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Input-Output Specifications of Grid-Forming
Functions and Data-Driven Verification Methods

Jennifer T. Bui and Dominic Groß

Abstract—This work investigates interoperability and perfor-
mance specifications for converter interfaced generation (CIG)
that can be verified using only input-output data. First, we
develop decentralized conditions on frequency stability that
account for network circuit dynamics and can be verified using
CIG terminal dynamics and a few key network parameters.
Next, we formalize performance specifications that impose re-
quirements on the CIG disturbance response. A simple data-
driven validation method is presented that enables verification
of the interoperability and performance specifications for CIG
using input-output data from a two-node system. Data obtained
from electromagnetic transient (EMT) simulations are used
to illustrate the proposed approach and the impact of key
parameters such as inner control loop gains, network coupling
strength, and controller bandwidth limitations.

Index Terms—Grid-forming control, input-output models, in-
teroperability specifications

I. INTRODUCTION

Electric power systems are undergoing an unprecedented
transition towards large-scale deployment of renewable gen-
eration and energy storage interfaced by power electronics.
Replacing conventional synchronous generators (SGs) with
converter-interfaced generation (CIG) results in significantly
different power system dynamics and challenges standard
operating paradigms and controls on timescales from seasons
to milliseconds. In the context of power system dynamics, the
heterogeneous dynamics of renewables and CIG represent a
significant barrier to their large-scale deployment. Specifically,
scalable and reliable operation of today’s systems crucially
hinges on the largely homogeneous physics and controls of
SGs [1]. In contrast, the dynamics of CIG vastly differ across
technologies and controls resulting in interoperability concerns
that are a major barrier to replacing centralized bulk power
generation with a vast number of smaller distributed and
heterogeneous resources.

Typically, control strategies for CIG are broadly categorized
into (i) grid-following (GFL) controls that require a stable
ac voltage at their point of interconnection (i.e., ensured by
SGs), and (ii) grid-forming (GFM) controls that impose a
stable ac voltage at their terminal and that self-synchronize
are envisioned to be the cornerstone of future power systems
[2]. Prevalent GFM controls such as droop control [3], virtual
synchronous machine control [4], and dispatchable virtual
oscillator control [5], largely exhibit a similar response un-
der realistic tuning [6] and can be tuned to coincide under
simplifying assumptions [7, Fig. 7]. While these results are
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promising, they do not establish formal interoperability guar-
antees of GFM controls and do not address concerns around
interoperability with legacy generation and GFL controls. The
operation of emerging power systems requires both GFM
controls to replace functions of SGs and GFL controls to, e.g.,
enable maximum power point tracking (MPPT) for renewables
and reliably operate HVDC transmission [8]. At the same time,
a wide range of adverse interactions between SG controls and
GFM controls [9], SGs and GFM and GFL converters [10],
and GFM and GFL control [11] have been reported.

A closely related problem is that, as of now, there is no
clear or universally accepted definition of GFM control, and
its distinction from GFL control continues to be a topic
of discussion. The most prevalent method for broadly cat-
egorizing GFM and GFL control depends on whether the
inverter is controlled as a voltage or current source [12] and
requires detailed models of the internal hardware and control
structure. However, detailed models are often inaccessible due
to intellectual property protections. In contrast, [13] aims to
characterize GFM controls through their ability to locally
suppress frequency fluctuations. While this approach directly
allows for experimental validation, it requires internal control
signals, does not fully characterize standard CIG functions
(e.g., P − f droop), and does not address interoperability.
Instead, from a system theoretic viewpoint, interoperability
can be tackled through decentralized conditions that ensure
small-signal frequency stability [14]. However, this method
only considers a quasi-steady-state network model that does
not adequately model adverse interactions between GFM con-
verters and network circuit dynamics [15], [5], [16].

To address these challenges, this work combines decen-
tralized interoperability and performance requirements with
a data-driven verification method that only requires input-
output data. We first extend the analytical small-signal stability
conditions from [14] to account for network circuit dynamics.
This results in conditions on the local CIG dynamics that can
be graphically verified using a few key system parameters (i.e.,
lowest line inductance, R/X ratio) and transfer functions that
relate the signals at the CIG terminal. Next, we illustrate that
performance specifications discussed in the literature (see, e.g.,
[17]) can be formalized as restrictions on the CIG terminal
dynamics. Crucially, we do not aim to distinguish between
GFM and GFL control but propose to formulate technology-
agnostic performance requirements on the CIG disturbance
rejection. This directly recovers the "frequency smoothing"
capability used in [13] to define GFM control. However,
we also show that this ability to locally suppress frequency
fluctuations does not sufficiently characterize common GFM
functions such as P − f droop. Finally, we develop a simple
data-driven method that allows for experimental validation of
the proposed interoperability and performance specifications.
Specifically, the proposed approach leverages a two-bus sys-
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tem to obtain a frequency response model of a device under
test (e.g., CIG) that can be used to verify our interoperability
and performance specifications using a frequency gridding
approach. The interoperability and performance specifications
as well as the data-driven verification method are illustrated
using data for standard GFM and GFL control obtained from
detailed EMT simulations.

II. MOTIVATION AND PROBLEM SETUP

In the context of power systems, interoperability and the
aforementioned information exchange has to be understood
in the context of various time-scales. While control that
leverages communication networks is commonly used on time-
scales beyond seconds (e.g., secondary control and tertiary
control) the information exchange on the real-time control
layer (e.g., primary frequency control) happens through the
power network. For example, synchronous generators self-
synchronize their frequency through the power flows in the
network (information exchange) and local controls use this
fact by respond to frequency deviations (e.g., turbine gov-
ernor system). Thus, synchronous generator dynamics and
their controls are generally interoperable. However, for IBRs
arbitrary dynamics can be imposed by their controls that do
not necessarily synchronize through the grid.

