and robustness of models. Following the work of Stickland & Murray (2021), as the two
most prominent approaches to mini-max optimization, we include Sharpness-Aware Mini-
mization (SAM) Foret et al. (2021) and regularization with Fisher Information Matrix (FIM)
Jastrzebski et al. (2021) in our evaluation study on cross-lingual generalization.We also
include Multi-view Subword Regularization (MVR) as a perturbation-based optimization
method Wang et al. (2021) which induces stochasticity into the shared subword vocabulary
across languages for easing cross-lingual transfer.

SAM Foret et al. (2021) works on the principle of a mini-max objective function:
minw max∥ϵ∥2<ρ L(w + ϵ), which essentially means the optimizing function tries to mini-
mize the maximum loss value in a given radius in loss landscape. Therefore, SAM states
that it tries to seek ”parameters lying in uniformly low-loss neighborhoods”.

Fisher Penalty is defined as explicitly penalizing the trace of the Fisher information matrix
(FIM). Jastrzebski et al. (2021), Stickland & Murray (2021) observed penalizing FIM during
training correlates to better generalization performance. It can be written mathematically as
1
n ∑n

i ∇L(xi, yi) where L(xi, yi) is the loss at the data point (xi, yi).

MVR Wang et al. (2021) function on the concept of consistency regularization where the
divergence between the model predictions on deterministic and probabilistic segmentation
inputs is minimized. The objective function is formulated as

N

∑
i=1

(
− 1

2
log p(yi|x̂i)−

1
2

log p(yi|x′i) (1)

+ λD(p(yi|x̂i) ∥ p(yi|x′i))
)

(2)

where the first term is the model loss on deterministic segmentation of the ith data sample
(most probable segmentation), the second term is the model loss on probabilistic segmentation
of the ith data sample (random segmentation) and the third term is the KL divergence
between these two output predictions. This technique influences the model to be consistent
on the predictions of different input types which successively motivates the model to be
more adversarially robust.

3.2 Generalization Measures

Our study aims to investigate which type and characteristics of methods would best correlate
with better performance in generalization, in this case, zero-shot cross-lingual transfer.
We are especially interested in confirming the applicability of the flatness hypothesis for
cross-lingual generalization. In order to assess whether a flat optimum loss-scape region
corresponds to generalization, we essentially break down the experiment to measure two
things, flatness, and generalization, such that their correlation can be measured.

Jiang et al. (2020b) conducted an extensive study on image classification tasks using gen-
eralization measures such as flatness-based measures (sharpness metrics), margin and
norm-based metrics (based on parameter norms and distance from initial weights) to find
correlations between measures and model performance which supported the usability of
measures. These measures can be useful to explore the capabilities of language models to
transfer knowledge from high-resource languages to low-resource ones.

Margin

Higher certainty in predicting the correct label leads to a model that is robust to perturbations
and unseen examples. Margin is the distinction between model prediction for ground truth
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label and the next highest prediction probability. We use an average based margin formula
defined by Wei et al. (2018) to calculate margin values on the entire test set. Jiang et al.
(2020b) observed that the margin was directly proportional to better generalization in the
image classification tasks. Margin is

1
n

n

∑
i

(
fyi (xi)− max

j ̸=yi
f j(xi)

)
where xi is the ith input to model, yi is the ground truth label, f (.) is the model function. A
larger value of the margin of a model on a given dataset would mean higher confidence
in the model to predict the correct label - including unseen examples (from languages not
included in fine-tuning).

Sharpness of optimum

In simpler terms, we can define sharpness as the change in the model loss value at two
neighboring points in the model weights plane. It can also be loosely interpreted as the
inverse of the maximum radius the loss function can sustain a low loss value at the optimum.
Sharpness-based measures resulted in the highest correlation with generalization in Jiang
et al. (2020b).

Jiang et al. (2020b) formulates the sharpness to be

ϕ =
∥W − W0∥2

2 log(2ω)

4α2 + log
m
σ
+ 10

such that max|ui |≤α L( fW+u) < 0.1, where α is the maximum radius in the model’s loss
landscape possible, W and W0 are the models finetuned weights and model initial weights
respectively, ω is the number of parameters, m is the total number of observations, σ is the
standard deviation of Gaussian noise added. In this work, as we are comparing models
with the same architecture (considering mBERT only), on the same dataset, we can remove
the constants, and simplify the equation further for comparative analysis.

