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Decentralized Personalized Federated Learning
based on a Conditional ‘Sparse-to-Sparser’ Scheme

Qianyu Long, Qiyuan Wang, Christos Anagnostopoulos, Daning Bi

Abstract—Decentralized Federated Learning (DFL) has be-
come popular due to its robustness and avoidance of centralized
coordination. In this paradigm, clients actively engage in training
by exchanging models with their networked neighbors. However,
DFL introduces increased costs in terms of training and commu-
nication. Existing methods focus on minimizing communication
often overlooking training efficiency and data heterogeneity. To
address this gap, we propose a novel sparse-to-sparser training
scheme: DA-DPFL. DA-DPFL initializes with a subset of model
parameters, which progressively reduces during training via
dynamic aggregation and leads to substantial energy savings while
retaining adequate information during critical learning periods.

Our experiments showcase that DA-DPFL substantially out-
performs DFL baselines in test accuracy, while achieving up
to 5 times reduction in energy costs. We provide a theoretical
analysis of DA-DPFL’s convergence by solidifying its applicability
in decentralized and personalized learning. The code is available
at:https://github.com/EricLoong/da-dpfl

Index Terms—Personalized Federated Learning, Model Prun-
ing, Sparsification, Decentralized Federated Learning.

I. INTRODUCTION

Large-scale Deep Neural Networks (DNNs) have gained
significant attention due to their high performance on complex
tasks. The Vision Transformer, ViT-4 [1] by Google is a prime
example of achieving a new state-of-the-art on ImageNet [2]
with top-1 accuracy of 90.45%. The success of centralized
training of DNNs motivated the counterpart decentralized
training based on Federated Learning (FL) [3]. FL involves
distributed clients’ data in DNN training addressing chal-
lenges like privacy [4] by transmitting only model weights
and/or gradients instead of raw data. However, FL faces two
fundamental challenges [5]: expensive communication and
statistical heterogeneity. Reducing the communication cost
due to clients disseminating big-sized DNNs can be achieved
by compressing information exchange while attaining model
convergence. Gradient sparsification and quantization [6], [7]
significantly reduce communication cost. Model pruning [8]–
[12] not only reduces communication cost but also accelerates
local training. To alleviate statistical heterogeneity and cope
with non-independent and identically distributed (non-i.i.d.)
data, Personalized FL (PFL) emerges to allow a local (per-
sonalized) model per client rather than a global one shared
among clients. Though PFL is still in its infancy, a plethora
of works [11]–[17] shows its efficiency in data heterogeneity.
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FL is classified into Centralized FL (CFL) and Decen-
tralized FL (DFL), differentiated by clients’ communication
methods during training. CFL, exemplified by FedAvg [3], in-
volves a central server coordinating client model aggregation,
posing risks of server-targeted attacks and a single point of
failure. In contrast, DFL [18] offers privacy enhancements and
risk mitigation by enabling direct, dynamic, non-hierarchical
client interactions within various network topologies such as
line/bus, ring, star, or mesh. To address communication cost,
model/gradient compression-based DFL has been proposed
[11], [19]–[21], where local models are pruned/quantized
to achieve competitive performance similar to dense (non-
pruned) models. These approaches match communication costs
for the busiest servers as CFL, having higher overall commu-
nication and training costs attributed to decentralized hybrid
topology (each client can act as a server). Although DFL
with pointing protocol, i.e., learning from previously trained
models of clients in a sequential line one-peer-to-one-peer, can
expedite convergence [18], it struggles with data heterogeneity.
Overall, while FL frameworks target learning from decentral-
ized data, they often overlook either statistical heterogeneity,
as in DFL, or efficient training and communication, as in
PFL. This highlights the need for an integrated approach
that effectively balances communication, training efficiency,
and data heterogeneity across different FL paradigms. We
contribute with a novel Dynamic Aggregation Decentralized
PFL framework, coined as DA-DPFL, that (i) further reduces
communication and training costs, (ii) expedites convergence,
and (iii) overcomes data heterogeneity. DA-DPFL incorporates
two main elements: a fair dynamic scheduling for aggregation
of personalized models and a dynamic pruning policy. The in-
novative scheduling policy allows clients in DA-DPFL to reuse
trained models within the same communication round, which
significantly accelerates convergence. Moreover, DA-DPFL
involves optimized pruning timing to conduct further pruning,
i.e., sparse-to-sparser training, which does not violate clients’
computing capacities while achieving communication, train-
ing, and inference efficiency. The trade-off is the controlled
latency incurred as some clients await the completion of tasks
by their neighbors. We comprehensively assess and compare
DA-DPFL with baselines in CFL and DFL to showcase the
advantage of dynamic pruning and aggregation in PFL.
Our major technical contributions are: (i) We innovatively
align a dynamic aggregation framework to allow clients reuse
previous models for local training within the same commu-
nication round. (ii) By measuring model compressibility, we
propose a further pruning strategy, which effectively accom-
modates and extends existing sparse training techniques in
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DFL. (iii) Compared with both CFL and DFL baselines, our
comprehensive experiments showcase that DA-DPFL achieves
comparative or even superior model performance across vari-
ous tasks and DNN architectures. (iv) The proposed learning
method with dynamic aggregation achieves the highest energy
and communication efficiency. (v) We provide a theoretical
convergence analysis, which aligns with experimental obser-
vations.

II. RELATED WORK

Efficient FL: In distributed ML, communication and train-
ing costs are significant challenges. LAQ [6] and DGC [7]
methods reduce communication costs through gradient quanti-
zation and deep gradient compression techniques, respectively.
Model compression, notably pruning, plays a key role in alle-
viating device storage constraints, as demonstrated by PruneFL
[8], FedDST [22], and FedDIP [10], which achieve sparsity
in model pruning. pFedGate [23] addresses the challenges by
adaptively learning sparse local models with a trainable gating
layer, enhancing model capacity and efficiency. FedPM [9]
and FedMask [12] focus on efficient model communication
using probability masks; with FedMask providing personal-
ized, sparse DNNs for clients and FedPM employing Bayesian
aggregation. However, while significant advancements have
been made in reducing communication costs [6], [7], [9], [12],
only a few methods [8], [10], [23] address reducing training
costs through sparse mask learning.

Personalized FL: In FL, addressing data heterogeneity
necessitates personalization of global model as achieved by
e.g., FedMask [12], FedSpa [15], and DisPFL [11] using
personalized masks. Ditto [14] offers a fair personalization
framework through global-regularized multitask FL, while
FOMO [13] focuses on first-order optimization for person-
alized learning. FedABC [16] employs a ‘one-vs-all’ strategy
and binary classification loss for class imbalance and unfair
competition, while FedSLR [17] integrates low-rank global
knowledge for efficient downloading during communication.
However, such approaches increase training costs highlighting
the need for more efficient training methods.

Decentralized FL: Since the work [24], DFL emerged
as a robust distributed learning paradigm, enabling clients
to collaboratively train models with their neighbors, thereby
enhancing privacy and reducing reliance on central servers.
In DFL, increased client interaction leads to methods like
DFedAvgM [19], which extends FedAvg to decentralized
context with momentum SGD, and BEER [20] for non-convex
optimization that enhances convergence through communica-
tion compression and gradient tracking. GossipFL [25] uses
bandwidth information to create a gossip matrix allowing com-
munication with one peer using sparsified gradients, reducing
communication. DFedSAM [26] considers utilizing Sharpness-
Aware-Minimization (SAM) optimizer, while DisPFL [11]
utilizes RigL-like pruning in decentralized sparse training to
lower generalization error and communication costs.