Thus, to ensure interoperability of IBRs, one needs to ensure
that the local dynamics adhere to common specifications that
enable (i) synchronization through the physics, and (ii) a
coherent response that uses the information exchanged through
the power network. In this sense, interoperability imposes
restrictions on the dynamic interactions of IBRs through the
power system in order to maintain the stability of the entire
system as well as prevent destabilizing events from propagat-
ing. In this work, we specifically focus on the interoperability
of frequency dynamics, that is, the stability of the relationship
between ac voltage bus frequencies and active power flow.

In the context of a power system with a mix of converter-
interfaced and conventional thermal generation, such as the
one depicted in Figure 1, it is important to consider the
compatibility of the IBR different control schemes and legacy
generators under interconnection. To develop specifications on
the local IBR bus dynamics, we separate the problem into two
steps. To this end, we require a network model that abstractly
captures how the network circuit itself impacts the exchange
of signals that are then received as inputs by the connected
devices, i.e., to capture the impact of network topologies and
line parameters through a few key parameters. In a second step,
we will analyze how the local device outputs (i.e., frequency
and voltage magnitude) respond to its inputs (i.e., network
power injections) and determine suitable bounds on these
dynamics to ensure interoperability for a given set of (abstract)
network parameters.

As we will show in the remainder of this manuscript, the
system properties that are relevant to the interoperability and
stability of the system-wide frequency dynamics include the
X/R ratio, line and transformer inductance, and topology.
These properties help determine connectivity and coupling
strength, attributes that impact power flow across the sys-
tem. However, for various reasons such as scalability and
robustness, it is not desirable to certify stability only for a
specific network topology and inductances. Therefore, key
salient features of the network that influence stability have

Fig. 1. Power system consisting of generation units with synchronous
generators and converters with different controls.

to be identified that allow to certify stability independently
of the network topology and precise line parameters. As our
analysis in the subsequent section shows, these key salient
parameters of the network are the X/R ratio as well as
strongest and weakest coupling in the Kron-reduced network.
Broadly speaking, the strongest and weakest coupling can
be understood as the largest and smallest short-circuit ratio
or the smallest and largest inductance between devices when
eliminating network buses without generators.

With this information, for the purpose of developing ana-
lytical stability certificates, it is possible to abstractly model
a network such as Figure 1 through the abstract parame-
ters illustrated in Figure 2 where connectivity and coupling
strength are encoded through the scalar parameter γ and µ
using LΣ,max and LΣ,max (the highest and lowest outgoing
impedance of interconnection buses), X/R ratio, nominal bus
voltage magnitude Vb, and the nominal frequency ω0. Please
see the following section for further details.

Fig. 2. Abstracting the original network (top) through an analytical model
(bottom) parameterized in key network parameters.

Moreover, in this work, the dynamic response of devices in
the network is not modeled using white box models of their
control or hardware implementation since this information is
typically inaccessible. Instead, we leverage data-driven input-
output models to model the dynamic behavior of generating
units (i.e., IBRs, SGs, etc.). Combining the models of the
local device dynamics (e.g., at the bus of interconnection)
with that of the abstracted network, it is possible to evaluate
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interoperability, stability, and performance. By imposing a
decentralized stability condition, the local device dynamics
are restricted in such a way that maintains stability across the
network. Given a few key network parameters this approach
allows to test each device in isolation to (i) verify if it meets
interoperability and performance requirements for the abstract
network parameters, and (ii) understand the impact of the
abstract network parameters. Stability and interoperability are
then guaranteed for arbitrary topologies and line parameters as
long as the X/R ratio, the strongest coupling, and the weakest
coupling do not change.

Figure 3 illustrates this approach in which the dynamic
response of bus voltages (i.e., frequency and magnitude) to
network power injections (e.g., active and reactive power) is
analyzed and compared to specifications parameterized in the
abstract network parameters. If the local dynamic response is
within prescribed bounds, interoperability can be guaranteed.
If the local dynamic response is outside the prescribed bounds,
then interoperability cannot be guaranteed through our decen-
tralized stability condition. In other word, the system may
still be stable even though it does not pass the decentralized
stability conditions. However, the lack of a-priori guarantees
that are largely independent of the precise network parameters
results in scalability concerns in this case. Therefore, using
decentralized stability conditions we can certify small-signal
stability using only a few key network parameters and the
individual local dynamics. In contrast, when this approach fails
the system may be unstable or certifying stability may require
exact network and device models and arbitrary many simula-
tions to certify stability. In other words, the second approach
is not scalable or amenable to developing standards or grid
codes. In contrast, the decentralized stability certificates can
directly inform standards and grid codes to ensure and verify
interoperability for a wide range of system configurations with
a single test of each device.

Fig. 3. Verification of a decentralized stability condition for each individual
device.

There are two key advantages to this approach. The first
advantage is its independence from detailed models of both the
network and connected devices. Instead, the proposed methods
only utilize commonly known system properties and measured
data from a simple experimental test bed. The second benefit
of this framework is that it allows for the mapping of system-
level needs to device-level specifications. Manufacturers are
encouraged to implement the proposed methods themselves
when they test their devices. They can adjust their designs
accordingly to meet requirements outlined by grid operators,
improving the effectiveness and efficiency of deployment.

Interoperability does not guarantee performance (e.g.,
specifically desired functionality/capability). Thus, this work
also investigates the development of performance specifica-
tions that can be verified using input-output data. First, we

obtained reduced-order models of generic converter controls.
Then, we derived several transfer functions that correspond
to accessible parameters (i.e., power injection, bus voltages).
We analyzed the transfer functions, including graphically, to
identify salient traits that can differentiate device functions.
Finally, we conducted a numerical study in which we used
data collected from detailed EMT simulations to recover
the transfer functions previously derived and compared the
analytical and numerical results.

