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Abstract

Large Language Models (LLMs), despite their impressive performance on a wide
range of tasks, require significant GPU memory and consume substantial computa-
tional resources. In addition to model weights, the memory occupied by KV cache
increases linearly with sequence length, becoming a main bottleneck for inference.
In this paper, we introduce a novel approach for optimizing the KV cache which
significantly reduces its memory footprint. Through a comprehensive investigation,
we find that on LLaMA2 series models, (i) the similarity between adjacent tokens’
query vectors is remarkably high, and (ii) current query’s attention calculation can
rely solely on the attention information of a small portion of the preceding queries.
Based on these observations, we propose CORM, a KV cache eviction policy that
dynamically retains important key-value pairs for inference without finetuning
the model. We validate that CORM reduces the inference memory usage of KV
cache by up to 70% without noticeable performance degradation across six tasks in
LongBench.

1 Introduction

Large language models (LLMs) have demonstrated impressive proficiency in a wide range of natural
language processing tasks such as question answering, summarization and multi-turn dialogues [1–3].
Considering substantial cost of deploying LLMs introduced by tremendous model size and quadratic
cost of attention layer, many works focused on model compression and memory-efficient attention
techniques [4–7]. However, the size of KV cache, which stores previous tokens’ key and value
states to avoid re-computation, scaling linearly with sequence length during generation, also incurs
significant overhead. For instance, even a 7 billion-parameter model with batch size of 128 and
sequence length of 4096 results in 256GB of KV cache, far exceeds memory consumed by model
itself which is only 14GB. A natural idea is to discard some less informative KV cache to reduce
memory consumption. The challenge lies in finding a balance between discarding as much as possible
while still maintaining model performance.

Despite multi-query attention [8] and grouped-query attention [9] can reduce the size of KV cache by
reducing attention heads, it needs re-training to recover performance of original model. Recent works
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[10–14] have investigated implementing KV cache using specific eviction policy, that determines
which key-value states should be evicted from KV cache. These methods aim to compress KV cache
to a pre-defined budget size, thereby reducing memory and computational overhead. However, they
save same number of key-value pairs for all attention heads and layers, ignoring that the number of
keys playing an important role may vary across different attention heads and layers [15].

(a) (b)

Figure 1: Attention sparsity of LLaMA2-7B. (a) Layer-wise attention sparsity. (b) Head-wise
attention sparsity of layer 0 and layer 1.

Intuitively, if important information in the KV cache exceeds the predetermined budget size, the
performance of the model is likely to decline as it unavoidably evicts some crucial information. Our
preliminary exploration also reveals that different attention layers and heads show different sparsities
as shown in Figure 1. First, we observe that bottom layers of the model are relatively dense2, while the
remaining attention layers exhibit significant sparsity. Second, even within the same layer, different
heads can exhibit obvious differences in sparsity levels. These properties suggest that we need to
treat different layers and heads differently, rather than using the same budget size for all of them. In
addition, we prove that completely similar queries have similar concerns about keys, and observe that
recent query vectors are quite similar on LLaMA2 series models so current query can directly use
recent query attention messages during generation.

Based on the above insights, we first define the generation process of LLMs with a budget-unrestricted
KV cache in Section 3. Then we propose Cache Optimization with Recent Message (CORM), a
framework that exploits recent query attention information for KV cache optimization and token
generation of LLMs. Specifically,

• In Section 3, we explore the similarity between query vectors of all tokens within same sequence,
revealing that recent query vectors are highly similar, which implies that (i) keys that are important
for recent queries might be also important for the current query; and (ii) removing key-value pairs
that appear to be less informative for recent queries can greatly preserve the performance of the
model.

• In Section 4, we present a simple method which dynamically evicts minor key-value pairs deter-
mined by recent tokens’ attention information.

We conduct extensive experiments on LLaMA2-7B-Chat, considering its popularity and wide usage, to
evaluate CORM across 6 tasks from LongBench [16] containing question answering, summarization,
code completion, etc. Experiments show that even without explicitly setting a budget size, our method
is still possible to achieve a high compression rate. Our method achieves better performance compared
to StreamingLLM [10], Scissorhands [11] and H2O [12] with over 70% KV cache reduction rate and
can even come close to fully restoring the performance of the model.