ϕ =
∥W − W0∥2

2
4α2

Intuitively, if the radius of the low-loss region in the loss-landscape (α) is small, that means
the model has a higher loss value near the optimum, which would mean the landscape
of the optimum is not flat. We can relate this to resulting in an unstable prediction when
having perturbations in either the data or model weights. Jiang et al.’s formula didn’t result
in stable results for our experimental set-up which might be because the ascent steps taken
to optimize the α value resulted in either having a large or a very small final α. The values
of α occurred at extreme points because the algorithm was using a binary search method
and whenever optimal α was not found, the search algorithm stopped with the final α value
at either of the extreme points. The correlation results of the above sharpness method are
shown in Table 3.

We present an alternative definition (inclined with sharpness measure mentioned in the
works of Keskar et al., and Foret et al.), ϕdifference that removes the need to optimize α
by calculating the difference between loss values at two points in the optimum region,
formulated as

ϕdifference = L( fW ′)− L( fW)

where W ′ is W + ϵ (ϵ being Gaussian noise) and W is the optimum weight parameters. The
details of our definition are in Algorithm 1 and performs calculation at about roughly 5-10
times faster than Jiang et al.’s algorithm for a given batch size of 8.
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Algorithm 1 Difference-based sharpness algorithm

1: w0 = original weight
2: w = w0 + ϵ ▷ Small noise added to avoid zero gradient
3: ∆w = ∇L(w)
4: w′ = w + n∆w
5: p = λ × ∥w′∥F ▷ λ is small like 0.05
6: if ∥w′ − w0∥ > p then
7: w′ = w0 +

(w′−w0)
∥w′−w0∥

· p
8: end if
9: ϕdifference = L(w′)− L(w0)

4 Experiments

For comparison, we implement each Sharpness-based optimization as a fine-tuning objective
on the multilingual mBERT base variant (bert-base-multilingual-cased from huggingface)
Devlin et al. (2019) in addition to mT5 model (google/mt5-small) Xue et al. (2021). We use a
linear classification layer of size 768x3 where the output dimension is equal to the number
of labels. We adopt a two-step training approach in our experiments. First, we fine-tune the
model on the English language part of the XNLI dataset to optimize the model to learn the
task specifically in English. Subsequently, we perform a zero-shot transfer of the fine-tuned
model on the rest of the 14 languages to facilitate an evaluation of the generalization of
models.

4.1 Data, Model details, and Settings

For this work, we used the XNLI dataset Conneau et al. (2018) that includes data samples
from the MultiNLI dataset Williams et al. (2018) and their translated versions in 14 different
languages (Arabic ”ar”, Bulgarian ”bg”, German ”de”, Greek ”el”, Spanish ”es”, French
”fr”, Hindi ”hi”, Russian ”ru”, Swahili ”sw”, Thai ”th”, Turkish ”tr”, Urdu ”ur”, Vietnamese
”vi”, Chinese ”zh”). We only train the models on the English (”en”) subset of the dataset.
We use the data of these 14 languages only for inference and evaluation of the models.

We fine-tune pretrained mBERT models for 15 epochs each with a batch size of 32, with a
learning rate of 2× 10−5, and select best checkpoint on validation. The objective function we
use for the baseline model with the classification layer is the AdamW optimizer Loshchilov
& Hutter (2019) with cross-entropy loss, the mBERT+FIM model has an additional loss as
Fisher Penalty, the mBERT+SAM model uses the SAM optimizer and mBERT+MVR uses
the MVR algorithm for fine-tuning. We use the hyperparameters and code presented in
XTREME2 and MVR codebase3. We run the models with 8 random seeds and present the
average performance of these models (Figure 6). In Algorithm 1, the amount of Gaussian
noise we add to model weights during calculating sharpness is controlled using a scale that
we empirically find (among [0.001, 0.005, 0.01, 0.02]) for each model, with n equal to 0.05.