III. POWER SYSTEM MODEL

A. Network topology

We model the power system as an undirected graph G =
(N , E) with nodes N corresponding to |N | buses and edges
E ⊆ N × N corresponding to |E| transmission lines. Here,
|X | denotes the cardinality of a set X ⊂ N. To every bus
n ∈ N , we associate a voltage phase angle θn, frequency
ωn = d

dtθn, voltage magnitude Vn, and active and reactive
power injections pn and qn. Moreover, to every line m ∈
{1, . . . , |E|} connecting buses nm and km we associate an
active and reactive power flow pnm,km and qnm,km . Thus, the
bus power injections are given by pn =

∑
(n,k)∈E pn,k and

qn =
∑

(n,k)∈E qn,k. In the remainder, we encode the network
topology using the oriented incidence matrix B ∈ R|N |×|E|

(see [16]).

B. Device model

To obtain a technology- and control-agnostic model, we
model the dynamic response of generation devices at every
bus n ∈ N (see Fig. 4) through the transfer function model[

ωn(s)
Vn(s)

]
=

[
gωn,pn(s) gωn,qn(s)
gVn,pn(s) gVn,qn(s)

] [
pn(s)
qn(s)

]
. (1)

We emphasize that the choice of inputs and outputs in
(1) is somewhat arbitrary. For example, GFL control using
a synchronous reference frame phase-locked loop (SRF-PLL)
controls the power injection pn and qn as a function of ωn
and Vn, while a GFM converter or SG controls ωn and Vn
as a function of pn and qn. Nonetheless, both cases can be
represented through the model (1) that simply encodes the
dynamic relationship between the signals ωn, Vn and pn, qn
(see Sec. IV-C and Sec. IV-D).

C. Transmission line model

It remains to model the network. Analogously to the bus
model (1), we model the transmission line m ∈ {1, . . . , |E|}
connecting buses (nm, km) ∈ E using the model[
pnm,km

qnm,km

]
=

[
gpm,θm(s) gqm,θm(s)
gpm,Vm

(s) gqm,Vm
(s)

] [
θnm

(s)− θkm(s)
Vnm

(s)− Vkm

]
.

Fig. 4. Converter-interfaced generation connected to a grid.
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For brevity of the presentation, we will focus on frequency
dynamics and model the dynamics of the |E| transmission lines
using the second-order transfer function

gpm,θm(s) :=
ω0V

⋆
nm
V ⋆km

ℓm︸ ︷︷ ︸
=:κm

1

s2 + 2ρms+ ω2
0 + ρ2m︸ ︷︷ ︸

=:µm(s)

, (2)

with nominal bus voltages V ⋆n ∈ R>0,resistance-inductance
ratio ρm = rm

lm
∈ R>0. We emphasize that this model

generalizes the commonly used quasi-steady-state network
model gpm,θm(0) to capture network circuit dynamics, up to
approximately line frequency, that play a crucial role in small-
signal frequency stability analysis of converter-dominated
power systems [5], [16].

D. Multi-converter / multi-machine network model
To simplify the overall network model, we require the

following assumption.

Assumption 1 (Decoupled active and reactive power) We
assume that active and reactive power are decoupled, i.e.,
gqm,θm(s) = gpm,Vm(s) = 0 for all m ∈ {1, . . . , |E|}.

The vector of bus power injections p ∈ R|N | is given by
p = BGω,p(s)B

Tθ. To analyze the impact of device ratings,
we use ψn ∈ R>0 to denote the device rating at every
bus n ∈ N . Moreover, we define the matrix Gω,p(s) :=

diag{gωn,pn(s)}|N |
n=1 of bus transfer functions gωn,pn(s) nor-

malized by the device rating ψn and the matrix Ψ :=

diag{ψ}|N |
n=1 collecting the device ratings. Finally, to com-

pactly represent our model, we define the matrix of transmis-
sion line transfer functions Gp,θ(s) := diag{gpm,θm(s)}|E|m=1.
The small-signal frequency dynamics are shown in Fig. 5. We
emphasize that this model can capture the frequency dynamics
of a wide range of devices from GFM converters and GFL
converters to SGs.

To simplify the analysis, we make the following assumption
that is typically justified for lines at the same voltage level.

Assumption 2 (Uniform resistance-inductance ratio) The
resistance-inductance ratio is identical for all lines, i.e., ρm =
ρ for all m ∈ {1, . . . , |E|}.

Under Assumption 2, µ(s) = µm(s) for all m ∈ {1, . . . , |E|}.
Letting K := diag{κm}|E|m=1, the network circuit dynamics
simplify to BGp,θ(s)BT = µ(s)BKBT, where L := BKBT

is the graph Laplacian of the network.
In the remainder, we aim to develop decentralized condi-

tions for stability under interconnection and local performance
specifications on the transfer functions in (1). Subsequently,
we show how these specifications can be verified using only
input-output data and simple graphical methods.

Gω,p(s)Ψ
−1 1

s

BGp,θ(s)B
T

δp(s) ω(s)

p(s)

−
θ(s)

Fig. 5. Small-signal frequency dynamics.

IV. INTEROPERABILITY & PERFORMANCE
SPECIFICATIONS

A. Interoperability of Frequency Dynamics
We first focus on interoperability of bus frequency dy-

namics. Specifically, we define bus frequency dynamics as
interoperable if they meet decentralized stability conditions
that ensure stability under interconnection and extend a de-
centralized stability criterion from [14] to account for network
circuit dynamics.

To state our decentralized stability condition, we define
the constant γn := 2

∑
(n,k)∈E

ω0

ℓn,k
VnVk where, with a slight

abuse of notation, ℓn,k ∈ R>0 denotes the inductance of the
line connecting bus n and k. This constant models the key
parameters of the system that influence frequency stability. In
particular, γn can be bounded by γ := 2 emax

ℓmin
ω0V

2
max, where

emax ∈ N is an upper bound on the number of outgoing
edges of all nodes, ℓmin ∈ R>0 is a lower bound on the line
impedances, and maximum voltage magnitude Vmax.

