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Microstructural features governing fracture of a two-dimensional amorphous
solid identified by machine learning
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Brittle fracturing of materials is common in natural and industrial processes over a variety of length scales. Knowledge
of individual particle dynamics is vital to obtain deeper insight into the atomistic processes governing crack propagation
in such materials, yet it is challenging to obtain these details in experiments. We propose an experimental approach
where isotropic dilational strain is applied to a densely packed monolayer of attractive colloidal microspheres, resulting in
fracture. Using brightfield microscopy and particle tracking, we examine the microstructural evolution of the monolayer
during fracturing. Furthermore, using a quantified representation of the microstructure in combination with a machine
learning algorithm, we calculate the likelihood of regions of the monolayer to be on a crack line, which we term Weakness.
From this analysis, we identify the most important contributions to crack propagation and find that local density is more
important than orientational order. Our methodology and results provide a basis for further research on microscopic

processes during the fracturing process.

. INTRODUCTION

Cracks occur over natural length scales from atoms to earth-
quakes, but a thorough understanding remains elusive due
the unpredictable nature of the fracture process. Generally,
materials that fracture under sufficiently high strain are referred
to as brittle. Brittle materials display a discontinuous drop in
stress, in contrast with the continuous evolution over strain of
ductile materials.

The field of fracture mechanics was revolutionized by seminal
work of A.A. Griffiths', showing how the decrease of the strain
energy by breaking the particle bonds should be higher than
the increase in surface energy due to the formation of the free
surface during fracturing. These results were generalized to
any “somewhat brittle” material in later work?, in which also
the main failure modes during fracturing were identified: shear
cracks form when stress is applied parallel to the plane of the
crack, whereas extensional cracks form when a tensile stress
is applied normal to the plane of the crack. Other important
early findings show how the stress distribution changes around
the propagating crack front>*. The fracture mechanics theories
from these reports use a continuum description of the material,
causing the theory to break down near the crack’s tip, where
the stress field diverges’. Since the processes occurring in
vicinity of the crack tip are vital in determining the macroscopic
process of crack growth and propagation through a material®,
it is important to study the dynamics at the small scale.

Recent advancements in simulations and experimental meth-
ods have accelerated research into the dynamic material evo-
lution near the crack tip. In simulations, it was shown that
cracks tend to initiate in the regions with highest disorder of

OElectronic mail: m.huisman@sms.ed.ac.uk
YElectronic mail: v.garbin@tudelft.nl

a brittle amorphous material’ and that the direction of crack
propagation can be substantially influenced by the presence
of defects and voids that lie in front of the crack tip>®. These
findings were confirmed in experiments where the dynamic
fracturing of brittle polymeric gels was studied using optical
microscopy, showing the important role of defects and voids in
crack propagation®?.

Observations from simulations and scattering
experiments'! strengthen this view by showing how fracturing
is governed by localized plastic rearrangements of individual
particles, which occur in “soft regions”. Soft regions are
regions in a material where particles are most likely to
rearrange, characterized by low density and/or high disorder.
In the case of attractive particles, particles in soft regions
have fewer neighbours that fix their position. Experimental
observations on individual particle dynamics in such soft
regions during fracturing would be crucial for obtaining a better
understanding of the role of microstructure during fracturing,
but have to this date not been reported. Individual particle
dynamic are often studied using small colloidal particles sized
~ 100 nm-10 um, due to ease of use in combination with
various optical microscopy techniques.

Related to fracturing, colloidal systems with small (<
100 nm) particles have been used to study macroscale fracturing
during drying, relevant to, for instance, the aging of paintings'?
or dairy stratification'3. To allow for live tracking of individual
particle movements, colloidal systems with larger particles of
size ~ 1 pum should be used. When using a monolayer of such
colloids on an interface and applying a strain to that monolayer,
movements are enforced, which potentially leads to yielding.
Previously, such experimental systems have been used to study
among others the role of defects'®, the relaxation time scal-
ing in plastic flow under oscillatory shear'’, and the impact
propagation through a monolayer after a localized mechanical
pulse'.