2 Related Work

Attention Let x ∈ Rn×d denote the input embeddings from a sequence of n feature vectors of
dimension d. The multi-head self-attention [17], as a core module of Transformer model, facilitates

2Let t denote sequence length, we count the proportion of keys which attention score larger than average
score 1

t
and denote it as r. The larger r is, the sparser the layer is.
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contextual information interaction within each head in the following manner:

Q = xWq,

K = xWk,

V = xWv,

Attention(x) = softmax(
QKT

√
dh

)× V

(1)

Q, K, V represent the query, key, and value matrices, which are obtained by linearly mapping x using
weight matrices Wq, Wk, and Wv ∈ Rd×dh , respectively. dh is the dimension of each individual
head.

KV Cache According to autoregressive paradigm, transformer decoder model predicts future tokens
based on both previous and current tokens. Recalculating the key-value pairs for previous tokens at
each decoding step is clearly an inefficient strategy. A common practice is to retain the key-value
pairs of previous tokens for subsequent reuse. Thus, the consumption of KV cache becomes linearly
correlated with the length of input sequence. When dealing with long contexts, however, the use of
such a space-time trade-off approach may still pose challenges.

Training Policies The advent of multi-query attention (MQA) [8] is to address the influence of
attention heads on KV cache within multi-head attention (MHA) mechanism. It facilitates the sharing
of the same set of keys and values among different heads to alleviate cache pressure. Grouped-query
attention (GQA) [9] represents a trade-off between MHA and MQA, achieving key-value sharing
within each group through mean-pooling-based uptraining. Both methods require additional training
to restore model performance due to the inability to directly convert.

Training-free Policies During generation, sequence length is the primary factor of cache pressure.
Recent methods aim to balance model efficiency and inference cost without extra training and
architectural changes. StreamingLLM [10] keeps attention sink token and recent tokens throughout
decoding process to align with the training window. Scissorhands [11] maintains pivotal tokens and
recent tokens based on the persistence of importance hypothesis. H2O [12] utilizes accumulated
attention score to maintain heavy hitters and recent tokens. TOVA [13] removes tokens with the
lowest current attention score from the fixed cache at each decoding step. RoCo [14] retains tokens
in the fixed cache based on high mean cumulative attention scores and top r standard deviations.
Aforementioned methods consistently operate on a fixed cache, ignoring that the number of tokens
playing an important role may vary across different attention heads and layers.

3 Observations

We first demonstrate the existence of attention sparsity in LLMs in Section 3.1, then discuss the
phenomenon that similar queries have similar attention concerns for keys in Section 3.2. In Section
3.3, we show an intriguing observation that current query is most similar to recent queries.

3.1 Attention sparsity in LLMs

We first explore the sparsity in attention layers of LLMs, which provides an effective guarantee for us
to reduce KV cache size. Specifically, we use proportion of important keys to represent attention
sparsity. Let qt ∈ R1×d denote the query state vector at step t, ki ∈ R1×d denote the key state vector
at step i (1 ≤ i ≤ t), where d is hidden dimension (for the sake of simplicity, we only consider a
single head here). The normalized attention score of qt for ki is computed as:

αt,i =
exp(qtk

T
i /

√
d)∑t

j=1 exp(qtk
T
j /

√
d)

. (2)

Definition 3.1 (Important Key) We define a key ki is considered important in step t, if and only if
αt,i ≥ 1

t , otherwise it is considered minor.
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We conduct zero-shot inference with LLaMA2-7B model on the test set of PG-19 [18]. We plot the
layer-wise and head-wise sparsity within attention blocks, the results are presented in Figure 1. It
reveals that bottom layers are relatively dense, while other layers are highly sparse with over 90%
sparsity. This makes it possible to do attention computation on only small part of KV cache during
generation.

3.2 Similar queries have similar concerns for keys

The previous section reveals the existence of attention sparsity in LLMs, which provides an opportu-
nity to reduce KV cache size while maintaining performance. In this section we give a theoretical
analysis that similar queries have similar concerns for keys for eviction policy design.