Theorem 1 (Decentralized stability condition) Assume that
all poles of gωn,pn(s) are in the open left half-plane for all
n ∈ N . The overall frequency dynamics shown in Fig. 6 are
asymptotically stable if there exists α ∈ [0, π/2) such that

Re
{
ejα(1 + γ

ψn

µ(jωp)
jωp

gωn,pn(jωp))
}
> 0

holds for all n ∈ N and ωp ∈ R ∪ {∞}.

The proof of the Theorem follows by applying elementary
block operations to obtain the block diagram shown in Fig. 6.
Because µ(s)−1 is asymptotically stable, it remains to show
that the closed loop with δp(s) = 0 is stable. This directly
follows from [14, Lem. 5, Th. 1], scaling L as in [14, Fig. 4],
and noting that γ is an upper bound on the largest eigenvalue
of the graph Laplacian L, and applying the frequency response
bounds in [14, Sec. III-C].

Notably, the stability condition of Theorem 1 account for
key system parameters such as the R/X ratio and coupling
strength (i.e., lowest line inductance), but does not require
knowledge of the exact line parameters or network topology. In
particular, conditions can be applied for each bus without as-
sembling the overall network model. Moreover, the conditions
of Theorem 1 can be checked graphically through Nyquist
plots as discussed in Sec. IV-G and Sec. V-F.

While Theorem 1 allows certification of small-signal fre-
quency stability under interconnection, it does not provide any
performance guarantees (e.g., frequency damping). Instead, the
next section focuses on local performance specifications.

B. Performance Specifications
Local performance specifications are developed that re-

strict the response of CIG to disturbances. We will first

1
µ(s) Gω,p(s)Ψ

−1µ(s)

L 1
s

δp(s)

p(s)

−
ω(s)

Fig. 6. Rearranged small-signal frequency dynamics with constant resistance-
inductance ratio.
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mathematically define requirements and, subsequently, provide
illustrative examples. To this end, we use the two-bus system
shown in Fig. 7, consider ωg and Vg as disturbance inputs,
and formulate performance specifications on the ability of
the device under test (DUT) to reject grid disturbances at
its local bus. We first consider the quasi-steady-state network
model to characterize the desired response and then verify
the specifications for typical controls in Sec. V-B using EMT
simulations. The response of the CIG bus frequency to a grid
frequency perturbation ωg is given by

gω,ωg
(s) =

gp,θ(0)gω,p(s)

s+ gp,θ(0)gω,p(s)
. (3)

Next, let ωp denote the frequency of the perturbation applied
to the grid frequency ωg . Then,

|gω,ωg
(jωp)| ≤

∣∣∣∣ 1

τf jωp + 1

∣∣∣∣ (4)

ensures a well-damped local CIG bus frequency at high
frequencies and rules out amplification of low-frequency os-
cillations. This condition combines the "frequency smoothing"
requirement proposed in [13] with a passivity requirement at
low frequencies. In other words, the Bode magnitude plot is
restricted to a maximum of unity gain at low frequencies,
indicating passive behavior that prevents resonance under all
frequencies. Moreover, the unit dc gain implies synchroniza-
tion with the infinite bus. A high-frequency roll-off follows
afterward, which begins at a corner frequency determined by
τf . Thus, condition (4) imposes conditions on the transient
stability of a CIG, requiring it to both prevent amplification
of and attenuate high-frequency disturbances. With transfer
function gp,ωg (s), we can characterize droop functions for
active power and frequency using only input-output data, i.e.,
without requiring a specific control implementation. Given an
active power droop gain mp ∈ R>0, a tolerance ϵ ∈ R>0, and
frequency range ωp ∈ [0, ω̄] on which the CIG should provide
frequency droop, results in the specification

m−1
p − ϵ ≤ |gp,ωg (jωp)| ≤ m−1

p + ϵ, ∀ωp ≤ ω̄. (5)

We emphasize that (4) and (5) are distinct specifications and
controls may satisfy (4) without providing the frequency droop
response specified by (5) (see Sec. IV-E).

C. Example: GFM Droop control
The most prevalent form of GFM control is droop control,

which imposes the linear relationship

gdroop(s) =
mp

τs+ 1
(6)

between active power injection as the input and frequency as
the output, where τ ∈ R>0 is the time constant for filtering
active power measurements.

θg

Vg

pc,Vcθc

DUT

, c, q

Fig. 7. Two-bus system used to define and assess performance specifications.

10−2 10−1 100 101 102 103 104

-100

-50

0

50

100

high frequency
roll-off

mp ↑

τ ↑

Perturbation frequency ωp (Hz)

|g ω
,ω

g
(j
ω
p
)|

(d
B

)

Fig. 8. Bode magnitude plot gω,ωg (s) for GFM droop control. The droop
constant mp shifts the first corner frequency. The time constant τ shifts the
second pole and the start of the high-frequency roll-off.

The Bode magnitude plot of gω,ωg
(s) with gω,p(s) =

gdroop(s) is shown in Fig. 8. For low frequency oscillations, the
CIG does not damp the CIG bus frequency but synchronizes
with the infinite bus. Once oscillations surpass the cut-off
frequency, the gain decreases, i.e., illustrating that droop
control achieves high-frequency damping. The dependency of
gω,ωg

(s) on the control variables mp and τ is shown in Fig. 8.

D. Example: SRF-PLL GFL control

Ubiquitous implementations of GFL control utilizes a SRF-
PLL and frequency damping. The active power injection of a
GFL CIG as a function of frequency is given by

ggfl(s) = g−1
PLL(s)g

−1
D (s) (7a)

=
s2 + kps+ ki
kps+ ki

τds+ 1

D
(7b)

where kp ∈ R>0 and ki ∈ R>0 are the PLL gains and τd ∈
R>0 is the time constant of the realizable differentiator for
implementing frequency damping.

Fig. 9 shows the Bode magnitude plot of gω,ωg (s) for
gω,p(s) = ggfl(s). It can be seen that SRF-PLL GFL control
cannot achieve a high-frequency roll-off.