III. PROBLEM FUNDAMENTALS & PRELIMINARIES

Consider a distributed system with K clients indexed by
K = {1, 2, . . . ,K}. The clients are networked given a topol-

ogy represented by a graph G(K,V), where the adjacency
matrix V = [vi,j ] ∈ RK×K [19] defines the neighborhood
Gk of client k ∈ K, i.e., subset of clients that directly
communicate with client k, Gk = {i ∈ K : vi,k > 0}. An entry
vi,k = 0 indicates no communication from client i to client k,
i.e., i /∈ Nk. Note that vi,k = vk,i may not always be valid for
i ̸= k. The topology can be static or dynamic. In our case, we
adopt dynamic communication among clients, i.e., entries in
Vt depend on (discrete) time instance t ∈ T = {1, 2, . . .}. We
define a time-varying and non-symmetric network topology via
Vt = [vti,j ] ∈ RK×K accommodating temporal neighborhood
Gtk for k-th client. We consider a scalable DFL setting with
K clients (e.g., mobile devices, IoT devices) with a time-
varying topology. Each client k ∈ K possesses local data
Dk = {(x, y)} of input-output pairs x ∈ X and y ∈ Y ,
and communicates with neighbours Gtk exchanging models.
The problem formulation of PFL (adopting the formulation in
[11]) seeks to find the models ωk,∀k ∈ K, that minimize:

min
{ωk},k∈[1,K]

f({ω1}Kk=1) =
1

K

K∑
k=1

Fk(ωk), (1)

where Fk(ωk) = E[L(ωk; (x, y))|(x, y) ∈ Dk] with expected
loss function L(.; .) between actual and predicted output given
local data Dk. We depart from ((1)) by adopting model pruning
in DFL aiming at eliminating non-essential model weights.
This is achieved by utilizing a binary mask m over a model.
Hence, the pruning-based (masked) PFL problem is succinctly
formulated as finding the global model ω and individual masks
mk,∀k ∈ K:

min
ω,{mk},k∈[1,K]

f({ωk}Kk=1) =
1

K

K∑
k=1

Fk(ω ⊙mk), (2)

where Fk(ω ⊙ mk) = E[L(ω ⊙ mk; (x, y))|(x, y) ∈ Dk];
⊙ represents the Hadamard product (element-wise product)
of two matrices. The individual mask mk denotes a pruning
operator specific to client k. Given mask mk, the sparsity
sk ∈ [0, 1] of mk indicates the proportion of non-zero model
weights among all weights. The goal of (2) is to seek a global
model ω and individual masks mk such that the optimized
personalized model for each client k ∈ K is given by ωk =
ω ⊙mk, while clients communicate at time t only with their
neighbors Gtk given the time-varying Vt.

IV. THE DA-DPFL FRAMEWORK

A. Overview

We introduce the DA-DPFL framework to tackle the prob-
lem in Eq. (2). DA-DPFL not only addresses data hetero-
geneity efficiently via masked-based PFL but also signifi-
cantly improves convergence speed by incorporating a fair
dynamic communication protocol. Sequential pointing line
communication adopts an one-peer-to-neighbors mechanism
striking the balance between computational parallelism and
delay. As described in [18], two sequential pointing DFL
strategies, continual and aggregate, facilitate knowledge dis-
semination in distributed learning. However, certain challenges
are evident as discussed in [18] such as data heterogeneity
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Fig. 1: (Top) Client network (K = 6,M = 2, N = 1) with reuse indexes N (∗)t
k(a) and N (∗)t

k(b) . Learning schedule: while N = 0,

all nodes train in parallel, i.e., N (∗)t
k(a) = ∅; if N = 1, node 3 waits for 2, node 5 and 6 for 1; nodes 1, 2, 4 begin parallel

training immediately; N = 2 enables node 6 wait for 1 and 5, marked with different color. (Bottom) Training process at time t
for client k. Flow follows t ∈ T : ‘no’ leads to normal sparse training, ‘yes’ to proposed sparser training. Steps: (1) Detection
score calculation using ωt

k, determining t∗; (2) Magnitude-based weight pruning; (3) Gradient-flow-driven weight recovery;
(4) PQI evaluation for NN compressibility; (5) Additional pruning based on compressibility level.

and non-scalability. Furthermore, the decision on when to
apply pruning during training is crucial [27], [28]. While
early pruning reduces computational cost, it may adversely
affect performance. Choosing an optimal pruning time can
enhance both training and communication efficiency, often
with minimal performance degradation or even improvements.
As elaborated in [11] and [29], a sparser model tends to
have a reduced generalization bound characterized by smaller
discrepancy between training and test errors. Finding sparser
models with lower generalization error, DA-DPFL introduces
an innovative dynamic pruning strategy. DA-DPFL addresses
data heterogeneity while decreasing the number of commu-
nication rounds needed for convergence and achieving high
model performance. This comes at a small and controllable
delay in learning from the trained models. The processes of
DA-DPFL are depicted in Fig. 1 and Algorithm 1.

Remark 1. The relationship between model sparsity and per-
formance links to the complexity of the task and model
architecture. Pruning becomes a necessary solution when there
is model redundancy for the given task, aligned with the
findings in [11] and [29]. If the model is non-redundant, an
increased sparsity invariably affects model performance.

B. Learning Scheduling Policy

In this section, we outline the scheduling policy adopted
for client participation within our framework. This applies
to any topological connection, such as a ring or fully-
connected network, where neighborhood sets, denoted as
Gtk, k ∈ {1, 2, . . . ,K}, are established. It is important to
note that DA-DPFL is particularly suited for a time-varying
connected topology while remains flexible to accommodate
a static topology, represented as Gk. At the start of each

communication round, denoted by t, reuse indexes for neigh-
borhood sets, N t

k, are randomly assigned to M clients, where

|Gtk| = |N t
k| = M < K and Gtk

πt
k↔ N t

k, where πt
k is a random

bijection mapping. Given Gtk and N t
k are both discrete sets,

i = πt
k(j), (3)

with index i ∈ N t
k and j ∈ Gtk. It is crucial to acknowledge

that N t
k may be equal with Gtk if sets are randomly generated.

For simplicity, we let N t
k = Gtk in Fig. 1, where client k is

indexed with reuse index k. The introduction of N t
k serves

to emphasize the independence in the generation of reuse
indexes, which are pivotal in guiding the dynamic aggregation
process. Note: the criteria for establishing Gtk are influenced
by factors e.g., network bandwidth, geographical location, link
availability; however, N t

k is independent of these factors. We
reassign client indices for each training round.

Within DA-DPFL, a client k may defer the reception
of models from some neighbors, contingent upon N t

k. We
denote N t

k for each client k into two subsets based on the
reuse indices of neighboring clients: (a) a prior client subset
N t

(a)k = {nt
k ≤ k : nt

k ∈ N t
k}, and (b) a posterior client

subset N t
(b)k = {nt

k > k : nt
k ∈ N t

k} (refer to Fig.
1 Top). Should N t

(b)k = ∅, implying N t
(a)k = N t

k, client
k awaits the slowest client within N t

k before commencing
model aggregation and local dataset training Dk. To enhance
scalability, we introduce a threshold to allow waiting for, at
most, N fastest clients in N t

(a)k, where |N (∗)t
(a)k| = N ≤ M .

Then, N (∗)t
(a)k ∪ N

(∗)t
(b)k = N t

k. Conversely, absence of a prior

client set (N (∗)t
(a)k = ∅) enables client k to incorporate models

from N (∗)t
(b)k without delay, as illustrated by nodes 1, 2, and

4 in Fig. 1. Based on the bijection mapping between N t
k

and Gtk, G(∗)t(a)k is obtained. Therefore, DA-DPFL achieves
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Algorithm 1 The DA-DPFL Algorithm

1: Input: K clients; T,El rounds; PQI hyper-param.
{p, q, γ, ηc}, pruning thr δpr; voting threshold δv; factors
b, c; target sparsity s∗;

2: Output: Personalized aggregated models {ω̃T
k }Kk=1.

3: Initialization: Initialize {m0
k}Kk=1, {ω0

k}Kk=1, T ← ∅
4: for round t = 1 to T do
5: for each client k do
6: Generate a random reuse index set {N t

k}Kk=1.
7: Generate a random bijection πt

k between N t
k and Gtk

8: Form prior and posterior set {N (∗)t
k(a),N

(∗)t
k(b)}

9: Form {G(∗)tk(a),G
(∗)t
k(b)} by {N (∗)t

k(a),N
(∗)t
k(b) , π

−1(t)
k }

10: if G(∗)t(a)k! = ∅ then
11: do Wait models from neighbors G(∗)t(a)k
12: end if
13: Receive neighbor’s models ωt

j , j ∈ Gtk
14: Obtain mask-based aggregated model ω̃t

k.
15: Compute ω̃t

k,τ for El local rounds.
16: Calculate ∆t

0(k) and vt(k) based on δpr.
17: Broadcast vt(k) to all clients; derive t∗.
18: if t ∈ T and sk < s∗ then
19: Call Algorithm 2 to obtain ω̃t′

k,El
,mt′

k

20: Update sparsity sk
21: else
22: Set (ω̃t′

k,El
,mt′

k )← (ω̃t
k,El

,mt
k)

23: end if
24: Call Algorithm 3 to update mt+1

k

25: Set ωt+1
k = ω̃t′

k,El

26: end for
27: if t == t∗ then Update T .
28: end for

a hybrid scheme between continual learning with delayed
aggregation and immediate aggregation, i.e., dynamic aggre-
gation. Continual learning is achieved by gradual learning of
the models from clients in client k’s prior set. The benefit
obtained is the sequential knowledge transfer from clients in
the prior set. This comes at the expense of a potential delay
to client k for aggregating the models from G(∗)tk(a). On the
other hand, the models of the clients from the posterior set
are independently sent to client k, without any delay achieving
training parallelism.