One of the main advantages of individual particle tracking
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is that one can quantify the microstructure from the particle co-
ordinates over time, through so-called “structural indicators”!”.
These parameters characterize some important features of the
system, such as the local density (for instance through the
number of nearest neighbours, or the area of cells in a Voronoi
tessellation) or the local order (for instance through orienta-
tional order parameters ¥;). Recently, it has been suggested
that simple, machine learning (ML) algorithms can also be used
to predict how likely individual particles in a sheared system
are to undergo plastic rearrangement'8-2. The structural indi-
cator called Softness characterizes the local structure and was
found to be strongly linked to the system dynamics'®. An extra
incentive for applying ML algorithms to such experimental
systems, is that it can be used to identify the most important
features in the provided dataset through analyzing the decision
making process.

In this paper, we test the extension of such machine learning
based methods to experimental systems with macroscopic
catastrophic yielding, like fracturing. First, we develop an
experimental method where a monolayer of attractive colloids
is fractured by applying an isotropic strain. Using brightfield
microscopy and particle tracking algorithms we extract particle
coordinates, that we use to characterize the monolayer structure
and its dynamic evolution. This is done by calculating the
orientational bond order parameter and number of nearest
neighbours. Since fracture nucleation is a stochastic process,
we extend our analyses by using a machine learning method'8-2°
to a priori identify regions that are more likely to be on a crack
line than others, and we term this structural likelihood the
Weakness. Finally, we obtain a deeper understanding into the
fracturing process by comparing the relative importance of the
input features of the machine learning algorithm.

Il. MATERIALS AND METHODS
A. Sample preparation

We use polystyrene microspheres with negatively charged
sulfate functional groups (nominal daye = 5 + 0.5 um, Ther-
moFisher, cat. number: S37227, material lot number: 853189).
The colloid suspension (4%w/v) was washed repeatedly by
centrifugating and replacing the supernatant with milli-Q wa-
ter to remove possible contaminations. The suspension was
diluted to 0.4%w/v using a 500 mM NaCl aqueous solution to
screen electrostatic repulsion between particles and promote
adsorption to the gas-water interface.

To produce colloid-coated air bubbles in water, we thoroughly
shake the colloidal suspension to create air bubbles, which also
agitates the colloids so that they adsorb at the interfaces of
the air bubbles in water. The resulting colloid-coated bubbles
are sufficiently stable that they can be individually extracted
from the vial using a spatula. The bubble was then placed
atop a sample holder, consisting of a 4 mm thick PDMS spacer
on a glass slide (76 x 26 mm?), filled with a 500 mM NaCl
solution and subsequently covered by a glass coverslip (18 x 18
mmz). Next, the sample was left undisturbed for at least 10
minutes to equilibrate. A Peltier heating element (RS Peltier
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Module, 1.6 W, 1.6 A, 7 V, 30 x 30 mm?) was glued close
to the container, for controlling the temperature of the sample.
After preparation, the entire sample container was placed on an
inverted microscope (IX71, Olympus) equipped with a camera
(Basler ace acA5472-17uc) and a 10x objective. A schematic
of the experimental setup is shown in Fig. 1 (a).

The in-focus part of the monolayer in the field of view

[see Fig. 1 (b)] contains ~ 5000 particles. The typical surface

Npare 7R? .
T (),7240.05, Npar being the amount

coverage is ¢ = A
of particles in the field of view, Rpay the particle radius and
Agurt the area of the field of view containing in-focus particles.
We note that in our experiments, we found an effective center-
to-center distance of r;; = Rpart/2 = 5.4 um between particles

iandj.

B. Controlled monolayer expansion and fracture

In previous work, dynamics of colloidal monolayers un-
der strain have for instance been studied through the infla-
tion/deflation of a pendant drop?! or by cooling-induced shrink-
age of compressible air droplets in water’>. Here, we heat
colloid coated air bubbles to study extensional fracturing while
tracking individual particles, which would otherwise be difficult
to study simultaneously.

We expand air bubbles in water by heating the sample holder
using a Peltier element. The fluid in the sample holder was
heated only by a couple of degrees, ensuring slow expansion to
allow for particle tracking.