We fine-tuned the MT5 model (google/mt5-small using Huggingface’s library over 15
epochs. The XNLI dataset was processed using a function to tokenize inputs, and the
optimizer utilized was Adafactor with a learning rate scheduler. Adafactor optimizer’s
ability to adapt learning rates is helpful with larger models like T5 in multi-lingual settings.
We trained the model with a batch size of 8, accumulating gradients over 4 steps.

Additional experiments were run on PAWS-X dataset Yang et al. (2019) which has 7 lan-
guages: German ”de”, English ”en”, Spanish ”es”, French ”fr”, Japanese ”ja”, Korean
”ko”, Chinese ”zh”. We use similar experimentation of fine-tuning on english and doing a
zero-shot transfer on 6 other languages as defined above for this dataset. We used Hugging-

2https://github.com/google-research/xtreme
3https://github.com/cindyxinyiwang/multiview-subword-regularization
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face’s models: mBERT (bert-base-multilingual-cased), RoBERTa (roberta-base), and
XLM (xlm-mlm-en-2048) using Adam optimizers.

Results

To evaluate how each of the selected measures correlates with cross-lingual generalization,
we first compare these measures with held-out test accuracy. In Table 1, we present the
correlation coefficients (using numpy.corrcoef) of margin vs. accuracy and sharpness vs.
accuracy. We notice that having a higher margin is exceptionally correlated to achieving
great performance on unseen language data. Hence, we assume the margin to indicate the
generalization performance of a given model. Similarly, sharpness captures a noteworthy
negative correlation with test performance.

Model Correlation with Accuracy

Margin Sharpness

Baseline 0.801 -0.845
mBERT+MVR 0.818 -0.793
mBERT+SAM 0.874 -0.584
mBERT+FIM 0.954 -0.671
mT5 + Adafactor 0.912 -0.410

Table 1: Correlation coefficients between Margin & Test Accuracy, and Sharpness & Test
Accuracy on the XNLI dataset.

We notice similar results by extending our similar experimentation to Paraphrase
Identification, PAWS-X dataset Yang et al. (2019) with 3 different models: mBERT
(bert-base-multilingual-cased), RoBERTa (roberta-base) Liu et al. (2019), and XLM
(xlm-mlm-en-2048) CONNEAU & Lample (2019) and analyze the validity of the flatness
hypothesis, i.e. a flat optimum neighborhood would lead to a generalized model. In Figure
1, we confirm the strong relationship between Margin (indicating generalization) and Sharp-
ness (indicating flatness) even when compared across all models and metrics, suggesting
flat neighborhoods of model optimum can help in achieving higher margin values which
correlate to better generalization. More findings about visualizations are in Appendix A.1.

Model Correlation with Accuracy

Margin Sharpness

mBERT 0.998 -0.289
RoBERTa 0.997 -0.708
XLM-R 0.995 -0.622

Table 2: Correlation coefficients between Margin and Sharpness with Test Accuracy on the
PAWS-X dataset.

We can interpret sharpness as the inverse of flatness, providing us the verdict that flatness
of the minimum in which the fine-tuned model is, would help the model perform better on
unseen language data. When we evaluate similar models trained with different objectives
across languages, we observe that the relationships between measures are likely dependent
on the optimization objective functions used during fine-tuning. In coherence with both
Figure 1 and 2, overall, we see that min-max based optimization methods including FIM and
SAM, have the lowest sharpness values, compared to the baseline and the regularization
method MVR.
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Figure 1: Scatter plot of Margin values and Sharpness (ϕdifference) values for each mBERT
model (on XNLI dataset) with different objectives language-wise to show the relationship
between sharpness and generalization.

Figure 2: Scatter plot of difference-based sharpness measure with test performance for all
models combined.

5 Conclusion

Enabling cross-lingual knowledge transfer is an important step towards extending the
applicability of NLP models to more languages. Despite recent efforts to develop better op-
timization methods for improving the generalization of language models in new languages
or domains; these techniques try different types of methods to achieve higher performance
such as sharpness-based minimizations, reducing gradient of loss functions, or consistency
regularization. Evaluating these techniques thoroughly without a standardized method-
ology remains a difficult task. This work aims to uncover insights into how to measure
cross-lingual generalization by exploring suitable measures that work well under differ-
ent settings. Our experiments studying model loss landscape and parameter properties
find strong relationships between the margin, sharpness in the loss minima neighborhood,
and zero-shot cross-lingual downstream task performance, both on validation and test sets,
supporting strong applicability to evaluate models before deploying them in new languages.