Remark 2. DA-DPFL learning schedule diverges from tra-
ditional FL paradigms. In our example, at time t, nodes
{1, 2, 4} engage in simultaneous (parallel) training, while
nodes {3, 5, 6} await model reuse from preceding clients. This
methodology allows subsequent nodes to train concurrently
with preceding ones, as shown by nodes {5, 6} training in
tandem with node 3. The introduction of a cutoff value N
endows our waiting policy with controllability. If N = 0, DA-
DPFL operates as a parallel FL system with sparse training;
while N = M = K transits DA-DPFL to a sequential FL.

C. Time-optimized Dynamic Pruning Policy

Alongside scheduling of local training and gradual model
aggregation achieved by prior and posterior neighbors per
client, we introduce a dynamic pruning policy. The initial mask
m0

k,∀k, is set up in accordance with the Erdos-Renyi Kernel
(ERK) distribution [30]. Subsequently, masks are removed and
re-grown based on the importance scores, which are computed
from the magnitude of model weights and gradients. This
strategy is an extension of the centralized RigL [30] to DA-
DPFL as elaborated in Appendix B (line:24) in Algorithm 1.
We devise a method that is orthogonal to other fixed-sparsity
training methods like RigL facilitating further pruning. The
Sparsity-informed Adaptive Pruning (SAP) in [31] introduces
the PQ Index (PQI) to assess the potential ‘compressibility’
of a DNN (line:19; Appendix A). DA-DPFL leverages PQI by
integrating within DFL, which addresses the heterogeneity of
various local models by adaptively pruning different models.
In centralized learning, EarlyCrop’s analysis [28] on pruning
scheduling relies on sufficient information during critical
learning periods, while CriticalFL [32] advocates for an early
doubling of information transmission. EarlyCrop leverages
between gradient flow and neural tangent kernel to facilitate
seamless transition into model pruning. We adjust the pruning
time detection score as:

|∆t
0 −∆t−1

0 |
|∆1

0|
< δpr; ∆

t
0 := ∥ωt − ω0∥2, (4)

where δpr is a predefined threshold. In DA-DPFL with K
clients, we introduce a voting majority rule, where the client
k’s vote is defined as:

vt(k) =

{
1 if |∆t

0(k)−∆t−1
0 (k)|

|∆1
0(k)|

< δpr,

0 otherwise.
(5)

Hence, the first time to prune is determined by K clients as:
t∗ = min{t : 1

K

∑K
k=1 vt(k) < δv} where δv represents

the ratio threshold for voting. Given the first pruning time
t∗, DA-DPFL determines the frequency of pruning for rounds
t > t∗. Based on the influence of early training phase, a.k.a.
critical learning period [33] on the local curvature of the
loss function in DNNs, our strategy permits a low pruning
frequency during the initial stages which intensifies prun-
ing as model approaches convergence. This balance between
communication overhead and model performance yields an
optimal pruning frequency that varies across tasks and model
architectures. We define the pruning frequency, i.e., the gap
between consecutive pruning events, and in turn the pruning
times by non-evenly dividing the rest of the horizon T − t∗:

Iτ := ⌈ t
∗ + b

cτ−1
⌉, τ ∈ {Z≥1}. (6)

Parameter b > 0 delays the optimal first pruning time, c > 0 is
a scaling factor to adjust pruning frequency. The p-th pruning
time tp with tp > t∗, is tp =

∑p
τ=1 Iτ obtaining the pruning

times set T = {t1, . . . , tp : t∗ < tp < T}.

D. Masked-based Model Aggregation

For notation compatibility, following the model aggregation
operator in DisPFL [11] and FedDST [22], the client k’s



5

aggregated model ω̃t
k derived from the models of client k’s

neighbors in Gtk at round t based on masked local model is:

ω̃t
k =

(∑
j∈Gt

k+ωt
j∑

j∈Gt
k+mt

j

)
⊙mt

k, (7)

where Gtk+ = Gtk ∪ {k} is client k’s neighborhood including
client k. The local training rounds τ ∈ El based on the
obtained ω̃t

k is: ω̃t
k,τ+1 = ω̃t

k,τ − η(gt
k,τ ⊙mt

k), where gt
k,τ

is the gradient of local loss function Fk(·) w.r.t. ω̃t
k,τ .

V. THEORETICAL ANALYSIS

Assumption 1. µ-Lipschitz-continuity: ∀ω1,ω2 ∈ Rd, ∀k ∈
|K|, µ ∈ R : ∥∇fk(ω1)−∇fk(ω2)∥ ≤ µ∥ω1 − ω2∥.
Assumption 2. Bounded variance for gradients: [19] ∀k ∈
|K| and ω ∈ Rd:

E[∥∇f̂k(ω)−∇fk(ω)∥2] ≤ σ2
l , (8)

1

K

K∑
k=1

∥∇fk(ω)−∇f(ω)∥2 ≤ σ2
g , (9)

1

K

K∑
k=1

∥∇f̃k(ω)−∇f(ω)∥2 ≤ σ2
p, (10)

f̂(·) is the estimated gradients from training data; f̃(·) is
personalized global gradients.

Assumption 3. The aggregated model ω̃t
k for client k at

iteration t is given by:

ω̃t
k =

(∑
j∈Gt

k
ωt

j∑
j∈Gt

k
mt

j

)
⊙mt

k =

(∑
j∈Gt

k
ωt

j

M

)
⊙mt

k (11)

where Gtk is neighborhood of client k with size |Gtk| = M ; all
local models are sparse, i.e., ωt

j = ωt
j ⊙mt

j .

Proposition 1. Assume K = {1, 2, . . . ,K} clients, then,
exactly m neighbors inN t

k have reuse index less than k follows
a hypergeometric distribution with

P(m, k) = P(|N(a)k| = m) =

(
k−1
m

)(
K−k
M−m

)(
K−1
M

) , (12)

where m < M and |N(a)k| is subset of N t
k with index less

than k.

Proof. See Appendix C

ω̃t
k denotes the local personalized aggregated model for the

k-th client at time t; The global aggregated model at time t, ω̃t,
is defined as the average of the local aggregated models, i.e.,
ω̃t = 1

K

∑K
k=1 ω̃

t
k, where K is the total number of clients. Let

M represent the number of clients in the neighborhood. All
models are under the setup of DA-DPFL, where (1) the models
are sparse; and (2) a new scheduling strategy is adopted. Then,
we obtain the following theorem.

Theorem 3. Under Assumptions 1 to 3, when T is sufficiently
large and the stepsize η for SGD for training client models
satisfies η ≤

√
1

12µ2(M−1)(2M−1) for M > 1,

minE∥∇f(ω̃t)∥2

≤ 2

T (η − 6S1(µ− η))

(
E[f(ω̃0)]−min f

)
+ S3, (13)

where S1 = 2η2M(M − 1)
(
exp

(
(3M+2)El

4(M2−1)

)
− 1
)

, S2 =
1

2M−1σ
2
l + 3(σ2

g + 2σ2
p) , and S3 = 2

η−6S1(µ−η) ·[
(µ− η)S1S2 +

3µ2η3(3M+2)El

2(M+1)M (σ2
l + σ2

g)
]
. f(ω̃0) represents

initial global model loss, min f is minimum of loss, M is
neighborhood size.

Proof. See Appendix E

Remark 4. Theorem 3 reveals that with sufficiently large T ,
the error due to initial model loss and bounded variance for
gradients become negligible. Specifically, if one can choose
η = O( 1

µ
√
T
), the convergence boundary will be dominated

by the rate of O
(

1√
T
+

σ2
l +σ2

g+σ2
p√

T
+

σ2
l +σ2

g

T

)
.

Remark 5. Theorem 3 is consistent with two key empirical ob-
servations: (i) The number of communication rounds required
to attain a specified error level ε is lower compared to the
DisPFL model. Note: This efficiency gain is attributed to the
term S1 >

(
e

El
(2M−2) − 1

)
, i.e., no scheduling involved, which

emerges from our scheduling strategy. The division of the left-
hand side (first and third item) of the inequality by S1 results
in a reduced error boundary. (ii) Changed ratio is 3M+2

2M+2 . When
M = 2, the ratio simplifies to 4

3 . As M increases, this ratio
approaches 3

2 . This indicates that while increasing M enhances
the error-bound reduction, the improvement rate diminishes,
suggesting a limit to the benefits offered DA-DPFL scheduling.