The areal expansion of the perimeter of a colloid-coated
bubble in a typical experiment is shown in Fig. 1 (d). The
growth rate slowly increases for ¢+ < 100 s. During this stage
also some sudden drops can be observed (inset of 1 (d)), possibly
indicating rapid changes in the structure of the monolayer. After
this initial stage (+ > 100 s), the bubble area increases at a
constant rate. We find possible explanations for this behaviour
by zooming in at the evolution of a monolayer over time (see
Fig. 2(a)), where we see that the new crack formation mainly
occurs in the early stages of bubble growth. These results show
a rapid crack propagation through the monolayer that seems
heavily influenced by the orientation of the initial crack (more
examples of the crack directionality can be observed in Fig. S1
in the Supplemental Information). The rapid changes in the
monolayer structure at early times could result in the abrupt
changes we observed in the measured perimeter of the bubble
in the inset of Fig. 1 (d). Next, the bubble proceeds to grow
through areal expansion of the already formed cracks, rather
than new crack formation, which we assume corresponds to
the constant growth rate of the bubble at later times.

C. Image analysis and particle tracking

To obtain particle coordinates from our microscopy data we
used manual particle tracking algorithms in Matlab. We found
that a completely automated approach was insufficiently accu-
rate as our microscopy data contains many (~ 5000 ) particles
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FIG. 1. (a) Experimental schematic of the container for a colloid coated air bubble in water. Fracturing is induced through a Peltier heating
element connected to DC power, and data is obtained through an optical microscope connected to a camera. (b) A segment of the colloid
monolayer, visualized through the raw data, the Delauney Triangulation and the amount of Nearest Neighbours. Scalebar represents 25 um. (c)
Radial distribution function g(r) for a typical experimental dataset (~ 5000 particles). g(r) is normalized by the first peak value and the radial
distance from the central particle r is normalized by the measured effective distance between particles dpart = 7;; = 5.4 um. (d) Areal expansion
(A(?)) of the perimeter of a colloid coated air bubble in water, normalized by it’s initial value Ag. This data was obtained using 5x magnification
to track the entire perimeter over time. Inset shows a zoom-in of the initial stages of areal expansion.

that are subjected to sudden movement, move slightly in and
out of focus during an experiment and where the difference
between a void and a particle is difficult to detect.

In our approach, we first obtain estimates of initial coordi-
nates using TrackPy”}. These were imported to Matlab and
refined by manually removing voids classified as particles and
adding particles that were not recognised. Particle tracking
was performed using the Crocker and Grier algorithm?*. When
particles experienced a sudden rapid movement or when they
moved out of focus such that the tracking algorithm lost a
particle, we re-adjusted this particle’s position by hand. With
an image resolution of 150 nm per pixel, particle tracking has
a subpixel accuracy. To make sure we had enough data to use

machine learning algorithms, we performed 20 identical ex-
periments, which combined together form a dataset containing
trajectories of approximately 100,000 particles.

D. Fracture detection

To quantify the crack location in the monolayer, we identify
the particles located on the boundary of a crack. To this end
we adapted an image analysis routine originally developed to
visualize pore connectivity in metal-organic frameworks>. We
converted the final frame of each experiment to a binary mask,
that only contained cracks with a total size above a minimum



pixel size, that we adjusted manually for each experiment.
This mask was morphologically dilated by 1 particle diameter
and overlaid onto the particle coordinates in the final frame
to identify the particles on the edge of a crack. In a typical
experiment, a subset of about 100 to 200 particles were located
on the edges of cracks out of ~ 5000 total particles in the field
of view.

E. Quantifying the local microstructure

A segment of a typical experimental monolayer is shown in
Fig. 1 (b). We can observe rafts of localized crystalline order,
where particles have 6 nearest neighbours (e.g. a hexagonal cen-
tered packing arrangement), interchanged by more amorphous
regions. This observation is in close resemblance to systems
from other studies on colloid monolayers with medium range
ordering!>2627_ The radial distribution function g(r) (Fig. 1
(c)) confirms this similarity, with local ordering extending up
to about 6 coordination shells.