Proposition 1 (SRF-PLL damping) There exist no coeffi-
cients kp ∈ R>0, ki ∈ R>0, τd ∈ R>0, such that the SRF-PLL
control (7) satisfies the performance specification (4).

10−2 10−1 100 101 102 103 104 105 106 107
−40

−20

0

20
τd ↓, kp ↑gp,θ(0) ↑

Perturbation frequency ωp (Hz)

|g ω
,ω

g
(s
)|

(d
B

)

Fig. 9. Bode magnitude plot of gω,ωg (s) for SRF-PLL GFL control. Notably,
SRF-PLL GFL control does not provide damping for low or high frequencies.
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PROOF Let gω,p(s) = ggfl(s). Then, the relative degree of
gω,ωg

(s) is zero and it follows that gω,ωg
(jωp) converges to a

constant as ωp → ∞. This immediately contradicts (4). ■

Figure 9 shows two cut-off frequencies that define the range
of damping. Because the GFL control utilizes a PLL, the
stiffness of the network connection plays an important role
in the converter’s dynamic behavior. As the strength of the
network connection increases (i.e., gp,θ(0) → ∞), the nadir
increases and the cut-off frequencies shift toward each other.
In turn, the range and impact of the converter’s oscillation
damping decreases. More aggressive tuning (i.e., τd → 0
and kp → ∞) increases the second cut-off frequency to
extend the range of damping and decrease the nadir, which
improves performance. However, a stiffer network, i.e., a
high short circuit ratio (SCR), will negate these effects and
narrow the range of damping. Notably, practical bandwidth
limits preclude highly aggressive tuning, i.e., imposing a lower
bound on τd and upper bound on kp, which restricts the
maximum value of the second cut-off frequency.

E. Example: GFM PI control
GFM control without active power droop can be imple-

mented via the proportional-integral (PI) control

ggfm pi(s) =
ξis+ ξp
τs2 + s

(8)

where ξp and ξi are the PI control gains. Note that (8)
has a pole at zero and does not satisfy the requirements of
Theorem 1. This control is included here to illustrate the need
to investigate performance specifications beyond the transfer
function gω,ωg

(s) considered [13]. The GFM PI control can
be designed to achieve the same response for |gωg,ωc

(s)| as
GFM droop control. The first plot in Fig. 10 illustrates that
both controls have identical Bode magnitude plots. However,
GFM PI control can be differentiated from the GFM droop
control when examining power injection instead of converter
bus frequency. The second plot in Fig. 10 demonstrates that
the two controls differ in the low and high-frequency ranges.

−100

−50

0

high frequency
roll-off

|g ω
,ω

g
(j
ω
p
)|

(d
B

)

10−3 10−2 10−1 100 101 102 103

−40

−20

0

20

40

droop response

Perturbation frequency ωp (Hz)

|g p
,ω

g
(j
ω
p
)|

(d
B

)

Fig. 10. The magnitude Bode plots of gω,ωg (s) (top) for GFM droop ( )
and GFMPI ( ) controls look identical. However, the two controls exhibit
different responses for gp,ωg (s) (bottom). GFM PI control does not have a
steady-state droop response but displays high-frequency roll-off.

In the low-frequency range, the active power injection from
GFM droop control is dictated by the droop coefficient. This
feature is not present in the GFM PI response. highlighting
that the high-frequency roll-off (4) discussed in [13] does not
fully characterize the performance and functionalities of CIG.

F. Example: Interoperability with steady-state network model
We first illustrate the results of Theorem 1 using the stan-

dard quasi-steady-state network model (i.e., µ(0)) considered
in [14]. The interoperability condition of Theorem 1, can
be checked graphically by verifying that the Nyquist plot of
γµ(0)
ψs gω,p(s) is bounded by a half-plane crossing (−1, 0) with

angle α. The Nyquist plot of the controls considered in this
section are shown in Fig. 11. Since gdroop(s)/s has only two

−2 −1 0 1 2

−4

−2

0

2

4
α

Re{γµ(0)ψs gω,p(s)}
Im

{γ
µ
(0

)
ψ
s
g ω
,p
(s
)}

Fig. 11. Nyquist plots of γµ(0)
ψs

gpc,ωc (s) using an algebraic model of a static
network for GFM droop ( ), GFM PI ( ), and SRF-PLL GFL control
( ). The lighter curves show the Nyquist plots for increased γµ(0)

ψ
, i.e.,

decreased minimum line inductance ℓmin or rating ψ.

poles and a maximum gain of unity, the Nyquist curve never
crosses the imaginary or real axis while approaching the origin
as s→ ∞. Therefore, we can always increase α to enclose the
Nyquist curve of GFM droop control and guarantee stability
and interoperability of systems that only contain GFM droop
control for any network coupling strength or CIG rating. We
must note that this result is misleading, as shown in [16]
and discussed in the next example. In particular, GFM control
becomes unstable if the network coupling γ is too strong or
the device rating ψ becomes too low.

On the other hand, Theorem 1 cannot be used to certify
stability of GFL and GFM for any network coupling strength
γ. Specifically, as ωp → ∞, the GFL Nyquist curve tends
toward ∞ and cannot be bounded jointly with the GFM
Nyquist curve as required by Theorem 1. We emphasize that
the Nyquist plot of GFL CIG violates the stability bound for
high frequencies at which the steady-state network model is
not applicable.

GFM PI control has a pole at zero and, therefore, Theorem 1
is not applicable. The Nyquist plot of GFM PI control is
included for completeness. Note that it starts outside the
stability bound and reaches within the boundary as s→ ∞.