Consider the i-th and j-th query state vectors qi and qj in a sequence of token length T (i < j ≤ T ).
Their cosine similarity can be computed as:

cosine_similarity(qi, qj) =
qiq

T
j

∥qi∥ · ∥qj∥
. (3)

Consider all key states k1, k2, ..., ki−1 before i-th key. Assume that cosine_similarity(qi, qj) = 1,
then qi = m · qj with m ∈ R+. The attention weight3 of qi to the previous i − 1 keys can be
represented as:

attention_weight =
1√
d
(qik

T
1 , qik

T
2 , ..., qik

T
i−1) =

m√
d
· (qjkT1 , qjkT2 , ..., qjkTi−1). (4)

Note that m is a positive number that does not affect the relative order of the attention weights. For
example, for qi, if qikT1 > qik

T
2 , there must be qjkT1 > qjk

T
2 for qj . This means if a key is important

to qi, it is also important to qj , though the degree of importance may vary due to the softmax function.

Figure 2: Similar queries have similar concerns for keys. We plot the attention map from two different
layers in a sentence. We discretize the attention score and those important keys are shown in bright
green. Each attention map has two red borders, the bottom border shows important keys that current
query actually focuses on, while another border shows important keys that the most similar query
focuses on.

Although it’s nearly impossible that cosine_similarity(qi, qj) = 1 in real situation, we can make the
hypothesis that two similar queries may have similar concerns for keys. To validate this hypothesis,
we provide two attention maps of a sentence randomly drawn from PG-19 using LLaMA2-7B, as

3attention weight is unnormalized attention score
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shown in Figure 2. Important keys are marked with bright green, more plots are available in Appendix
A.1. We observe that the hypothesis is true, and similar queries exhibit similar concerns for important
keys. At the same time, important keys only account for a small proportion especially in deeper
attention layers, which is consistent with the finding that deeper layers are sparser in previous section.

3.3 Similarity exploration of query vectors

We have validated two similar queries have similar concerns for keys in Section 3.2, we also need to
validate that at each step we can find a previous query state that is similar enough to current query
state in same layer and same head. To check this, we visualize cosine similarity of query vectors
within same sequence as shown in Figure 3, more plots are available in Appendix A.2. We observe
an intriguing phenomenon that many images show clear oblique color segmentation, with the top
oblique block closest to dark red which means current query is most similar to recent queries.

Figure 3: Visualization of query vectors’ cosine similarity over one sentence with a length of 1024.
The i-th row of the map represents cosine similarity of the i-th query to all previous queries. The plot
reveals that in most cases current query is most similar to recent queries.

Through above observations, we see an opportunity to design a KV cache eviction policy based on
query similarity that preserves the LLM generation performance.

4 Cache Optimization with Recent Message

In this section, we present CORM, a method reduces the KV cache memory based on recent query
attention information without any fine-tuning process. In Section 4.1, we derive that current query
can directly use recent query attention messages during generation. In Section 4.2, we present CORM
eviction policy and describe how it works during generation.

4.1 Generate based on recent query attention messages

Consider observations in Section 3, intuitively, we can directly store all queries and their attention
information for future reference. At each generation step, use current query to find the most similar
one from previous queries, and use its saved attention information to calculate solely on important
keys. However, this approach incurs a significant cost. First, storing all queries results in a substantial
increase in memory overhead. Second, the requirement of performing similarity calculations at each
step adds to the computational overhead.

Since in most cases current query is most similar to recent queries as described in Section 3.3, we can
just use recent query attention messages. And from Figure 2 we can also observe that only a small
proportion of keys are considered important by recent queries. Therefore even if we save all the keys
that are considered important in previous steps, we can save a lot of memory.

4.2 Eviction algorithm via recent message

We have shown recent query attention information is enough for cache optimization in Section 4.1.
In the following, we formally define this algorithm and introduce how to integrate it into LLM
generation directly.

