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Abstract

The recent advancements in data availability and computational power have al-
lowed the development of new machine-learning algorithms and data-analysis tech-
niques that have opened up new avenues to study the Galactic neutron-star popula-
tion.

This thesis work represents the first efforts to combine population synthesis stud-
ies of the Galactic isolated neutron stars with deep-learning techniques with the aim
of better understanding neutron-star birth properties and evolution.

In particular, we develop a flexible population-synthesis framework to model the
dynamical and magneto-rotational evolution of neutron stars, their emission in radio
and their detection with radio telescopes. We first study the feasibility of using deep
neural networks to infer the dynamical properties at birth of a simulated population
of neutron stars from density maps storing the information on their sky position and
proper motion. We then explore a simulation-based inference approach to constrain
our physical models from the observed radio pulsar population. We employ a neural
density estimator to predict the posterior distribution of the parameters describing
the birth magnetic-field and spin-period distributions and the late-time magnetic-
field decay from density maps containing information on the spin period and spin-
period derivative. Our results for the initial magneto-rotational properties agree
with the findings of previous works while we constrain the late-time evolution of
the magnetic field in neutron stars for the first time.

Besides the development of the population-synthesis framework, this thesis also
studies possible scenarios to explain the puzzling nature of recently discovered pe-
riodic radio sources with very long periods of the order of thousands of seconds.

In particular, by assuming a neutron-star origin, we study the spin-period evo-
lution of a newborn neutron star interacting with a supernova fallback disk and
find that the combination of strong, magnetar-like magnetic fields and moderate ac-
cretion rates can lead to very large spin periods on timescales of ten thousands of
years. Moreover, we perform population synthesis studies to assess the possibil-
ity for these sources to be either neutron stars or magnetic white dwarfs emitting
coherently through magnetic dipolar losses. These discoveries have opened up a
new perspective on the neutron-star population and have started to question our
current understanding of how coherent radio emission is produced in pulsar mag-
netospheres.

Overall this thesis work represents the first step towards developing a simulation
framework able to model the different neutron star classes in a unified scenario and
constraining the properties of the neutron-star population as a whole from multi-
wavelength observations through machine learning.
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Chapter 1

Neutron stars

1.1 Introduction

The idea of the possible existence of neutron stars was first proposed in 1934, two
years after the discovery of the neutron itself (Chadwick, 1932), when Baade and
Zwicky (1934) wondered if a celestial body made entirely of neutrons might remain
after a supernova explosion. It was not until the 1960s that Baade and Zwicky’s hy-
pothetical neutron stars were finally detected. While working as a PhD student at
the University of Cambridge, Jocelyn Bell Burnell noticed a strange, regularly pulsed
radio signal in the data collected using the Mullard Radio Astronomy Observatory.
These signals were initially interpreted as the result of radial pulsations in either a
white dwarf or a neutron star (Hewish et al., 1968). This groundbreaking discovery
opened up new avenues for exploring the intriguing relationship between neutron
stars and their potential to emit highly focused beams of electromagnetic radiation.
Soon after it was suggested by Pacini (1968) and Gold (1968) that coherent emission
could occur in rotating neutron stars with strong magnetic fields where particles
could be accelerated up to relativistic speeds and emit beams of electromagnetic ra-
diation. This can be detected as pulsed signals as the neutron star rotates like a light-
house. Hence the name "pulsar" was coined. By that time about 20 similar objects
had been identified including a source in the Crab nebula (Staelin and Reifenstein,
1968; Comella et al., 1969) and one in the Vela supernova remnant (Large, Vaughan,
and Mills, 1968). The identification of these pulsars with rotating neutron stars was
in the end confirmed by the measurement of a spin-down in the period of the Crab
pulsar (Richards and Comella, 1969) as a spin-down is more easily achieved in ro-
tating objects rather than in pulsating ones. Furthermore, the identification of some
pulsars with supernova remnants further supported the initial idea of Baade and
Zwicky.

With subsequent technological advancements in observational astronomy, the
population of known neutron stars has grown exponentially. Since the first detec-
tion, around 3000 pulsars have been discovered, not only in the radio band (Manch-
ester et al., 2005)1. Pulsars can emit across a wider wavelength range from radio
to gamma-rays and even be radio-quiet. However, an enduring challenge lies in
accurately characterising their birth properties as well as deciphering the mecha-
nisms that regulate their formation and evolution. Untangling the contributing fac-
tors, such as the initial magnetic field strength and spin period distributions, holds
paramount importance in understanding the diverse outcomes of stellar evolution
and the underlying physical processes within core-collapse supernovae. By combin-
ing observational constraints with data analysis and sophisticated numerical sim-
ulations, researchers can refine existing theoretical models and shed light on the

1see the ATNF pulsar catalog https://www.atnf.csiro.au/research/pulsar/psrcat/

https://www.atnf.csiro.au/research/pulsar/psrcat/
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complex physical processes involved in the formation and evolution of these dense
remnants.

In this chapter we will explore the basics of neutron star physics and our current
understanding of how they evolve, emit electromagnetic radiation, with particular
focus on the radio emission, and how we can detect them (Sections from 1.2 to 1.12).
Additionally, we will provide a summary of the challenges involved in modelling
the Galactic population of neutron stars (Sections 1.13 and 1.14) and explore how
employing a population synthesis framework can help in determining their overall
properties (Section 1.15).

1.2 Formation

The progenitors of most neutron stars are massive stars of spectral types O and B,
characterised by initial masses between around 8 and 25 M⊙ (Shapiro and Teukol-
sky, 1983). In general, depending on its initial mass, a star spend from a few million
years up to more than ten billion years on the main sequence, burning hydrogen into
helium (Phillips, 1994; Prialnik, 2000). In this stage, the thermal pressure released by
the thermonuclear fusion reactions in its core supports the star against gravitational
collapse. However, the more massive a star is, the faster it consumes its nuclear fuel
and the faster it evolves towards its death. After exhausting all the hydrogen in the
core the thermal pressure support coming from hydrogen burning vanishes. The
inner regions of the star, now mainly composed of helium "ashes", start to contract
due to their own gravity. As a consequence they heat up while the outer envelope
expands and cools down. The star becomes a red giant. As the temperature in the
helium core grows upon contraction, new nuclear fusion reactions are triggered. He-
lium starts to burn and to be converted into carbon, oxygen and neon. The released
energy allows to restore again the equilibrium with gravity and the star enters a new
stable phase that usually lasts one-tenth of the main sequence phase. However, once
the helium fuel is exhausted, the core (now composed mainly of oxygen and carbon)
starts to contract again.

In stars with an initial mass of less than about 8 M⊙ , the dense core reaches
equilibrium in a new state of matter called a degenerate electron gas. In this state,
the stellar core is supported against further gravitational contraction thanks to the
pressure exerted by the electrons due to the Pauli exclusion principle, even in the ab-
sence of nuclear reactions. In the meanwhile, the outer envelopes of the star expand
further and are gradually dispersed. What is left is the exposed core of the star with
a mass of ∼ 0.5 − 1 M⊙ and a radius of ∼ 108 cm, made primarily by helium, carbon
and oxygen. A white dwarf has formed.

For stars with an initial mass greater than about 8 M⊙ the electron degeneracy
pressure is not enough to counteract gravity. Therefore they continue the sequence
of core contraction and ignition of new nuclear reactions. As time goes by the inner
core reaches temperatures and densities favourable for the synthesis of progressively
heavier elements. After hydrogen and helium, these massive stars burn carbon,
neon, oxygen, and silicon on progressively faster timescales. In this way, they un-
dergo all the stages of nuclear burning up to the production of elements in the "iron
group" with atomic number A = 56. The iron group elements are the most tightly
bound nuclei and their synthesis into heavier elements consumes, rather than re-
leases, energy. Since no further energy can be released from the nuclear fusion reac-
tions as the iron core grows it becomes unstable and is not further supported against
gravitational collapse. As the iron core approaches the Chandrasekhar mass limit
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of about 1.4 M⊙ (Chandrasekhar, 1931), the central temperature and density reaches
values of about ∼ 109 K and ∼ 109 g cm−3 respectively. The temperature is high
enough that nuclear photo-disintegration is triggered: the abundant energetic pho-
tons trapped in the hot dense core are partly consumed to unbind nuclei into lighter
elements in endothermic reactions. In such a way the photon radiation pressure is
lost. Furthermore, at such densities, reactions like electron capture e− + p −→ n+ νe
become energetically favourable. The electrons are absorbed by the nuclei which be-
come very neutron-rich in what is called neutronisation. This process depletes the
core of electrons and their supporting degeneracy pressure and produces many es-
caping neutrinos which carry away a big amount of energy. This leads to an almost
unrestrained collapse of the stellar core on a free-fall timescale of a few seconds.

As the collapse proceeds, the core central density increases to the point that
neutrons start to drip out of the nuclei and form a degenerate gas. At densities
≳ 1014 g cm−3, the nuclei are completely dissolved into homogeneous nuclear mat-
ter mostly composed of neutrons. If the mass of the collapsing core is not too high
(≲ 3 M⊙ ), the degeneracy pressure exerted by the neutrons is finally able to halt the
collapse. This triggers a shock wave, that propagates outwards through the collaps-
ing stellar layers and blows them up in what is observed as a supernova explosion.
What is left is a very hot (T ∼ 108 K) and compact remnant of mass M ∼ 1 − 2
M⊙ and radius R ∼ 106 cm: a neutron star.

What described above is the evolution of an isolated massive star. Another chan-
nel that leads to the formation of a neutron star is through accretion induced col-
lapse. In this scenario a white dwarf in a binary system can collapse upon surpassing
the Chandrasekhar mass limit due to mass accretion from a companion star (Fryer
et al., 1999).

1.3 Internal structure and the mass-radius relation

To our knowledge, neutron stars are the most compact objects in the Universe where
matter can still reach a stable configuration under the effect of extreme gravity. Their
compactness, defined by the ratio between their Schwarzschild radius RS = 2GMNS

c2

and their radius RNS, is of the order:

RS

RNS
≃ 0.376

(
MNS

1.4M⊙

)(
RNS

11 km

)−1

. (1.1)

This is close to the most extreme value given by a Schwarzschild black hole where
the compactness is 1. The density grows from values less than 104 g cm−3 in the out-
ermost envelope to nuclear density values 1014 − 1015 g cm−3 in the neutron star core.
As you move radially into the star from the surface, the pressure increases to support
the increasing weight of the material above any given point. Hence the structure and
state of matter change as we move inside (see Chamel and Haensel, 2008, for a re-
view). The outer layers (∼ 100 m) are a liquid ocean of heavy nuclei of the iron group
and degenerate free electrons. As one moves into the crust (∼ 1 km), the nuclei are
more packed together and the Coulomb interactions between them begin to domi-
nate over the thermal energy. The nuclei rearrange themselves to form a solid elastic
lattice. On the other end, the degenerate free electrons become relativistic. At the
basis of the crust and the interface with the core, the heavy nuclei become more and
more neutron-rich and deformed into cylindrical and planar shapes. This is the so-
called "nuclear pasta phase". Moving into the inner core the nuclei are completely
dissolved into an ocean of free neutrons togeteher with protons, ultra-relativistic



4 Chapter 1. Neutron stars

FIGURE 1.1: Neutron star mass-radius curves corresponding to dif-
ferent equations of state calculated under different physical assump-
tions and using a range of computational approaches (see Özel and
Freire, 2016, for more details) (Figure taken from Özel and Freire,

2016).

electrons and muons. The neutron degenerate pressure supports the neutron star
against collapse. However, at these extreme densities, the exact composition and the
properties of matter in the inner core are not clear as exotic particles may be present.
Therefore the exact equation of state, i.e. the relation linking pressure and density,
for neutron stars is still unknown. Oppenheimer and Volkoff (1939) and Tolman
(1939) were the first ones to propose an equation of state of a relativistic gas of de-
generate neutrons and a model for the hydrostatic equilibrium of general relativistic
bodies also known as Oppenheimer-Volkoff-Tolmann equation:

dp(r)
dr

=
GM(r)ρ(r)

r2

[
1 +

p(r)
ρ(r)c2

] [
1 +

4πr3 p(r)
M(r)c2

] [
1 − 2GM(r)

c2r

]−1

, (1.2)

where p(r) and ρ(r) are the pressure and density, respectively, and M(r) is the mass
within the radius r. In particular, the solution of this equation maps a given equa-
tion of state to the corresponding mass-radius relation, linking in this way the mi-
croscopic to the macroscopic properties of the star. Since then the knowledge of the
behaviour of matter at nuclear densities has progressed and several models for the
equation of state of neutron stars have been proposed. The uncertainty is still big.
For a given mass, these equations of state allow a range of radii between ∼ 7 km
up to ∼ 16 km (see Figure 1.1). Therefore, to constrain the equation of state for the
neutron star matter, it is crucial to obtain independent measurements of the mass
and radius (see Özel and Freire, 2016, for a review).

The currently available measurements of neutron star masses come primarily
from the study of neutron stars in binary systems. Up to now the minimum mass
measured for a neutron star is 1.174 ± 0.004 M⊙ for PSR J0453+1559 (Martinez et
al., 2015) while the heaviest neutron star is PSR J0952–0607 which has an estimated
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mass of 2.35± 0.17 M⊙ (Romani et al., 2022). Finding the maximum mass for neutron
stars is of particular relevance since it can rule out the equations of state that predict
maximum masses below this value.

Until recently, the measurement of neutron-star radii mainly relied on X-ray ob-
servations and spectral analysis of quiescent and accreting neutron stars (Miller et
al., 2019; Riley et al., 2019). The typical estimates for the radii obtained with these
methods are in the range 10 − 14 km (see, e.g., Steiner et al., 2018). However, these
analyses are often affected by systematics that are difficult to quantify. After the
serendipitous detection of the famous binary neutron-star merger GW170817 and
its electromagnetic counterparts (Abbott et al., 2017b; Abbott et al., 2017c; Abbott
et al., 2017a), the beginning of the multi-messenger observation era has opened a
new window on this front. For example, by combining electromagnetic and gravi-
tational wave data Margalit and Metzger (2017) managed to put constraints on the
maximum neutron star mass. Capano et al. (2020) and Raaijmakers et al. (2021) com-
bined nuclear theory with the data from the gravitational waves and electromagnetic
emission from this event using a Bayesian framework. They were able to constrain
the radius of a neutron star with mass M = 1.4 M⊙ to values around 11 − 12 km.

1.4 Spin periods

By identifying the periodicity of the arrival time of pulses of radiation with the neu-
tron star spin periods implies that these celestial bodies rotate at very high speeds.
From the observed population their spin periods range from a few milliseconds to
a few tens of seconds (see Figure 1.12). The majority of these measurements come
from radio timing analysis which has also unveiled that their spin periods increase
with time at rates between around 10−20 s s−1 and 10−10 s s−1. This suggests that gen-
erally neutron stars spin down over time and they should be born with even shorter
rotation periods.

Several works involving analyses of young supernova remnants (e.g. Chevalier,
2005), population synthesis studies (e.g. Popov and Turolla, 2012; Faucher-Giguère
and Kaspi, 2006; Gullón et al., 2014) and supernova simulations (e.g. Ott et al., 2006;
Janka, Wongwathanarat, and Kramer, 2022), have suggested that the birth spin pe-
riods of neutron stars should range between a few tens of milliseconds up to a few
hundreds of milliseconds. However, the origin of such fast rotation is still unclear.

A first insight into how neutron stars could achieve these fast rotation can be
gained by considering the angular momentum conservation during the collapse of
the iron core. For an order of magnitude estimation we consider a core with mass
Mcore ∼ 1.4 M⊙ , radius comparable to our Sun Rcore ∼ 1011 cm and spin period
P ∼ 1 day. From the conservation of angular momentum, we get that:

McoreR2
coreωcore ∼ MNSR2

NSωNS, (1.3)

where ω = 2π/P is the spin angular velocity and we assumed mass conservation
during the core collapse, i.e., Mcore ∼ MNS. During the collapse, as the radius
shrinks to RNS ∼ 106 cm reducing the moment of inertia by a factor ∼ 1010, the
angular velocity should increase by the same amount. As a consequence, newborn
neutron stars should spin with periods of the order of milliseconds.

However angular momentum conservation is not the only ingredient to explain
the neutron star’s fast rotation. Various mechanisms acting during and after the su-
pernova explosion could contribute to spinning up or spinning down the collapsing
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core and the newly formed neutron star. During the core collapse and the develop-
ment of the supernova, hydrodynamical instabilities and turbulent motion of mass
could cause asymmetric mass ejection in the supernova. This asymmetry imparts
accelerating forces on the core over timescales from several seconds to hours. In this
way, the newly formed neutron star is displaced from the centre of the collapse and
receives a kick that can be of several hundreds of kilometers per second (see, e.g.,
Hobbs et al., 2005, but also Chapter 5). As the neutron star moves in the super-

nova ejecta it can accrete a fraction of the matter that has remained gravitationally
bound. This anisotropic accretion of mass could transfer a relevant amount of an-
gular momentum to the compact remnant after the development of the supernova
Janka, Wongwathanarat, and Kramer (2022) and Coleman and Burrows (2022). This
scenario suggests also a possible link between the origin of the fast neutron stars’
proper motion and their spin period.

1.5 Magnetic fields

To our knowledge neutron stars are also the strongest magnets in the Universe. A
direct measurement of the magnetic field strength is not straightforward though.
One possibility is through the detection of cyclotron lines, that generally appear as
absorption features in the UV and X-ray spectra of systems containing highly mag-
netised neutron stars. Almost all the observations of cyclotron absorption features
come from neutron stars accreting matter from a stellar companion, also called X-
ray binary pulsars. These features are produced as the photons produced by the hot
column of plasma accreted onto the neutron star’s magnetic poles are resonantly
scattered by charged particles gyrating around the magnetic field lines (see for ex-
ample Staubert et al., 2019, for a review).

However, generally, neutron star magnetic fields are indirectly estimated from
their rotational properties. The commonly adopted explanation for this rotational
energy loss is that the neutron star experiences an electromagnetic torque generated
by a very powerful dipolar magnetic field (see Section 1.8). With this assumption,
from the measurements of the spin period and spin period derivative one can infer
dipolar magnetic field values that range between 108 G to almost 1015 G.

How such strong magnetic fields are generated is still a matter of debate. One
idea is that the neutron star inherits the magnetic field of the parent OB star. In this
fossil field hypothesis, during the core collapse the magnetic field gets amplified due
to magnetic flux freezing (Ferrario and Wickramasinghe, 2006; Hu and Lou, 2009).
Ordinary OB stars have a magnetic field of the order of B ∼ 102 G with some of them
exceeding 103 G. From the conservation of the magnetic flux, we have that:

BcoreR2
core ∼ BNSR2

NS. (1.4)

As the core radius contracts by a factor ∼ 105, the magnetic field should be amplified
by a factor ∼ 1010. This translates to a magnetic field of the order of BNS ∼ 1012 G
for a newborn neutron star, in line with current estimates. A second hypothesis is
that a strong magnetic field originates dynamically from a dynamo process. During
the formation of the proto-neutron star, the magnetic field could be amplified by
electric currents generated from rapid rotation or turbulent convective motions of
conductive material inside the proto-neutron star a few seconds after its formation
(see e.g. Burrows, 1987; Burrows and Lattimer, 1988; Duncan and Thompson, 1992;
White et al., 2022). Probably both effects play a role in the creation of such intense
magnetic fields.
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FIGURE 1.2: Examples of dipolar magnetic field evolution curves.
The analytical solution in Equation (1.15) (left panel) is compared to
the numerical solution from 2D magneto-thermal simulations (Vi-
ganò et al., 2021) (right panel). In the right panel, the purple curve
corresponding to an initial magnetic field of 1012 G appears truncated
due to code constraints in modelling the micro-physical behaviour of
the neutron-star crust at low temperatures (see also Appendix C for

more details).

1.6 Magnetic field evolution

Much effort has been put into modelling the magnetic field geometry and evolution
inside a neutron star. Soon after birth, a solid crust of about 1 km thickness is formed.
At the densities of the crust (1010 − 1014 g cm−3), matter is pressure-ionised. Atoms
are so densely packed together that electrons are not bound to a single nucleus but
feel the electric fields of all the neighbouring nuclei. As a consequence, while the
ions in the lattice or the pasta phase layer (see Section 1.3) have very restricted mo-
bility, electrons are free to flow constituting the main source of conductivity. There-
fore describing the magnetic field evolution in the crust is more straightforward as
the electrons are the only charged particles affecting it and the microphysical prop-
erties of matter are relatively well known. On the other hand, describing the field
geometry and evolution in the liquid core is more complex. Due to the extreme con-
ditions prevalent within the core, the exact composition and the properties of matter
are still uncertain. In the fluid core, besides electrons, also neutrons, protons, muons
and possibly more exotic particles could influence the magnetic field evolution. In
particular it is believed that neutron superfluidity and proton superconductivity can
play a critical role for the internal dynamics (see for example Chamel, 2017; Wood
and Graber, 2022). In general, for the core, it is very challenging to accurately incor-
porate realistic microphysics and estimate the impact of these effects on the magnetic
field’s evolution (Viganò et al., 2021). Here we will focus instead on the evolution
of the magnetic field which is confined in the neutron star crust. In general, the
equation governing the magnetic field evolution is Maxwell’s induction equation:

∂B
∂t

= −c (∇× E) . (1.5)

For a conducting fluid of electrons, moving with velocity ve and in the presence of
a magnetic field B, the electric field E is related to the current density j through the
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generalised Ohm’s law:

E =
j

σe
− ve

c
× B, (1.6)

where σe is the electrical conductivity that can be defined in terms of the mean free
time between collisions or relaxation time τe (Longair, 2011):

σe =
e2neτe

me
. (1.7)

The electron velocity is also related to the current and electron density ne trough:

ve = − j
ene

. (1.8)

We can also assume that the timescale for collisions inside the plasma is much shorter
than the timescale of the variation of the electromagnetic field so that we can neglect
the displacement current term in Ampere’s law and express the current density as:

j = − c
4π

(∇× B) . (1.9)

Therefore by combining the four equations above, the induction equation assumes
the form (Pons and Geppert, 2007; Viganò, Pons, and Miralles, 2012):

∂B
∂t

= −∇×
(

c2

4πσe
∇× B +

c
4πene

(∇× B)× B
)

. (1.10)

The first term in the parentheses describes the Ohmic dissipation. It is responsi-
ble for converting magnetic energy into heat according to Q = j2/σe which is then
deposited in the crust. In a neutron star crust, the conductivity σe is dominated by
the electronic transport and depends on the crustal temperature, the electron den-
sity, and the impurity concentration. To quantify the impurity content of the lattice
we define the impurity parameter as the mean quadratic deviation of the atomic
number Z:

Qimp = ∑
i

Yi
(
Z2

i − ⟨Z2⟩
)

, (1.11)

where Yi is the relative abundance of the nuclide with Zie charge, and ⟨Z2⟩ is the
average squared atomic number in the lattice (see Potekhin, Pons, and Page, 2015,
and reference therein). In general, for higher temperatures, and for larger impurity
concentration the conductivity is lower as there is more scattering between the elec-
trons and the lattice. As a result the magnetic field evolution is highly coupled to
the temperature evolution. The higher the magnetic field, the greater the dissipation
and the heat deposited into the crust. In this way the stellar surface is kept hot for
longer times. This in turn affects the microphysical properties of the crust and the
electrical conductivity so that the heat deposition itself influences how the magnetic
field dissipates. Furthermore, the electron density varies over about four orders of
magnitude in the crust. As a consequence, the electric conductivity varies by many
orders of magnitude across the neutron star crust as well. What drives the evolution
is usually the resistivity of the region where currents are predominantly placed. For
example, the dissipation will be greater if currents are mainly circulating in the pasta
layer of the crust. Here the transport properties are uncertain but the irregularities in
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the nuclear matter shapes and charge distribution should enhance the resistivity and
therefore the magnetic field dissipation (Horowitz et al., 2015; Nandi and Schramm,
2018).