We characterize and investigate the monolayer structure
using the number of nearest-neighbours (NN), which relates
to the local density, and the bond order parameter ¥;, relating
to the local orientational order. NN is the number of particles
within a cut-off radius Re = 2 # rpa (= rij = 5.4 um). We
calculate the hexatic bond order parameter as'’
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where i is the central particle of interest, 6; ;1 is the angle of
particle i with neighbours j and k. Note that i in the exponent
is the unit imaginary number. ¢ is a measure of hexagonal
order, with w§ — 1 for perfect hexagonal order and ¢, — 0
otherwise.

F. A generalized description of local microstructure

We also calculate a structural indicator from a more general
description of the local particle environment, using machine
learning algorithms. This approach was first proposed by
Behler and Parinello?® and later applied to the study of plastic
rearrangements in colloidal systems'8-20.

The generalized description consists of two structure func-
tions. The first structure function G;‘ (i, p) essentially acts as
a discretized radial distribution function, that calculates how
many neighbours j are located in a shell of thickness ¢ at a
distance y from particle 7, and is defined as

G (i) = Y7z @)

J

where R;; is the distance between central particle i and
neighbour j, ¢ is a fixed quantity (in our case 6 = 0.25 ym), and
( is a variable parameter (we used 4.6 um< u < 12 ym, with

steps of 0.1 um). The cut-off distance from the central particle,
R, in which this equation is calculated should include several
coordination shells but is insensitive to the exact amount!®.
In total, through varying u, we obtained a set of 75 different
values for each particle, which will be referred to as features.

The second structure function ‘I‘l’fz(i ,E,4,0), related to
orientational properties, is calculated as

WY, (.6.0.0) = Y e R RO (14 cos 0,0)°
ok
3)
Again, R;; is the distance between central particle i and
neighbour j, while ; j; is the angle that the central particle i
makes with its neighbours j, k. &€, 4, { are variable parameters
related to different aspects of the particles’ local environment: &
ensures that the Gaussian exponent goes to zero as interparticle
distance increases, A (set at either 4 = 1 or A = —1) determines
whether small or large bond angles are used and { determines
or the relative importance of angular properties'®. The values
we used for the parameters &, A, { are given in the supplemental
material, giving a total of 60 features for every particle.

G. Calculating Weakness

We want to predict the propensity of a particle to be next to
a crack line. To this end, we calculate a parameter that we will
refer to as the Weakness, which is a machine learning-generated
structural indicator, calculated from the generalized description
of the local environment described in Section I F. As observed
in Fig. 2(a), crack propagation is heavily influenced by the
initial crack’s directionality. Therefore, we hypothesize that
Weakness could identify a likely crack path in the direction of
the initial crack, after its formation.

As proposed in previous work'®2? we employ one of the
most straight forward machine learning algorithms: the Sup-
port Vector Machine (SVM). Support Vector Machines (SVM)
are supervised classification methods, widely adopted for clas-
sification, regression and other learning tasks*. Generally,
classification algorithms have a training stage and a testing
stage. During the training stage, the SVM takes as input a
set of datapoints with features xy, x2, ..., X;;;, providing an m-
dimensional dataset, and for each feature a classification label
(O or 1). In our case, the datapoints are the individual particles
and the features are values from Eq. 2 and Eq. 3. The SVM
algorithm then constructs and adjusts a (m — 1)-dimensional
hyperplane that separates the data into classes 0 and 1 with
the highest accuracy, see Fig. 3(a). Next, during the testing
stage, the hyperplane is fixed and a dataset with datapoints that
the algorithm has not seen before, but with the same features
X1,X2, ...y X, 18 provided as input. The SVM uses previously
calculated hyperplane to predict which of the two outcomes 0
or 1 is most likely for the new datapoints.

To prevent under- and over-training we optimized the size of
our dataset to approximately 12,000 randomly selected particles
out of the total 100,000 particles we tracked, see Supplemental
Information. The optimal ratio of particles in the dataset was
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FIG. 2. (a) Brightfield images of the colloid monolayer during a typical experiment. Scalebar represents 50 um. (b) Overlay of drift
subtracted displacement vectors on the particle coordinates, comparing the their initial position to their position after a typical experiment (here,
fend =~ 100 s). The vectors are coloured by their clockwise orientation, and the red striped lines show where the cracks appear in the system. (c)
Overlay of the ¢/ values on the particle initial particle positions. The red striped lines show where the cracks appear in the system.

found to be 45% of particles with label 1 (crack) and 55% with
label O (no crack).