G. Example: Interoperability with network circuit dynamics

Figure 12 shows the Nyquist diagram of γµ(s)
ψs gω,p(s) for

various controls. A striking outcome is the similarity between
the GFM droop and GFL curves. Loosely speaking, GFM
droop and SRF-PLL GFL control exhibit a similar response
in the low-frequency range and deviate for high frequencies.
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Fig. 12. Nyquist diagram of γµ(s)
ψs

gω,p(s) for GFM droop ( ), GFM
PI ( ), and SRF-PLL GFL ( ) control considering network circuit
dynamics. The lighter curves show the Nyquist plots for increased γµ(0)

ψ
,

i.e., decreased minimum line inductance ℓmin or rating ψ.

However, µ(s) is a low pass filter that attenuates the dif-
ferences at high frequencies and hence the Nyquist plots of
γµ(s)
ψs gω,p(s) for both controls become similar.
As the network connectivity increases, the margin between

the Nyquist curves γµ(s)
ψs gω,p(s) and the half-plane tightens for

both GFM droop control and SRF-PLL GFL control. Figure 12
reveals that stronger network coupling (i.e., increasing γ) and
reduced rating (i.e., decreasing ψ) eventually result in instabil-
ity. This is in line with results for GFM in [15], [5], [16] but, at
first glance, may seem to contradict results that show that GFL
control is vulnerable to instability under weak grid coupling
[18, Sec. III-B]. However, we emphasize that these results
typically only apply to GFL CIG connected to an infinite
bus, whereas in a multi-converter system, GFL instabilities
under weak coupling may be related to voltage stability [18,
Sec. VI-A]. Overall, under our modeling assumptions, weak
grid coupling affects GFL performance (see Sec. IV-D) but
not necessarily frequency stability.

Finally, GFM PI control again violates the conditions of
Theorem 1. Extending Theorem 1 to account for GFM PI
control is seen as interesting topic for future work.

V. DATA-DRIVEN VALIDATION

Finally, we develop a method for validating the proposed
interoperability and performance specifications and apply it to
input-output data obtained from detailed EMT simulations.

A. Frequency response models from input-output data
Conceptually, standard system identification methods could

be used to obtain the bus transfer functions (1). However, these
typically fit a model with prescribed numbers of poles and
zeros to the data. Crucially, the specifications developed in
the previous sections do not require knowledge of the transfer
functions in closed form but can be tested if the response at
discrete frequencies is known. To this end, we use the two-
bus system shown in Fig. 13 that consists of a controlled ac
voltage source and the DUT. To recover a frequency response
model, we follow a three-step procedure.

1) Probing signal: The voltage imposed by the ac source
is given by Vg = |Vg| sin(ωgt), where |Vg| and ωg denote the
voltage magnitude and frequency. To excite the system, we
apply a perturbation with frequency ωp

|Vg| = V ⋆ +AV sin(ωpt) (9a)
ωg = ω0 +Aω sin(ωpt). (9b)

Here V ⋆ ∈ R>0 and ω0 denote the nominal voltage magnitude
and frequency, AV and Aω denote the amplitudes of the
perturbations. To recover the transfer functions (1) at discrete
frequencies ωp, for each ωp two experiments are conducted
that separately perturb voltage magnitude (i.e., AV ∈ R>0

and Aω = 0) and frequency (i.e., AV = 0 and Aω ∈ R>0).
2) Measurement of output signals at the CIG bus: At the

CIG bus, we measure the three-phase voltage vabc, p, and q
(see Fig. 13) in a synchronous reference frame rotating at
the nominal frequency, i.e., θ0(t) = ω0t. Next, the voltage
magnitude V and phase angle θ relative to θ0(t) are computed.
The amplitude and phase shift of the oscillations in the signals
V , θ, p, and q are recovered by computing their Fourier Series
coefficients corresponding to ωp. This allows representing the
phase shift and magnitude of the perturbations as phasors
∆V ∈ C, ∆θ ∈ C, ∆p ∈ C, and ∆q ∈ C. Finally, we can
compute the frequency ∆ω by applying the phase shift and
gain of a differentiator at frequency ωp, i.e., ∆ω = jωp∆θ. A
critical feature of this approach is that the data obtained for
analysis is experimentally accessible without any knowledge
of the internal hardware or controls of the converter.

3) Recovering the frequency response model: The phasors
of the experiments at every frequency are collected in vectors

Y (jωp) =

[
∆ωω(jωp) ∆ωV (jωp)
∆Vω(jωp) ∆VV (jωp)

]
,

U(jωp) =

[
∆pω(jωp) ∆PV (jωp)
∆Qω(jωp) ∆qV (jωp)

]
,

where the columns correspond to perturbations of the ac source
frequency and voltage, respectively. The transfer matrix (1) at
the given frequency ωp can then be immediately recovered by
solving the equation

Y (jωP ) =

[
gω,p(jωp) gω,q(jωp)
gV,p(jωp) gV,q(jωp)

]
U(jωp). (10)

B. Bode plots of CIG bus dynamics

Next, we apply our approach in an EMT simulation of
the system shown in Fig. 13 with detailed sampled-data
control implementations with a controller sampling frequency
of 10 kHz and an averaged model of a two-level VSC1. The
resulting Bode magnitude plots are shown in Fig. 14. Notably,
we implemented GFM droop control with cascaded inner
controls (see, e.g., [12, Fig. 4b]), GFM PI control with inner

1This study focuses on perturbation frequencies ωp of up to 100 Hz and
therefore neglect converter switching that is typically in the range of > 2 kHz.

Zline Cf Zf

DUT

Vg, θg

abc
dq

dq
̸ v;|v|

FFT

vabc

θ0
p, q

ωp

|V |; ̸ V
|θ|; ̸ θ
|p|; ̸ p
|q|; ̸ q

Fig. 13. Two-bus system and signal processing for capturing frequency
response models.
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Fig. 14. Bode magnitude plots that illustrate the local CIG dynamics for GFM single-loop droop ( ), GFM dual-loop droop ( ), GFM PI ( ),
and SRF-PLL GFL ( ) controls.

loops, GFM droop control without inner control loops, and
standard SRF-PLL GFL control with droop (see [12, Fig. 4a]).