The second term in Equation 1.10 is a non-linear term which strongly depends
on the magnetic field strength and is related to the Hall drift. It does not cause dis-
sipation, but it is responsible for the drift and rearrangement of the electric currents
inside the crust and the redistribution of the magnetic energy on smaller scales. By
affecting the distribution and scale of the electric currents the Hall effect is respon-
sible of enhancing the Ohmic dissipation. As this term depends only on the degen-
erate electron density it should be insensitive to temperature (see also Cumming,
Arras, and Zweibel, 2004).

If one is concerned only with the evolution of the magnitude of the magnetic
field in time, the induction equation can be rewritten in an approximated form as
(see Aguilera, Pons, and Miralles, 2008a; Aguilera, Pons, and Miralles, 2008b):

dB
dt

≃ − c2B
4πσL2 − cB2

4πeneL2 (1.12)

= − B
τOhm

− B2

B0τHall,0
,

where the spatial derivatives have been replaced by a factor 1/L where L is a typical
length scale over which the physical quantities B, ne and σe change. We can also
define two typical timescales, one for the Ohmic dissipation, and the other for the
Hall drift:

τHall,0 =
4πeneL2

cB0

≃ 6.4 × 104 yr
( ne

1035 cm−3

)( L
1 km

)2 ( B0

1014 G

)−1

, (1.13)

τOhm =
4πσL2

c2

≃ 4.4 × 106 yr
( σ

1024 s−1

)( L
1 km

)2

, (1.14)

where the numerical values are taken from Cumming, Arras, and Zweibel (2004).
Note that the Hall timescale defined here is inversely proportional to the initial mag-
netic field magnitude B0. By neglecting the influence of the temperature we find the
following analytical solution for Equation (1.12):

B(t) = B0
e−t/τOhm

1 + τOhm
τHall,0

[1 − e−t/τOhm ]
. (1.15)

Even if it is a very crude approximation, this equation captures a first stage that
is characterised by rapid (non-exponential) decay regulated by the Hall timescale
τHall,0, and a second stage that is characterised by exponential decay due to Ohmic
dissipation and regulated by the timescale τOhm (see left panel in Figure 1.2).

To model the magnetic field evolution and decay in neutron stars consistently,
a complete magneto-thermal simulation is required that takes into account the cou-
pled magnetic field and temperature evolution. Moreover inside the neutron star
general relativistic effects become relevant. Therefore the induction equation (1.10)
has to be corrected to take into account the curvature of space-time. Generally the
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shwarzschild static metric is sufficient as any deformation induced by rotation and
the magnetic fields are negligible. In recent years numerical codes able to simulate
the magnetic field and temperature evolution of neutron stars have been developed.
In particular large efforts have been put into 2D axis-symmetric simulations (see for
example Aguilera, Pons, and Miralles, 2008b; Pons, Miralles, and Geppert, 2009; Vi-
ganò, Pons, and Miralles, 2012; Viganò et al., 2021). More recently the more complex
but more realistic 3D case is being explored (see Gourgouliatos, Wood, and Holler-
bach, 2016; De Grandis et al., 2020; Dehman et al., 2023). The right panel of Figure 1.2
shows the magnetic field evolution curves predicted by 2D magneto-thermal simu-
lations (Viganò et al., 2021).

1.7 The magnetosphere

The magnetosphere of a neutron star is a complex and dynamic region filled with
magnetised plasma where strong magnetic fields interact with the surrounding en-
vironment. It envelopes the entire star extending from the stellar surface up to
several thousands of kilometers. Unlike Earth’s magnetosphere, which is primar-
ily influenced by the interaction with the solar wind, neutron star magnetospheres
can encounter various external influences, including the interstellar medium, accre-
tion disks, and even companion stars in binary systems. Deutsch (1955) was the
first to study analytically the structure of the electromagnetic field surrounding an
isolated rotating magnetised star with a misaligned magnetic dipole moment in a
vacuum. Later, Goldreich and Julian (1969) described the pulsar electrodynamics
in the simplest case of a rotating magnetic dipole, aligned with the rotational axis,
surrounded by a charge-separated plasma. In general analytical solutions for the
magnetospheric structure are possible only in very simplified and ideal cases. To
fully study the overall geometry of the electromagnetic fields and how the surround-
ing plasma interacts with and influences them, numerical simulations are required.
Contopoulos, Kazanas, and Fendt (1999) were the first to present a numerical, real-
istic configuration for an aligned rotator in the force-free approximation (see below).
His work was the first step towards more realistic 3D simulations that were able to
quantitatively consider the effects of the misalignment between rotation and mag-
netic axes (see Figure 1.4 and Spitkovsky, 2006; Philippov, Tchekhovskoy, and Li,
2014). Understanding the structure and dynamics of neutron star magnetospheres
is crucial for comprehending a wide range of phenomena associated with these ce-
lestial objects. In particular, the intricate interplay between the magnetic field and
the highly energetic particles in the surrounding plasma leads to the generation of
electromagnetic radiation across different wavelengths from radio to gamma rays.
For more detailed reviews about pulsar magnetosphere see for example Pétri (2016)
and Pétri (2020).

To gain an insight into the magnetosphere’s structure we consider a neutron star
initially surrounded by vacuum spinning with angular frequency ω = 2π/P. The
neutron star is endowed with a strong magnetic field. However to define this mag-
netic field we need to make a distinction between two reference frames: an inertial
reference frame of an external observer and a reference frame co-rotating with the
star. For simplicity we consider the latter to be sufficiently small compared to the
star’s size and not so far from the axis of rotation as to be considered locally iner-
tial. The position of the co-rotating frame can be described by a distance vector, r,
originating r at the centre of the neutron star. With these considerations, the elec-
tromagnetic fields as measured by the two observers can be linked by the Lorentz
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FIGURE 1.3: Sketch of the ideal force-free magnetosphere of the
aligned pulsar. The main elements are: (i) The closed field line re-
gion (grey, and black field lines) lying between the star surface and
the light cylinder. This zone is dead and does not participate to the
pulsar activity. (ii) The open field line region (red and blue field
lines) extending beyond the light cylinder. As particles are acceler-
ated along the open field line region they emit electromagnetic radi-
ation. (iii) The equatorial current sheet (green) between the opposite
magnetic fluxes in the open field line region. It splits at the light cylin-
der into two separatrix current sheets that go around the closed zone,
between the last open and the first closed field lines (see Cerutti and
Beloborodov, 2017, for further details) (Figure adapted from Cerutti

and Beloborodov, 2017).
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FIGURE 1.4: Slices through the simulated force-free magnetosphere
of a neutron star with inclination angle of 60◦ between the magnetic
dipole moment and the rotation axis. The field lines in the horizon-
tal and vertical slices are shown; colour represents the magnetic field
component perpendicular to the slices. A sample three-dimensional
magnetic flux tube is traced in white (Figure taken from Spitkovsky,

2006).
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transformations (Jackson, 1998):

B = γrot
(

B′ + βrot × E′)− γ2
rot

γrot + 1
βrot(βrot · B′), (1.16)

E = γrot
(
E′ − βrot × B′)− γ2

rot
γrot + 1

βrot(βrot · E′), (1.17)

where E and B are the fields measured by an external observer, while E′ and B′ are
the fields measured in the co-rotating frame, βrot = (ω × r)/c is the ratio of the rota-
tional velocity to the speed of light c and γrot = 1/(1 − β2

rot)
1/2 is the corresponding

Lorentz factor. If we consider the neutron star interior or we stay in the proxim-
ity of its surface, for typical observed spin periods we have that βrot ≡ |βrot| ≪ 1.
Therefore the transformations above assume the simplified form:

B ∼
(

B′ + βrot × E′) , (1.18)

E ∼
(
E′ − βrot × B′) , (1.19)

where we neglected second order terms in βrot and considered γrot ∼ 1.
Little is known about the magnetic field geometry inside the neutron star. In

the exterior, the magnetic field is typically described by a combination of multipo-
lar components. As the higher-order multipoles decay faster with distance from the
stellar surface, the dipolar component probably dominates the magnetic field geom-
etry at a large scale. For the sake of simplicity we consider that in the neutron star’s
co-rotating frame the magnetic field is purely dipolar. In this case the formula that
relates the magnetic moment µ with the strength of the magnetic field B′ is given by:

B′(r) =
3(r · µ)r

r5 − µ

r3 . (1.20)

We further simplify by assuming a configuration with the magnetic moment µ aligned
with the rotation axis of the star. We will call this an aligned rotator. In spherical co-
ordinates (r, θ, ϕ) with θ being the angle computed from the magnetic moment axis
(or spin axis in the aligned case) and ϕ the azimuthal angle, the dipolar magnetic
field can be expressed as:

B′(r, θ) =
µ

r3

2 cos θ
sin θ

0

 . (1.21)

Due to the abundance of free charges in its interior, as a first approximation a
neutron star can be considered as a perfect conductor. Therefore in the co-rotating
frame, the internal electric field has to vanish so that in the neutron star interior the
following equations are valid:

B ∼ B′, (1.22)

E ∼ −βrot × B′ = −ω × r
c

× B′. (1.23)
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In other words, a perfect conductor rotating in a magnetic field behaves as a unipo-
lar inductor converting the rotational energy into electrical energy. As seen by an
inertial external observer the rotation of the star induces an electric field inside the
star and the free charges inside rearrange themselves under its action. In particular,
on the surface of the star particles of opposite charges are driven to the polar and
equatorial regions respectively according to their signs. This creates a quadrupolar
electric potential, V, on the surface that can be derived from E = −∇V.

In particular, for an aligned rotator, from Equation (1.23), the θ component of the
electric field computed at the surface is given by:

Eθ = −ωRNS sin θBr

c
. (1.24)

This determines the electrostatic potential drop with latitude on the stellar surface
that can be computed considering that Eθ = 1/r(∂V/∂θ) and integrating over the
coordinate θ. By using the radial component of the surface dipole magnetic field
in Equation (1.21), Br = 2µ cos θ/R3

NS, we find (Backus, 1956; Goldreich and Julian,
1969; Cerutti and Beloborodov, 2017):

V(RNS, θ)− V(RNS, 0) =
∫ θ

0
Eθ RNSdθ =

ωµ

2RNSc
sin2 θ, (1.25)

where V(RNS, 0) ≡ Vp is the value of the electric potential at the pole. This charge
redistribution induces an external quadrupolar electric field with a strong compo-
nent parallel to the magnetic field lines. As shown by Goldreich and Julian (1969)
this component of the electric field is strong enough to overcome gravity and pull
out charged particles from the neutron star surface unless strong cohesive forces pre-
vent them from escaping. This happens primarily for the electrons and protons as,
in the presence of a strong magnetic field, heavier ions in the surface layer can rear-
range themselves to form a dense and strongly bound molecular lattice (see Ruder-
man and Sutherland, 1975, and reference therein). Even if considered as a simplified
and ideal case, the result from Goldreich and Julian (1969) implies that a vacuum
region around a neutron star cannot be maintained and a magnetosphere filled with
conducting and co-rotating plasma has to surround the star.

As charges are extracted from the surface they are accelerated up to relativistic
speeds along the magnetic field lines by the induced electric field. By moving along
curved field lines these charges produce gamma-ray photons by curvature radiation
(Ruderman and Sutherland, 1975) or the inverse-Compton process by up-scattering
lower energy photons (Daugherty and Harding, 1986). In the presence of strong
magnetic fields gamma-ray photons can transform into electron-positron pairs, if
the photon energy exceeds the threshold Eγ ≥ 2mec2 where me is the electron mass.
This generation of new particles then produces new photons and pairs leading to a
pair cascade that populates the magnetosphere with co-rotating highly conducting
plasma. Assuming a continuous supply of charges, as the magnetosphere is replen-
ished with perfectly conducting plasma (predominantly formed by e− e+ pairs) the
electric field component along the magnetic field lines gets screened so that in a
steady state one expects the condition E · B = 0 to be satisfied. This prevents any
further acceleration of particles along the field lines so that these can be considered
equipotential lines. In this ideal case, called force-free limit, the magnetosphere is
sufficiently populated with plasma for the conductivity in the medium to become
infinite. Moreover, the electromagnetic field dominates the dynamics of the mag-
netosphere by several orders of magnitude with respect to pressure, gravity and
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inertia. The unipolar induction mechanism on the other hand induces an electric
field perpendicular to the magnetic field lines that leads to charge separation also in
the magnetosphere.

However, the flow of plasma in the magnetosphere has a retroactive effect on the
electromagnetic field structure around the neutron star. As we move further away
from the neutron star surface, the approximations and the electromagnetic field con-
figuration outlined above break down. As the rotational velocity approaches the
speed of light plasma co-rotation becomes impossible and a co-rotating frame can-
not be defined anymore. We define an imaginary cylindrical surface called light
cylinder, with the axis parallel to the rotation axis of the star. The radius of the
light cylinder corresponds to the distance where the co-rotating speed is equal to the
speed of light:

rlc =
c
ω

≃ 4.77 × 109 cm
(

P
1 s

)
. (1.26)

Near the light cylinder plasma inertia due to the approaching of the speed of
light becomes relevant and the plasma is not able to stay in co-rotation. In partic-
ular, the plasma drags the magnetic field causing the field lines to sweep back in
the azimuthal direction and spiral around the star (see Figure 1.4). This produces a
toroidal magnetic field component. Furthermore, the co-rotating charges and these
inertial effects create currents which modify the magnetic field configuration. These
magnetic perturbations tend to repel field lines and as a result, the field lines near
the light cylinder inflate to infinity and open up. In the vicinity of the light cylinder,
the force-free condition is violated and dissipation effects and particle acceleration
create electromagnetic emission detectable on Earth. The magnetosphere can then
be divided into two regions with different properties (see Figure 1.3). The magnetic
field lines that do not cross the light cylinder form the so-called closed magneto-
sphere (grey region in Figure 1.3). Here the plasma is trapped and the condition
E · B = 0 is valid everywhere. This region should therefore be electromagnetically
inactive as particle acceleration is suppressed. The field lines that cross the light
cylinder and are inflated to infinity form the open field line region (red and blue
lines in Figure 1.3). Here charges are free to stream along the magnetic field lines and
escape to infinity. Therefore here the condition E · B = 0 can be violated and gaps
with low-density plasma can be created where charged particles are accelerated. The
open field line region is therefore active and it is the region where electromagnetic
emission from pulsars is believed to be produced.

1.8 Dipolar spin-down evolution

The observation of the secular increase of spin periods for the detected neutron stars
implies that they are losing rotational energy over time. Assuming that neutron stars
are solid bodies the loss of rotational energy can be computed as:

dErot

dt
=

d
dt

(
1
2

INSω2
)
= INSω

dω

dt
= −4π2 INS

dP
dt

1
P3

≃ −5 × 1031 erg s−1
(

Ṗ
10−15 s s−1

)(
P
1 s

)−3

, (1.27)
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where we define the spin-down rate Ṗ ≡ dP/dt and assume a neutron star to be a
perfect sphere of mass MNS = 1.4 M⊙ and radius RNS = 11 km and with moment of
inertia INS ≃ 2/5MNSR2

NS ≃ 1.4 × 1045 g cm2 which is constant in time.
If a neutron star can be simply pictured as a rotating magnetic dipole with mo-

ment vector µ misaligned by an angle χ with respect to the rotation axis, the spin-
down can be explained using classical electrodynamics arguments (see for example
Shapiro and Teukolsky, 1983). In classical electrodynamics a rotating misaligned
magnetic dipole emits electromagnetic energy (see Jackson, 1998). In analogy with
the Larmor formula for an accelerated charge, a time-varying magnetic dipole radi-
ates away a total power integrated over the solid angle equal to:

dE
dt

=
2

3c3

∣∣∣∣d2µ

dt2

∣∣∣∣2 . (1.28)

For a misaligned magnetic dipole with an inclination angle χ, rotating at an angular
frequency ω, we can write the magnetic dipole moment components as a function
of time t in Cartesian coordinates. We assume rotation about the z axis:

µ = µ

sin χ cos ωt
sin χ sin ωt

cos χ

 . (1.29)

where µ = |µ|. If we compute the second time derivative for this vector we find:

d2µ

dt2 = µ

−ω2 sin χ cos ωt
−ω2 sin χ sin ωt

0

 . (1.30)

Here we have assumed that the spin frequency, the magnetic moment and the incli-
nation angle change on timescales much longer than a rotation period so that they
can be assumed as constants in computing these derivatives, i.e., they do not explic-
itly depend on the time t. By computing the squared module of the vector above
and substituting it into Equation (1.28) we get an emitted power:

dE
dt

=
2µ2

3c3 ω4 sin2 χ. (1.31)

By assuming that this electromagnetic energy is emitted at the expense of the rota-
tional energy we can equate Equation (1.27) with Equation (1.31) to obtain an equa-
tion that describes how the spin frequency changes in time:

dω

dt
= − 2µ2

3c3 INS
ω3 sin2 χ. (1.32)

We find an analogous result by considering a more sophisticated calculation. By
picturing the neutron star as a spherical conductor rotating in an electromagnetic
field in vacuum it is possible to compute the net torque acting on it. In particular the
electric and magnetic fields generate forces on the charges in the conductor which in
turn generate a net torque acting on the conductor surface. This torque, M, can be
estimated by the following integral computed over the neutron star surface S (see
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Michel and Goldwire, 1970; Philippov, Tchekhovskoy, and Li, 2014):

M =
∫

S
n · (r × T)dS, (1.33)

where r is the radial vector originating in the neutron star centre, T is the Maxwell
stress tensor and n is the unit vector perpendicular to the surface. By consider-
ing the expressions for the electromagnetic fields near the stellar surface computed
by Deutsch (1955) for a rotating star characterised as a misaligned magnetic dipole
in vacuum, Michel and Goldwire (1970) computed the non-vanishing torque com-
ponents. The first one is antiparallel to the spin frequency vector and causes the
neutron star to spin down:

M∥ = −2µ2

3c3 ω3 sin2 χ. (1.34)

The second one is perpendicular to the spin frequency vector and acts in the plane
defined by the two vectors ω and µ. While it does not change the spin frequency, it
is responsible for the alignment of the magnetic axis with the rotational axis:

M⊥ = −2µ2

3c3 ω3 sin χ cos χ. (1.35)

A third component is perpendicular to the ω − µ plane and causes precession of the
spin frequency vector around the magnetic axis (Philippov, Tchekhovskoy, and Li,
2014). In the following, we will not take into account this precession since it does
not affect the evolution of the spin period and inclination angle. The evolution of
the angular momentum vector, L, of the neutron star is then given by:

dL
dt

= INS
dω

dt
= M, (1.36)

which gives the following coupled differential equations:

dω

dt
= − 2µ2

3c3 INS
ω3 sin2 χ, (1.37)

dχ

dt
= − 2µ2

3c3 INS
ω2 sin χ cos χ. (1.38)

Note that the first equation is the same as Equation (1.32). In general, neutron stars
evolves towards longer periods and a configuration where the magnetic dipole axis
is aligned with the rotation axis. Therefore rotational evolution tends towards a
state where the energy losses due to the torques are minimised as can be seen from
Equation (1.31). However, these equations are valid in the case of a vacuum magne-
tosphere which as we have seen in Section 1.7 is not the most realistic scenario.

For plasma-filled magnetospheres, an analytical solution of the torques can not
be derived and simulations are required due to the non-linearity of the problem.
Through 3D simulations of force-free plasma-filled magnetospheres Spitkovsky (2006)
found that the emitted electromagnetic luminosity can be well described by the fol-
lowing relation: (

dE
dt

)
force−free

=
µ2

c3 ω4(κ0 + κ1 sin2 χ). (1.39)
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The rotational evolution of a neutron star can then be approximated by the two fol-
lowing equations:

dω

dt
= − µ2

c3 INS
ω3 (κ0 + κ1 sin2 χ

)
, (1.40)

dχ

dt
= − µ2

c3 INS
ω2 (κ2 sin χ cos χ) , (1.41)

and substituting ω = 2π/P we get:

dP
dt

=
4π2µ2

c3 INSP
(
κ0 + κ1 sin2 χ

)
, (1.42)

dχ

dt
= − 4π2µ2

c3 INSP2 (κ2 sin χ cos χ) , (1.43)

The parameters κ0, κ1 and κ2 are derived by fitting simulation results and for force-
free magnetosphere they take the values κ0 ≃ κ1 ≃ κ2 ≃ 1 (Philippov, Tchekhovskoy,
and Li, 2014). Compared to the vacuum solution (where κ0 = 0, κ1 = 2/3 and
κ2 = 1) the electromagnetic torque and the energy loss does not vanish when the
magnetic dipole axis aligns with the rotation axis and the torque exerted on the star
can be a factor ∼ 2 stronger.

1.8.1 Dipole magnetic field estimate

By considering the magnetic dipole breaking model outlined above we can estimate
the dipolar magnetic field of a neutron star from its timing properties P and Ṗ. If
we consider the magnetic field strength at the magnetic pole of the neutron star at
r = RNS, from Equation (1.20) we get the expression:

Bp =
2µ

R3
NS

=⇒ µ =
BpR3

NS
2

. (1.44)

If we consider the magnetic field strength at the magnetic equator of the neutron star
we obtain that it is half of the value at the magnetic pole:

Be =
µ

R3
NS

=⇒ µ = BeR3
NS. (1.45)

We can substitute Equation (1.44) or Equation (1.45) into Equation (1.42) to obtain
a relation between the observed quantities P and Ṗ and the magnetic field strength
at the poles or at the equator. In the literature, the vacuum magnetosphere model
is often assumed even if less realistic. This usually implies an overestimation of
the magnetic field strength by a factor of ∼ 2 with respect to the force-free magneto-
sphere solution. By assuming for the sake of simplicity an inclination angle χ = π/2
(since it is usually unknown) we obtain a formula to roughly estimate the strength
of the magnetic field at the neutron star poles or equator as a function of the timing
properties:

Bp =

(
3c3

2π2
INSPṖ
R6

NS

)1/2

≃ 2 × 1012 G
(

P
1 s

)1/2 ( Ṗ
10−15 s s−1

)1/2

, (1.46)
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where we consider a neutron star moment of inertia INS ≃ 1045 g cm2 and radius
RNS ≃ 106 cm.