We make use of the simplicity of the SVM to gain insight
on the important parameters in the process. This is done
by calculating the distance of datapoints from the hyperplane,
which is analogous to the probability of the datapoint belonging
to it’s classification class. This distance has been previously
used to quantify the probability for plastic rearrangements, and
was termed Softness in this context'®2°. Since in our case
these labels correspond to the probability of the particle to be
located on the edge of a crack, for our system we will refer to
this quantity as Weakness.

lll. RESULTS AND DISCUSSION

A. Evolution of the monolayer microstructure during
fracturing

Figure 2(a) shows the evolution of the colloid monolayer
in a typical experiment. Cracks begin to appear shortly after

expansion starts. These cracks propagate through the monolayer
until they span the entire field of view, after which crack
initiation ceases and crack growth proceeds through areal
expansion of the already existing cracks.

With exception of the cracks, the monolayer is not deformed,
so that particles move in large rafts with the same magnitude
and direction of the particles’ displacement. This is visualized
in Fig. 2(b) and inset, which shows clearly the alignment
between the directional vectors of the particle movement. After
fracturing, particles move away in opposite directions from
the crack location, which confirms our system’s suitability for
studying extensional fracturing dynamics. Also, we observe
that some small pockets of about ~ 10 particles located on the
fracture line sometimes reorient themselves slightly, as seen by
the rotational lines in the inset, which is a typical feature in all
experiments.

An overlay of the bond order parameter ¢ on the particle
coordinates is shown in 2(c). The figure shows that the cracks
generally propagate through regions with low . This is not
unexpected, since domains with ¢ — 1 are highly ordered
and densely packed so that their constituent particles are mostly
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FIG. 3. (a) Schematic of the Support Vector Machine (SVM) algo-
rithm. We identify the distance of the particle to the hyperplane as the
particle’s Weakness. (b) Visual overlay of the calculated Weakness
values on the particles in an experimental dataset. Here, particles
coloured red are located in a “weaker” local environment, so more
prone to fracture, while blue particles are in regions that are less prone
to fracture. The approximate location of the fracture in the monolayer
is given by the dashed green line. Scalebar represents 50 ym

surrounded by other particles fixing them in place, in contrast to
more disordered domains with low ¢ where fewer interparticle
bonds have to be broken for a crack to occur, thus requiring
less energy.

These observations on the role of voids in crack propagation
are consistent with the literature on fracturing where it was
shown that voids in the crack path and near the crack tip are
most prone to yielding from the crack tip-induced stresses’’.
The crack propagates through the material by rapid growth of
these voids and their subsequent coalescence with the main
crack.

B. Identifying weak regions using Machine Learning

Next, we test ML algorithms for identifying regions that are
prone to fracturing, and obtaining a deeper understanding of the

fracturing process. First, we show how a simple ML algorithm,
the SVM, can identify weak regions in the material. Then, we
identify the features of the local particle environments that are
most important for determining whether that region is weak.

We show the calculated Weakness value for each particle,
obtained using a SVM, as overlay on particle coordinates in
Fig. 3(b). We compute the prediction accuracy by comparing
the sign of the Weakness prediction, where a positive value
means the particle is predicted to be on the crack line, with the
classification labels for this experiment. For the experiment of
Fig 3(b), we find a reasonably high overall prediction accuracy
of 72.8%, which can be separated into correct predictions for
particles that are not on the crack line (77.1% accuracy) and
correct predictions for particles that are on the crack line (33.0%
accuracy).

The cracks (green dashed lines in Fig. 3(b)) mostly appear
in regions with positive Weakness values (coloured more red),
so that Weakness can indeed identify a likely crack path in
the crack direction. Sometimes the cracks percolate through
regions of low Weakness values, which shows how the direction
of the propagating crack can in some cases be dominant over
the structural weakness. We hypothesize that the precise
location of the propagating crack is influenced by the interplay
between structural weakness and initial crack direction. This
phenomenon is also observed in other experiments with a
slightly different surface coverage and average ordering, see
Fig. S1 in the Supplemental Information.