VI. EXPERIMENTS

A. Experimental Setup

1) Datasets & Models: Our experiments were conducted on
three widely-used datasets: HAM10000 [34], CIFAR10, and
CIFAR100 [35]. We employed two distinct partition methods,
Pathological and Dirichlet, to generate non-i.i.d. scenarios
paralleling the approach in [11]. We use Dir for Dirichlet
and Pat for Pathological in the following notations. The Dir.
partition constructs non-i.i.d. data using a Dir(α) distribution,
with α = 0.3 for CIFAR10 and CIFAR100, and α = 0.5
for HAM10000. For Pat. partitioning, several classes ncls are
assigned per client: 2 for CIFAR10 and HAM10000, and 10 for
CIFAR100. To validate the versatility of our pruning methods
across various model architectures, we selected AlexNet [36]
for HAM10000, ResNet18 [37] for CIFAR10, and VGG11
[38] for CIFAR100, ensuring a comprehensive evaluation
across diverse model structures.

2) Baselines: We compare the proposed methods with
baselines including CFL: FedAvg [3], Ditto [14] and FedDST
[22], and DFL: GossipFL [25], DFedAvgM [19], DisPFL
[11], BEER [20] and DFedSAM [26].
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Fig. 2: Test (top-1) accuracy of all baselines, including CFLs and DFLs, across various model architectures and datasets.

3) System Configuration: We consider a network of K =
100 clients and select M = N = 10 clients (neighbors) per
communication round. CFL focuses on the communication
between central server and selected clients. DFL mirrors this
communication allocating identical bandwidth to each of the
busiest clients. This ensures that 10 clients are active per
round matching server’s connection load. All the baseline
results are average values for three random seeds of best test
model performance. In contrast to CFL, all DFL baselines
except DFedSAM are configured with half the communication
cost. Our method, FedDST, and DisPFL implement sparse
model training for efficiency, which all start with initial
sparsity s0k = 0.5 with k ∈ [K] for all clients. To ensure a
balanced and fair comparison, all DFL benchmarks incorporate
personalization by monitoring model performance following
local training under randomly time-varying connection in [11].

4) Hyperparameters: To ensure a fair comparison, we align
our experimental hyperparameters with the setups described in
[11] and [26]. Unless otherwise specified, we fix the number
of local epochs at 5 for all approaches and employ a Stochastic
Gradient Descent (SGD) optimizer with a weight decay set to
5 × 10−4. The learning rate is initialized at 0.1, undergoing
an exponential decay with a factor of 0.998 after each global
communication round. The batch size is consistently set to
128 across all experiments. The global communication rounds
are conducted 500 times for the CIFAR10 and CIFAR100
datasets, and 300 times for the HAM10000 dataset. We let
δv = 0.5, b = 0, c = 1.3, {p, q, γ, ηc} = {0.5, 1, 0.9, 1} as
suggested by [31], and δpr ∈ {0.01, 0.02, 0.03} for all experi-
ments. In the CFL baseline implementation, the local training
for Ditto is bifurcated into two distinct phases: a global
model training phase spanning 3 epochs and a personalized
model training phase consisting of 2 epochs. Additionally, the
update mask reconfiguration interval in FedDST is determined
through a grid search within the set [1, 5, 10, 20]. In our DFL
setup, when algorithms incorporate compression techniques,

we manage to reduce half of the busiest communication load.
In contrast, GossipFL utilizes a Random Match approach,
which entails randomly clustering clients into specific groups.
For the optimization algorithm, Momentum SGD is adopted in
DFedAvgM and DFedSAM, with a momentum factor β = 0.9.
Additionally, a ρ value for DFedSAM is decided by grid
search from [0.01, 0.02, 0.05, 0.1, 0.2, 0.5], following the work
for SAM optimizer.
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Fig. 3: Total cost (energy and time cost, in USD) of DA-DPFL
and all baselines evaluated on CIFAR10 against θ.
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and all baselines evaluated on CIFAR100 against θ.
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5) Cost Simulation: For cost analysis, we utilized an
NVIDIA 4090 GPU with 80 TFLOPS and 450 W TDP as
a standard to assess clients’ computational power and energy
consumption. The architecture anticipates 1 Gbps bandwidth,
with client network cards utilizing 1 W, cited from [39]. We
derived Ctime from Table II and converted Cenergy and Ctime to
monetary units using (1− θ)$/s and θ$/J , illustrated in Fig.
3. To address the gap between theoretical and actual GPU ex-
ecution times, we performed real-world algorithm executions
on the GPU. These revealed a fivefold increase over theoretical
times, leading to a correction factor of 5 for computation
time, calculated as Tcomp = 5 × DFLOP

VFLOPS
, and energy, Ccomp =

Tcomp×Pcomp. Similarly, in estimating the communication time
Tcomm, we apply the formula Tcomm = Dcomm

B , where Dcomm
denotes the data volume to be transferred and B signifies the
system’s overall bandwidth. Accordingly, the communication
energy cost Ccomm is determined by Ccomm = Tcomm × Pcomm,
with Pcomm indicating the transmission power of the wireless
network card.

B. Performance Analysis

1) Test Accuracy Evaluation: DA-DPFL outshines all base-
lines in top-1 accuracy across five out of six scenarios, main-
taining robustness under extreme non-iid conditions (ncls = 2)
(Fig. 2, Table I). It exceeds the next best DFL baselines
(DisPFL and GossipFL) by 2 − 3%, with a minor shortfall
in HAM10000 (ncls = 2) by 0.5% against DFedAvgM.
DA-DPFL consistently surpasses DisPFL in sparse model
training and generalization, while maintaining efficient con-
vergence. Conversely, CFL lags in convergence due to its
limited client participation per round. Momentum-based meth-
ods like DFedAvgM show accelerated initial learning, while
BEER, with gradient tracking, exhibits rapid convergence but
does not necessarily reduce generalization error. DA-DPFL
demonstrates a balanced trade-off between convergence rate
and generalization performance, outperforming other baselines
achieving target accuracy with reduced costs.

2) Efficiency: We evaluate the efficiency of our algorithm
by analyzing two key metrics: the Floating Point Oper-
ations (FLOP) required for inference, and communication
overhead incurred during convergence rounds. To ensure a
fair comparison, we employ the initialization protocol from
DisPFL, thereby standardizing the initial communication costs
and FLOP values in the initial pruning phase of training.
Notably, the pruning stages integral to DA-DPFL lead to a
significant reduction in these costs. This is evidenced by the
final sparsity levels achieved: (0.61, 0.56) for HAM10000,
(0.65, 0.73) for CIFAR10, and (0.70, 0.73) for CIFAR100
under Dir. and Pat. partitioning, respectively. These results
are obtained within the constrained communication rounds.
A critical observation is that both the busiest communication
costs and training FLOPs for our approach are lower compared
to the most efficient DFL baseline, DisPFL. These comparative
insights are further elaborated in Table II, with bold values
underscoring the efficiency of DA-DPFL. To quantify the
impact of a potential delay in DA-DPFL, we adopt metrics
to calculate the total cost Ctotal defined in [40] and [41]

as: Ctotal = (1 − θ)Ctime + θCenergy, where θ ∈ [0, 1] is
set to 0 for extreme time-sensitive applications and to 1 for
extreme energy-sensitive tasks. This metric allows for a unified
representation of time and energy costs in monetary units
(USD $). To provide a realistic and practical insight into
how the introduction of DA-DPFL would affect the total cost
needed for the whole process of FL, we chose to combine the
communication and the computation cost (FLOP) in the form
of energy expenditure, i.e., Cenergy = Ccomm + Ccomp, where
Ccomm and Ccomp is communication and computational cost,
respectively. Figures 3 and 4 show the cost-effectiveness of
DA-DPFL compared to other DFL baselines. Initially, when
θ → 0 , DA-DPFL incurs a higher time cost. However, as
θ increases beyond 0.2, DA-DPFL demonstrates remarkable
advantages over the other DFL algorithms (represented by
solid lines), with its lead expanding as θ further increases.
Due to the system configuration, CFLs have significantly lower
communication (1%) and computation (10%) costs compared
to DFL, which (indicated by dotted lines) exhibits superior
cost efficiency overall, but lower convergence speed. Overall,
even when considering waiting time, DA-DPFL successfully
achieves both cost and learning (convergence speed) efficiency.

3) Extended Topology: To demonstrate the adaptability of
our DA-DPFL, we conducted further experiments utilizing
both ring and fully-connected (FC) topologies. These experi-
ments were carried out in comparison with the above baselines
using a Dirichlet partition with α = 0.3. The results, presented
in Table III show that DA-DPFL consistently surpasses other
baselines, achieving higher performance with sparser models,
within 500 communication rounds. DA-DPFL maintains a
significant lead in performance.

C. Analysis on neighborhood size M

We train ResNet18 on CIFAR10 to examine the impacts
of the hyper-parameters M . The neighborhood size parameter
M markedly influences the scheduling efficiency in DA-
DPFL. A higher M value accelerates the convergence of our
approach, primarily by enhancing the reuse of the trained
model throughout the training process, albeit at the risk of
potential delay. As illustrated in Fig.5 Bottom, while M = 20
slightly outperforms M = 10, it incurs approximately double
the time delays.