Definition 4.1 (Long-term Minor Key) A key ki is considered as long-term minor key only if it is
considered minor in all recent r steps (from t− r + 1 to t).
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Approach CORM will have a recent window of size w to record the information of recent w queries,
and will always keep recent r keys unremoved to prevent them from being discarded prematurely
due to insufficient observations. During generation, ki, vi will be discarded once ki is regarded as
long-term minor key. For better explanation we present pytorch code4 of main algorithm in Algorithm
1. Intuitively, when w is larger, more keys and values will be saved, the compression rate will be
smaller and performance will be better; Conversely, when w is smaller, fewer keys and values will
be saved, the compression rate will be larger and performance will be worse. So there’s a tradeoff
between performance and compress rate.

Memory Overhead Analysis In order to reduce memory overhead of KV cache, an extra memory
overhead is introduced by recent information cache. We need to store recent query messages which
increase memory overhead. However, these overheads are far less than compressed KV cache, one
can use a small portion of memory to avoid maintaining full KV cache memory without obvious
performance degradation. On the other hand, the compression rate will increase as the sequence
length increases as shown in Figure 4, resulting in a lower memory overhead for this component in
comparison.

Algorithm 1 Single-head KV cache eviction with CORM (unbatched)
def corm_eviction(keys, values, message, attn_score, w, r, t):
"""
Args:

keys: previous key states, a tensor with shape [l, d]
values: previous value states, a tensor with shape [l, d]
message: attention message, a tensor with shape of [m, l-1]
attn_score: current steps attention score, a tensor with shape of [1, l]
w: window size, a scalar
r: recent size, a scalar
t: current step, a scalar

Returns:
updated_keys: updated keys
updated_values: updated values
updated_message: updated message

"""
m = message.shape[0]

# update attention message
message = torch.cat([message, torch.zeros(m, 1)], dim=1) ▷ pad to [m, l]
cur_message = attn_score >= 1 / t
message = torch.cat([message, cur_message], dim=1)[-w:, :]

if message.shape[0] < w:
return keys, values, message

else:
# determine the key-value pairs that necessitate discarding
decision = message.any(dim=0)
decision[-r:] = True ▷ always keep recent r tokens unremoved
indices = torch.nonzero(decision).squeeze()

keys = keys[indices, :]
values = values[indices, :]
return keys, values, message

4For the sake of brevity, the code snippet only demonstrates single-head eviction operation, while in the
actual implementation, it will be performed on each head at every layer.
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5 Empirical Evaluation

In this section, we present the results that demonstrate CORM can reduce up to 70% of the memory
footprint of KV Cache without accuracy degradation on LLaMA2-7B-Chat.

Dataset To broadly validate feasibility of our method on real-world use cases, we choose Long-
Bench [16] as our evaluation benchmark, which contains a wide range of long-text tasks such as
question answering [19–24], summarization [25–28], few-shot learning [29–32], synthetic task and
code completion [33, 34]. Here we do not consider short text tasks, because even full cache doesn’t
have any bottlenecks.

Models Since sequence length is the main factor in the continuous growth of KV Cache, we employ
LLaMA2-7B-Chat [2] for 4K test considering its wide usage.

Baselines Since CORM reduces KV cache without need for training, we consider several similar
approaches as our baselines: StreamLLM [10], Scissorhands [11] and H2O [12]. In addition, the full
KV cache is also considered as strong baseline to measure the performance loss of other methods.

Setting All baselines can be regarded as fixed budget size KV cache compression, however CORM
is a dynamic compression method. Since we find that CORM has similar compression rates for
various task texts with the same sequence length. For fair comparison, we plot the relationship
between model compression rate and sequence length using texts randomly sampled from PG19 [18]
as shown in Figure 4.

Figure 4: Relationship between compression ratio and sequence length. Plots show that compression
rate with CORM "256+256" and budget=1024 are close for LLaMA2-7B-Chat.

Main Results We evaluate LLaMA2-7B-Chat for 4K length text. Results are summarized in Table
1 & 2 for LLaMA2-7B-Chat. The following observations can be drawn: (1) CORM consistently
outperforms previous methods at the same compression rate across a wide range of tasks. (2)
Meanwhile, with over 70% KV cache reduction, CORM achieves comparable performance as the
model with full KV cache and even surpass it on some tasks, we speculate it’s because there’s some
noise in full KV cache that affects model output and our method can eliminate this noise to a certain
extent by discarding some KV cache.