1.8.2 Characteristic age estimate

By assuming that both the magnetic field and the inclination angle stay constant
during the neutron star’s life, one can integrate of Equation (1.40) in time to obtain
a characteristic age:

τc = −ω3

2ω̇

(
1

ω2 − 1
ω2

0

)
, (1.47)

where ω0 is the initial spin frequency and ω and ω̇ are the current values of spin
frequency and spin frequency derivative. If we assume that ω0 ≫ ω, which means
that the neutron star was rotating much faster at birth than at the current time, Equa-
tion (1.47) becomes:

τc = − ω

2ω̇
=

P
2Ṗ

≃ 1.6 × 107 yr
(

P
1 s

)(
Ṗ

10−15 s s−1

)−1

. (1.48)

The characteristic age in general represents an upper limit on the true neutron
star age. Indeed for very young pulsars the assumption that ω0 ≫ ω could not hold
as their spin period can be still very close to the value at birth. Furthermore, for
older pulsars, if one takes into account that the magnetic field decays over time the
characteristic age could exceed the real age of the neutron star by orders of magni-
tude. In these cases the characteristic age fails to give a good estimate for the actual
age.

1.9 Pulsar radio emission

As we have described in Section 1.7, the magnetosphere surrounding a neutron star
is divided into a closed field line and an open field line region. According to the
standard theory (Goldreich and Julian, 1969; Sturrock, 1971; Ruderman and Suther-
land, 1975), in the open field line region particles can freely stream along the field
lines. If charges are not continuously extracted from the surface the outflow of par-
ticles eventually generates vacuum or low-density regions, so-called plasma gaps,
above the magnetic poles. Inside these gaps the force-free condition E · B = 0 can
be violated as the electric field parallel to the magnetic field lines is not perfectly
screened anymore. New particles can therefore be extracted from the stellar surface
and accelerated up to relativistic speed leading to an avalanche of pair production.
The mechanism producing the radio emission in pulsars is not well understood, but
it is believed that in this process bunches of e+ e− pairs produced in the gap oscillate
coherently to produce radio emission at a certain distance from the polar cap see
Section 1.9.3.

1.9.1 The polar cap model and radio emission geometry

The common picture is that this radio emission is generated in conical beams delim-
ited by the open field lines around the magnetic poles. We can estimate the size of
these conical beams by considering the size of the polar caps where the open field
lines are anchored to the neutron star. The polar cap size depends on the amount
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FIGURE 1.5: Sketch showing the geometry of the polar cap emission
model for an aligned rotator. The polar cap region is delimited by the
last closed field lines extending to the light cylinder. A magnetic field
line can be parametrised as curve described by the coordinates r and

θ (see text for more details).

of field lines that are opened which in turn depends on the size of the light cylinder
(see Equation (1.26), i.e., on the spin period of the neutron star. To see this consider
Figure 1.5 showing a sketch of a neutron star with the magnetic dipole moment
aligned to the rotation axis of the star. We parametrise a magnetic field line as a
curve r = r(θ)r̂ in space, where θ is the angle between the rotation axis and the vec-
tor r whose origin is located in the star’s centre and pointing to a random position
on the field line. The magnetic field vector B is therefore proportional to the tangent
vector of the curve given by dr/dθ = (dr/dθ)r̂ + rθ̂, where r̂ and θ̂ are the unit vec-
tors in spherical coordinates. By considering the expression of the magnetic dipole
in spherical coordinates (Equation (1.21)) we obtain the following equations:

dr
dθ

= λ(θ)
µ

r3 2 cos(θ), (1.49)

r = λ(θ)
µ

r3 sin(θ), (1.50)

where λ(θ) represents a generic proportionality coefficient. If we consider the ratio
between these two equations we end up with the following differential equation:

dr
rdθ

=
2 cos θ

sin θ
. (1.51)

We consider the last closed field line that delimits the polar cap region and is tangent
to the light cylinder. The equation above can be integrated from a generic radius r
corresponding to a generic θ to the light cylinder radius r = rLC corresponding to
θ = π/2: ∫ rLC

r

dr′

r′
=
∫ π/2

θ

2 cos θ′

sin θ′
dθ′ =⇒ ln

rLC

r
= 2 ln

1
sin θ

. (1.52)
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This implies:

sin2 θ

r
=

1
rLC

. (1.53)

Generally the quantity sin2 θ/r is constant along any dipolar field line. With this
relation, by setting r = RNS we can find the angular radius of the polar cap on the
neutron star surface:

sin θpc =

(
RNS

rLC

)1/2

(1.54)

=⇒ θpc ∼
(

2πRNS

cP

) 1
2

= 0.015 rad [0.87 deg]
(

RNS

11 km

)(
P
1 s

)−1/2

, (1.55)

where we assumed that the the polar cap angular aperture is small i.e., θpc ≲ 30◦

(Lorimer and Kramer, 2012).
We now consider an emission point on a field line at the edge of the polar cap,

with coordinates (rem, θem). By using Equation (1.53) we can write:

sin θem =

(
rem

rLC

)1/2

=⇒ θem ∼
(

2πrem

cP

)1/2

, (1.56)

where we have assumed again that the polar cap region is narrow and the emission
point is close to the magnetic axis, i.e., θem ≲ 30◦. As the field lines are curved,
the opening angle ρem of the emission cone tangent to the field lines at the polar
coordinates (rem, θem) is generally a little bigger than the polar angle θem. The rela-
tion between these two angles was found by Gangadhara and Gupta (2001), and for
small angles reduces to:

ρem ∼ 3
2

θem ∼
(

9πrem

2cP

) 1
2

= 0.069 rad [3.95 deg]
( rem

100 km

)1/2
(

P
1 s

)−1/2

. (1.57)

This gives the half-opening angle of the radio emission cone at the two magnetic
polar regions of the neutron star. The modifications arising by taking into account a
misaligned magnetic dipole moment and general relativistic effects are small and in
general can be neglected (Kapoor and Shukre, 1998).

1.9.2 Pulse width

As the neutron star rotates, a pulse of radiation can be detected if our line of sight
cuts through at least one of the radio beams. Therefore the features of the observed
pulses depend on the geometry of the radio beam and the relative position at which
the line of sight intercepts it. Having computed the angular aperture of the radio
beam ρem (1.57), we can now set up a relation that links it to the intrinsic pulse half-
width φ (expressed in radians) that an observer sees. We provide Figure 1.6, valid for
a generic inclined rotator with χ the inclination angle between the magnetic dipole
moment and the rotation axis, as a reference. Let’s assume that as the star rotates
our the line of sight intercepts the beam at an angular distance β from its centre. By
assuming a sphere of unit radius, and considering the spherical triangle with sides
χ + β, χ and ρem we use the haversine law to write down the following relation:

hav (ρem) = hav (χ + β − χ) + sin (χ + β) sin (χ) hav (φ) , (1.58)
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FIGURE 1.6: Radio beam geometry. The magnetic dipole moment µ
is misaligned by an angle χ with respect to the rotation axis defined
by ω. The line of sight cuts the emission cone at an angle β relative to

the centre of the beam. The angular pulse width is given by φ.

where in general given an angle α the haversine function is defined as hav (α) =
sin2 (α/2). Solving for the square sine of the half pulse width, we can write the
following formula (see Maciesiak, Gil, and Ribeiro, 2011):

sin2
( φ

2

)
=

sin2 ( ρem
2

)
− sin2

(
β
2

)
sin (χ + β) sin (χ)

(1.59)

=⇒ φ = 2 arcsin

√√√√sin2 ( ρem
2

)
− sin2

(
β
2

)
sin (χ + β) sin (χ)

. (1.60)

To find the pulse width in time units we have to re-normalise for the spin period:

w = 2φ
P

2π
= 2

P
π

arcsin

√√√√sin2 ( ρem
2

)
− sin2

(
β
2

)
sin (χ + β) sin (χ)

. (1.61)

A simplified formula for the pulse width can be found if one assumes that the
line of sight intercepts the radio beam in its centre (i.e. with β = 0) and that ρem and
φ are small (≲ 30◦). In this case we can approximate the relation in Equation (1.59)
as: ( φ

2

)2
∼
( ρem

2

)2

sin2 (χ)
=⇒ φ ∼ ρem

sin (χ)
, (1.62)
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FIGURE 1.7: Plot of pulse-widths w50 measured at the 50% of the max-
imum pulse amplitude versus the spin period P for 1450 normal pul-
sars detected at 1.4 GHz (excluding millisecond and other recycled
pulsars) from the ATNF database (Manchester et al., 2005). The figure
shows also 21 cases of pulsars being almost orthogonal rotators and
manifesting inter-pulses due to our line of sight crossing both mag-
netic poles (red dots) and 11 cases of almost aligned pulsars where
only one magnetic pole is visible but manifesting interpulses (green
dots). The black solid line represents the fit of the orthogonal-rotator
pulsars (red dots) (see Maciesiak and Gil, 2011; Maciesiak, Gil, and
Melikidze, 2012, for more details) (Figure taken from Maciesiak, Gil,

and Melikidze, 2012).
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which leads to:

w = 2φ
P

2π
∼ 2

ρem

sin χ

P
2π

∼ 2
sin χ

(
remP
2πc

) 1
2

(1.63)

≃ 0.015 s
sin χ

( rem

100 km

)1/2
(

P
1 s

)1/2

. (1.64)

Figure 1.7 shows the relation between the pulse-widths w50 measured at the 50%
of the maximum pulse amplitude versus the spin period P for 1450 normal pulsars
detected at 1.4 GHz (excluding millisecond pulsars). The black line represents a fit
of the pulsars showing interpulses and predicted to be orthogonal rotators, i.e. with
χ ∼ 90◦. Note that in Equation 1.63, the sin χ term corrects for the inclination angle.
For a given angular aperture, ρem, of the emission cone, as the inclination angle
decreases, the observed pulse width increases. This explain why in Figure 1.7 the
pulsars that are likely orthogonal rotators (red dots) are found at the extreme bottom
part of the diagram and more aligned rotators are scattered above depending on the
inclination angle. For example, if we observe an aligned rotator (χ ∼ 0◦) we do
not see pulsed emission since our line of sight is always inside the radio beam. In
this case, according to the formula above the pulse width goes to ∞ but this simply
indicates that we are seeing continuous emission from the polar cap. Furthermore,
as −ρem < β < ρem, the angle χ + β could become negative. This occur only when
ρem > χ, and in that case it happens that the line of sight is always inside the beam
and therefore also in this case no pulsation is observed. Some periodic modulation
in the observed pulse profile can be still observed if the intensity profile of the beam
is not uniform.

To obtain an estimate of the emission cone aperture ρem from the pulse width w
measurements one can in principle use Equation (1.61). However, deriving an esti-
mate of the intrinsic pulse width w is not always trivial. The observed pulse width
usually differ from the intrinsic pulse width due to pulse broadening as the radio
waves propagates through the interstellar medium (see Section 1.10). Furthermore
Pulsars exhibit different pulse profiles and widths due to various intrinsic proper-
ties, including magnetospheric dynamics, emission processes, and rotational irregu-
larities. These differences make it challenging to predict or measure the pulse width
accurately, especially for pulsars with complex emission patterns (see Lorimer and
Kramer, 2012). Moreover, we generally lack information on the relative angular po-
sition between the rotation axis, magnetic axis and line of sight. For more details see
also Chapter 3 in Lorimer and Kramer (2012).

Overall even if this theoretical picture does not take into account all the com-
plexity that might arise in reality, it predicts a relation ρem ∼ P−1/2 which has been
observed for samples of pulsars with reliable measurements of the pulse width (see
Figure 1.7 and Rankin, 1993; Maciesiak and Gil, 2011; Maciesiak, Gil, and Melikidze,
2012). By using a sample of pulsars observed by the Parkes Murriyang radio tele-
scope Johnston and Karastergiou (2019) found a shallower relation ρem ∼ P−0.3.
However the scatter of data in the pulse-width – spin-period plane is large and is
partly produced by the unknown magnetic inclination angle χ as can be seen from
Equation (1.63). As χ is unknown, its effect is difficult to take into account and af-
fects the correlation between these quantities. This work also suggests that a narrow
range of emission heights rem between around 200 km and 400 km seems to be pre-
ferred.
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FIGURE 1.8: Radio emission death valley delimited by the two ex-
treme death lines (dashed lines) defined in Equations (1.71) for a pure
dipole configuration, and (1.72) for a twisted multipole configuration,
respectively. The dots represent the observed radio pulsars from the
ATNF catalog (Manchester et al., 2005), where the dipolar magnetic
field values are estimated from the timing properties (P and Ṗ) using

Equation 1.46.

1.9.3 Radio emission mechanism and radio death valley

If a gap devoid of plasma is formed above the polar cap region an electric poten-
tial difference is generated along a magnetic field line. Following Ruderman and
Sutherland (1975) we can consider a narrow gap above the polar region extending
from the neutron star surface up to a height H. A given potential difference ∆V will
accelerate an electron (or a positron) up to an energy γmec2 = e∆V which implies a
Lorentz factor of:

γ =
e∆V
mec2 . (1.65)

By moving along the curved field lines the electron will emit curvature photons of
energy (Jackson, 1998):

h f =
3

4π

hc
rc

γ3 =
3

4π

hc
rc

(
e∆V
mec2

)3

, (1.66)

where h is the Planck constant, f is the photon frequency and rc denots the curvature
radius of the magnetic field line. The condition that such a curvature photon with
energy h f > 2mec2 moving through a magnetic field produces an electron-positron
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pair inside the gap is given by (see Ruderman and Sutherland, 1975; Chen and Rud-
erman, 1993):

h f
2mec2

B⊥
BQED

∼ 1
15

. (1.67)

Here BQED = 2πm2
e c3/(eh) is the Schwinger magnetic field, defined as the magnetic

field strength for which a cyclotron photon emitted by an electron gyrating around
a field line will have an energy equal to mec2. B⊥ is the component of the magnetic
field perpendicular to the direction of propagation of the photon. Due to relativistic
beaming the curvature photons are emitted along the direction of motion of the elec-
tron, i.e., almost parallel to the magnetic field lines, within an angle ∼ 1/γ. Suppose
that a curvature photon is emitted close to the stellar surface, where the magnetic
field strength is Bs. As the photon propagate inside the gap the component B⊥ will
grow up to an approximate maximum value given by B⊥ ∼ H

rc
Bs. With all these con-

siderations we can substitute Equation (1.66) into Equation (1.67) to find the relation:

3
8π

(
e∆V
mec2

)3 h
mec

H
r2

c

Bs

BQED
∼ 1

15
. (1.68)

This equation defines the minimum potential difference that is required to trigger
a pair cascade inside the gap. According to the standard theory if a neutron star is
not able to generate such electric potential difference in its magnetosphere it cannot
be visible as a radio pulsar. On the other hand, triggering the pair cascade will also
limit any further growth of ∆V above the value established by Equation (1.68) as the
produced plasma will progressively screen the electric field.

Assuming an aligned dipolar configuration for the magnetic field, due to the
unipolar induction mechanism (see Section 1.7), the maximum potential difference
that can be generated along an open field line in the magnetosphere is given by
the difference between the electric potential on the stellar surface given by Equa-
tion (1.25)) and the electric potential of the interstellar medium to which the open
field line is connected at infinity. The interstellar electric potential can be assumed to
vanish. From Equation (1.25), the maximum potential difference can be established
on the last open field line at the edge of the polar cap, i.e. at a coordinate θ = θpc. By
assuming Vp = 0 we have:

∆Vmax ≃ ωµ sin2 θpc

2RNSc
=

ωBpR2
NS sin2 θpc

2c
=

ω2BpR3
NS

2c2 . (1.69)

where we used Equation (1.44) and used the relation (1.54). This maximum poten-
tial difference depends solely on the dipole component of the field as it is the one
determining the open field line configuration at large distance from the stellar sur-
face, and is valid even if multipoles dominate near the stellar surface (Ruderman
and Sutherland, 1975). If the maximum potential difference ∆Vmax that can be pro-
duced in the magnetosphere is lower than the threshold defined by Equation (1.68)
the pair cascade can not be triggered and the neutron star is expected to be radio
quiet. Therefore a necessary condition that has to be satisfied to turn on the radio
emission is the following:

3
8π

(
e∆Vmax

mec2

)3 h
mec

H
r2

c

Bs

BQED
≳

1
15

(1.70)
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Depending on the assumptions that one makes on the magnetic field configuration
near the surface and the gap geometry, that is the values of Bs, rc and H, the condi-
tion (1.70) defines a threshold for the turning on and off of the radio emission in a
pulsar. As the suppression of the radio emission depends on the particular magneto-
spheric properties of each pulsar, relation (1.70) defines a "death valley" for the radio
pulsars (see Chen and Ruderman, 1993). We can consider two extreme cases. For an
ideal case of a pure dipole configuration we consider Bs = Bp, the curvature radius
for an open field line can be approximated as rc ∼ rLC sin θpc = (RNSrLC)

1/2 and
the gap height can be taken to be equal to the polar cap radius H ∼ RNS sin θpc =

RNS (RNS/rLC)
1/2 (Chen and Ruderman, 1993). With these order of magnitude as-

sumptions the following condition for the radio emission turning on is derived from
Equation (1.70):

Bp ≳ 2.0 × 1012 G
(

RNS

106 cm

)−19/8 ( P
1 s

)15/8

. (1.71)

If instead multipoles dominate the magnetic field configuration near the surface, the
value Bs could exceed the one of a pure dipole. We can introduce the parametrisation
Bs = bBp where b is a numerical factor that takes into account deviations from the
dipolar field value. Furthermore the curvature radius rc in general scales inversely
with the multiple order. We can consider an extreme case where the magnetic field
near the surface is very twisted for the presence of strong multipole components. In
this case for example we can assume rc ∼ H ∼ RNS. In this case, the condition for
the radio emission becomes:

Bp ≳ 8.3 × 1010 G b−1/4
(

RNS

106 cm

)−2 ( P
1 s

)3/2

. (1.72)

Given a neutron star with a spin period P, Equation (1.71) and (1.72) give the min-
imum polar magnetic field strength that the star should have to trigger the radio
emission. Neutron stars with a lower magnetic field are considered radio-dead (see
bottom right corner in Figure 1.8).

1.9.4 Energetics

As we have seen in Section 1.7 and Section 1.8, a neutron star behaves as a unipolar
inductor and spins down due to magnetic dipole breaking. It converts its rotational
kinetic energy into electrical potential energy that ultimately leads to particle accel-
eration and electromagnetic emission. The rate of loss of rotational energy is given
by Equation (1.27). This represents the total budget of rotational power that can
be converted into electromagnetic power by the unipolar inductor process. As the
potential difference that is established inside the magnetosphere is created at the ex-
pense of the rotational energy we expect a relation between the maximum potential
difference and the rotational energy loss rate. By expressing the polar magnetic field
strength in Equation (1.69) as a function of the timing properties P and Ṗ through
Equation (1.46) the maximum potential difference inside the magnetosphere can be
expressed as:

∆Vmax ≃
(

3
2c

dErot

dt

)1/2

. (1.73)
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We neglect the effect of the inclination angle which gives a correction of a factor 2
at most. The energy of the particles accelerated by this potential is given by e∆Vmax.
This is the amount of energy that each particle can radiate away in the form of elec-
tromagnetic radiation. Therefore the rotational energy is first converted into electri-
cal potential energy which leads to particle acceleration and ultimately is radiated
away in the form of electromagnetic radiation. From this arguments it is reasonable
to assume a link between the radio luminosity and the spin-down power. We con-
sider a generic power-law dependence of the intrinsic radio luminosity L of a pulsar
on the rotational energy loss rate as:

L = L0

(
Ėrot

Ėrot,0

)ϵ

= L0

(
Ṗ
P3

)ϵ

, (1.74)

where L0 is the luminosity at the reference rotational power Ėrot,0 and:

L0 = L0

(
4π2 INS

Ėrot,0

)ϵ

. (1.75)

Considering a typical pulsar radio luminosity L0 ∼ 1029 erg s−1 corresponding to
Ėrot,0 = 1030 erg s−1 (see Szary et al., 2014), ϵ = 0.5 and default values for the
moment of inertia of a neutron star INS ∼ 1045 g cm2, we obtain L0 ∼ 3 × 1035. As
the pulsar spins down it converts part of the rotational power in the form of radio
waves. As the radio luminosity should not exceed the spin-down energy loss rate
we can also express the equation above in terms of an efficiency η:

L = η(Ėrot)Ėrot. (1.76)

The efficiency is a function of the rotational power itself and in principle should
not exceed 1. Equation (1.74) represents the intrinsic total radio luminosity emitted
by the two radiation beams. This intrinsic luminosity is however difficult to derive
from observations and instead, a pseudo-luminosity is usually estimated as we will
discuss in Section 1.11.

1.10 Pulse propagation in the interstellar medium

The intensity, shape and duration of a detected radio pulse are influenced by a vari-
ety of factors which depend on both the propagation in the interstellar medium and
instrumental effects. In the following I will discuss these aspects individually.

Suppose that a pulsar with spin period P and emitting two beams with an intrin-
sic radio luminosity L is located at a distance d from Earth. If the radio signal from
this pulsar were to travel in complete vacuum, the pulse of radiation would have a
width w given by Equation (1.59) and the flux of radiation reaching the Earth would
be:

S =
L

Ωemd2 . (1.77)
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FIGURE 1.9: Pulse dispersion of the pulsar J1800+5034. The dark
band in the frequency versus phase diagram shows the delay in ar-
rival time of radio waves of different frequency. The "de-dispersed"
band-integrated pulse profile is shown at the top. (Figure taken from

https://www.cv.nrao.edu/~sransom/web/Ch6.html).

https://www.cv.nrao.edu/~sransom/web/Ch6.html
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FIGURE 1.10: Electron density in the Galactic plane (z = 0) for the
YMW16 model (Yao, Manchester, and Wang, 2017). The Galactic Cen-
tre is at the origin and the Sun is at x = 0, y = 8.5 kpc. The dense an-
nulus of central radius 4 kpc represents the Galactic molecular ring.
Spiral arms have a pre-determined logarithmic spiral form and gener-
ally decay exponentially at large Galactocentric radii. Exceptions are
in the Carina and Sagittarius arms where there are over-dense and
under-dense regions in Carina and Sagittarius respectively. The Gum
Nebula and Local Bubble features are faintly visible near the position
of the Sun (see Yao, Manchester, and Wang, 2017, for more details)

(Figure taken from Yao, Manchester, and Wang, 2017).
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Here Ωem is the total solid angle covered by the two beams which are given by (see
Lorimer and Kramer, 2012):

Ωem = 2 × 2π
∫ ρem

0
sin ρdρ

= 4π (1 − cos ρem)

= 8π sin2
(ρem

2

)
. (1.78)

The factor 2 comes from the two radio beams corresponding to each magnetic pole.
In the last step we used the trigonometric identity (1 − cos ρem) = 2 sin2 (ρem/2).