7
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6 Limitations

The algorithm presented in our paper, the difference-based sharpness measure, is a great
novelty for more robust sharpness computation, however, we would like to acknowledge
that a few variables in the algorithm still require tuning heuristically, including the noise
scale and the multiplication coefficient required to compute the projected radius. Secondly,
the mean-based margin distance is only applicable to classification tasks. Due to the limited
scope of this project, we leave the development of generalization measures more suitable
for generative tasks to future work.
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A Appendix

A.1 Visualization results

In Figure 3, we create scatter plots for mBERT models where in each scatter plot, we plot the
model’s margin based on the validation set for each language, and we plot the accuracy of
that model on the test set on the XNLI dataset. We observe that the margin measure exhibits
a consistent correlation with test performance across all the models analyzed.

(a) Correlation visualization for Baseline(mBERT
+ AdamW)

(b) Correlation visualization for mBERT + MVR
model

(c) Correlation visualization for mBERT + SAM
model

(d) Correlation visualization for mBERT + FIM
model

Figure 3: Scatter plots of margin of individual models and their corresponding performance on test
set language-wise on XNLI dataset.
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As can be seen in the scatter plots for sharpness (proposed difference-based sharpness) and
accuracy in Figure 4, findings further indicate a negative correlation between sharpness
and test performance, suggesting that lower sharpness values are associated with better
generalization, represented as model performance on unseen data.

Previous work Nagarajan & Kolter (2019); Jiang et al. (2020b) suggests that a lower Frobenius
distance from initialization would lead to better generalization. As Figure 5 shows, we fail
to observe a strong direct relationship between generalization and Frobenius distance from
initialization. However, the model trained with Fisher Penalty as an additional objective
function that has a high distance from initialization overall performed poorly than others.
We also see that models trained with Fisher Penalty, SAM, and MVR optimizers tend to
be more stable than the baseline model, with Fisher Penalty resulting in the most stable
model when trained multiple times (with different seeds, see Figure 6), and SAM achieving
generally the best average zero-shot task accuracy.
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(a) Correlation visualization for Baseline (mBERT
+ AdamW)

(b) Correlation visualization for mBERT + MVR
model

(c) Correlation visualization for mBERT + SAM
model

(d) Correlation visualization for mBERT + FIM
model

Figure 4: Scatter plots of the proposed difference-based sharpness (ϕdifference) of individual models
and their corresponding performance on test set language-wise on XNLI Dataset.
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Figure 5: Scatter plot of Frobenius distance from initialization and Test accuracy for each
model type (trained multiple times independenty).

Figure 6: Average test performance (and deviations) of models when trained multiple times
with different seeds.
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A.2 Additional experiments

To compare all models together, using the difference-based sharpness measure, on language-
wise performance, we observe it is dependent on the learning algorithms used during
training in Figure 2.

Model Correlation coefficient of α sharpness with accuracy

Baseline 0.249
mBERT+MVR -0.471
mBERT+SAM -0.166
mBERT+FIM -0.440

Table 3: Correlation coefficients between α-Sharpness Jiang et al. (2020b) & Test Accuracy
on the XNLI dataset.
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(a) Correlation visualization for Baseline (mBERT
+ AdamW)

(b) Correlation visualization for mBERT + MVR
model

(c) Correlation visualization for mBERT + SAM
model

(d) Correlation visualization for mBERT + FIM
model

Figure 7: Scatter plots of Jiang et al. (2020b) based α-sharpness measure (we are only considering 1
α2

here) of individual models and their corresponding performance on test set language-wise.

We used the Jiang et al.’s α-based sharpness algorithm for the experiment and optimized the
threshold loss values for our experimental setting. The results of the correlation coefficient
(using numpy.corrcoef) for α-based sharpness and test accuracy are shown in Table 3 and
Figure 7. We notice that α-based sharpness values occur at extreme points (for example, for
mBERT+FIM model, sharpness values are low whereas for the Baseline or mBERT+MVR
model, sharpness values are much larger). Apart from being a computationally expensive
algorithm, we failed to see a strong relationship of α-based sharpness with performance in
Baseline and mBERT+SAM models.
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