5.1 Budget unnecessity: is unbudgeted better?

We primarily focus on the effectiveness of not setting a budget versus setting a fixed budget. Note that
since we use same window size and recent size as Scissorhands in the experiment, it can be regarded
a natural ablation experiment. And Table 1 & 2 have shown that, at the similar compression rate,
CORM is much better than Scissorhands in most tasks, and performance of other tasks is close. This
verifies that different transformer layers and heads should be treated differently rather than setting a
same fixed budget size.
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Table 1: Results (%) on single-doc QA, multi-doc QA and summarization tasks. "Full" refers to
LLaMA2-7B-Chat utilizing full KV Cache, "StreamLLM" is configured with 4+1020, "Scissorhands"
is configured with 768+256 where window size=256, "H2O" is configured with 768+256, "CORM"
is configured with 256+256 for fair comparison. For the sake of brevity we use ID to denote dataset
here, mapping from ID to dataset can be found in Appendix B

.

Method Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Full 19.0 22.1 36.7 11.8 27.8 31.5 8.3 6.8 26.8 20.7 26.2 0.2
StreamLLM 13.2 15.4 27.2 6.5 24.2 25.4 5.3 4.4 21.6 19.8 24.4 0.1
Scissorhands 16.6 18.7 32.4 9.9 26.3 32.1 8.9 5.7 22.1 20.7 25.4 0.2
H2O 17.9 19.5 34.9 11.5 27.5 29.7 7.5 7.1 24.5 21.0 25.8 0.2
CORM 18.9 22.2 38.6 12.0 27.6 31.6 8.4 7.1 26.4 21.0 25.8 0.2

Table 2: Results (%) on few-shot learning, synthetic, and code tasks. "Overall" is computed by the
macro-average over major task categories. This is computed on English (EN) tasks, Chinese (ZH)
tasks, and all (All) tasks, code tasks are included in both languages.

Method Few-shot Learning Synthetic Code Overall

4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 EN ZN All

Full 64.0 83.3 41.4 17.3 2.9 7.8 10.0 58.3 52.2 32.8 16.9 28.9
StreamLLM 61.0 82.9 39.1 14.5 1.8 4.7 6.5 57.6 50.0 29.5 14.3 25.7
Scissorhands 52.5 83.6 40.7 17.0 3.1 6.5 7.7 56.8 52.1 31.0 15.8 27.2
H2O 63.0 81.5 39.9 17.0 2.8 7.0 7.3 57.8 52.3 31.8 16.4 28.0
CORM 64.0 83.5 41.3 17.3 2.9 9.0 9.1 58.3 52.0 32.9 16.8 28.9

6 Conclusion

In this paper, we investigate a critical memory bottleneck in LLM deployment, KV cache. Inspired
by similar queries have similar concerns for keys and recent queries are similar enough, we propose
CORM, an unbudgeted KV cache eviction policy for significantly reducing its memory footprint,
by reusing recent query attention messages. Through extensive evaluations, we demonstrate that
CORM can reduce the inference memory usage of the KV cache by up to 70% without noticeable
performance degradation across a variety of tasks.
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A More Plots

A.1 Similar queries share most of important tokens

We provide the attention map similar to Figure 2 but from different heads on the same text in Figure
5, Figure 6. Plots from a different layer on the same text are shown in Figure 7.

Figure 5: Attention Map at Layer 0, Head 10, 20

Figure 6: Attention Map at Layer 31, Head 10, 20

A.2 Relationship of query vectors

We provide the query vectors’ cosine similarity visualization similar to Figure 3 but from different
layers and heads on the same text in Figure 8.
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Figure 7: Attention Map at Layer 5, 15, 25, Head 0

B Task Mapping

An overview of the dataset statistics and mapping from ID to dataset in LongBench is shown in
Figure 9.
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Figure 8: Visualization of query vectors’ cosine similarity across different layers and heads
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Figure 9: An overview of the dataset statistics in LongBench
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