Radio telescopes are sensitive to a limited range of frequencies around a central
frequency f0. The radio flux at a given frequency can be evaluated by considering
the spectral shape of the signal. Radio pulsars are usually characterised by a power-
law spectral shape (see Jankowski et al., 2018). Therefore to compute the flux density
at a given frequency f we can use the following relation:

S f ( f ) = S f ,0

(
f
f0

)α

=
S(α + 1)

f α+1
max − f α+1

min

f α, (1.79)

where we used the fact that S is the flux integrated over the entire frequency range
between fmin and fmax:

S =
∫ fmax

fmin

S f ( f )d f = S f ,0
f−α
0

α + 1

(
f α+1
max − f α+1

min

)
. (1.80)

We can also define the fluence of this signal by integrating the flux over the in-
terval of time defined by the spin period:

F f ( f ) =
∫ P

0
S f ( f , t)dt = S f ( f )w, (1.81)

where for simplicity we considered a rectangular top-hat pulse shape with intrinsic
width w. The fluence has units of [erg cm−2] and is a measure of the total energy
carried by a radiation pulse passing through a unit surface area.

However, to reach the Earth the signal has to propagate through the interstellar
medium which is characterised by clumpy regions with different densities where
gas can be completely ionised. In the presence of ionised gas, the electromagnetic
interaction between the photons and the free electrons causes a delay in the propa-
gation of the light, which is a function of photon frequency. More energetic photons
tend to push past the free electrons with little effect on their propagation speed,
whereas lower frequency photons (like radio waves) are more significantly delayed.
We quantify these effects by introducing the refraction index n, which for a non-
magnetised, non-relativistic and ionised plasma is given by:

n( f ) =

√
1 −

(
fp

f

)2

, (1.82)

where fp is the so-called plasma frequency for a non-magnetised plasma:

fp =

(
e2ne

πme

)1/2

≃ 8.98 kHz
( ne

1 cm−3

)1/2
. (1.83)
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The delay in the arrival time of a wave of frequency f with respect to the arrival time
in vacuum can be estimated to be (see Lorimer and Kramer, 2012):

∆t( f ) =
(∫ d

0

dl
n( f )c

)
− d

c
≃
∫ d

0

dl
c

f 2
p

2 f 2

=
e2

2πmec
f−2

∫ d

0
dlne(l)

≃ 0.41 s
(

f
1 GHz

)−2 DM
100 pc cm−3 , (1.84)

where we assumed fp ≪ f . The integral

DM =
∫ d

0
dlne(l), (1.85)

is performed along the line of sight l, over a distance d and computes the electron
column density along the line of sight which defines the dispersion measure DM.

To recover the original pulse shape, the detected signal has to be de-dispersed
by re-aligning the observations of delayed pulses at different frequencies (see Fig-
ure 1.9). However, a radio detector has a finite frequency resolution. Usually, the
total bandwidth of the instrument is divided into different channels, each one sen-
sitive to photons in a particular range of frequencies ∆ fch. Since photons collected
by a given spectral channel cannot be distinguished in frequency, the de-dispersion
cannot be applied per channel. To obtain an estimate of the residual intra–channel
dispersion smearing contribution to the observed pulse width we instead differen-
tiate Equation (1.84) with respect to the frequency f to find the amount of delay
per unit frequency interval and multiply by the minimum frequency bin ∆ fch of the
instrument:

τDM =

∣∣∣∣d∆t
d f

∣∣∣∣∆ fch

=
e2

πmec
f−3∆ fchDM

≃ 0.83 ms
(

f
1 GHz

)−3 ∆ fch

1 MHz
DM

100 pc cm−3 . (1.86)

Furthermore, the electron density in the medium is not homogeneous and shows
variations over a wide range of length scales. The distribution of scales of these vari-
ations is affected by the presence of turbulence in the medium, which introduces a
relative motion between the source, the inhomogeneous clumps and the observer.
As the electromagnetic signal propagates, it encounters several such irregularities
depending on the travelled distance d. At each encounter, it is delayed and de-
flected in a frequency-dependent way. The result is that a sharp pulse emitted by a
point source is detected as a scattered-broadened pulse whose intensity decays expo-
nentially with a characteristic time τscat which depends on the signal frequency and
distance of the source (see Lorimer and Kramer, 2012). By assuming a Kolmogorov
turbulence power spectrum for the inhomogeneity length scales (Kolmogorov, 1941)
the broadening timescale due to scattering is given by:

τscat ∝ d2.2 f−4.4. (1.87)
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Some studies show evidence of a relation between the scattering broadening timescale
and the dispersion measure. For example, by using a sample of scattering measure-
ments from 124 pulsars detected at 327 MHz by the Ooty Radio Telescope in South-
ern India, Krishnakumar et al. (2015) found the following empirical relation:

τscat = 3.6 × 10−9 s
(

DM
1 pc cm−3

)2.2
[

1.0 + 1.94 × 10−3
(

DM
1 pc cm−3

)2.0
]

. (1.88)

This empirical relation is useful to estimate the scattering timescale for sources which
only have a measurement of the dispersion measure.

Additionally, there are instrumental effects that contributes to the broadening of
the pulse shape during the digital processing of the radio signal. The most relevant
effect is given by the detector sampling time which limits the time resolution of the
pulse and introduce an uncertainty in the pulse duration given by τsamp.

As a result of the effects discussed here, the observed duration wobs of a radio
pulse is larger than the intrinsic duration w and is given by the quadratic sum of the
contributions described above as reported in Cordes and McLaughlin (2003):

wobs ≃
√

w2 + τ2
DM + τ2

sc + τ2
samp, (1.89)

As the pulse propagates, gets dispersed and broadens, its fluence is defined by
Equation (1.81) is conserved. Therefore the flux of the pulse detected on Earth can
be found by:

S f ( f )w = S f ,obs( f )wobs =⇒ S f ,obs( f ) =
S f ( f )w

wobs
. (1.90)

1.11 Pulsar pseudo-luminosity

By inverting the steps described in the last section, one should in principle be able to
estimate the intrinsic luminosity of a pulsar from the observed quantities. Usually in
pulsar radio surveys the flux S f ,mean averaged over a period and at the observation
frequency f0 is reported. Assuming for simplicity a rectangular pulse shape with
peak flux S f ,obs and observed width wobs this is given by:

S f ,mean( f0) =

∫ P
0 S f ,obs( f0, t)dt

P
=

S f ,obs( f0)wobs

P
. (1.91)

To recover the intrinsic flux S( f0) we need to find the intrinsic pulse width. From
Equation (1.89) we have:

w ≃
√

w2
obs − τ2

DM − τ2
scat − τ2

samp. (1.92)

By combining Equation (1.90) and Equation (1.91) with the previous equation we
then find:

S f ( f0) ≃ S f ,mean( f0)
P√

w2
obs − τ2

DM − τ2
scat − τ2

samp

=
S f ,mean( f0)

δ
, (1.93)
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where here we define the intrinsic duty cycle δ ≡ w/P. Finally using Equation (1.77)
and Equation (1.78) we obtain for the intrinsic luminosity density:

L f ( f0) ≃
8π

δ
sin2

(ρem

2

)
d2S f ,mean( f0). (1.94)

And integrating over the frequencies (Equation (1.80)) we obtain the bolometric in-
trinsic radio luminosity:

L ≃ 8π

δ
sin2

(ρem

2

)
d2Smean( f0)

f−α
0

α + 1

(
f α+1
max − f α+1

min

)
. (1.95)

However, a precise estimate of the intrinsic radio luminosity is not trivial for the
following reasons:

• In most cases estimating the angular aperture ρem of the radio beam and the
intrinsic pulse width w can be challenging (see also Section 1.9.2). Pulsars of-
ten exhibit intricate emission patterns, making it highly complicated to deduce
the emission geometry and accurately determine the pulse width. One possi-
bility to estimate the beam angular aperture from the spin period is to use
the relation given by Equation (1.57), which has been confirmed by observa-
tion despite some uncertainties (Rankin, 1993; Maciesiak, Gil, and Melikidze,
2012). Additionally, removing the broadening effects described above from the
observed pulse width wobs is not a straightforward task, as it can be difficult
to differentiate these effects from the inherent properties of the pulse shape
for instrumental limitations in the time and frequency resolution (Lorimer and
Kramer, 2012).

• Accurate modelling of radio pulsar spectra is not always possible. Radio spec-
tra appear to be different for every pulsar. As shown in Jankowski et al. (2018)
in many cases a single power-law model describes the observed spectrum well
but many pulsars deviate from this simple behaviour.

• The estimate of the distance d is subject to many uncertainties. For radio pul-
sars, the main way to estimate the distance relies on models for the electron
density distribution in the Galaxy. Three main models have been developed
over the years from (see Taylor and Cordes, 1993; Cordes and Lazio, 2002; Yao,
Manchester, and Wang, 2017). By knowing the DM value and the sky position
of the pulsar, these models predict the amount of free electrons along the line
of sight and give a rough estimate of the distance. However, due to the com-
plexity of modelling the Galactic structures, these models suffer from a lot of
uncertainties. The relative error on the distance estimated from the DM values
could indeed be around 40 % (Yao, Manchester, and Wang, 2017).

Due to these uncertainties fiducial values are usually adopted for the unknown
quantities (see Lorimer and Kramer, 2012). For example by considering a fixed beam
aperture of ρem ∼ 6 deg, the ratio between the intrinsic pulse width and the spin
period (the duty cycle) of δ = 0.04, a radio frequency range from fmin = 10 MHz
to fmax = 100 GHz (see for example Izvekova et al., 1981; Morris et al., 1997), and a
spectral index α = −1.6 (Jankowski et al., 2018), we have a pseudo luminosity of:

L f ,pseudo(1.4 GHz) ≃ 7.4 × 1027 erg s−1
(

S f ,mean(1.4 GHz)
1 mJy

)(
d

1 kpc

)2

. (1.96)
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FIGURE 1.11: Sky temperature distribution at 408 MHz from Haslam
et al. (1982), refined by Remazeilles et al. (2015) (Figure taken from

Remazeilles et al., 2015).

However note that performing a population study and applying this expression to
different pulsars without taking into account differences in their intrinsic duty cycles
and beam geometries will mask eventual intrinsic correlations between the intrinsic
luminosity and the spin-down properties like P, Ṗ and Ėrot. This is because ρem and
w have a non-trivial dependence on the spin period (see Section 1.9). For example
Posselt et al. (2023) recently showed that the radio pseudo-luminosity has a shallow
dependence on the spin-down energy loss L f ,pseudo ∝ Ė0.15

rot (see also Szary et al.,
2014). However, this might not be a proof of the absence of intrinsic correlations
between the intrinsic radio luminosity and the rotational properties.

1.12 Pulsar detection, the radiometer equation

In this section we will describe how we can model the sensitivity of a radio tele-
scope which is a crucial aspect to determine which pulsars are detectable. We follow
Lorimer and Kramer (2012).

Consider the observation of a signal with peak flux density S f ,obs( f ) (in [erg
s−1 Hz−1]), performed with an antenna telescope of effective area Aeff. We con-
sider an unpolarised signal where the electric field vector changes randomly in
all possible directions perpendicular to the direction of wave propagation. Since
each of the two orthogonal polarisation directions contributes half the total flux, the
power received from the source per unit frequency bandwidth and polarisation is
Pf ,source = S f ,obs( f )Aeff/2. Now consider modelling the antenna as a simple circuit
consisting of a resistive load at temperature T. The thermal motions of the electrons
inside the resistor induce a time variable voltage in this circuit which produces a
power per unit frequency bandwidth that can be translated into a temperature by
Pf ,circuit = kBT, where kB is the Boltzmann constant. This is also known as John-
son–Nyquist noise (Johnson, 1928; Nyquist, 1928). Therefore an incident electro-
magnetic wave with a power per unit frequency Pf ,source will produce a power in the
circuit given by Pf ,circuit = Pf ,source. It follows that:

S f ,obs( f ) =
2kBTsource

Aeff
=

Tsource

G
, (1.97)
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where we define the antenna gain as G ≡ Aeff/(2kB) which is a measure of the an-
tenna sensitivity. In other words the source of flux density S f ,obs( f ) have an equiva-
lent temperature Tsource given by Equation (1.97) in the telescope system.

However real observing systems have many sources of noise, that can be mod-
elled as a background system temperature Tnoise. This noise temperature accounts
for the noise contributions from the receiver, transmission lines, and other compo-
nents of the radio telescope system which are represented as a system temperature
Tsys. Furthermore, Tnoise includes any spurious background signals coming from
the sky with an equivalent temperature Tsky(l, b) which is a function of galactic sky
coordinates (l, b). Figure 1.11 shows the Sky temperature distribution measured at
408 MHz as a function of equatorial coordinates (Haslam et al., 1982; Remazeilles
et al., 2015). This temperature can be re-scaled to the central frequency of the sur-
vey assuming a frequency spectrum Tsky ∝ f−2.6 (Lawson et al., 1987; Johnston et
al., 1992). Therefore in general we can write Tnoise = Tsys + Tsky(l, b). These noise
sources are usually much larger than the faint signals we receive from astronomical
sources. For this reason, to establish if a source is detectable we rely on the concept
of signal-to-noise ratio which measures deviations from the random noise oscillation
of the receiver.

The root mean square fluctuations σT of the noise in the telescope for a given
generic temperature T decreases with the square root of the number of measured
polarisations npol, the receiver frequency bandwidth ∆ fbw and integration time tobs
(Dicke, 1946):

σT =
T√

npol∆ fbwtobs

. (1.98)

This equation is known as the radiometer equation and is used to perform estimation
of the system sensitivity.

Consider an observation of a pulsar for a total integration time tobs. The pul-
sar has a top-hat pulse shape with width wobs, periodicity P and an associated
temperature Tsource. Over the whole integration time, the pulsar is on over a time
ton = tobswobs/P and it is off for a time toff = tobs(P − wobs)/P. For the pulsar to
be detectable, its signal has to exceed the noise fluctuations in the system during the
integration time. The ratio between Tsource and the system noise fluctuations σTnoise

define the signal to noise ratios S/N. To have a significative detection the S/N has
to surpass a threshold that is usually taken to be above 5 (see Vivekanand, Narayan,
and Radhakrishnan, 1982; Lorimer and Kramer, 2012). The root mean square noise
fluctuations during the integration time can be computed as the quadrature sum:

σTnoise =
√

σ2
Ton

+ σ2
Toff

=

√√√√√
Tsource + Tnoise√

npol∆ fbwton

2

+

 Tnoise√
npol∆ fbwtoff

2

≃ Tnoise√
npol∆ fbwtobs

P√
wobs(P − wobs)

, (1.99)
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where we used Equation (1.98) and made the approximation that Tsource ≪ Tnoise.
We can therefore define the signal-to-noise ratio as:

S/N ≡ Tsource

σTnoise

=
Tsource

√
npol∆ fbwtobs

Tnoise

√
wobs(P − wobs)

P

=
Sobs( f )

√
npol∆ fbwtobs

G[Tsys + Tsky(l, b)]

√
wobs(P − wobs)

P
, (1.100)

where in the last step we used Equation (1.97). To take into account system imperfec-
tions, for example due to the digitisation of the signal, a degradation factor β ∼ 1.5
is commonly introduced so that the previous equation becomes:

S/N =
S f ,obs( f )

√
npol∆ fbwtobs

βG[Tsys + Tsky(l, b)]

√
wobs(P − wobs)

P
. (1.101)

If we consider the period-averaged flux by substituting Equation (1.91) into (1.101)
we find:

S/N =
S f ,mean( f )

√
npol∆ fbwtobs

βG[Tsys + Tsky(l, b)]

√
P − wobs

wobs
. (1.102)

This equation shows that the narrower the pulse, the bigger the signal-to-noise ratio,
hence the easier it is to detect the pulsar.

1.13 The neutron star zoo

Figure 1.12 shows the observed population of non-accreting neutron stars in the
P − Ṗ plane (where P is the neutron star spin period and Ṗ is the spin period deriva-
tive with respect to time). Assuming a dipolar spin-down mechanism we also over-
lay the lines of constant polar magnetic field at the surface (solid lines) (see Equa-
tion (1.46)) and characteristic age (dashed lines) (see Equation (1.48)) as a reference.
Around ∼ 3000 neutron stars are known to date and according to their observational
properties we classify them as different types. This section will provide an overview
of the different classes of neutron stars and their distinguishing characteristics (see
Kaspi, 2010; Harding, 2013, for a more exhaustive review).

Rotation-powered pulsars. The bulk of the population is composed of rotation-
powered pulsars (RPPs) (grey dots). As they spin down due to magnetospheric
torques, the loss of rotational energy is converted into particle acceleration which
in turn produces broadband electromagnetic emission, from radio to X-rays and
gamma-rays. The origins of the radio and gamma-ray emission of pulsars are how-
ever not well understood. As described in Section 1.9, the radio emission is thought
to be generated close to the neutron star surface in a narrow beam centred on the
magnetic axis within the magnetic pole region of the pulsar. The high-energy gamma-
ray emission is instead thought to be generated in the outer regions of the neutron
star magnetosphere close to the light cylinder where the magnetic field lines open
up (see also Section 1.7). Since the discovery of the first neutron star through its ra-
dio pulsations (Hewish et al., 1968) around ∼ 2000 radio pulsars have been detected.
For some of them, X-ray, gamma-ray and optical pulsations were soon discovered.
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At present, there are over 100 RPPs detected at X-ray energies and over 300 gamma-
ray pulsars (Abdo et al., 2013; Smith et al., 2023). While most were found using the
ephemerides of already known radio pulsars, many were discovered through their
X-ray or gamma-ray pulsations and are radio-quiet.
Young neutron stars populate the top part of the diagram. They are often associated
with Supernova Remnants (SNRs) (red stars) and are often also detected as high-
energy gamma-ray pulsars (purple squares). As they spin down and their magnetic
fields decay in time (see Section 1.6, pulsars move towards the bottom right region of
the diagram. There are two main populations of RPPs. "Normal" pulsars with spin
periods P ≳ 0.1 s and characteristic ages τ ≲ 100 Myr, occupy the central part of
the diagram whereas millisecond pulsars (MSPs), with spin periods down to a few
milliseconds and generally higher characteristic ages τ ≳ 100 Myr stretch towards
the bottom left part of the diagram. MSPs are believed to be older neutron stars
mostly in binary systems. Originally part of the X-ray binary population, they are
recycled, i.e., spun up during a long phase of accretion from their binary companion
(Bhattacharya and van den Heuvel, 1991; Tauris and Savonije, 1999; Tauris, Langer,
and Kramer, 2012). There is another subpopulation of RPPs known as rotating radio
transients (RRATs) (light blue triangles). They were discovered as powerful short-
lasting radio bursts that seemed to recur randomly over timescales of minutes to
hours (McLaughlin et al., 2006). By studying the arrival times of these bursts com-
mon periodicities have been discovered hinting to the spin periods of the emitting
neutron stars. RRATs have been interpreted as normal pulsars showing an irregu-
lar, sporadic emission of radio pulses (detected as radio bursts), instead of a regular
emission associated with the rotation period. For these characteristics they are diffi-
cult to detect but they should be common in the neutron star population.

Magnetars. Neutron star emission can also be powered by magnetic energy. This
is the case for the so-called magnetars, historically also known as soft gamma-ray re-
peaters (SGRs) and anomalous X-ray pulsars (AXPs) (Woods and Thompson, 2006),
which populate the upper-right corner of the P− Ṗ diagram (green triangles). Magne-
tars have incredibly strong magnetic fields estimated to exceed 1014 G. This immense
magnetic energy reservoirs often result in sporadic bursts of X-rays and gamma-rays
which are thought to be caused by the magnetic field decay and significant magnetic
field readjustments in the star’s crust, leading to starquakes and intense releases of
energy (see Kaspi and Beloborodov, 2017; Esposito, Rea, and Israel, 2021, for re-
views).

Thermally emitting neutron stars. Some neutron stars emit thermal radiation, pri-
marily in the form of X-rays, due to their high surface temperatures. These objects
are collectively referred to as thermally emitting neutron stars (yellow triangles). They
include two main subclasses: central compact objects (CCOs) and the X-ray dim
isolated neutron stars (XDINSs). CCOs are found near the centres of supernova
remnants and therefore should be young neutron stars with ages not exceeding a
few tens of kyrs. However, they have low Ṗ values which translate into a low in-
ferred magnetic fields in the dipole braking scenario. A possible explanation for this
could be that their fields have been buried during an episode of fallback accretion
of debris after the supernova explosion (Shabaltas and Lai, 2012; Viganò and Pons,
2012; Torres-Forné et al., 2016). XDINSs are also called the magnificent seven and
are among the closest neutron stars that we know (few hundred parsecs from the
Earth) (see van Kerkwijk and Kaplan, 2007; Turolla, 2009, for reviews). Only six of
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them have measured timing properties. Their thermal emission comes directly from
the neutron star surface and is mainly powered by the residual heat stored in their
interior and by Ohmic dissipation of the magnetic field in the neutron star crust.
Therefore the study of thermally emitting neutron stars provides valuable insights
into the cooling mechanisms and interior composition of neutron stars (Viganò et al.,
2013).

The strict distinction between these different neutron star classes has started to
be questioned after some recent discoveries. For example, the dichotomy between
rotational-powered pulsars and magnetars has been softened because magnetar-like
X-ray activity was found in pulsars with large rotational energy loss rates, such as
PSR J1846–0258 (Gavriil et al., 2008) and PSR J1119–6127 (Archibald et al., 2016).
Moreover pulsed radio emission has now been detected from several magnetars in
outburst like XTE J1810–197 (Camilo et al., 2006), AXP J1810–197 (Kramer et al., 2007)
and J1818.0–1607 (Esposito et al., 2020).

Furthermore recent radio surveys, in particular thanks to new radio interferome-
ters such as the LOw Frequency ARray (LOFAR; van Haarlem et al., 2013), MeerKAT
(Jonas, 2009), The Australian SKA Pathfinder (ASKAP; Hotan et al., 2021), and the
Murchison Widefield Array (MWA; Tingay et al., 2013; Wayth et al., 2018), have
started to uncover the existence of a new population of mysterious radio sources
with very long period that challenge our understanding of the pulsar population
and its evolution.

1.13.1 Long-period pulsars

Until recently, the only neutron star known with a very long spin period was the
X-ray emitting neutron star 1E 161348-5055 at the centre of the 2 kyr-old supernova
remnant RCW103. This source manifests a measured modulation of ∼ 6.67 hr, and
was responsible of a large magnetar-like X-ray outburst (Rea et al., 2016; D’Aì et
al., 2016) which demonstrated the source’s isolated magnetar nature despite its long
period and young age.