The results grant insight into the limitations of the as-
sumptions posed in the theoretical derivations and analytical
models, especially for higher perturbation frequencies. In the
ideal case (e.g., inductive coupling and infinite bandwidth of
the inner control loops), it is expected that the diagonal entries
of (10) correspond to the P−f and Q−V droop characteristics
of the outer controls (6), (8), and (7), while the off-diagonal
entries of (10) are zero. For lower frequencies (i.e., up to 1 Hz),
this is reflected in the numerical results.

Without the inner control loops, the filter impedance results
in an additional voltage drop between the converter switch
terminal and the terminal voltage used to compute (10).
Therefore, GFM droop without inner loops does not reflect
the reference Q − V dynamics even at low frequencies. Fur-
thermore, the off-diagonal entries of (10) are only negligible
for low perturbation frequencies.

The plots match the analytical predictions in the medium
frequency range (1 to 60 Hz) for GFM droop and GFM PI
with inner loops, e.g., showing the high-frequency roll-off
in |gω,p(jωp)| expected from (6) and (8). In contrast, GFL
displays an increase in |gω,p(jωp)| since ggfl(s) is improper.

In the high-frequency range (after 60 Hz), the numerical
results no longer coincide with (6), (8), and (7). The inner
loops are no longer able to accurately track the fast oscillations
which compromises the CIG’s ability to track the reference
dynamics (6), (8), and (7). Moreover, for all controls, the off-
diagonal entries of (10) are no longer negligible highlighting
that filter circuit dynamics and cross-coupling cannot be
neglected at around line frequency. These results show that
the performance specifications proposed in Sec. IV-B can
only be imposed up to the bandwidth limits of the controls.
Investigating the impact of control and modulation bandwidth
limits is seen as an interesting topic for future work.

C. External Measurement vs. Internal Reference

An advantage of the approach in Sec. V-A over the approach
in [13] is that it captures the frequency dynamics at the CIG
terminal while [13] requires access to the internal frequency of

GFM and GFL controls. To illustrate the differences between
the frequency dynamics at the CIG terminal and reference
frequency, we apply our approach from Sec. V-A to both
frequency signals. The results are compared in Fig. 15. For
GFM CIGs, the results from using the bus measurements show
larger resonance peaks and less attenuation compared to those
using the internal references. This result shows that the internal
reference frequency is not an adequate signal to assess the
performance and interoperability of the response at the CIG
terminal.

100 101 102
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(j
ω
p
)|
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Fig. 15. Bode magnitude plot of gω,ωg (jωp) (solid) compared to that of
gωref ,ωg (jωp) (dashed) for GFM single-loop droop ( ), GFM dual-loop
droop ( ), and GFM PI ( ). The CIG bus frequencies diverge from
the internal reference frequencies between 5 Hz and 20 Hz.

D. Impact of coupling strength on GFL performance
Numerical results for various grid coupling strength (i.e.,

SCRs) are shown in Fig. 16 and confirm the analytical results
in Sec. IV-D, i.e., as the SCR increases |gω,ωg (jωp)| tends
to 0 dB. This result indicates that under a stiffer network
connection, the GFL CIG is better able to track the frequency
of the infinite bus and keep synchronization for longer. In
contrast, the minimum of |gω,ωg

(jωp)| lowers and the range
of attenuation widens, as the SCR decreases.

E. Impact of inner loop tuning on GFM droop control
While the dual-loop GFM control structure is beneficial in

tracking the GFM reference dynamics at the CIG terminal (see
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Fig. 16. Bode magnitude plot of gω,ωg (jωp) for SRF-PLL GFL control for
a SCR of 2.5 ( ), 5 ( ), and 10 ( ).

Fig. 14), it can also degrade the disturbance response if the
inner loop gains are not tuned carefully. Figure. 17 shows the
transfer function gω,ωg

(jωp) for GFM droop control without
inner loops, low inner loop gains, and high inner loop gains.
The response without inner loops attenuates grid frequency
disturbances in the range from 1 Hz to 60 Hz. Selecting inner
loop gains on the stability boundary results in resonant peaks
at 12 Hz and 40 Hz. In contrast, reducing the inner loop gains
results in resonance at 25 Hz. Thus, our method reveals that
inner loop tuning results in a trade-off between tracking the
reference dynamics and rejecting frequency disturbances.
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Fig. 17. Bode magnitude plot of gω,ωg (jωp) for single-loop GFM control
( ), low inner loop gains ( ), and high inner loop gains ( ).

F. Interoperability

Next, we illustrate that the interoperability conditions from
Theorem 1 can be verified using only input-output data. The
Nyquist plot of γµ(jωp)

ψjωp
gω,p(jωp) for various controls is shown

in Fig. 18. It can be seen that the results match the predictions
based on analytical models in Sec. IV-G. Moreover, for the
purpose of the stability conditions of Theorem 1, there is no
significant difference between GFM droop control with and
without inner loops. Finally, as discussed in Sec. IV-G the
difference between GFM droop control and SRF-PLL GFL
droop control is again small.

G. Phase lag

Finally, we note that different control implementations may
be subject to various delays that manifest as phase shifts in the
Bode plot and cannot be detected using Bode magnitude plots.
Developing specifications for the Bode phase plots that rule
out destabilizing phase lags is seen as an important direction
for future work. Preliminary results for the phase shift of
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Fig. 18. Nyquist diagram of γµ(jωp)

ψjωp
gω,p(jωp) for GFM single-loop droop

( ), GFM dual-loop droop ( ), GFM PI ( ), and SRF-PLL GFL
( ) control considering network circuit dynamics.

gp,ωg
(jωp) are shown in Fig. 19. These results highlight

that the SRF-PLL GFL frequency droop suffers from delays
that cause phase lags in the Bode phase plot beginning at
approximately 1 Hz. In contrast, it can be seen that GFM
control does not exhibit phase lag until around 6 Hz.
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Fig. 19. Bode plot of gp,ωg (jωp) for GFM single-loop droop ( ), GFM
dual-loop droop ( ), GFM PI ( ), and GFL ( ) controls. The
phase plot shows a phase lag in the GFL response beginning at a much lower
frequency than in the GFM responses.