We can characterize the alignment of cracks with regions
of high Weakness values by calculating the average Weakness
values of particles with label 0 and particles with label 1.
We find for particles next to the crack line with label 1, in
the experiment in Fig. 3(b), a higher average Weakness value
(—0.76) compared to the average Weakness of all other particles
(—1.64) with label 0, as shown in Fig. S2 in the Supplemental
Information. Both average Weakness values are negative, e.g.
purely from structural information the SVM method predicts
it is on average still unlikely for both sets of particles to be
next to a crack line. This is not unexpected, since we already
observed the importance of the directionality and location
of the initial crack: the crack direction can be dominant
over structural weakness, meaning that the cracks sometimes
propagate through regions with low Weakness values, while
the cracks also propagate through only a subset of structurally
weak regions in the direction of the initial crack.

The observations from the SVM algorithm output agree with
the observations from structural indicators like y¢: more disor-
dered or lower density domains are more prone to fracturing.
This can be seen in Fig. 3(b), where particles in more ordered
domains have a negative Weakness value (blue), while particles
in more disordered domains are given positive Weakness values
(red).

The monolayer is slightly polydisperse and slightly larger
particles are generally given a high, positive Weakness value.
This is not entirely obvious, since these regions can still be
dense and ordered, and those larger particles tend to have
> 6 attractive neighbours in their first coordination shell. We
hypothesize that large particles might result in energetically
costly point defects in the monolayer, making these points more
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prone to fracture®’. Confirming would require experiments with

carefully controlled defects, for instance through controlling
the polydispersity of the particles, this is beyond the scope of
this paper.

C. Important features in identifying weak regions

We analyze the role of the particle features on the decision-
making process of the ML algorithm by investigating more
closely the mathematical formulation of the hyperplane in the
SVM. The hyperplane location is determined through satisfying
the equation wTa; — b = 0, where w7 is a set of weights for
each feature x;, a; is a set of all features x; and b is some offset,
also referred to as the “bias”. We note here that all our data
was normalized to a domain [-1 1] before machine learning. In
that case, the values obtained for wT measure the importance
of the features in determining the location of the hyperplane.

The weights for every feature number, which corresponds to
a specific combination of parameters for either Gif or ‘PI),(Z, are
shown in Fig. 4. The arrows indicate the range and direction
of the varying parameters. The figure shows that the features
from the orientation-based ‘Pffz have a lower weight than those
from the density-based G . Features 30 and 60 in ¥}\, have
a relatively high SVM weight because for their parameter

o . —(R2.4+R? +R%,)/ &7 . .
combinations the density term e i ikT ik’ > is dominant.

These observations indicate that the local density is more
important compared to the local orientational order for deter-
mining whether a domain in the material is weak. Even though
the features from ‘P;‘Z also include information on the local

2 2 2 2
density through the term e~ R RiH RGN i Eq. 3, we still

make the conclusion that density is more important, since the
addition of angular information in Eq. 3 does not in fact lead
to higher SVM weight of the orientation-based features.

The profile of the density-based features Gif in Fig. 4 bears
resemblance to g (r), shown in Fig. 1(d). In fact, feature number
8, highlighted by the vertical black line and corresponding to
the feature with ¢ = 5.4 um, we find a peak in the SVM

weights. This is striking because u = 5.4 um corresponds to
the same location as the first coordination shell in g(7). This
indicates that the presence, or absence, of particles on the
first coordination shell from the central particle is the most
important feature in our dataset to determining Weakness.

In Fig. 4 the second coordination shell only corresponds
to higher feature numbers approximately between 50 and 70
(where the distance between particles is r;; ~ 9.5 — 11.5 um).
Seeing that there are multiple peaks between these two points,
there are most likely recurring configurations of particles
that are common in our system, providing information to
determining the Weakness of those particles. Future research
could make it possible to identify those shapes using shape
detection algorithms.