However, in the last couple of years a ∼ 76 s radio pulsar (PSR J0901-4046, Caleb
et al., 2022) and two peculiar coherent radio sources with a periodicity of ∼ 1091 s
(GLEAM-X J162759.5-523504.3; Hurley-Walker et al., 2022a) and ∼ 1318 s (GPM J1839–
10 Hurley-Walker et al., 2023) have been discovered. The nature of these two latter
sources is still debated. Their emission properties such as the variable and irregular
pulse profile, the high level of polarisation and the estimated luminosity exceeding
their rotational power seem to point to a magnetar origin. Another proposed in-
terpretation is that these long-period sources are magnetised white dwarfs with an
active magnetosphere able to emit pulsar-like coherent radio emission.

We will explore possible scenarios to produce long period pulsars, by consider-
ing spin-down induced on a neutron star by the interaction with supernova fallback
matter (see Chapter 3) and performing population synthesis studies of neutron stars
and magnetic white dwarfs (see Chapter 4). These discoveries overall are show-
ing that the boundaries between the different neutron star classes are blurring and
motivate theoretical frameworks that consider the different neutron star types in an
evolutionary scenario.
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1.14 The birth rate and the need for an evolutionary scenario

As neutron stars are born from the core collapse of massive OB stars (see Section 1.2),
their birth rate should not exceed the expected core-collapse supernova (CCSN) rate
in the Milky Way. The Galactic CCSN rate can be estimated via different methods:

• Reed (2005) performed a census of the massive stars (with mass M ≳ 10 M⊙ )
in the solar neighbourhood. From this sample, they extrapolated a Galactic
CCSN rate between 1 and 2 supernovae per century.

• Li et al. (2011) studied the CCSNe in the local Universe and by assuming that
the Milky Way has similar properties as other galaxies with the same morpho-
logical type they derived a CCSN rate of 2.30 ± 0.48 per century.

• Diehl et al. (2006) modelled the gamma-ray emission from radioactive 26Al in
the Milky Way by assuming that this emission traces the ongoing nucleosyn-
thesis pollution by CCSNe in the Milky Way. They estimated in this way a
CCSN rate of 1.9 ± 1.1 per century in our Galaxy.

By combining these different ways of estimating the Galactic CCSN rate, a recent
study from Rozwadowska, Vissani, and Cappellaro (2021) found a best estimate of
RCCSN = 1.79 ± 0.55 per century. The birth rate of Galactic neutron star should
therefore be compatible with this estimate and not exceed this value.

In the past, several works have used the population of radio pulsars to make es-
timates of their birth rate. Historically, pulsar population analyses used the fact that
the typical timescales on which neutron stars are active as radio pulsars are much
shorter than the age of the Galaxy. In this way, the population can be considered
in a steady state and can be viewed as "flowing" in the P − Ṗ diagram as a "cur-
rent" obeying a continuity equation (Phinney and Blandford, 1981; Vivekanand and
Narayan, 1981). At a given spin period P′, this current, J(P′), equals the pulsar birth
rate, Rbirth, minus the pulsar death rate, Rdeath, in the period range from zero to the
actual spin period P′, i.e.:

J(P′) = Rbirth(0 < P < P′)−Rdeath(0 < P < P′). (1.103)

As the known radio pulsar population is flux-limited (depending on the discovery
survey), the maximum value of J(P) provides a lower limit on the pulsar birth rate.
For example, Lorimer et al. (2006), using 1008 non-recycled pulsars detected by the
Parkes Low-Latitude Survey estimated a birth rate of 1.38 ± 0.21 per century with
this method. The advantage of this approach to compute birth rates is that it is
agnostic to the details of how pulsars evolve in time.

A second approach to estimate pulsar birth rates is using population synthesis,
discussed in detail below. Contrary to the previous approach, population synthesis
relies on assuming physical models to describe pulsar properties and how the pul-
sar population evolves in time. For example, Faucher-Giguère and Kaspi (2006) use
Monte Carlo simulations to model the birth properties of pulsars (velocity distribu-
tions, spin periods, magnetic fields) and the detectability in the Parkes and Parkes
Swinburne Multibeam radio pulsar surveys. They evolve the initial population in
time to obtain an observed synthetic pulsar sample to compare with observational
data. In this way, they obtain a higher pulsar birth rate of 2.8 ± 0.5 per century
compared to Lorimer et al. (2006).

We note that even without considering the existence of other neutron star classes,
we are already at the limit of being compatible with the CCSN rate. Keane and
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Kramer (2008) highlight that if one takes into account the birth rates estimated for
other classes of neutron stars like RRATs, XDINSs and magnetars (see Section 1.13),
the total neutron star birth rate would exceed the Galactic CCSN rate by a factor of
∼ 5 − 10. Furthermore, the recent discovery of very long-period radio sources (see
Chapters 4 and 5) will further increase this discrepancy if their origin is associated
with neutron stars. A possible solution is to consider an evolutionary scenario that
introduce relationships between the different neutron star classes. Indeed by taking
into account the coupled evolution of the magnetic field and the temperature in neu-
tron stars, Viganò et al. (2013) explain the emission from magnetars, XDINs, CCOs
and the X-ray emitting rotational powered pulsars as manifestations of neutron stars
of different ages and with different magnetic-field strengths and geometries.

1.15 Population synthesis: current state of the art

Population synthesis models aim to reproduce the observed population of neutron
stars by simulating their formation, evolution, and observable properties. Typically
the adopted approach relies on Monte Carlo simulations to model the different prop-
erties of neutron stars from some parametric distributions. These properties are then
evolved in time through analytical and numerical models. Finally, models for the
observational biases and filters are applied to assess which neutron stars can be de-
tected to build a synthetic observed population. The simulation outcomes are then
compared to the empirical observed data to assess the validity of theoretical models,
constrain model parameters and gain insights into the underlying physics.

Due to the abundance of data in the radio band, many works on population syn-
thesis have mainly focused on reproducing the radio pulsar population, in particu-
lar trying to constrain the birth spin-period and magnetic-field distributions. Some
notable research papers in this area include Narayan and Ostriker (1990), Faucher-
Giguère and Kaspi (2006), Gonthier et al. (2007), Kiel et al. (2008), Kiel and Hurley
(2009), Popov et al. (2010), Osłowski et al. (2011), Levin et al. (2013), Gullón et al.
(2014), Bates et al. (2014), and Cieślar, Bulik, and Osłowski (2020). Overall these
works adopt various prescriptions for the physical models and techniques to per-
form parameter optimisation. In Table 1.1 I summarise the main prescriptions used
by some reference works and compare them with the present work (see Chapters 5
and 6). For example, Narayan and Ostriker (1990) and Faucher-Giguère and Kaspi
(2006) used the χ2 metric and Kolmogorov-Smirnov (KS) tests to compare the simu-
lated distributions with the observed ones and guide a "by hand" parameter optimi-
sation. These methods manifest some limitations as the computation of χ2-statistics
relies on having a good amount of data while the KS-test is not particularly sensi-
tive when applied to multi-dimensional distributions of data. In recent years, im-
proved modelling of neutron star magnetic field evolution and decay, refined cool-
ing models, increased amounts of empirical data and the development of Bayesian
techniques like Markov Chain Monte Carlo (MCMC) have all contributed to refining
population synthesis codes. Current research efforts aim to combine the information
coming from multi-wavelength observations, to better constrain the properties of the
neutron star population as a whole and refine theoretical models. A first attempt to
include a more realistic magnetic field evolution based on magneto-thermal simula-
tions of neutron stars and to consider both the radio and the X-ray pulsar popula-
tion in a population synthesis study was performed by Popov et al. (2010), Gullón
et al. (2014), and Gullón et al. (2015). In particular Gullón et al. (2014) and Gullón
et al. (2015) employed annealing methods for optimisation but found degeneracies
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between the simulation parameters were found and it was difficult to put mean-
ingful constraints on the birth rate, especially for magnetars. Johnston et al. (2020)
performed a population synthesis study combining both radio and gamma-ray pul-
sars and showed that highly energetic gamma-ray pulsars and young radio pulsars
might come from the same underlying population. Cieślar, Bulik, and Osłowski
(2020) reproduce the observed radio pulsar population using MCMC, although us-
ing a simulation framework with simplified physical models.

This thesis work represents the first efforts to developing a population synthesis
approach for isolated neutron stars in conjunction with modern deep-learning tech-
niques. Indeed deep learning can be a powerful tool for extracting relevant features
from multi-dimensional data coming from different surveys and performing param-
eter inference (Chapter 2). In this work, we will focus on the radio pulsar population
to benchmark our population synthesis approach and compare the results with pre-
vious ones in the literature. In particular, we will focus on predicting the birth prop-
erties, i.e., spatial and kick-velocity distributions (Chapter 5) and initial spin-period
and magnetic-field distributions and magnetic-field evolution (Chapter 6). In Chap-
ter 3 and 4 we will instead investigate the nature of recently discovered long-period
radio sources assuming a neutron-star or white-dwarf origin scenarios.

We first turn our attention to machine learning, introducing the key concepts
crucial for the following chapters.
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Ė

ϵ ro
t

∝
Ė
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Chapter 2

Machine learning

2.1 Introduction

In the past decade, the accumulation of extensive and heavy datasets has been al-
most ubiquitous in astronomy and astrophysics. In order to take full advantage of
these data and perform data-driven science that complements ongoing theoretical
modelling efforts, new techniques and analysis pipelines that can handle these large
amounts of data (and do so in an automated way) are required. Machine learning
(ML) has played an important role in developing such new algorithms (Ball and
Brunner, 2010; Allen et al., 2019; Baron, 2019; Fluke and Jacobs, 2020). As a subfield
of artificial intelligence, machine learning involves the development of algorithms
that allow computers to learn from and make predictions or decisions based on data
without being explicitly programmed.

Depending on the task at hand, there are two different approaches to train machine-
learning algorithms. The first one is called supervised learning and involves training
a machine-learning model using labelled training data. In this approach, the dataset
consists of input variables (features) and their corresponding output variables (la-
bels). The goal is to learn a mapping function that predicts the labels for new, un-
seen data. In general to acquire good performance, a supervised learning algorithm
requires a large amount of labelled data. Depending on the task, these algorithms
can be categorised into two main types:

• Classification: This type of algorithm aims to predict discrete class labels for
the given input data. An example is the prediction of the morphological type
of a galaxy based on its image (e.g. Dieleman, Willett, and Dambre, 2015).

• Regression: The goal of these algorithms is to predict continuous numerical
values based on the input features. An example is the prediction of the star
formation rate of a galaxy based on its redshift, luminosity and colour (e.g.
Bonjean et al., 2019).

Among the most common supervised learning algorithms, are decision trees (Quin-
lan, 1986), support vector machines (Burges, 1998), and artificial neural networks
(Bishop, 1995).

The second approach is unsupervised learning. In contrast to supervised learn-
ing, unsupervised learning involves training a model on unlabelled data. Here, the
dataset only consists of input data without any corresponding output labels. The
objective of unsupervised learning is to find patterns, structures, or relationships
within the data. In principle unsupervised learning algorithms can potentially work
with smaller amount of data. They can be categorised into two main types:

• Clustering: These algorithms aim to group similar data points based on their
inherent similarities or distances in a given representation space. The goal
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is to discover hidden patterns or groupings within the dataset. For example
Sánchez Almeida and Allende Prieto (2013) used clustering to classify stellar
spectra.

• Dimensionality reduction: These algorithms seek to reduce the number of
input variables by transforming the data into a lower-dimensional representa-
tion. This helps in visualising and compressing complex datasets by focusing
on their most relevant properties. Usually these techniques are used as a pre-
processing step. For example they have been employed to extract physical
parameters of stellar atmospheres from their spectra (e.g. Re Fiorentin et al.,
2007).

Examples of unsupervised learning algorithms include k-means clustering (Mac-
Queen, 1967), principal component analysis (PCA, Hotelling, 1933), and isomap em-
bedding (Tenenbaum, Silva, and Langford, 2000).

In the following, for the purpose of this thesis, I will focus on supervised machine-
learning techniques using artificial neural networks to perform regression tasks.

2.2 Deep learning

Deep learning is a subset of machine learning that uses artificial neural networks
formed of multiple layers of interconnected nodes (see Goodfellow, Bengio, and
Courville, 2016, for a review). In analogy with biological brains, each node can be
thought of as a neuron while the connections between nodes are the synapses. The
importance of a connection is defined by a weight, w, represented by a real num-
ber. Each node receives weighted signals from other connected neurons, processes
them and transmits the processed signal to other connected nodes. In this way, ar-
tificial neural networks are able to process a given input signal, x, by decomposing
it into more complex features and produce a final output, y. Therefore, they can be
regarded as a function y = Fw(x) where the set of weights, w, is adjusted to produce
a desired output, y, given an input, x. The employment of deep neural networks
enables the extraction of intricate features and representations from the input data,
leading to refined predictions for classification or regression tasks. In the following, I
will describe several basic network architectures that are of concern for this work but
that can also be used for a great variety of problems. I will specifically focus on the
multi-layer perceptron and the convolutional neural network. In preparation for the
following chapters, I will also describe how the training process works (Section 2.3).

2.2.1 Multi-layer perceptron

The multi-layer perceptron (MLP) was originally conceived as a binary classifier
(Rosenblatt, 1958; Minsky and Papert, 1969) but the name today is also used to de-
note modern so-called fully-connected, deep, feedforward neural networks. In this
type of architecture, the neurons are organised in layers and the information flows
unidirectionally from the first to the last layer (see top sketch in Figure 2.1). The
first layer is denoted as the input layer, the last one as the output layer and the ones
in the middle as hidden layers. The nodes in a given layer are not connected and
work in parallel, but the layers are fully connected to each other meaning that each
neuron receives inputs from all nodes in the previous layer and passes its output to
all nodes in the subsequent layer. The i-th neuron in a given layer performs a lin-
ear combination of the array of signals, x, coming from the previous layer according
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FIGURE 2.1: Sketch of a simple fully-connected feedforward neural
network with one hidden layer (top panel) and of a neuron in a multi-
layer perceptron (bottom panel). To produce an output yi, each neu-
ron first perform a linear combination of the input values xj and then

applies a non linear activation function g.

to the weights, wi, associated with its connections and a bias term, bi (see bottom
sketch in Figure 2.1):

zi = wT
i x + bi =

n

∑
j=1

wi,jxj + bi, (2.1)

where n is the number of neurons in the previous layer and the superscript "T" de-
notes the transposed vector. The bias term is responsible of introducing an offset in
the output value. By adding an extra term to the input x and setting it to 1, we can
write the linear combination above in a more compact form:

zi = wT
i x =

n

∑
j=0

wi,jxj, (2.2)

where we adopt the convention that x0 = 1, so that bi = wi,0x0 becomes the bias
term. In the following, I will also use the term weight to refer to the bias terms
for simplicity. Before passing the processed signal to all the neurons in the following
layer a non-linear activation function, g, is usually applied to produce an output yi =
g(zi) (see Figure 2.1). Non-linear activation functions are used in neural networks
to introduce non-linearity into the model (see Section 2.2.3). This is crucial to enable
the neural network to learn complex, non-linear patterns and relationships between
input and output variables. Therefore, in an MLP with a total of L layers, each layer
represents a function F(l) with l = 1, ... L that performs a linear combination of the
input and applies a non-linear function g. Therefore by passing through the network
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the input signal x undergoes a composition of functions until the final output, y is
computed:

y = F(L)(F(L−1)...(F(2)(F(1)(x)))) (2.3)

The output layer will give back the prediction for either the regression or classifica-
tion task, depending on the specific problem.

2.2.2 Convolutional neural network

Convolutional neural networks (CNNs) (LeCun et al., 1989) are deep-learning al-
gorithms primarily used for computer vision tasks like image classification, object
detection, and segmentation (Krizhevsky, Sutskever, and Hinton, 2012). They take
inspiration from the visual cortex of living organisms and are designed to work with
structured, grid-like data that are usually referred to as feature maps.

CNNs are composed of multiple layers, including so-called convolutional layers,
pooling layers, and fully-connected layers. The key component is the convolutional
layer, which performs the convolution operation on the input feature map using a
set of filters or kernels composed of learnable weights. For example, Let us consider
a two-dimensional feature map as input x and a two-dimensional kernel w. We can
define the convolution operation w ∗ x over a discretised grid as (see Chapter 9 in
Goodfellow, Bengio, and Courville, 2016):

zi,j = (w ∗ x)i,j =
+∞

∑
m=−∞

+∞

∑
n=−∞

wm,nxi−m, j−n. (2.4)

The result of this operation will be non-zero only where the feature map and the
filter overlap. However, nearly all machine learning and deep learning libraries
implement the cross-correlation operation w ⋆ x instead and improperly call it con-
volution. This is defined as:

zi,j = (w ⋆ x)i,j =
+∞

∑
m=−∞

+∞

∑
n=−∞

wm,nxi+m, j+n. (2.5)

Note that the difference between Equation (2.4) and (2.5) consists only in the "±"
signs in the indexes of x which flips the way we access the entries of the input feature
map. For simplicity, we will continue calling both operations convolution. In prac-
tice, the convolution operation involves sliding the filter over the input feature map,
computing element-wise multiplications, and summing them up to produce a new
convolution feature map z (see Figure 2.2). These feature maps capture local patterns
or features present in the input map such as edges or corners in an image. Generally,
the convolutional filters have a much smaller size if compared with the input fea-
ture map. By using small filters that slide over the input map each output value in
the convolutional feature map depends only on a small subset of input values. This
reduces the number of computations required compared to fully-connected layers
where each input value affects all output values. Indeed fully-connected deep neu-
ral networks are not suitable to process multi-dimensional inputs, since the number
of required neurons and connections will scale up exponentially with the input size.
Furthermore, the same filter (set of weights) is used across different spatial locations
of the input feature map. This sharing of parameters significantly reduces the num-
ber of parameters in the network and enables the model to learn spatially invariant
features. By sharing parameters, the network can detect the same feature regardless
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FIGURE 2.2: An example showing how the convolution (cross-
correlation in this case) operation works for a 2-D input. We draw
boxes with arrows to indicate how the upper-left element of the out-
put feature map is formed by applying the kernel to the correspond-
ing upper-left region of the input feature map (Figure taken from

Goodfellow, Bengio, and Courville, 2016).

of its location and orientation in the input. Since a single filter can recognise only a
specific type of feature, usually many filters are stacked together to form a convo-
lution layer. This allows one to perform many convolution operations on the input
map and to extract different features in parallel.

To introduce non-linearity, an activation function is usually applied to the feature
maps generated after the application of a convolutional layer.

After the activation function has been applied to the feature maps, a common
practice is to use pooling layers. The pooling operation performed by this kind of
layers is specified, rather than learned. Two common functions used in the pooling
operation are max-pooling and average-pooling. Max-pooling and average-pooling
layers consist of filters that slide on the feature map and select the maximum or com-
pute the average value respectively inside the sub-region of the map that they over-
lap with (see Figure 2.3). Both approaches are used to downsample the feature maps
by reducing their spatial dimensions, thereby decreasing the computational com-
plexity while preserving the most relevant information and the dominant features.
In this way, these layers help reduce the influence of noisy or irrelevant information
from the input.

Usually, deep CNNs are formed by stacking together a series of convolutional
layers composed of an increasing number of filters followed by pooling layers. This
allows layers close to the input to learn low-level features (e.g. lines, edges, corners)
and layers deeper in the model to learn high-order or more abstract features, like
shapes or objects.

Finally, fully connected layers are added at the end of the CNN to perform the
tasks of classification or regression. They take the high-level features extracted by
the previous layers and produce the final output.
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FIGURE 2.3: Example showing how the convolution and pooling lay-
ers operate on the input data. First, the 8 × 8 input layer is reduced
to a 6 × 6 output layer after going through a convolution layer con-
sisting of a single filter with size 3 × 3 that moves along the input
with a stride of 1. This output layer becomes the input layer with
respect to either the max-pooling or average-pooling layer, each con-
sisting of a single filter with size 2× 2 that moves along the input with
stride 2. The max-pooling layer picks the maximum number from
the layer input within a selected window, while the average-pooling
layer computes average values over the selected window. The final
output layer is therefore a 4 × 4 array (Figure taken from Teo et al.,

2021).
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FIGURE 2.4: Comparison between the ReLU and the logistic (sig-
moid) activation functions.

2.2.3 The activation function

Generally, the choice of the activation function depends on the problem and the type
of data at hand. Besides introducing non-linearity the type of activation function is
also important to implement a stable and effective learning process. An example of
activation function g is the logistic (sigmoid) function:

logistic(z) =
1

1 + e−z (2.6)

This activation function is especially used in the output layer of neural networks em-
ployed as classifiers as it compresses the output to a value between 0 and 1 which
can be interpreted as the probability to belong to a given class. However as argued
by Glorot and Bengio (2010) and Glorot, Bordes, and Bengio (2011) using the sig-
moid function in all the layers of deep neural networks can slow down the learning
process as it is very sensitive to the input value z especially when it is near 0. More-
over it saturates across most of its domain leading more easily to vanishing gradient
issues (see Section 2.3 and Figure 2.4). Another common choice for the activation
function is the rectified linear unit (ReLU) (Glorot and Bengio, 2010) which is de-
fined as:

ReLU(z) = max(0, z). (2.7)

One major benefit of using ReLU is its simplicity (see Figure 2.4). As we will see in
the next section Section 2.3, the gradient calculation for ReLU is usually easier and
more efficient compared to more complex activation functions (it is 0 for z < 0 and
always 1 for z > 0), resulting in faster convergence during gradient-based optimisa-
tion. Indeed for this activation function, there is a reduced chance of its gradient to
vanish contrary to other activation functions such as the sigmoid. Furthermore by
using the ReLU, some of the neurons are likely to be inactive (outputting zero) for
negative input values. This sparse activation makes the network more efficient by
reducing the number of active neurons and, in turn, the complexity and computa-
tional requirements (Glorot, Bordes, and Bengio, 2011).
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2.3 The training process

In supervised learning, a neural network is trained on a dataset containing input
features x and the corresponding target labels ŷ. By feeding the training data into
the network, the training proceeds by adjusting the model parameters w, i.e., the
weights and biases, to minimise a loss function. The loss is a measure of the differ-
ence between the predicted outputs y and the expected target labels ŷ. Its minimisa-
tion is achieved by computing the gradients of the loss function with respect to the
weights and by performing gradient descent in a procedure called backpropagation
(see Section 2.3.4). Here I will describe the steps involved in the training process.

2.3.1 Training, validation and test dataset

The labeled dataset that is available for training is usually divided into three sepa-
rated subsets called training, validation, and test dataset, respectively. In machine
learning, these are used for different purposes.

The training dataset is used to train a machine-learning model. It comprises a
large portion (usually around 70% to 80%) of the original dataset. During the train-
ing phase, the model learns from this dataset by adjusting its parameters (i.e., the
weights) to minimise the error between its predicted outputs and the actual target
labels.