D. Ablation Study

1) Threshold δpr: Extending total communication rounds
from 500 to 1000, we ascertain that a target sparsity of
s = 0.8 is attainable without compromising accuracy (DA-
DPFL achieves 89% over DisPFL’s 83.27%). This finding
challenges the generalization gap assumption in [11], reducing
the need for precise initial sparsity ratio selection in fixed
sparsity pruning as DA-DPFL achieves equivalent or lower
generalization error at higher sparsity levels through further
pruning. Fig.5(Top) shows the pruning decisions based on
average detection scores across clients and their sparsity
trajectories. The initial high detection score validates the
substantial disparity between the random mask and the RigL
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TABLE I: Accuracy comparison of federated learning methods across different datasets

HAM10000 CIFAR10 CIFAR100
Dir. (0.5) Pat. (2) Dir. (0.3) Pat. (2) Dir. (0.3) Pat. (10)

FedAvg [3] 65.92 ±0.3 55.68 ±0.4 79.30 ±0.2 60.09 ±0.2 46.21 ±0.4 41.26 ±0.3
Ditto [14] 65.19 ±0.2 80.17 ±0.1 73.21 ±0.2 85.78 ±0.1 34.83 ±0.2 64.41 ±0.3
FedDST [22] 66.11 ±0.3 55.07 ±0.4 78.47 ±0.2 56.32 ±0.3 46.01 ±0.2 41.42 ±0.2
GossipFL [25] 72.92 ±0.1 88.05 ±0.1 66.43 ±0.1 86.60 ±0.1 45.09 ±0.1 66.03 ±0.1
DFedAvgM [19] 68.30 ±0.1 88.89 ±0.1 65.05 ±0.1 85.34 ±0.2 24.11 ±0.1 57.41 ±0.1
DisPFL [11] 71.56 ±0.1 80.09 ±0.1 85.85 ±0.2 90.45 ±0.2 51.05 ±0.3 72.22 ±0.2
BEER [20] 69.80 ±0.1 88.75 ±0.2 62.94 ±0.1 85.48 ±0.1 27.79 ±0.1 58.71 ±0.1
DFedSAM [26] 73.74 ±0.2 88.47 ±0.3 75.74 ±0.2 83.51 ±0.1 47.86 ±0.2 71.76 ±0.1
DA-DPFL (Ours) 76.32 ±0.3 88.36 ±0.3 89.08 ±0.3 91.87 ±0.1 53.53 ±0.2 74.91 ±0.1

TABLE II: Busiest Communication Cost & Final Training
FLOPs of all methods.

HAM10000 CIFAR10 CIFAR100
Com. FLOP Com. FLOP Com. FLOP
(MB) (1e12) (MB) (1e12) (MB) (1e12)

FedAvg 887.8 3.6 426.3 8.3 353.3 2.3
Ditto 887.8 3.6 426.3 8.3 353.3 2.3
FedDST 443.8 2.0 223.1 7.1 176.7 1.6
GossipFL 443.8 3.6 223.1 8.3 176.7 2.3
DFedAvgM 443.8 3.6 223.1 8.3 176.7 2.3
DisPFL 443.8 2.0 223.1 7.1 176.7 1.6
BEER 443.8 3.6 223.1 8.3 176.7 2.3
DFedSAM 887.8 7.2 426.3 17 353.3 4.6
DA-DPFL Dir 346.2 1.9 149.1 4.1 107.7 1.0
DA-DPFL Pat 394.4 2.0 115.1 3.8 94.8 0.9

TABLE III: Performance comparison for ring and fully con-
nected topologies

Topology Method Acc (%) Sparsity (s)
Ring GossipFL 66.12 ±0.1 0.00

DFedAvgM 65.89 ±0.1 0.00
DisPFL 67.65 ±0.2 0.50
BEER 62.92 ±0.1 0.00
DFedSAM 66.61 ±0.2 0.00
DA-DPFL 69.83 ±0.3 0.65

FC GossipFL 71.22 ±0.2 0.00
DFedAvgM 69.89 ±0.1 0.00
DisPFL 86.54 ±0.2 0.50
BEER 68.77 ±0.1 0.00
DFedSAM 79.63 ±0.3 0.00
DA-DPFL 89.11 ±0.2 0.68

algorithm-derived mask, differing from EarlyCrop’s central-
ized, densely initialized model approach. Post t∗, client models
undergo incremental pruning in DA-DPFL, with the pruning
scale diminishing due to reduced model compressibility, as
evidenced by sparsity alterations at each pruning phase. To
ascertain the effect of the early pruning threshold δpr, we
conducted experiments with CIFAR10 and ResNet18. Fig.6
underscores pruning timing significance, indicating varying
optimal thresholds for different data partitions and corre-
sponding detection score divergences. Early pruning, though
accelerating sparsity achievement, impedes critical learning
phases, while excessively delayed pruning equates to post-
training pruning, incurring higher costs. Consequently, our
results advocate for early-stage further pruning, ideally be-
tween 30-40% of total communication rounds, aligning with
a threshold range of 0.02-0.03, to balance model performance
with energy efficiency.

2) Waiting Threshold N : To ensure a fair comparison,
we add N = {0, 2, 5} with the same experiment setup as
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in VI-A for Dir partition. The experimental results in Fig.
7 demonstrate a clear trend: increasing the N consistently
improves model accuracy across the CIFAR10 and CIFAR100
datasets, with CIFAR10 seeing up to a 1.87% increase and
CIFAR100 a 1.41% increase in accuracy from N = 0 to
N = 10. Interestingly, the HAM10000 dataset shows no
N = 5 achieves the best performance, suggesting task-specific
characteristics influence the optimal selection of N . Even the
model performance for N = 0 cases are higher than DisPFL,
which illustrates the effectiveness of our further pruning
strategy. Furthermore, it is possible to obtain redundancy in
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reusing models, especially when M is large. By selecting N ,
one can trade off between waiting and model performance.
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Fig. 7: Performance of different number of maximum waiting
numbers N

E. Parallelism and Delay

We conducted 10, 000 iterations to estimate the average
impact on parallelism and latency attributed to waiting times.
Here, we define parallelism as the proportion of clients that
commence training concurrently. The result is depicted in
Figures Figure 8 illustrates a decline in parallelism as the
number of clients in the neighborhood M increases (having
K = 100 clients). Figure 9 shows delay against M . The
black line, representing N = M , delineates the outcome of
awaiting the most delayed clients, i.e., without any control. It is
evidenced to scale almost linearly with the neighborhood size
M . Moreover, in Figure 9, one can observe the efficacy of the
constraint N ≤ M in mitigating delays while increasing M .
The mean maximum waiting time is indicative of the multiplier
effect on the time required for each communication round rel-
ative to traditional decentralized FL. The lines corresponding
to N ∈ {1, 2, 5, 10, 20} corroborate that the waiting period can
be effectively regulated by N . In cases where M = N = 100,
DA-DPFL transits to sequential learning, while with M = 100
and N = 2, DA-DPFL sustains a comparatively high degree of
parallelism with opportunities for model reuse. With N = 0,
DA-DPFL reduces to DisPFL with our pruning strategy.

VII. CONCLUSIONS

DA-DPFL is a fair learning scheduling framework that cost-
effectively deals with data heterogeneity. DA-DPFL conserves
computational & communication resources and accelerates
the learning process by introducing a novel sparsity-driven
pruning technique. We provide a theoretical analysis on DA-
DPFL’s convergence. Comprehensive experiments and com-
parisons with DFL and CFL baselines in PFL context show-
case learning efficiency, enhanced model accuracy, and energy
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efficiency, which confirms the effectiveness of DA-DPFL in
practical applications. DA-DPFL sets the stage for future plans
in adaptive algorithms handling time-series and graph data
across diverse topologies expanding our models applicability
to real-world scenarios.

APPENDIX

ADDITIONAL ALGORITHMS

A. SAP (PQI) Algorithm

In our approach, we adopt the SAP algorithm, as shown in
Algorithm 2, to assess the compressibility of neural networks,
characterized by four distinct features. Firstly, the initial model
employed in our study is inherently sparse. Secondly, we
implement PQI pruning as a further pruning technique within
a Federated Learning (FL) framework, based on other fixed
pruning methodologies. Thirdly, our method incorporates a
meticulously designed pruning strategy that ensures proper
pruning frequency and specifically avoids further pruning
during the critical learning period. Lastly, unlike conventional
practices, we integrate the SAP algorithm during the training
phase, as opposed to applying it post-training.

B. RigL Algorithm

We follow the RigL algorithm to generate the new mask
each communication round, which is shown in Algorithm 3.
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Algorithm 2 PQI-driven pruning (Layerwise)

1: Input: ω̃t
k,El

, mask mt
k, norm index 0 < p ≤ 1 < q,

compression hyper-parameter ηc, scaling factor γ, pruning
threshold β, further pruning time T .