Finally, it should be noted that we also observe high SVM
weights at the lowest feature numbers in Gif in Fig. 4. We
attribute these to the mis-classification of voids as particles in
our experimental system. Even though our particle tracking
was generally robust, each experimental dataset contained at
least order ~ 10 misclassified particles, which is probably
significant enough to show up in our results. The presence of a
(misclassified) void should indeed indicate that there is a void,
and thereby lead to a higher propensity to fracture.

IV. CONCLUSIONS

In conclusion, we developed an experimental system to study
a fracturing colloid monolayer on a water-air interface under
isotropic dilational strain, and used structural indicators and
machine learning to obtain more insight into the fracturing
process. From brightfield microscopy data we obtained the
particle coordinates, from which we quantified the microscruc-
ture of the monolayer through structural indicators, for instance
6. These analyses show that cracks tend to propagate through
more disordered domains. By defining and calculating the
Weakness of domains in the monolayer using machine learn-
ing, we confirmed that cracks generally propagate through
structurally weak regions, but not exclusively; while crack prop-



agation remains heavily influenced by the crack’s direction and
initiation site. Furthermore, we determined that local density,
or the presence of voids in direct vicinity of the particle, is
most important to determining whether a domain is weak to
fracturing. Overall, the methodology and results presented
here provide a basis for further studies into and understanding
of material microstructure during fracturing.
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Supplemental Information: Microstructural features governing fracture of a
two-dimensional amorphous solid identified by machine learning

SI. PARAMETER CHOICES FOR STRUCTURE FUNCTIONS

Parameter values for the structure functions Gy (i, 1) and W5, (i, &, A, ), based on the approach used in*’. Through these
parameter variations we obtained 75 features for G and 60 features for ¥¥. We manually adjusted these to optimize quantitative
output from our SVM and note that, as the paper by Behler and Parinello?® prescribes, the choice of parameters is not unique but
best suits the description of the local environment in this system.

TABLE 1. Feature values structure functions

Feature Values
u (pm) 4.6,4.7,48,..,11.8,11.9,12

&(um) 0.368, 0.243, 0.177, ... , e_\/B, ..., 0.000492, 0.000432
where =1, 2, 3, ... , 58, 59, 60

Ie 0.1,0.2,0.3,...,29,3.0,0.1,0.2, ... ,2.8,2.9,3.0

A 1,1,1,...,1,1,-1,-1, ... ,-1,-1, -1

Sil. SVM OPTIMIZATION
A. Choice of kernel and feature importance

In the SVM algorithm, we used a linear kernel for the hyperplane to allow interpretation on the importance of the features.

The hyperplane of the SVM follows the equation w”x; — b = 0. Here, @; is a set of all features x;, w is a set of weights for
each feature x;, and b is some offset, also referred to as the “bias”. Since wT provides the weight of a feature x; to the positioning
of the hyperplane, this can be used as a measure of the feature importance of x;.

We obtain Weakness by calculating the distance of datapoints from the hyperplane, which is analogous to the probability of the
datapoint belonging to its classification class.

B. Dataset size and label distribution

To prevent under- or over-fitting, we calculated the training and testing accuracy for different sized training datasets. The
training accuracy was calculated through 5 fold cross validation, and we used a test set of 33,388 particles that were not used
during training. The testing and training accuracy are more or less equal in the region around 12,000 datapoints, after which the
testing accuracy decreases, which is a sign of overfitting!®. Thus, the optimal dataset size was 12,000 particles.

We also determined the optimal ratio of particles with label 1 (crack) and with label 0 (no crack). The ratio of the datapoints in
the training set was varied from 10:90 to 90:10 [label 1:label 0], in steps of 5%. Considering that equal accuracy for testing and
training is optimal'®, we found an optimal ratio 45:55 [label 1:label 0].
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FIG. S1. Machine Learning output of an SVM model using physics motivated structural indicators (left), with their corresponding surface map
(right) for 3 different samples: (a) 3953 particles (¢ = 0.84, prediction accuracy = 79.2%) (b) 4624 particles (¢ = 0.72, prediction accuracy
= 74.0%) (c) 3562 particles (¢ ~ 0.65, prediction accuracy = 62.6%) The approximate location of the fracture is shown as a black line and the
scalebar represent 50 um.
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FIG. S2. Distribution of predicted Weakness values. Striped lines give average Weakness for both distributions.
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