The validation dataset is used to evaluate the performance of the model during
the training process. It usually constitutes a smaller portion (around 10% to 20%) of
the original dataset. The validation dataset is not used to optimise the model param-
eters, but instead allows us to validate how well the model can generalise to unseen
data. In general, it is used to fine-tune hyperparameters (like the learning rate, the
size of input batches, etc., see below for an explanation), select the best model, and
prevent overfitting, which refers to the model performing well on training data but
poorly on unseen data.

Similar to the validation dataset, the test dataset is also a small fraction of the to-
tal dataset, usually around 10%. However, contrary to the validation dataset, the test
dataset is never seen by the model during the training process and it is not used dur-
ing model development or hyperparameter tuning. Instead it is employed to assess
the final performance and generalisation ability of the trained model on real-world
data in an unbiased way. To ensure this, the test dataset is completely separate from
the training and validation datasets and it should ideally have a similar distribution
of data.

Before training, it is sometimes useful to apply some transformations to these
datasets. Some of these transformations include normalisation and standardisation
of the input features x and in regression tasks also of the corresponding labels ŷ. In
general, the label ŷ can be a vector containing the different parameters to predict.
Normalisation is usually applied on every input feature separately. In particular, it
performs the following operation:

x′ =
x − min (x)

max (x)− min (x)
. (2.8)

where min(x) and max(x) are the minimum and maximum values of the input fea-
ture map x respectively. This guarantees that the input values always fall in the
range [0, 1]. The normalisation of the labels instead is performed on a dataset basis
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and for each specific label ŷ in ŷ it consists of the following operation:

ŷ′ =
ŷ − min (ŷ)

max (ŷ)− min (ŷ)
, (2.9)

where min and max are computed for each label parameter over the entire training
dataset. In this way, all the labels are re-scaled to the range [0, 1] as well. Stan-
dardisation instead consists of evaluating the average value ⟨x⟩ and the standard
deviation σ(x) for each input feature x and then computing the z-scores by applying
the following transformation:

x′ =
x − ⟨x⟩

σ(x)
. (2.10)

For the labels we standardise on a dataset basis and for each specific label ŷ in ŷ we
compute:

y′t =
ŷ − ⟨ŷ⟩

σ(ŷ)
, (2.11)

where the mean and standard deviation are computed over the entire training dataset.
Standardisation guarantees that the values of the input features and the labels are
rescaled so that they have zero mean and unit variance.

Normalisation and standardisation aim to make the input features and targets
have approximately the same range of values to improve the efficiency and effec-
tiveness of the models’ learning process. This is important because it prevents some
variables from dominating others, which can lead to biased and ineffective learning.
By normalising or standardising the input data, the model can therefore focus more
accurately on the variations and patterns in the features rather than their absolute
values. These preprocessing techniques facilitate effective learning by reducing the
impact of outliers, and by providing a consistent and balanced representation of the
input data.

2.3.2 Weights initialisation

An important aspect of achieving good performance while training is the initiali-
sation of the weights of the network. When defining the network architecture, the
simplest approach is to initialise all the weights randomly in a given range of values.
In this way at the beginning of the training process also the output of the network
is random. However, if the weight values are too small, after a few layers the out-
put values and the gradients will completely vanish. On the other hand, if weights
are too big the output values and the gradients could explode. As a consequence,
training will proceed very slowly or will stagnate.

To visualise this aspect let us consider an example with a fully-connected neural
network. We focus on two neighboring layers in the network, l − 1 and l, with layer
l − 1 having n nodes. Suppose that the weights, w, associated to the connections be-
tween these two layers, are initialised with values randomly sampled from a normal
distribution with mean 0 and a generic variance Var(w) and the biases are initialised
to be zero.
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As shown in Equation (2.1), the outputs of the nodes in layer l are a linear com-
bination of the input features x with weights w, i.e., output z is given by:

z(l) =
n

∑
i=1

wixi. (2.12)

The input features in turn are the result of the activation function applied to the
output of the previous layer that is xi = y(l−1)

i = g
(

z(l−1)
i

)
. We can calculate the

expectation value of z(l):

E(z(l)) = E

(
n

∑
i=1

wixi

)
= nE(wx)
= nE(w)E(x) = 0, (2.13)

where we treat the weights and the input features as two statistically independent
random variables. Hence we dropped the index i for clarity of notation and we used
the fact that the average value of the weights E(w) = 0. Moreover for the variance
of z we find:

Var(z(l)) = Var

(
n

∑
i=1

wixi

)
= nVar(wx)

= n[Var(w)Var(x) + E(w)2Var(x) + Var(w)E(x)2]

= n[Var(w)Var(x) + Var(w)E(x)2]

= nVar(w)[Var(x) + E(x)2]

= nVar(w)E(x2), (2.14)

where in the third line we used the rule for the variance of a product of random
variables (Springer, 1979). In the fourth line we took advantage of the fact that we
define the weights to have zero mean and, in the last line we use the definition of
the variance Var(x) = E(x2)− E(x)2. From this expression, we note that if the vari-
ance Var(w) and the expectation value E(x2) are too big or too small, the variance
Var

(
z(l)
)

will explode or vanish after a few layers. Furthermore, it is worth notic-

ing that as x is the result of applying the activation function to z(l−1), the expectation
value and variance of x will, in general, differ from the ones of z(l−1) and they will
depend on the type of activation function employed.

In the following we compute E(x2) for the ReLU activation function, that is con-
sidering x = max

(
0, z(l−1)

)
assuming that the probability density functions for the
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variable x and z are P(x) and P(z) respectively:

E(x2) =
∫ +∞

−∞
x2P(x)dx

=
∫ +∞

−∞
max(0, z(l−1))2P(z)dz

=
∫ +∞

0

(
z(l−1)

)2
P(z)dz

=
1
2

∫ +∞

−∞

(
z(l−1)

)2
P(z)dz

=
1
2

Var
(

z(l−1)
)

, (2.15)

where in the last step we recall that from Equation (2.13), E(z) = 0 in any layer.
Therefore, substituting in Equation (2.14) we find that:

Var
(

z(l)
)
=

1
2

nVar(w)Var
(

z(l−1)
)

. (2.16)

A good weight initialisation should ensure that Var
(

z(l)
)
= Var

(
z(l−1)

)
which im-

plies that the weights have a variance of:

Var(w) =
2

n(l−1)
. (2.17)

where we recall that n(l−1) is the number of nodes for the l − 1 layer (i.e., the size
of the input features for the l layer). Notice that in the previous steps we did not
choose a specific layer l. Thus, this expression holds for every layer of the network.
This is the initialisation procedure commonly adopted for models using the rectified
activation function ReLU and is referred to as Kaiming initialisation (He et al., 2015).
With this method, the initial weights between layers are sampled from a normal
distribution with mean 0 and standard deviation σ(w) =

√
2/n, where n is the size

of the input feature to each layer, while the biases are initially set to zero. This
helps to reduce the problem of vanishing or exploding gradients and to make the
training more stable and effective. In the following, we will adopt this initialisation
procedure.

2.3.3 Forward pass and loss calculation

During the forward pass, input data from the training dataset is passed through the
network, and intermediate activations of neurons are computed using the current
weights. This process starts from the input layer and progresses through the hidden
layers until it reaches the output layer. The output of the network is then compared
to the desired output. The distance between the network’s output y and the ex-
pected target label ŷ is quantified using a loss function L(y, ŷ), which measures the
network’s performance on a particular task. For regression tasks where one wants
to predict some continuous real values, an example of a loss function is the mean
squared error defined as:

MSE(y, ŷ) =
1

n(o)

n(o)

∑
i=1

(yi − ŷi)
2, (2.18)
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FIGURE 2.5: Visualisation showing the comparison in behaviour of
the optimisation algorithms Adam (green curve) and stochastic gra-
dient descent (SGD) (dark grey curve). The loss landscape has two
minima, the global minimum is on the left while a local minimum
is found on the right. Starting from the same point (red dot), Adam
is able to find the global minimum while SGD converge to the lo-
cal one (Figure adapted from https://emiliendupont.github.io/

2018/01/24/optimization-visualization/).

where n(o) is the size of the output y.
Usually, the training dataset is passed through the network in batches composed

of more than one sample. By passing a single training sample at a time, the gradient
estimation can be noisy and the weight updates can be more erratic. On the other
hand, using a larger batch size usually allows more stable training and gradient es-
timation since the loss computation and its gradients are averaged over the batch
of data. This leads to a better estimate of the overall direction in which the weights
need to be updated (see Section 2.3.4). The typical batch sizes are usually powers of
2, such as 32, 64, or 128. However, the appropriate batch size can vary depending on
the dataset size, available computational resources, and the specific problem being
addressed, and might need to be determined through experimentation and perfor-
mance evaluation. Using a large batch size has indeed the downside of using more
memory resources.

Once a batch of samples from the training dataset has been passed through the
network and the loss has been computed the next step is the backpropagation.

2.3.4 Backward pass (backpropagation) and weight update

In this step, the loss is propagated backward through the network to compute the
gradients with respect to the weights. Indeed the value of the loss function L(y, ŷ)
depends on the output y which in turn depends on the values of the weights in the
network. The chain rule of calculus is applied to efficiently calculate the gradients
of the loss with respect to each weight in the network. For example let us assume
for simplicity that y = g(z) = g(∑n

i=0 wixi) where g is again the activation function.
We can now focus on a particular weight wi. The gradient of the loss function with

https://emiliendupont.github.io/2018/01/24/optimization-visualization/
https://emiliendupont.github.io/2018/01/24/optimization-visualization/
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respect to this weight is computed as:

∂L(y, ŷ)
∂wi

=
∂L(y, ŷ)

∂y
∂y(z)

∂z
∂z(w, x)

∂wi
. (2.19)

We note here that the gradient of the loss function vanishes if either ∂y
∂z or ∂z

∂wi
or both

are zero as could happen for an unsuitable choice of activation functions or a bad
weight initialisation (see Section 2.2.3 and Section 2.3.2).

The gradients calculated for the backpropagation are then used to update the
weights of the network. This is usually performed through gradient descent. Let us
again focus on a specific weight wi for simplicity.

• If ∂L
∂wi

> 0, an increase in the value of wi increases the loss L;

• If ∂L
∂wi

< 0, an increase in the value of wi decreases L.

Therefore to always decrease the value of the loss L, the update δwi in the weight
value has to be proportional to the opposite of the gradient computed with respect
to that weight. This means that, in general, at the training iteration t, the weight
values can be updated in the following way:

wt = wt−1 + δwt = wt−1 − η∇wL(wt−1), (2.20)

where η is called the learning rate defined as η > 0. The learning rate establishes
the size of the displacement between the updated values and the old values of the
weights at training step t − 1.

In the simplest optimisation algorithm called stochastic gradient descent (SGD),
the learning rate is kept constant. More sophisticated optimisation algorithms intro-
duce a more efficient way to update the weights. One of the most popular optimisers
is Adam (Kingma and Ba, 2014). As in SGD, Adam computes the gradients of the
loss function with respect to the model’s parameters. However, it keeps track of
the exponentially decaying averages of past gradients and square gradients (the so
called first and second moment, respectively) according to (Kingma and Ba, 2014):

mt = β1mt−1 + (1 − β1)∇wL(wt−1), (2.21)
vt = β2vt−1 + (1 − β2)∇wL(wt−1). (2.22)

The first moment mt gives an average estimate of the magnitude of the gradients.
The second moment vt instead represents an uncentered variance of the gradients
and is a measure of how much the gradients oscillate around a 0 mean gradient.
The rates β1 and β2 that regulate the exponential decay are usually set to around 0.9.
When the training starts, these moments are initialised to zero, causing them to be
biased towards zero in the early training stages. To mitigate this bias, Adam applies
bias corrections during the first few iterations. This involves adjusting the estimates
of the first and second moments by dividing them by correction factors which are
different for the mean and the variance:

m̂t =
mt

1 − βt
1

, (2.23)

v̂t =
vt

1 − βt
2

. (2.24)

Note the training iteration t at the exponent that makes the bias correction vanish
as the training proceeds. Adam then adapts the learning rate separately for each
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FIGURE 2.6: Examples of model underfitting, model fitting good, and
a model overfitting to the data on classification, regression, and deep
learning models. In classification, squares and circles represent two
different classes. In deep learning, the figures represent the training
and validation error over each iteration during the model training

process. Figure taken from Solanes and Radua (2022).

weight. This means that weights with a history of large gradients are assigned
smaller learning rates, and weights with a history of smaller gradients are assigned
larger learning rates. The weight update rule is then given by:

wt = wt−1 + δwt = wt−1 − η
m̂t√

v̂t + ϵ
, (2.25)

where ϵ is a small factor to avoid dividing by zero. This optimisation algorithm
helps converge faster and prevents overshooting near minima of the loss landscape.
Furthermore, it helps push the optimiser towards the right direction by reducing os-
cillations during updates. However in general it is not guaranteed that the optimiser
converges to a global minimum. If the loss landscape is complex and very irregular
it can happen that the optimiser gets trapped in a local minimum (see Figure 2.5).

To summarise, the update reduces the loss and moves the network’s predictions
closer to the expected output.

2.3.5 Network optimisation and model evaluation

Once the first update of the weights has been performed, the network proceeds to
learn by receiving another batch of samples and updating the weights again. The
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forward pass, backpropagation, and weights update steps are repeated in cycles un-
til the entire training dataset has been passed in batches through the network. At
this point, a single training epoch has been completed. The validation dataset is
then used to evaluate the performance of the network on data that it has not seen
during the first round of optimisation. The accuracy of the network predictions over
the validation dataset is monitored by computing the loss function on the valida-
tion dataset. This helps to assess how well the network performs on unseen data
and indicates if the training data is overfitted. Signs of overfitting are observed by
comparing the evolution of the training and validation losses. If the training and
validation loss curves start to diverge during training, with the training loss reduc-
ing while the validation loss increases or remains high, this indicates overfitting (see
Figure 2.6). A way to mitigate overfitting is to introduce early-stopping during the
training which consists of stopping the training process if the validation loss ceases
to improve.

The steps outlined above are repeated for a fixed number of iterations (epochs)
or until the network achieves a desired level of accuracy on the validation dataset.
During each iteration, the forward and backward passes help to refine the network’s
weights, minimising the loss and improving the network’s performance.

After the training is completed, the final weights are saved and the neural net-
work’s performance is evaluated on a separate test dataset to gauge its generalisa-
tion ability on completely unseen data. While the preparation of the training dataset
and the training process itself can be time consuming, once the network has been
trained the evaluation on a new set of data is very fast. This is an advantage for
example in automatic detection and classification of transient events (see Section 2.6
for some example of applications in astrophysics).

2.4 Simulation based (likelihood-free) inference

In physics and astrophysics, we commonly employ stochastic simulators that aim to
emulate some real-world observations or phenomena. Such a simulator incorporates
variability and randomness by sampling some variables from probability distribu-
tions using Monte Carlo techniques. It relies on theoretical parametric models that
depend on certain input parameters θ = {θ1, θ2, ...}. Given this set of input parame-
ters θ, the simulator generates a synthetic realisation of the observed data x. In gen-
eral, underlying the usage of simulation models is the assumption that these models
are correct and hence provide an accurate emulation of the real-world processes that
generate the observed data. A key challenge in simulation based problems is con-
straining the free parameters in our simulation models with observational data. The
goal is to find the region in this parameter space that is consistent with both the
available empirical data and our prior knowledge. In general, we encode our prior
knowledge of the phenomenon under study in a prior probability distribution, π(θ),
over the model parameters θ. The stochastic simulator defines the likelihood prob-
ability distribution P(x|θ) of some data x (that is generated by the simulator or the
product of real observations) given some set of model parameters θ. The aim is to
compute a posterior probability distribution P(θ|x) of the model parameters θ given
the data x. This can be achieved by using the Bayes theorem (Stuart and Ord, 1994):

P(θ|x) = π(θ)P(x|θ)
P(x)

(2.26)
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FIGURE 2.7: Neural posterior estimation workflow
Scheme of the workflow for the neural posterior estimation (NPE) algorithm (See
text for more details).

where P(x|θ) is the likelihood of our data, x, given the parameter, θ, and

P(x) ≡
∫

P(x|θ′)π(θ′)dθ′, (2.27)

denotes the evidence obtained by marginalizing over all θ. where P(x). However,
for complex simulators, the likelihood P(x|θ) is typically intractable as it is implic-
itly defined by the simulator. Even if it were tractable, for multidimensional prob-
lems the posterior computation can become very costly as Equation (2.27) involves
an integral over θ, which becomes challenging for simulators with high-dimensional
parameter spaces. Simulation-based likelihood-free inference aims to bypass these
problems and directly compute the posterior distribution P(θ|x) without having
access to the likelihood probability density (see Cranmer et al., 2020, for a review).

Deep neural networks are particularly useful for this task because they can be
used to learn a (probabilistic) association between data and the underlying model
parameters, i.e., extract a posterior probability distribution from simulated data
without the need to explicitly compute the likelihood. There are three main ap-
proaches to achieve this goal:

• Neural posterior estimation (NPE): The network learns to directly map the
simulator output, x, onto the posterior distribution, P(θ|x), for the underlying
parameters, θ. This requires the use of a flexible neural density estimator such
as a normalising flow or a mixture density network (MDN) (e.g. Papamakarios
and Murray, 2016; Lueckmann et al., 2017; Greenberg, Nonnenmacher, and
Macke, 2019; Mishra-Sharma and Cranmer, 2022; Vasist et al., 2023; Dax et al.,
2021; Hahn et al., 2023).

• Neural likelihood estimation (NLE): The network emulates the simulator by
learning an association between θ and x, thus providing direct access to an
approximation of the likelihood, P(x|θ). Because the prior is known, the pos-
terior can then be obtained by an additional MCMC sampling step (e.g., Papa-
makarios, Sterratt, and Murray, 2018; Alsing et al., 2019).

• Neural ratio estimation (NRE): Here, the network learns the likelihood-to-
evidence ratio, r(θ, x) ≡ P(x|θ)/P(x), which is equivalent to P(θ|x)/P(θ)
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using Bayes’ theorem (6.25). Once r(θ, x) is known, the posterior can be recov-
ered through MCMC by sampling the prior weighted by the ratio, r(θ, x) (e.g.,
Hermans, Begy, and Louppe, 2019; Miller et al., 2021; Bhardwaj et al., 2023).

In the following I will concentrate on NPE as it allows to directly derive an es-
timation of the posterior distribution without the extra step of a MCMC sampling.
As we will adopt the NPE method in Chapter 6, in this section I will discuss further
details of this approach.

2.4.1 Neural posterior estimation

Typically, in the NPE approach, a neural network, F, is trained to map a given sim-
ulation outcome x onto the parameters ψ of a density estimator qψ which is used to
approximate the posterior distribution, P(θ|x), of the underlying model parameters
θ (Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg, Nonnen-
macher, and Macke, 2019, see also the schematic workflow in Figure 2.7). To train
the network, suppose that we have a dataset {(θi, xi)} with i = 1, ..., N, where {θi}
is a set of model parameters drawn from the prior distribution π(θ) and {xi} is the
set of corresponding simulation outcomes. For a given sample (θi, xi), we define the
following loss function:

L(θi) = − log qF(xi ,w)(θi), (2.28)

where we make explicit that the density estimator parameters depend on the input
xi and the network weights w, i.e., ψ = F(xi, w) . Minimising this loss function
means adjusting the network weights so that the probability defined by the den-
sity estimator of the label parameters θi is maximised. As demonstrated in Papa-
makarios and Murray (2016) for sufficiently complex networks and flexible density
estimators, minimising the expectation value of the loss in Equation (2.28) leads to
qF(x,w)(θ) ≈ P(θ|x) as N → ∞. This can be seen by using the Kullback-Leibler
divergence, DKL(P1||P2), which is a measure of the difference between two prob-
ability distributions, P1 and P2 (Kullback and Leibler, 1951). First we note that
qF(x,w)(θ) ≈ P(θ|x) is equivalent to P(x|θ)π(θ) ≈ P(x)qF(x,w)(θ) by using Bayes
theorem (Equation (2.26)), so that we can write the following (Papamakarios and
Murray, 2016):

DKL[P(θ|x) || qF(x,w)(θ)] = DKL[P(x|θ)π(θ) || P(x)qF(x,w)(θ)]

≡
∫

P(x|θ)π(θ) log
P(x|θ)π(θ)

P(x)qF(x,w)(θ)
dθdx

=
∫

P(x|θ)π(θ) log
P(θ|x)

qF(x,w)(θ)
dθdx

=
∫

P(x|θ)π(θ) logP(θ|x)dθdx

−
∫

P(x|θ)π(θ) log qF(x,w)(θ)dθdx

= EP(x|θ)π(θ)[logP(θ|x)]− EP(x|θ)π(θ)[log qF(x,w)(θ)].
(2.29)

The expectation values are computed over the joint probability distribution P(x, θ) =
P(x|θ)π(θ) that can be sampled using the simulator. The first expectation value
does not depend on the network parameters. Therefore it is a constant term that can
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be neglected in the minimisation procedure. This last expression shows that min-
imising the Kullback-Leibler divergence is equivalent to minimising the expectation
value of the loss function defined by Equation (2.28).

A commonly employed density estimator is masked autoregressive flow (MAF).
A MAF is a composition of invertible and differentiable transformations that are
applied to a simple distribution, such as a standard Gaussian distribution, to trans-
form it into more complex distributions (Jimenez Rezende and Mohamed, 2015; Pa-
pamakarios, Pavlakou, and Murray, 2017). Each transformation is parametrised by
neural networks which depend on the input data x. In this way, MAFs can be trained
to approximate any target distribution.

An alternative to MAFs are mixture density networks (MDNs). I will focus on
this type of architecture as we will employ it in Chapater 6. MDNs can model com-
plex probability distributions by approximating them using a mixture of distribu-
tions. A mixture of distributions (also known as a mixture model) is a statistical
model that represents the probability distribution of a random variable as a combi-
nation of two or more component distributions. A MDN thus takes some features x
as input and outputs the parameters ψ defining the mixture model. More precisely,
these include the parameters that determine the shape and characteristics of each
component distribution and the mixing coefficients that determine their weights in
the mixture model. An example of a mixture model is a mixture of multivariate
Gaussian distributions in the D-dimensional space that is defined as:

qψ(θ) =
C

∑
c=1

αcN (θ|µc, Σc), (2.30)

where C is total the number of Gaussian components N , αc are the mixing coeffi-
cients, µc is the vector of means and Σc is the covariance matrix of the c Gaussian
component defined as:

N (θ|µc, Σc) =
1

(2π)n/2 det(Σc)1/2 exp
[
−1

2
(θ− µc)

T
Σc

−1 (θ− µc)

]
. (2.31)

In this case, the mixture density network outputs the parameters αc, µc and the en-
tries of the covariance matrix Σc for every Gaussian component. To evaluate the loss
for a given simulated data sample (θi, xi), we need to compute:

L(θi) = − log
C

∑
c=1

αcN (θi|µc, Σc), (2.32)

where the parameters αc, µc and Σc depend on the input features xi and the network
weights w. Since we have an exponential function in the normal distribution, we
might obtain very small numbers when evaluating the loss in this form. Such values
might be too small to be represented with the correct precision by the computing
system (numerical underflow). To avoid this issue, we take advantage of the fact
that x = exp(log x). The loss function can thus be rewritten in the following form:

L(θ) = − log
C

∑
c=1

exp [log (αcN (θ|µc, Σc))]

= − log
C

∑
c=1

exp
[

log αc −
n
2

log(2π)− 1
2

log det(Σc)−
1
2
(θ− µc)

T
Σc

−1 (θ− µc)

]
.