2: Output: ω̃t′
k,El

, corresponding mask mt′
k

3: for t ∈ T do
4: for each layer l ∈ |L| do
5: Compute dimensionality of ω̃l,t

k,El
: dlt = |ml,t

k |
6: Compute PQ Index I(ω̃l,t

k,El
) = 1 −(

1
dl
t

) 1
q−

1
p ∥ω̃l,t

k,El
∥p

∥ω̃l,t
k,El

∥q

7: Compute the lower boundary required model parame-

ters to keep rlt = dlt(1+ηc)
− q

q−p

[
1− I(ω̃l,t

k,El
)
] p

q−p

8: Compute the number of model parameters to prune
9: clt =

⌊
dlt ·min

(
γ
(
1− rlt

dl
t

)
, β
)⌋

10: Prune clt model parameters with the smallest magni-
tude based on ω̃l,t

k,El
and ml,t

k

11: Find new layer mask ml,t′
k and pruned model ω̃l,t′

k,El

at layer l
12: end for
13: Obtain ω̃t′

k,El
and corresponding mask mt′

k

14: end for

Algorithm 3 RigL mask generation

1: Input: ω̃t′
k,El

, corresponding mask mt′
k , global rounds T,

initial annealing ratio α0

2: Output: New mask mt+1
k

3: Compute prune ratio αt =
α
2

(
1 + cos

(
tπ
T

))
4: Sample one batch of local training data to calculate dense

gradient g(ω̃t′
k,El

)
5: for each layer l ∈ |L| do
6: Update mask m

l,t+ 1
2 ′

k by pruning αt percentage of
weights based on weight magnitude.

7: Update mask ml,t+1
k via regrowing weights with gradi-

ent information g(ω̃t′
k,El

).
8: end for
9: Find new mask mt+1

k .

CONVERGENCE ANALYSIS

In a time-varying connected topology, both Gtk and N t
k are

randomly generated. We consider N t
k = Gtk in theoretical

analysis since our scheduling policy is regarded as one type
of client selection policy.

C. Client Selection Analysis

Given a system with K clients with indices sorted from 1
to K, and considering a particular client with index k then:
(1) there are K−1 potential clients to select from; (2) among
these K−1 clients, k−1 clients have an index less than k; (3)
we wish to select M total clients in each sample as client’s k
neighbors. Hence, |N(a)k| is a hypergeometric random variable

and the probability P(m, k) = P(|N(a)k| = m) that exactly m
of the selected clients have an index less than k is

P(m, k) =

(
k−1
m

)(
K−k
M−m

)(
K−1
M

) , (14)

where
∑

0≤m≤min(M,k−1)
P(m, k) = 1, which essentially fol-

lows from Vandermonde’s identity.

D. Auxiliary Lemmas and Proofs

DA-DPFL’s local update follows:

ω̃t
k,τ+1 = ω̃t

k,τ − ηgt
k,τ ⊙mt

k, (15)

where gt
k,τ = ∇Fk(ω̃

t
k,τ ). This implies that

η

El−1∑
τ=0

gt
k,τ ⊙mt

k = (ω̃t
k,0 − ω̃t

k,El
)⊙mt

k. (16)

Note that ωt+1
k = ω̃t

k,El
and ω̃t

k = ω̃t
k,0. Considering

traditional aggregation, like in FedAvg, without scheduling
first, we then have Lemma 1.

Lemma 1. Under Assumptions 1 to 2, for some M > 1 and
η such that η2 ≤ 1

12Mµ2(M−1)(2M−1) ,

1

K

K∑
k=1

E∥ωt+1
k − ω̃t

k∥2 ≤
(
e

El
2M−2 − 1

)
(2M − 2)

×
(

2M

2M − 1
η2σ2

l + 6Mη2(σ2
g + σ2

p)

+6Mη2
∑K

k=1 E∥∇f(ω̃t
k)∥2

K

)
. (17)

Proof. Because the mask mt
k is consistent during training,

we omit the expression with the corresponding model for
brevity. We firstly consider the traditional weighted average
aggregation where

E∥ω̃t
k,τ+1 − ω̃t

k∥2 = E
∥∥∥ω̃t

k,τ − ω̃t
k − η

(
gtk,τ ⊙mt

k

−∇fk(ω̃t
k,τ ) +∇fk(ω̃t

k,τ )−∇f(ω̃t
k) +∇f(ω̃t

k)

−∇fk(ω̃t
k) +∇fk(ω̃t

k)
)∥∥∥2. (18)

Write a := E
∥∥ω̃t

k,τ − η
(
g̃tk,τ ⊙mt

k −∇fk(ω̃t
k,τ )
)
− ω̃t

k

∥∥2
and b = η2E∥∇fk(ω̃t

k,τ )−∇f(ω̃t
k)+∇f(ω̃t

k)−∇fk(ω̃t
k)+

∇fk(ω̃t
k)∥2, using the Cauchy’s inequality with a elastic

variable 2M = 2M > 1, we have

E∥ωt+1
k − ω̃t

k∥2 ≤ (1 +
1

2M − 1
)a+ 2Mb. (19)

Then, by Assumptions 1 to 2 and the triangle inequality,

a ≤ E∥ω̃t
k,τ − ω̃t

k∥2 + η2E∥g̃tk,τ ⊙mt
k −∇fk(ω̃t

k,τ )∥2

= E∥ω̃t
k,τ − ω̃t

k∥2 + η2σ2
l , (20)
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and

b ≤ 3η2
[
E∥∇fk(ω̃t

k,τ )−∇fk(ω̃t
k)∥2

+ E∥∇f(ω̃t
k)∥2 + E∥∇fk(ω̃t

k)−∇f(ω̃t
k)∥2

]
≤ 3η2

[
E∥∇fk(ω̃t

k,τ )−∇fk(ω̃t
k)∥2

+ E∥∇f(ω̃t
k)∥2 + E∥∇fk(ω̃t

k)−∇f(ω̃t)∥2

+ E∥∇f(ω̃t
k)−∇f(ω̃t)∥2

]
≤ 3η2

[
µ2E∥ω̃t

k,τ − ω̃t
k∥2 + E∥∇f(ω̃t

k)∥2

+ (σ2
g + σ2

p)
]
. (21)

Substitute Eq.(20) & (21) into Eq. (19) with some η such
that η2 ≤ 1

12Mµ2(M−1)(2M−1) , we have

E∥ω̃t
k,τ+1 − ω̃t

k∥2 ≤ (1 +
1

2M − 1
+ 6Mη2µ2)E∥ω̃t

k,τ − ω̃t
k∥2

+ (1 +
1

2M − 1
)η2σ2

l + 6Mη2(σ2
g + σ2

p + E∥∇f(ω̃t
k)∥2)

≤ (1 +
1

2M − 2
)E∥ω̃t

k,τ − ω̃t
k∥2

+ (1 +
1

2M − 1
)η2σ2

l + 6Mη2(σ2
g + σ2

p + E∥∇f(ω̃t
k)∥2)

(22)

Let A = 1+ 1
2(M−1) , B =

(
1 + 1

2M−1

)
η2σ2

l +6Mη2(σ2
g+

σ2
p), and C = 6Mη2E∥∇f(ω̃t

k)∥2, then the recursive inequal-
ity Eq.(22) becomes

E∥ω̃t
k,τ+1 − ω̃t

k∥2 ≤ AE∥ω̃t
k,τ − ω̃t

k∥2 +B + C. (23)

When τ = 0, the initial condition is E∥ω̃t
k,0 − ω̃t

k∥2 = 0.
For τ = 1 to El, we apply the inequality Eq.(23) El

times, summing up the constants multiplied by their respective
powers of A gives

E∥ω̃t
k,El
− ω̃t

k∥2 ≤ AElE∥ω̃t
k,0 − ω̃t

k∥2 +B

El−1∑
j=0

Aj

+ C

El−1∑
j=0

Aj . (24)

The sums of the series can be simplified by the sum of a
geometric series as follows

El−1∑
j=0

Aj =
1−AEl

1−A
. (25)

Hence the inequality can be further simplified as

E∥ω̃t
k,El
− ω̃t

k∥2 ≤ 0 + (B + C)
AEl − 1

A− 1
. (26)

When M > 1, A = 1+ 1
2M−2 < e

1
2M−2 hence AEl < e

El
2M−2 ,

which gives the final bound for E∥ωt+1
k − ω̃t

k∥2 as in Eq.(17).