VI. CONCLUSION

In this work, we investigated interoperability and perfor-
mance specifications for converter interfaced generation that
can be verified with only input-output data. We first extended
decentralized conditions for frequency stability to include
network circuit dynamics. The conditions utilize a few key grid
parameters and can be verified without exact knowledge of net-
work parameters or topology. Moreover, we developed input-
output performance specifications that characterize the distur-
bance response of CIG. Finally, we presented a data-driven
validation method that allows for verification of the aforemen-
tioned interoperability and performance specifications using
only input-output data. Moreover, the data-driven method was
leveraged to illustrate the impact of key parameters such
as inner control loop gains, network coupling strength, and
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controller bandwidth limitations. Extending the framework
to performance specifications on phase plots, networks with
heterogeneous R/X ratios, and GFM PI controls are seen as
interesting areas for future work.

REFERENCES

[1] F. Paganini and E. Mallada, “Global analysis of synchronization per-
formance for power systems: Bridging the theory-practice gap,” IEEE
Trans. Autom. Control, vol. 65, no. 7, pp. 3007–3022, 2020.

[2] J. Matevosyan et al., “Grid-forming inverters: Are they the key for high
renewable penetration?” IEEE Power Energy Mag., vol. 17, no. 6, pp.
89–98, 2019.

[3] M. Chandorkar, D. Divan, and R. Adapa, “Control of parallel connected
inverters in standalone ac supply systems,” IEEE Trans. Ind. Appl.,
vol. 29, no. 1, pp. 136–143, 1993.

[4] S. D’Arco, J. A. Suul, and O. B. Fosso, “A virtual synchronous
machine implementation for distributed control of power converters in
smartgrids,” Electr. Pow. Sys. Res., vol. 122, pp. 180–197, 2015.

[5] D. Groß, M. Colombino, J.-S. Brouillon, and F. Dörfler, “The effect
of transmission-line dynamics on grid-forming dispatchable virtual os-
cillator control,” IEEE Trans. Control Netw. Syst., vol. 6, no. 3, pp.
1148–1160, 2019.

[6] A. Tayyebi, D. Groß, A. Anta, F. Kupzog, and F. Dörfler, “Frequency
stability of synchronous machines and grid-forming power converters,”
IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 8, no. 2, pp. 1004–
1018, 2020.

[7] F. Dörfler and D. Groß, “Control of low-inertia power systems,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 6, no. 1, pp.
415–445, 2023.

[8] O. Gomis-Bellmunt, E. Sánchez-Sánchez, J. Arévalo-Soler, and
E. Prieto-Araujo, “Principles of operation of grids of dc and ac subgrids
interconnected by power converters,” IEEE Trans. Power Del., vol. 36,
no. 2, pp. 1107–1117, 2021.

[9] A. Crivellaro, A. Tayyebi, C. Gavriluta, D. Groß, A. Anta, F. Kupzog,
and F. Dörfler, “Beyond low-inertia systems: Massive integration of grid-
forming power converters in transmission grids,” in IEEE PES General
Meeting, 2020.

[10] U. Markovic, O. Stanojev, P. Aristidou, E. Vrettos, D. Callaway, and
G. Hug, “Understanding small-signal stability of low-inertia systems,”
IEEE Trans. Power Syst., vol. 36, no. 5, pp. 3997–4017, 2021.

[11] S. Dong, B. Wang, J. Tan, C. J. Kruse, B. W. Rockwell, and A. Hoke,
“Analysis of november 21, 2021, Kaua‘i island power system 18-20 hz
oscillations,” 2023, arXiv:2301.05781.

[12] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of power
converters in AC microgrids,” IEEE Trans. Power Electron., vol. 27,
no. 11, pp. 4734–4749, 2012.

[13] M.-S. Debry, G. Denis, and T. Prevost, “Characterization of the grid-
forming function of a power source based on its external frequency
smoothing capability,” in IEEE PowerTech, 2019.

[14] R. Pates and E. Mallada, “Robust scale-free synthesis for frequency
control in power systems,” IEEE Trans. Control Netw. Syst., vol. 6,
no. 3, pp. 1174–1184, 2019.

[15] P. Vorobev, P.-H. Huang, M. Al Hosani, J. L. Kirtley, and K. Turitsyn,
“A framework for development of universal rules for microgrids stability
and control,” in IEEE Conf. on Dec. and Contr., 2017, pp. 5125–5130.

[16] D. Groß, “Compensating network dynamics in grid-forming control,” in
Allerton Conference on Communication, Control, and Computing, 2022.

[17] D. Ramasubramanian et al., “Performance specifications for grid-
forming technologies,” in IEEE PES General Meeting, 2023.

[18] Y. Li, Y. Gu, and T. C. Green, “Revisiting grid-forming and grid-
following inverters: A duality theory,” IEEE Trans. Power Syst., vol. 37,
no. 6, pp. 4541–4554, 2022.


	Introduction
	Motivation and Problem Setup
	Power system model
	Network topology
	Device model
	Transmission line model
	Multi-converter / multi-machine network model

	Interoperability & Performance Specifications
	Interoperability of Frequency Dynamics
	Performance Specifications
	Example: GFM Droop control
	Example: SRF-PLL GFL control
	Example: GFM PI control
	Example: Interoperability with steady-state network model
	Example: Interoperability with network circuit dynamics

	Data-Driven Validation
	Frequency response models from input-output data
	Probing signal
	Measurement of output signals at the CIG bus
	Recovering the frequency response model

	Bode plots of CIG bus dynamics
	External Measurement vs. Internal Reference
	Impact of coupling strength on GFL performance
	Impact of inner loop tuning on GFM droop control
	Interoperability
	Phase lag

	Conclusion
	References