(2.33)
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FIGURE 2.8: Example sketches showing the distribution of the ranks
statistics in the case of a density estimator predicting well calibrated
posteriors (top left plot), posteriors that are too conservative (top right
plot), overconfident posteriors (bottom left plot) and posteriors that are
biased, i.e., that underestimate the parameter values in this specific

case (Figures taken from Talts et al., 2018).

Implementing this log of the sum of exponentials numerically allows a stable calcu-
lation of the loss.

Once trained on a large collection of simulations, this type of network is able to
generate a precise estimation of the posterior density distribution for any given input
of empirical data. This allows a fast inference procedure which is also amortised,
meaning that it does not rely on a single specific observation.

2.5 Diagnostic checks

After a density estimator has been trained on a dataset of simulations and to pro-
duce posteriors, its predictions should undergo several diagnostic tests, before being
used for inference on actual observed data. A first qualitative check is the so-called
posterior-predictive check. It consists of inspecting if the data generated from the
simulator using the parameters sampled from the posterior looks similar to the ac-
tual input data used to estimate the posterior. Even if not fully systematic, this test
gives already an indication if the predicted posterior is biased or inaccurate. In the
following, I report two more quantitative tests that should be performed to asses
if the trained estimator is well calibrated (see Chapter 6 for an application of these
tests).

2.5.1 Simulation based calibration

Talts et al. (2018) proposed a method called simulation-based calibration (SBC) that
provides a qualitative view and a quantitive measure to check if posterior predic-
tions are trustworthy. SBC can diagnose whether the estimated posterior predictions
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are biased, i.e., systematically overestimating or underestimating the true parame-
ter values, and whether the posterior uncertainties are unbalanced, i.e., either over-
confident or under-confident. Therefore, SBC can be viewed as a necessary (but not
sufficient) condition for a valid inference algorithm. If SBC checks fail, the inference
results should not be trusted. On the other hand, if SBC checks pass, the posterior
estimation should be well calibrated but this is no guarantee for the method to be
working properly.

SBC is based on ranking parameters θ sampled from the prior π(θ) and check-
ing their rank statistics (see also Cook, Gelman, and Rubin, 2006). The procedure
is as follows. We consider a test dataset {(θi, xi)} (that has been used neither for
training nor validating the network) and compute the posterior P(θ|xi) by process-
ing each xi through the trained network. From each posterior P(θ|xi), we sample
S values θs and count how many of these samples are smaller than the original θi.
This count gives the rank associated with the parameter θi. Once this has been per-
formed for the entire dataset {(θi, xi)}, we analyze the obtained rank statistics. For a
well-calibrated posterior, the ranks follow a uniform distribution (Talts et al., 2018).
If this is not the case, we obtain an indication that the estimated posteriors are not
accurate on average (see Figure 2.8). For example, if the rank distribution is skewed
to the left, i.e., it is dominated by lower ranks, the predicted posteriors tend to over-
estimate the parameters θ. If the rank distribution is skewed to the right, i.e., it is
dominated by high ranks, the predicted posteriors tend to underestimate the param-
eters θ. Moreover, if the rank distribution has a "U" shape, and is dominated by low
and high ranks, the predicted posteriors tend to be overconfident, that is they un-
derestimate the uncertainties on the parameters θ. Finally, if the rank distribution
has a "∩" shape and is dominated by medium ranks, the predicted posteriors tend to
be too conservative. This implies that they are overestimating the uncertainties on
the parameters θ. As θ is usually an array of parameters, the rank statistics are com-
puted over the marginalised 1D posterior distributions of each these parameters.
Therefore, this test might not be particularly sensitive to the shape of the posterior
in the multi-dimensional space and the presence of correlations between parameters.
While rank statistics are a useful metric to assessing the quality of a posterior distri-
bution, we will primarily focus on another method outlined below in the remainder
of this thesis.

2.5.2 Coverage probability

Another test to asses if a posterior estimator is well calibrated is checking its cover-
age probability (Hermans et al., 2021). As in SBC, we consider a test dataset {(θi, xi)}
and compute the posterior P(θ|xi) for each xi. For each posterior, we then define
a credible region Θi with the smallest volume in the multidimensional parameter
space of θ corresponding to a total probability 1 − α with α ∈ [0, 1]:∫

Θi

P(θ|xi)dθ = 1 − α, (2.34)

where 1 − α defines the so-called credibility level. Considering the region with the
smallest volume guarantees that we are focusing on the region of the parameter
space that encloses the parameter values θ with the highest posterior probability
density. In the literature, this is also called the highest posterior density region (Hyn-
dman, 1996).

By counting how many θi fall inside the corresponding credibility regions Θi we
obtain a measure of how well the estimated posteriors are able to recover the label
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FIGURE 2.9: Coverage probability plot showing the computed cov-
erage probability versus the credibility level 1 − α for overconfident
posterior distributions (red curve), well-calibrated posteriors (green

curve) and overconfident posteriors (blue curve).

parameters θ. This count gives an estimate of the so-called coverage probability. If
the posterior estimator is well calibrated, the coverage probability should be equal
to the value 1 − α. If the coverage probability is higher than 1 − α, this is a symptom
for a posterior estimator that tends to generate posteriors that are too conservative.
On the other hand, if the coverage probability is lower than 1 − α, this indicates that
the estimated posteriors are overconfident. We will use this test in Chapter 6 (see
also Appendix D for more details and Figure 2.9 for an illustrative representation).

2.6 Applications in astrophysics

In recent years there has been an increasing number of works that apply the machine
learning techniques outlined above in the field of astronomy and astrophysics. In
particular, for neutron-star and compact-object related science, ML algorithms have
for example been developed to classify new pulsars candidates (see for example
Bethapudi and Desai, 2018; Balakrishnan et al., 2021; Lin, Li, and Luo, 2020) as well
as transient radio events such as fast radio bursts (FRBs) (Connor and van Leeuwen,
2018; Agarwal et al., 2020) or to visualize from another perspective the pulsar pop-
ulation through minimum spanning trees (García, Torres, and Patruno, 2022). Other
approaches have aimed to combine classification and regression tasks to forecast
and analyse gravitational-wave signals in real-time and perform parameter estima-
tion for the merger events (George and Huerta, 2018; Cabero, Mahabal, and McIver,
2020; Wei and Huerta, 2020; Skliris, Norman, and Sutton, 2020; Gerosa, Pratten,
and Vecchio, 2020). Some other studies focused on reconstructing the neutron-star
equation of state from observed quantities, like their masses and radii (Fujimoto,
Fukushima, and Murase, 2018; Morawski and Bejger, 2020). In Chapter 5 we will
study the feasibility of using deep neural networks (in particular CNNs) to infer the
dynamical properties of the neutron star population.

In addition, the rapidly developing field of simulation-based inference is now
offering new tools to perform parameter estimation with complex simulators (see
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Cranmer et al., 2020, for a review). For example, SBI has been employed for param-
eter estimation from gravitational-wave signals (Green, Simpson, and Gair, 2020;
Bhardwaj et al., 2023). Vasist et al. (2023) inferred the physical properties of ex-
oplanetary atmospheres from spectroscopic data. Moreover, Khullar et al. (2022)
have been able to retrieve galaxy properties from their spectral energy distributions
(SEDs). In the context of cosmology, Jeffrey, Alsing, and Lanusse (2021) used an
SBI framework to infer cosmological parameters from weak lensing maps. In this
work, we are going to employ for the first time an SBI framework developed by
Tejero-Cantero et al. (2020) in conjunction with a population synthesis simulator to
retrieve the birth properties of the Galactic population of isolated radio pulsars (see
Chapter 6).
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Chapter 3

Long-period pulsars as possible
outcomes of supernova fallback
accretion

3.1 Introduction

The spin-period distribution of the pulsar population reflects intrinsic properties of
neutron-star formation, early evolution, magnetic-field decay, and age (see sec. 1.13).
Until a few years ago, the spin distribution of observed pulsars was ranging between
∼ 0.002–12 s. At the fastest extreme, we have recycled millisecond pulsars (mostly
in binaries), while the slowest extreme is populated by magnetars (see Figure 1.12).
The historical lack of isolated pulsars with periods ≳ 12 s has been intriguing and
interpreted in different ways, ranging from the presence of a death line below which
radio emission is quenched (Ruderman and Sutherland, 1975; Bhattacharya and van
den Heuvel, 1991; Chen and Ruderman, 1993, see also Section 1.9.3), to magnetic-
field decay coupled with the presence of a highly resistive layer in the inner crust
(possibly due to the existence of a nuclear pasta phase Pons, Viganò, and Rea, 2013,
see also Section 1.3), as well as due to an observational bias caused by high band
pass filters in radio searches (albeit not in X-ray searches). Although the main reason
is uncertain, all of these effects likely contribute at some level to the observational
paucity of long-period pulsars (Wu et al., 2020).

However, recent radio surveys, in particular thanks to new radio interferometers
such as the LOw Frequency ARray (LOFAR; van Haarlem et al., 2013), MeerKAT
(Jonas, 2009), Australian SKA Pathfinder (ASKAP; Hotan et al., 2021), and the Murchi-
son Widefield Array (MWA; Tingay et al., 2013; Wayth et al., 2018), have started to
uncover the existence of a new population of slowly rotating radio pulsars that chal-
lenge our understanding of the pulsar population and its evolution.

Two radio pulsars, PSR J1903+0433 (Han et al., 2021) and PSR J0250+5854 (Tan
et al., 2018), have been recently discovered with periods of 14 s and 23 s, respec-
tively. Moreover, a ∼ 76 s radio pulsar with a magnetic field of B ∼ 1.3 × 1014 G
(PSR J0901-4046, Caleb et al., 2022) and two peculiar radio transient with a peri-
odicity of ∼ 1091 s (GLEAM-X J162759.5-523504.3; Hurley-Walker et al., 2022a) and
∼ 1318 s (GPM J1839–10 Hurley-Walker et al., 2023) have been discovered. These
latter sources are currently still uncertain in nature. In particular, GLEAM-X J1627
has a very variable flux, showing periods of “radio outburst” lasting a few months,
a 90% linear polarisation, and a very spiky and variable pulse profile. GPM J1839–10
is also characterised by a very irregular and variable pulse profile and has been ac-
tive for at least 34 years. Several interpretations have been advanced to explain the
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mysterious nature of these sources. As argued in the discovery papers, their emis-
sion characteristics are typical of observed radio magnetars (Kaspi and Beloborodov,
2017; Esposito et al., 2020) (although their magnetic fields are still poorly constrained).
Alternatively, they could be strongly magnetised white dwarfs having spun down
to the observed long spin period due to their larger moment of inertia (see also
Tong (2022) and Chapter 4 for a discussion of the nature of these sources). Further-
more, a few years ago the X-ray emitting neutron star 1E 161348-5055 at the centre
of the 2 kyr old supernova remnant (SNR) RCW103, with a measured modulation of
∼ 6.67 hr, showed a large magnetar-like X-ray outburst (Rea et al., 2016; D’Aì et al.,
2016), demonstrating the source’s isolated magnetar nature despite its long period
and young age.

In general, studying the possible mechanisms that could lead to the formation of
long-period pulsars is of great interest in order to understand their origin, eventual
links with other types of neutron stars (see Section 1.13) and possible connections
to periodic activity of transient events such as fast radio bursts (see for example Be-
niamini, Wadiasingh, and Metzger, 2020; Xu et al., 2021). One possible avenue that
could lead to enhanced spin-down, especially in magnetars, is the presence of mass-
loaded charged particle winds and outflows that could be particularly active after
giant-flare episodes and temporarily expand the open magnetic flux region of the
star (see for example Thompson et al., 2000; Tong et al., 2013; Beniamini, Wadiasingh,
and Metzger, 2020). Another possibility is the interaction of the neutron star with a
fallback disk formed after the supernova explosion. Soon after their formation, neu-
tron stars will necessarily witness fallback accretion with different accretion rates de-
pending on the progenitor properties and explosion dynamics (Ugliano et al., 2012;
Perna et al., 2014; Janka, Wongwathanarat, and Kramer, 2022). If the fallback matter
possesses sufficient angular momentum, it could form a long-lasting accretion disk
that will interact with the neutron star. For certain ranges of the initial spin period
P0, magnetic field B0 and disk accretion rate Ṁd,0, fallback after the supernova explo-
sion can substantially affect the pulsar spin evolution, in some cases slowing down
the pulsar period significantly more than standard dipolar spin-down losses alone.
In this context, the long period observed in 1E 161348-5055 has been interpreted as
the spin period of a magnetar interacting with a fallback disk in a propeller state
by numerous authors (Li, 2007; Ho and Andersson, 2017; Tong et al., 2016; Xu and
Li, 2019). Moreover Chatterjee, Hernquist, and Narayan (2000), Ertan et al. (2009),
and Benli and Ertan (2016) developed detailed numerical models of the interaction
between a fallback disk and a neutron star to explain the emission of magnetars. Al-
though appealing, this model struggles to explain several observed features of these
types of sources, such as their burst and flaring activity (see Mereghetti, 2013; Tur-
olla, Zane, and Watts, 2015; Kaspi and Beloborodov, 2017; Esposito, Rea, and Israel,
2021, for a review). Overall, these studies on fallback disk accretion suggest that the
presence or absence of a fallback disk around newly born neutron stars could be a
determining factor for their evolution in the P-Ṗ diagram and (Figure 1.12) as well
as their emission properties and could further be relevant to explain the connections
between different neutron star classes (see for example Alpar, Ankay, and Yazgan,
2001, and Section 1.13).

In this chapter based on the work published in Ronchi, Rea, Graber, and Hurley-
Walker (2022), we revisit the fallback scenario to specifically analyze the spin-period
evolution of newly born pulsars that witness accretion from a fallback disk (Sec-
tion 3.3), and determine the parameter ranges that allow pulsars to experience effi-
cient spin-down in the presence of magnetic field decay. Furthermore, we study the
characteristics of the newly discovered long-period radio sources GLEAM-X J1627
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FIGURE 3.1: The evolution of the pulsar spin-period P in time t as-
suming dipolar spin-down for different values of the initial mag-
netic field B0 (indicated by the colour code in the colour bar). The
dashed lines represent the evolution curves for a constant magnetic
field, while the solid lines represent the evolution tracks for a decay-
ing magnetic field according to Equation (3.4). In the background,
the gray points represent the observed radio pulsars (data from the
ATNF Pulsar Catalog, https://www.atnf.csiro.au/research/
pulsar/psrcat/; Manchester et al., 2005) and red triangles represent
the currently detected magnetars (data from the Magnetar Outburst
Online Catalogue, http://magnetars.ice.csic.es/; Coti Zelati
et al., 2018) highlighting those that exhibit radio emission (orange cir-
cles). We consider the characteristic age τc = P/(2Ṗ) as a proxy for

their real age.

(see Section 3.6), GPM J1839–10 (see Section 3.7) and pulsar PSR J0901-4046 (see Sec-
tion 3.8) in the context of the fallback scenario in order to constrain their nature and
evolution (see Section 3.9). We provide a summary in Section 3.10. 1

3.2 Period evolution of pulsars slowing down via dipolar losses

Ordinary rotation-powered pulsars are expected to slow down via electromagnetic
dipolar losses, with an additional component driven by their magnetic-field decay
(see Section 1.8). In this scenario, if ω = 2π/P is the angular spin frequency of the
pulsar, the electromagnetic torque causes the star to slow down according to (see
Equation (1.40)):

dω

dt
= −βB(t)2ω3, (3.1)

where for an aligned rotator β ∼ R6
NS/(4c3 INS) ∼ 1.5 × 10−41 s G−2 assuming a typ-

ical neutron-star radius RNS ∼ 11 km, and moment of inertia INS ∼ 1.5 × 1045 g cm2.
As discussed in Section 1.8 the inclination angle dependence and uncertainty on the

1Jupyter Notebooks to reproduce the plots and results in this chapter are publicly available at
https://github.com/MicheleRonchi/pulsar_fallback

https://www.atnf.csiro.au/research/pulsar/psrcat/
https://www.atnf.csiro.au/research/pulsar/psrcat/
http://magnetars.ice.csic.es/
https://github.com/MicheleRonchi/pulsar_fallback
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neutron-star mass and radius introduce a correction of at most an order of magni-
tude to the value of β in the equation above (see also Spitkovsky, 2006).

If we consider a constant magnetic field B(t) = B0, we can solve Equation (3.1)
to find the spin-period evolution in time:

P(t) = P0

(
1 +

t
tem

)1/2

, (3.2)

where we define an electromagnetic spin-down timescale tem = P2
0 /
(
8π2βB2

0
)
. Note

that for t ≫ tem the period evolution loses memory of the initial spin period, P0, and
only depends on the magnetic field value:

P(t) =
(
8π2βB2

0t
)1/2

. (3.3)

This means that neutron stars born with different initial spin periods but same mag-
netic field strength will end up evolving identically.

However, several studies have shown that neutron star magnetic fields evolve
over time and decay due to the combined action of Ohmic dissipation and the Hall
effect in the star’s crust (Pons and Geppert, 2007; Pons, Miralles, and Geppert, 2009;
Viganò et al., 2013; Pons and Viganò, 2019; De Grandis et al., 2020, see also Sec-
tion 1.6). For simplicity, if we consider a crustal-confined magnetic field, we can use
the phenomenological description of the field decay presented in Aguilera, Pons,
and Miralles (2008a) and Aguilera, Pons, and Miralles (2008b), given by the analytic
expression (see also Equation (1.15)):

B(t) = B0
e−t/τOhm

1 + τOhm
τHall,0

[1 − e−t/τOhm ]
. (3.4)

This equation captures a first stage that is characterised by rapid (non-exponential)
decay and regulated by the Hall timescale τHall,0, and a second stage that is charac-
terised by exponential decay due to Ohmic dissipation and regulated by the timescale
τOhm. These two characteristic timescales were defined in eqs. (1.13) and (1.14). I re-
port them here again as easy reference:

τHall,0 =
4πeneL2

cB0

≃ 6.4 × 104 yr
( ne

1035 cm−3

)( L
1 km

)2 ( B0

1014 G

)−1

, (3.5)

τOhm =
4πσL2

c2

≃ 4.4 × 106 yr
( σ

1024 s−1

)( L
1 km

)2

, (3.6)

where we remind that σ is the dominant conductivity based on phonon or impurity
scattering and L is the typical lengthscale over which the relevant physical quanti-
ties (i.e., ne, B0 and σ) change inside the crust (see Cumming, Arras, and Zweibel,
2004; Gourgouliatos and Cumming, 2014a). Note also that in Equation (3.4), τHall,0
represents the Hall timescale for the initial magnetic field strength B0 (we refer to
Aguilera, Pons, and Miralles, 2008a, for more details). In general, the value of the
Hall and the Ohmic timescales can vary by orders of magnitude within the crust
and during the evolution, depending strongly on the density profile and magnetic



3.2. Period evolution of pulsars slowing down via dipolar losses 71

field intensity and curvature. The Ohmic timescale additionally varies with tem-
perature due to its dependence on the conductivity (see Section 1.6). Although a
rough simplification, Equation (3.4) and the timescales defined above are consis-
tent with the evolution history inferred for Galactic magnetars (Colpi, Geppert, and
Page, 2000; Dall’Osso, Granot, and Piran, 2012; Beniamini et al., 2019) and are able
to qualitatively capture the magnetic field evolution obtained with more sophisti-
cated magneto-thermal numerical simulations (see for example Viganò et al., 2013;
De Grandis et al., 2020; Viganò et al., 2021).

Using these prescriptions for the magnetic field, we solve Equation (3.1) and
determine the evolution of the spin-period in time. In Figure 3.1, we present the
corresponding behaviour for B0 values in the range 1012−17 G. Since the long-term
evolution for t ≫ tem is insensitive to the initial spin period value, we fix P0 to a
fiducial value of 10 ms which is compatible with the birth spin-period distributions
inferred from population synthesis studies (see for example Faucher-Giguère and
Kaspi, 2006; Gullón et al., 2014; Cieślar, Bulik, and Osłowski, 2020). After an initial
phase of duration tem, where the spin period remains almost constant and equal to
its initial value, P starts to evolve ∝ t1/2. If the magnetic field remains constant,
this evolution proceeds indefinitely (dashed lines). If B decays over time according
to Equation (3.4), the electromagnetic torque eventually becomes negligible and the
spin period stops increasing and stabilises (solid lines).

From this plot, it is evident that, if one assumes a decaying magnetic field in the
neutron star crust, explaining the existence of slowly rotating neutron stars with
spin periods P ≳ 100 s becomes problematic since one would require rather ex-
treme magnetic field values (B ≳ 1016 G). If instead, some mechanism prevents the
crustal magnetic field from decaying in time, the star could reach longer spin periods
more easily since a strong electromagnetic torque is maintained over longer times.
After a few Hall timescales, the magnetic field in the crust reorganises towards
smaller scales through the Hall cascade (e.g. Brandenburg, 2020) and approaches a
quasi-equilibrium configuration during which the dissipation of the magnetic field
is slowed down. In this phase, commonly named the “Hall attractor” (Gourgou-
liatos and Cumming, 2014b), the electric currents are predominantly confined to the
inner crust where subsequent dissipation occurs on the Ohmic timescale, which in
turn depends on the local properties of the inner crust. As a result, magnetic field
decay cannot be halted indefinitely but will proceed on timescales of a few Myr (see
however Pons, Viganò, and Rea, 2013, on how the pasta phase could greatly shorten
these timescales). Another possibility for maintaining strong magnetic fields is that
the electric currents could be predominantly present in the neutron star core allow-
ing the magnetic field to stay stable and barely decay over time (see for example
Viganò et al., 2021). However it is still unclear if such conditions can be realised
since little is known about magnetic field evolution in neutron star cores (in partic-
ular the effects of superfluid and superconducting components on field evolution
is uncertain; Graber et al., 2015; Passamonti et al., 2017; Ofengeim and Gusakov,
2018; Gusakov, Kantor, and Ofengeim, 2020). In general, we cannot exclude the pos-
sibility that long-period pulsars are the result only of electromagnetic spin-down
in the presence of strong and persistent magnetic fields, possibly supported by a
Hall attractor or a core component. However, in light of our current knowledge of
magnetic field evolution in neutron stars, we suggest that dipolar spin-down alone
struggles to explain the existence of long-period pulsars. Instead, we argue below
that these sources could be the result of a different scenario, whose ingredients are
readily available in standard neutron-star formation models.
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3.3 Accretion from a fallback disk

An alternative scenario that could explain the existence of strongly magnetised and
slowly rotating pulsars involves the interaction between a newly born highly mag-
netic neutron star and fallback material from the supernova explosion.