Lemma 2. Consider the proposed scheduling strategy. Let
ω̃

t(†)
k denote the local personalized aggregated model for

the k-th client at time t. The global aggregated model at
time t, ω̃t(†), is defined as the average of the local models,
i.e., ω̃t(†) = 1

K

∑K
k=1 ω̃

t(†)
k , where K is the total number

of clients. Let M represent the number of clients in the
neighborhood. With the support of Lemma 1 in [42], the
expected value of the global model at time t + 1, denoted
as E(ω̃t+1(†)), is given by

E(ω̃t+1(†)) = E(ω̃t(†))− η
E
(∑K

k=1

∑E∗
l −1

τ=0 gτ,k(ω̃
t(†))

)
K

,

(27)

where E∗
l = 3M+2

2(M+1)El, and El is the number of steps of
local updates. Here, gτ,k represents the gradient computation
for the k-th client at local update step τ .

Proof. Now we consider the effect of DA-DPFL’s scheduling.
Rewrite the mask element aggregation with the sequential
appointment as

ω̃
t(†)
k =

( ∑
j∈N t

(a)k
ωt

j +
∑

j∈N t
(b)k

ωt
j + ωt

k∑
j∈N t

(a)k
mt

j +
∑

j∈N t
(b)k

mt
j +mt

k

)
⊙mt

k

(28)

=

(∑
j∈N t

(a)k
ωt

j +
∑

j∈N t
(b)k+

ωt
j

M + 1

)
⊙mt

k, (29)

where N t
(b)k := N t

k \ N t
(a)k, N t

(b)k+
:= N t

(b)k ∪ {k}, and the
last equation holds under Assumption 3.

Similar to Eq.(16), we omit mt
k for convenience on nota-

tions since the mask is consistent during local training. Then
for the j-th client at time t, the local personalized aggregated
model is

ω
t(†)
j =

{
ω̃t

j − η
∑El−1

τ=0 gt
j,τ ⊙mt

j , if j ∈ N t
(a)k;

ωt
j , otherwise.

(30)

When j ∈ N t
(a)k, one can see that ωt(†)

j is equivalent to ωt+1
j ,

reflecting the scenario where, within a single communication
round, all participating clients perform an equal number of
local training iterations, analogous to traditional FL. The
superscript (†) is introduced for an explicit differentiation,
signifying that although the local gradients gt

j,τ are computed
under varying aggregation models, they are distinct from those
in a synchronous FL framework. Denoted by I{j∈N t

(a)k
} an

indicator function for the event that the j-th client is selected
in the delayed neighborhoods of client k.
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Using the results of Proposition 1, it can be shown that

E(
∑

j∈N t
(a)k

ωt+1
j ) = E(E(

∑
j∈N t

(a)k

ωt+1
j ||N t

(a)k|))

= E(E(
∑
j∈N t

k

ωt+1
j I{j∈N t

(a)k
}||N t

(a)k|))

= E(E(
∑
j∈N t

k

ωt+1
j I{j∈N t

(a)k
||N t

(a)k
|}))

= E(
∑
j∈N t

k

ωt+1
j E(I{j∈N t

(a)k
||N t

(a)k
|}))

= E(
∑
j∈N t

k

ωt+1
j P(j ∈ N t

(a)k||N t
(a)k|))

= E(
∑
j∈N t

k

ωt+1
j

|N t
(a)k|
M

)

= E(|N t
(a)k|)

E(
∑

j∈N t
k
ωt+1

j )

M

=
(k − 1)M

K − 1
E(ω̄t+1), (31)

where |N t
(a)k| follows hypergeometric distribution. Similarly,

E(
∑

j∈N t
(b)k+

ωt
j) = E(E(

∑
j∈N t

(b)k+

ωt
j ||N t

(b)k+|))

= E(E(
∑

j∈N t
k+

ωt
jI{j∈N t

(b)k+
}||N t

(b)k+|))

= E(E(
∑

j∈N t
k+

ωt
jI{j∈N t

(b)k+
||N t

(b)k+
|}))

= E(
∑

j∈N t
k+

ωt
jE(I{j∈N t

(b)k+
||N t

(b)k+
|}))

= E(
∑

j∈N t
k+

ωt
jP(j ∈ N t

(b)k+||N t
(b)k+|))

= E(
∑

j∈N t
k+

ωt
j

|N t
(b)k+| − 1

M
)

= E((|N t
(b)k+| − 1))

E(
∑

j∈N t
k+

ωt
j)

M

=
(K − k)(M + 1)

(K − 1)
E(ω̄t). (32)

Therefore, E(ω̃t(†)
k ) can be written as

[
(k − 1)M

(K − 1)(M + 1)
E(ω̄t+1) +

(K − k)

(K − 1)
E(ω̄t)]⊙mt

k

= E(ω̄t)⊙mt
k − [

(k − 1)M

(K − 1)(M + 1)
× .

E(
η
∑

j∈N t
k+

∑El−1
τ=0 gtj,τ

M + 1
)]⊙mt

k, (33)

where one can verify that when k = 1, E(ω̃t(†)
k ) reduces to

E(ω̃t
k). Recall that ω̃t(†) = 1

K

∑K
k=1 ω̃

t(†)
k , then

E(ω̃t(†)) =
1

K

K∑
k=1

(E(ω̄t

− (k − 1)M

(K − 1)(M + 1)
η
∑

j∈N t
k+

El−1∑
τ=0

gtj,τ (ω̄
t))⊙mt

k)

=
1

K

K∑
k=1

(E(ω̄t)− (k − 1)M

(K − 1)(M + 1)
ηE(g̃tk)⊙mt

k) (34)

= E(ω̄t)− 1

K

K∑
k=1

(
(k − 1)M

(K − 1)(M + 1)
ηE(g̃tk))⊙mt

k, (35)

where g̃tk =

∑
j∈Nt

k+

∑El−1

τ=0 gt
j,τ

M+1 and the last equality holds
according to the definition of ω̄t. gtj,τ (ω̄) means the gradient
at local epoch τ = 0 is with respect to ω̄. Let g̃t(†) =
1
K

∑K
k=1[

(k−1)M
(K−1)(M+1) g̃

t
k ⊙mt

k], then

E(ω̃t(†)) = E(ω̄t)− ηE(g̃t(†)). (36)

To find the boundary for the difference between the global
model at time t and t+1 and according to Assumption 1, we
have

E[f(ω̃t+1(†))]− E[f(ω̃t(†))]

≤ E
[〈

f(∇ω̃t(†)), ω̃t+1(†) − ω̃t(†)
〉]

+
µ

2
∥ω̃t+1(†) − ω̃t(†)∥2. (37)

Lemma 1 in [42] ensures that ∀k ∈
|K|, E

(∑K
k=1

∑El−1

τ=0 gτ,k(ω̃
t(†))

K

)
= E[g̃t

k] since N t
k is

selected randomly. According to the definition and Eq. (36),

E(ω̃t+1(†)) = E(ω̄t+1)− ηE(g̃t+1(†))

= E(ω̃t(†))− η
E
(∑K

k=1

∑El−1
τ=0 gτ,k(ω̃

t(†))
)

K
− ηE(g̃t+1(†)) (38)

= E(ω̃t(†))− η
E
(∑K

k=1

∑E∗
l −1

τ=0 gτ,k(ω̃
t(†))

)
K

,

(39)

where E∗
l = El +

M
2(M+1)El. Actually, here the start-

ing weights of g̃t+1(†) is with respect to E(ω̄t+1) =

E(ω̃t(†)) − η
∑K

k=1 E
∑El−1

τ=0 (gτ,k(ω̃
t(†)))

K . One can think of
just continuing M

2(M+1) more steps of local training, where
1
K

∑K
k=1[

(k−1)M
(K−1)(M+1) ] =

M
2(M+1) . E∗

l might not be an integer,
we just use this to conclude the effect of sequential aligning
for convergence analysis.

Now, the target is to prove the boundary of E <
f(∇ω̃t(†)), ω̃t+1(†) − ω̃t(†) > and µ

2 ∥ω̃
t+1(†) − ω̃t(†)∥2.

Lemma 3. Under Assumptions 1 to 2 and Lemma 2, suppose
ω̃t+1(†) and ω̃t(†) are global model learned by the proposed
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strategy, for some M > 1 with η ≤
√

1
12Mµ2(M−1)(2M−1) ,

E
[
µ
2 ∥ω̃

t+1(†) − ω̃t(†)∥2
]

is upper bounded by

E
[µ
2
∥ω̃t+1(†) − ω̃t(†)∥2

]
≤ µS1(S2 + 3E∥∇f(ω̃t(†)∥2),

where S1 = 2η2M(M−1)
(
exp

(
(3M+2)El

4(M2−1)

)
− 1
)

and S2 =
1

2M−1σ
2
l + 3(σ2

g + 2σ2
p).

Proof. Lemma 1 states the boundary for the local updates.
Eq. (38) and Lemma 2 states that the scheduling increases the
local epochs El to E∗

l with the expectation for the (aggregated)
global model. Hence,

E
[
∥ω̃t+1(†) − ω̃t(†)∥2

]
= E

[
∥ 1
K

K∑
k=1

ω̃
t+1(†)
k − 1

K

K∑
k=1

ω̃
t(†)
k ∥2

]

≤ E

[
1

K

K∑
k=1

∥ω̃t+1(†)
k − ω̃

t(†)
k ∥2

]
. (40)

The last inequality holds since Jensen’s Inequality where the
defined function ϕ(.) = ∥.∥2 is convex. Therefore, substituting
the results of Lemma 1 and changing El by E∗

l +1, we have a

boundary with
∑K

k=1 E∥∇f(ω̃
t(†)
k )∥2

K . With the triangle inequality
again and Assumption 2,∑K

k=1 E∥∇f(ω̃
t(†)
k )∥2

K

=

∑K
k=1 E∥∇f(ω̃

t(†)
k )−∇f(ω̃t(†)) +∇f(ω̃t(†))∥2

K

≤
∑K

k=1 E∥∇f(ω̃
t(†)
k )−∇f(ω̃t(†))∥2 + ∥∇f(ω̃t(†))∥2

K

≤ E∥∇f(ω̃t(†)∥2 + σ2
p, (41)

which finishes the proof.

Lemma 4. Under Assumptions 1 to 2 and Lemma 3,
E
[
< ∇f(ω̃t(†)), ω̃t+1(†) − ω̃t(†) >

]
is upper bounded by

−η

2
∥∇f(ω̃t(†))∥2 − η

2
E∥ĝt(†)∥2 + 3µ2η3E∗

l

M
(σ2

l + σ2
g)

(42)

where E∗
l = 3M+2

2(M+1)El

Proof. According to Eq. (38) and let ĝt(†) =∑K
k=1

∑E∗
l

τ=0 gτ,k(ω̃
t(†))

K ,
E[< ∇f(ω̃t(†)), ω̃t+1(†) − ω̃t(†) >] =

−ηE
[
< ∇f(ω̃t(†)),E

(
ĝt(†)) >]. Let’s prove the boundary

for −E
[
< ∇f(ω̃t(†)),E

(
ĝt(†)) >].

− E[
〈
∇f(ω̃t(†)),E

(
ĝt(†)

)〉
]
(a)
= −1

2
∥∇f(ω̃t(†))∥2

− 1

2
E∥ĝt(†)∥2 + 1

2
∥∇f(ω̃t(†))− E[ĝt(†)]∥2 (43)

, where (a) is due to < a,b >= a2+b2−(a−b)2

2 . Then
only the third term in the right-hand-side is left, since the

boundary for the first and second term can be found by Lemma
3. Based on Assumption 1 and denote tc as the start of the
communication round of t, i.e before training,

1

2
∥∇f(ω̃t(†))− E[ĝt(†)]∥2 ≤ µ2

2K

K∑
k=1

E∥ω̃t(†) − ω̃
t(†)
k ∥2

=
µ2

2

K∑
k=1

E[
1

K
∥ω̃tc(†) − 1

K

K∑
j=1

EPt,j
[
η

M

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

g̃
tc(†)
τ,j ]

− ω̃tc(†) + EPt,k
[
η

M

∑
k∈Pt,k

tc+E∗
l∑

τ=tc

g̃
tc(†)
τ,k ]∥2]

=
µ2η2

2

K∑
k=1

E[
1

K
∥EPt,k

[
1

M

∑
k∈Pt,k

tc+E∗
l∑

τ=tc

g̃
tc(†)
τ,k ]

− 1

K

K∑
j=1

EPt,j
[
1

M

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

g̃
tc(†)
τ,j ]∥2]

=
µ2η2

2

K∑
k=1

E[
1

K
∥EPt,k

[
1

M

∑
k∈Pt,k

tc+E∗
l∑

τ=tc

(g̃
tc(†)
τ,k −∇fk(ω̃

tc(†)
k,τ ))]

− 1

K

K∑
j=1

EPt,j
[
1

M

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

(g̃
tc(†)
τ,j −∇fj(ω̃

tc(†)
j,τ ))]

+ EPt,k
[
1

M

∑
k∈Pt,k

tc+E∗
l∑

τ=tc

∇fk(ω̃tc(†)
k,τ )]

− 1

K

K∑
j=1

EPt,j
[
1

M

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

∇fj(ω̃tc(†)
j,τ )]∥2].

(b)

≤ 3µ2η2

2K

K∑
k=1

[EPt,j
∥ 1

M

∑
k∈Pt,k

tc+E∗
l∑

τ=tc

(g̃
tc(†)
τ,k

−∇fk(ω̃tc(†)
k,τ ))∥2

+
1

K

K∑
j=1

EPt,j
[∥ 1

M

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

∇fj(ω̃tc(†)
j,τ )∥2]

+ .∥EPt,k
[
1

M

∑
k∈Pt,k

tc+E∗
l∑

τ=tc

∇fk(ω̃tc(†)
k,τ )]

− 1

K

K∑
j=1

EPt,j
[
1

M

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

∇fj(ω̃tc(†)
j,τ )]∥2]]

(c)

≤ 3µ2η2

2K
[
E∗

l

M
σ2
l +

E∗
l Kσ2

l

KM
+

E∗
l

M
σ2
g +

E∗
l Kσ2

g

KM
]

=
3µ2η2E∗

l

M
(σ2

l + σ2
g) (44)

In the above formulation, the variable j serves to distinguish
from k, ensuring clarity in the representation of individual
client contributions. Here, Pt,k denotes the selection probabil-
ity of client k at time t. The inequality marked as (b) derives
from the application of the Cauchy-Schwarz inequality, exem-
plified by the relation ∥a+ b+ c∥2 ≤ 3(∥a∥2 + ∥b∥2 + ∥c∥2).
The step labeled as (c) leverages a similar analytical tech-
nique, focusing on the aggregation of global gradients, thereby
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facilitating the derivation of σ2
g , which is in conjunction with

Assumption 2. Substitute the results from Lemma 3 to Eq.(43)
with multiplying η to conclude the proof for Lemma 4.

E. Proof for Theorem 1

Combining the bounds from Lemma 3 and Lemma 4, we
have:

E[f(ω̃t+1(†))]− E[f(ω̃t(†))] ≤
E[

µ

2
∥ω̃t+1(†) − ω̃t(†)∥2] (45)

+ E[⟨∇f(ω̃t(†)), ω̃t+1(†) − ω̃t(†)⟩]

= −η

2
∥∇f(ω̃t(†))∥2 + µ− η

2
E∥ĝt(†)∥2 + 3µ2η3E∗

l

M
(σ2

l + σ2
g)

(46)

≤ 6S1(µ− η)− η

2
∥∇f(ω̃t(†))∥2 + (µ− η)S1S2+

3µ2η3( 3M+2
2(M+1)El − 1)

M
(σ2

l + σ2
g). (47)

It is the fact that min ∥∇f(ω̃t(†)∥2 ≤
∑T−1

t=0 ∥∇f(ω̃t(†)∥2

T .
Summing up Eq. (45) from t = 0 to a large t = T concludes
the proof. In detail, Given the inequality for each iteration t:

E[f(ω̃t+1(†))]− E[f(ω̃t(†))] ≤ 6S1(µ− η)− η

2
∥∇f(ω̃t(†))∥2

+ (µ− η)S1S2 +
3µ2η3

(
3M+2
2(M+1)El − 1

)
M

(σ2
l + σ2

g).

(48)
Summing this inequality from t = 0 to t = T − 1 yields:

E[f(ω̃T (†))]− E[f(ω̃0(†))]

≤
T−1∑
t=0

(
6S1(µ− η)− η

2
∥∇f(ω̃t(†))∥2

)
+ T · [(µ− η)S1S2

+
3µ2η3

(
3M+2
2(M+1)El − 1

)
M

(σ2
l + σ2

g)

 .

(49)
To isolate the cumulative gradient norm terms across T

iterations, we divide the inequality by the coefficient of the
gradient norm term:

T−1∑
t=0

∥∇f(ω̃t(†))∥2

≤ 2

η − 6S1(µ− η)

(
E[f(ω̃0(†))]− E[f(ω̃T (†))]

)
+ S3T

(50)
, where S3 = 2

η−6S1(µ−η) ·[
(µ− η)S1S2 +

3µ2η3(3M+2)El

2(M+1)M (σ2
l + σ2

g)
]
. When T is

large, The denominator η − 6S1(µ − η) is nominated by
η. Then when we choose η ∝ O( 1√

Tµ
) and as T is large

enough, S3 diminishes closely to 0.
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[28] J. Rachwan, D. Zügner, B. Charpentier, S. Geisler, M. Ayle, and
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