In the early stages after the supernova explosion, the proto-neutron star emits a
powerful neutrino wind which exerts a pressure on the outer envelope of the pro-
genitor star. The duration of this wind is believed to be of the order of ∼ 10 s after
core bounce, which corresponds to the neutrino-cooling timescale for a newborn
neutron star (Ugliano et al., 2012; Ertl et al., 2016). On this timescale, the magneto-
sphere of the neutron star reaches an equilibrium configuration in the region swept
by the neutrino wind. After the subsiding of this neutrino-driven wind, the gas in
the inner envelopes of the exploding star decelerates due to the gravitational pull of
the neutron star and collapses back. This leads to the onset of fallback accretion. Ac-
cording to simulations (Ugliano et al., 2012; Ertl et al., 2016; Janka, Wongwathanarat,
and Kramer, 2022), the total fallback mass can reach values up to Mfb ≲ 0.1M⊙,
while the fallback mass rate can reach values of around ∼ 1027−31 g s−1 in the first
∼ 10 − 100 s after bounce, afterwards decreasing according to a power law ∼ t−5/3,
which is compatible with theoretical predictions for spherical supernova fallback
(Michel, 1988; Chevalier, 1989). However, if part of the fallback matter possesses
sufficient angular momentum, it will circularise to form an accretion disk.

Mineshige et al. (1997) and Menou, Perna, and Hernquist (2001) have studied the
formation and time evolution of fallback accretion disks around compact objects. In
particular, by using the self-similar solution of Cannizzo, Lee, and Goodman (1990),
Menou, Perna, and Hernquist (2001) found that the fallback material with excess
angular momentum circularises to form a disk on a typical viscous timescale:

tv ∼ 2.08 s × 103
(

Tc

106 K

)−1 ( rd

108 cm

)1/2
, (3.7)

where Tc is the disk’s central temperature and rd is the circularisation radius of the
disk. We assume the circularisation radius rd to be equal to the Keplerian radius
corresponding to the initial angular momentum of the fallback matter. Consider a
mass element orbiting with a velocity v at the Keplerian radius rd around a central
neutron star of mass MNS. The angular momentum density (i.e., the angular mo-
mentum per unit mass) associated with this mass element is j = vrd. The Keplerian
radius of the orbit is given by rd = GMNS/v2. Therefore, by combining these two
equations, we find that:

j = (GMNSrd)
1/2 =⇒ rd =

j2

GMNS
(3.8)

Supernova simulations have shown that typical values for the angular momentum
density of the fallback matter are around jfb ∼ 1016−17 cm2 s−1 (Janka, Wongwatha-
narat, and Kramer, 2022), which corresponds to a circularisation radius of around
106−8 cm. In the following, we will always assume the fiducial values Tc = 106 K
and rd = 108 cm (see also Hameury et al., 1998).

The viscous timescale defined in Equation (3.7) determines the duration of an
initial transient accretion phase characterised by a nearly constant accretion rate. Af-
terwards, as the supply of fallback matter decreases, the accretion rate into the disk
itself declines as a power law. Furthermore, the disk starts to spread due to viscous
effects. We follow these prescriptions and model the long-term time evolution of
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the accretion rate and outer radius of the disk as (see Menou, Perna, and Hernquist,
2001; Ertan et al., 2009):

Ṁd(t) = Ṁd,0

(
1 +

t
tv

)−α

, (3.9)

rout(t) = rd

(
1 +

t
tv

)γ

, (3.10)

where the coefficients α and γ depend on the main mechanism determining the
opacity of the disk. In particular, α = 19/16 ≃ 1.18 and γ = 3/8 ≃ 0.38 if the
disk opacity is dominated by electron scattering or α = 5/4 = 1.25 and γ = 1/2
if the disk is dominated by Kramer’s opacity (Cannizzo, Lee, and Goodman, 1990;
Menou, Perna, and Hernquist, 2001; Ertan et al., 2009). In the following, we adopt
intermediate values of α = 1.2 and γ = 0.44.

In general, determining the fraction of fallback matter that eventually forms the
disk is not trivial, since this depends on the progenitor’s properties and on the su-
pernova mechanism itself. Here, we consider a broad range of values for the disk
initial accretion rate Ṁd,0 between 1019−29 g s−1. This is compatible with the disk ac-
creting at a fraction of the overall supernova fallback rate as well as having a fraction
of the total fallback mass Mfb.

From the accretion rate inside the disk we can compute an estimate of the ac-
cretion luminosity. Consider a mass element dM in the accretion disk around the
neutron star. To fall from a Keplerian orbit at radius r + dr to an orbit of radius r, the
mass element must lose gravitational potential energy. The virial theorem (Prialnik,
2000; Binney and Tremaine, 2008) dictates that half the potential energy is converted
into additional kinetic energy. The remaining half is converted to heat due to vis-
cous friction. The thermal energy released as the mass element moves inward will
therefore be:

dEth =
1
2

GMNSdM
(

1
r
− 1

r + dr

)
≃ 1

2
GMNSdM

dr
r2 , (3.11)

where we assume that dr ≪ r.
For a radiatively efficient disk we assume that the hot gas radiates its thermal

energy as a black body at the same radius where the gravitational energy is liberated.
The luminosity from an annulus in the disk characterised by the accretion rate Ṁd =
dM/dt is then given by:

dL =
dEth

dt
=

1
2

GMNSṀd
dr
r2 . (3.12)

The total luminosity of the accretion disk with inner and outer radii, rin and rout
respectively, is found by integrating the luminosity over all annuli:

Lacc =
∫ rout

rin

1
2

GMNSṀd

r2 dr =
1
2

GMNSṀd

(
1

rin
− 1

rout

)
≃ GMNSṀd

2rin
, (3.13)

where we assumed that the mass accretion rate in the disk Ṁd does not depend on
the radius r and that rin ≪ rout. If the flow of matter is constant throughout the disk
up to the inner disk radius rin, fiducial values MNS = 1.4M⊙, Ṁd = 1028 g s−1 and
rin = 108 cm result in luminosities up to Lacc ≃ 1046 erg s−1. These luminosities by
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far exceed the Eddington limit given by (Rybicki and Lightman, 1986):

LEdd =
4πGMNSmpc

σT
≃ 1.8 × 1038 erg s−1

(
MNS

1.4 M⊙

)
, (3.14)

where mp is the proton mass and σT is the Thomson cross section and we naively
assumed a disk composition of pure ionised hydrogen. It is generally expected that
such super-critical inflows of matter produce winds and outflows that reduce the
accretion rate in the inner disk region to values below the Eddington limit (Pouta-
nen et al., 2007). We note however that in the presence of strong magnetic fields
(B ≳ 1014 G), the Eddington limit could be increased due to a reduction in the
electron-scattering opacity (Canuto, Lodenquai, and Ruderman, 1971; Bachetti et
al., 2014). In our model, we neglect this effect as it is relevant only in the very
early stages of the evolution when the inner disk radius closely approaches the
neutron star surface but it does not significantly affect the long-term dynamics out-
lined below. In a simplified scenario, we hence assume that the accretion rate at
the inner disk radius rin has to be limited by the Eddington accretion rate, given by
ṀEdd ≃ 2LEddrin/(GMNS) ≃ 1018(rin/RNS) g s−1. Therefore, we model the accretion
rate at rin as:

Ṁd,in(t) =

{
ṀEdd if Ṁd ≥ ṀEdd,
Ṁd(t) if Ṁd(t) < ṀEdd.

(3.15)

In the following we discuss how the evolution of the disk and its influence on the
spin-period evolution of the central neutron star depends on the complex interaction
with the neutron star magnetosphere.

3.4 Period evolution in the presence of a fallback disk

Hereafter, we will study in detail the case where a disk forms successfully and inter-
acts with the central neutron star. In the following for simplicity, we assume that the
star’s magnetic dipole moment is aligned with the rotation axis and that the mag-
netic field is crust-dominated and decays in time according to Equation (3.4). We
also assume that the accretion disk’s rotation is prograde with respect to the spin
of the neutron star. We note that in order to observe pulsed radio emission from
sources of this kind, a misalignment between the magnetic axis and the spin axis is,
in principle, required. We do not study the impact of this effect in our calculations
but point out that for small misalignment angles the evolutionary scenario should
not differ substantially from the one studied in this work.

We consider two different cases depending on if the disk is able to influence
the closed magnetosphere of the neutron star or not. If the accretion rate is suffi-
ciently high, the in-falling matter is able to deform and penetrate the closed mag-
netosphere whose boundary can be roughly defined by the light cylinder radius rlc
(Equation (1.26)). In this case, we obtain the magnetospheric radius rm which repre-
sents the distance from the star where the magnetic pressure equals the ram pressure
of the accreted flow (Davidson and Ostriker, 1973; Elsner and Lamb, 1977; Ghosh
and Lamb, 1979) through:

B2

8π
=

1
2

ρvff, (3.16)
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where ρ is the mass density of the accreting matter and vff = (2GMNS/r)1/2 is
its free-fall velocity at radius r. Assuming that the disk interacts with the mag-
netosphere at the magnetic equator, we can express the magnetic field in terms of
the magnetic dipole moment as B = µ/r3 (see Equation (1.45)). Furthermore, by
considering for simplicity spherical accretion we can express the accretion rate as
Ṁd,in = 4πr2ρvff. By substituting this information into Equation (3.16) we can solve
to find the magnetospheric radius:

rm = ξ

(
µ4

2GMNSṀ2
d,in

)1/7

, (3.17)

where ξ ∼ 0.5 is a corrective factor that takes into account that the accretion disk
has a non-spherical geometry (Long, Romanova, and Lovelace, 2005; Bessolaz et al.,
2008; Zanni and Ferreira, 2013). To relate the stellar magnetic moment to the time-
dependent magnetic field at the pole Bp(t) (assuming a dipolar structure for the
magnetosphere), we can use Equation (1.44) to obtain µ = Bp(t)R3

NS/2. Note that
the magnetospheric radius evolves in time due to the decay of both the disk accretion
rate and the magnetic field. Inside the magnetospheric radius, the plasma dynamics
are dominated by the magnetic field such that the accretion flow is forced to corotate
with the star’s closed magnetosphere. Under such conditions, the magnetospheric
radius roughly determines the inner edge of the accretion disk so that we can assume
rin ∼ rm.

If the accretion rate is sufficiently low, the magnetic pressure of the closed mag-
netosphere is able to keep the accretion flow outside the light cylinder. However
beyond rlc, the dipole configuration breaks down and the magnetic field lines open
up. As a consequence, they are no longer able to exert significant pressure on the
accreted plasma. Under these conditions, we expect the inner radius rin of the disk
to be roughly equal to rlc. Thus, in general we adopt the same prescription as Yan,
Perna, and Soria (2012) and assume rin ≃ min(rm, rlc).

Note that a condition for the disk to form and remain active is that the disk’s
outer radius satisfies rout > rin. Otherwise, the stellar magnetic field would com-
pletely disrupt the disk, restoring a configuration where the neutron star’s spin-
down is determined by dipolar losses only.

Another critical lengthscale is the corotation radius

rcor =

(
GMNS

ω2

)1/3

, (3.18)

which represents the distance at which the gravitational pull of the neutron star
balances the centrifugal force for a test mass that is corotating with the star at the
spin frequency ω.

The position of the magnetospheric radius with respect to the light cylinder ra-
dius and the corotation radius determines the total torque Ntot exerted on the star,
which in turn drives the time evolution of the spin period according to:

INSω̇ = Ntot. (3.19)
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Following Piro and Ott (2011) and Metzger, Beniamini, and Giannios (2018) the total
torque can be modelled by the following equation:

Ntot = Nacc + Ndip

= Ṁd,inr2
in [ΩK(rin)− ω]− INS

(
rlc

rin

)2

βB2ω3

=

Ṁd,inr2
lc [ΩK(rlc)− ω]− INSβB2ω3 if rm > rlc,

Ṁd,inr2
m [ΩK(rm)− ω]− INS

(
rlc
rm

)2
βB2ω3 if rm ≤ rlc.

(3.20)

where Ndip accounts for the electromagnetic torque of the magnetosphere while Nacc

accounts for the torque exerted by the accretion process and ΩK(r) =
(
GMNS/r3)1/2

is the Keplerian orbital angular velocity at radius r.
Figure 3.3 shows an example of a solution of Equation (3.19) for a pulsar inter-

acting with a fallback disk. We consider an initial spin period P0 = 10 ms, initial
magnetic field B0 = 4 × 1014 G and an initial disk accretion rate Ṁd,0 = 1024 g s−1.
Note that for this choice of initial parameters the disk can form and stay active since
rout > rin at all times. Furthermore, in the early phases, accretion at the inner radius
of the disk is limited by the Eddington limit (see Section 3.3).

Different regimes are present depending on the relative ordering of the three
radii defined above. In particular, with reference to Figures 3.2 and 3.3, we distin-
guish the three following phases.

Ejector phase: for rm > rlc > rcor, the accreted material remains at the boundary of
the closed magnetosphere and does not influence the neutron star’s internal dynam-
ics, i.e., the star spins down mainly due to dipolar electromagnetic torques, that is
Ntot ∼ Ndip (top panel in Figure 3.2). After a phase of duration tem where the spin pe-
riod stays constant, P starts to increase ∝ t1/2 (see Equation (3.2)). As a consequence,
the characteristic radii rlc and rcor increase as t1/2 and t2/3, respectively. This phase is
commonly referred to as the ejector phase (shaded yellow region in Figure 3.3). The
mechanism responsible for radio emission can be active and the neutron star could
be observed as a radio pulsar. Morover, as Ṁd decreases and eventually becomes
sub-Eddington, the magnetospheric radius grows slower than the other two critical
radii (∝ t2α/7 ≃ t0.34 for α = 1.2). Thus, rm will eventually cross the light cylinder.

Propeller phase: for rlc > rm > rcor, the accretion flow is able to penetrate inside
the closed magnetosphere (middle panel in Figure 3.2). As it reaches the magne-
tospheric radius, the plasma flow is forced to corotate with the magnetosphere at
super-Keplerian speeds causing it to be ejected due to centrifugal forces. This intro-
duces a viscous torque that spins down the star very efficiently, a phase commonly
referred to as the propeller (shaded orange region in Figure 3.3). In this case, we
have ω > ΩK(rm). The electromagnetic torque Ndip, i.e., the second term in Equa-
tion (3.20), is also influenced by accretion. When the accretion flow penetrates inside
the closed magnetosphere, the fraction of the magnetic field lines, which connect the
star to the disk, is forced to open and as a consequence, the polar cap region con-
taining open field lines expands. This enhances the spin-down torque caused by the
magnetosphere (Parfrey, Spitkovsky, and Beloborodov, 2016; Metzger, Beniamini,
and Giannios, 2018). In particular Parfrey, Spitkovsky, and Beloborodov (2016) ar-
gue that for rm < rlc, the magnetic flux through the expanded polar cap increases
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FIGURE 3.2: Sketch showing the three phases a neutron star with
a fallback disk system can experience during its evolution. During
the ejector phase (top panel) the fallback disk is confined outside the
light cylinder and the neutron star spin down mainly by dipolar elec-
tromagnetic losses. In the propeller phase (middle panel) the fallback
disk penetrate inside the closed magnetosphere but at the rin it finds
a centrifugal barrier. The neutron star spin down mainly by propeller
torque. In the direct accretion phase (bottom panel) the fallback disk
penetrates inside the closed magnetosphere and it is super-Keplerian

at rin. The neutron star spins up and accretes on the surface.
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FIGURE 3.3: Example of neutron star spin-down in the presence of
a fallback disk on a timescale of 107 yr. The top panel shows the to-
tal disk accretion Ṁd and the Eddington-limited accretion rate at the
inner radius Ṁd,in. The middle panel illustrates the evolution of the
three critical radii rcor, rm, rlc. The neutron star radius is also indi-
cated as a reference. The evolution of the disk’s inner and outer radii
is highlighted by the red lines. The bottom panel shows the resulting
time evolution of the spin period. We assume an initial spin period
P0 = 10 ms, initial magnetic field B0 = 4 × 1014 G and an initial disk
accretion rate Ṁd,0 = 1024 g s−1. We also highlight the duration of
the ejector and propeller phases by shading the background in yel-

low and orange, respectively.
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by a factor ∼ (rlc/rm). As a consequence, since the dipole spin-down torque is pro-
portional to the square of the magnetic flux through the open field-line region, Ndip

is enhanced by a factor ∼ (rlc/rm)2. Moreover, since the radio emission is associ-
ated with magnetospheric currents and pair production (Beloborodov, 2008; Philip-
pov, Timokhin, and Spitkovsky, 2020, see also Section 1.7 and Section 1.9.3), the
mechanism generating the radio emission is likely perturbed or even stopped as the
closed-magnetosphere geometry is disturbed by the accretion flow. This effectively
switches off the radio-loud nature of these sources (Li, 2006). Therefore, we expect
a neutron star in the propeller regime unlikely to be observable as a radio pulsar.
During this propeller phase, the spin frequency decreases over time and eventually
ω ∼ ΩK(rm) (i.e., when rcor ∼ rm), so that the net torque exerted on the neutron star
vanishes and a spin equilibrium is reached. From this point onward, further evo-
lution of the spin period will be regulated mainly by time variation of the accretion
rate in the inner disk Ṁd,in and the stellar magnetic field B. For example, the decay
of the magnetic field strength causes the slow decrease of the magnetospheric radius
at late times. This drives a progressive shift of the spin-equilibrium radius towards
the neutron star surface, causing the neutron star to slightly spin up; in Figure 3.3,
this happens when the magnetic field starts to decay after a Hall timescale, i.e., after
∼ 104 yr.

Direct accretion phase: for rlc > rcor > rm, we have ω < ΩK(rm) (bottom panel in
Figure 3.2). The accretion flow still manages to penetrate inside the closed magneto-
sphere but as it reaches the magnetospheric radius, the plasma is forced to corotate
with the magnetosphere at sub-Keplerian speeds. In other words, at the boundary
defined by the magnetospheric radius, the accreted plasma is orbiting faster than the
neutron star magnetosphere. This introduces a viscous torque that transfers angular
momentum from the plasma flow to the star and tends to spin up the star. Besides
this, the enhanced electromagnetic spin-down torque described above is still acting,
opposing the spin-up due to accretion. Therefore, the evolution in this regime is
controlled by the relative strength of Nacc and Ndip. In the example in Figure 3.3, this
phase is experienced at very late times, i.e. ∼ 106 yr, when the magnetic field has
decayed so much that the star exits the spin equilibrium and the magnetospheric
radius becomes smaller than the corotation radius.

From these considerations, we observe that the parameters that mainly regulate
the evolution of a pulsar surrounded by a fallback disk are the initial stellar magnetic
field B0 and the initial disk accretion rate Ṁd,0. The latter determines the time at
which the accretion rate affecting the compact object becomes sub-Eddington and
starts decreasing. In contrast, the value of the neutron star’s initial spin period only
affects the early evolution stages, while the long-term evolution of the neutron star
is almost insensitive to the value of P0.

Figures 3.4 and 3.5 show several examples of evolutionary curves of the spin
period. We always assume an initial spin period P0 = 10 ms. In particular, Figure 3.4
shows the spin-period evolution for several values of the initial magnetic field B0
and varying initial disk accretion rate Ṁd,0, while Figure 3.5 shows the evolution
curves for several values of initial disk accretion rate and varying initial magnetic
field. In the early phases, the accretion at the inner radius of the disk is limited
by the Eddington limit. For each simulated evolutionary curve we check that the
disk’s outer radius is always greater than the inner radius guaranteeing that the
disk can form and influence the rotational evolution of the neutron star. In general,
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FIGURE 3.4: Example curves showing the time evolution of the spin
period for a pulsar interacting with a fallback disk on a timescale of
107 yr, for different assumptions on the initial B0 field strength, and
varying disk fallback rate Ṁd,0. The dashed portion of the curves
indicates when the neutron star is in the radio-loud ejector phase, i.e.,
when rm > rlc, while the solid portion indicates when the neutron

star is in the radio-quiet propeller stage, i.e., when rm < rlc.
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FIGURE 3.5: Example curves showing the time evolution of the spin
period for a pulsar interacting with a fallback disk on a timescale of
107 yr, for different assumptions of the disk fallback rate Ṁd,0, and
varying the initial magnetic field B0. The dashed portion of the curves
indicates when the neutron star is in the radio-loud ejector phase, i.e.,
when rm > rlc, while the solid portion indicates when the neutron

star is in the radio-quiet propeller stage, i.e., when rm < rlc.
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it can be noted that for low values of the initial disk accretion rate (< 1022 g s−1),
the neutron star remains in the ejector phase for its entire evolution, independent of
the value of its initial magnetic field. In contrast, higher accretion rates and higher
magnetic fields allow the star to enter the propeller phase at earlier times. However,
the propeller regime is most effective at spinning down the neutron star to periods
≳ 10 s only for relatively strong magnetic fields ≳ 1013 G and intermediate initial
disk accretion rates in the range 1022−27 g s−1.

We note that a neutron star that enters the propeller phase (and subsequently
reaches spin equilibrium) will remain in this state until an abrupt change in the disk
accretion rate occurs. For example, if the accretion rate in the disk suddenly drops,
a neutron star can exit the propeller phase and enter the ejector phase again. In this
case, the neutron star can transition from a faint X-ray source (due to thermal emis-
sion from material accreted onto the magnetosphere) to a standard rotation-powered
radio pulsar or potentially radio-loud magnetar (see Section 3.9 for a detailed expla-
nation of how this transition can occur and a description of the expected X-ray and
radio luminosity in the different fallback accretion states).

3.5 Accretion from spherical fallback

If the fallback matter does not possess sufficient angular momentum to form a disk,
the fallback will proceed quasi-spherically. Even in this case, the neutron star could
experience different accretion phases depending on the magnitude of the fallback
rate. If the matter inflow is radiatively inefficient, accretion could proceed at super-
Eddington rates, especially in the early stages. For such high fallback rates, the
accretion flow is likely able to penetrate and squeeze the proto-neutron star magne-
tosphere, causing an initial phase of direct accretion onto the surface. This might also
result in the burial of the magnetic field (see for example Taam and van den Heuvel,
1986; Li et al., 2021; Lin et al., 2021), a scenario that (combined with the subsequent
secular re-emergence of the magnetic field) has been invoked to explain the observed
properties of Central Compact Objects (CCOs) (Halpern and Gotthelf, 2010; Fu and
Li, 2013; Ho, 2015; Zhong et al., 2021); a class of young, generally weak-field neutron
stars found close to the centres of supernova remnants (introduced in Section 1.13).
After this initial direct accretion phase, as the fallback rate decreases in time, the
neutron star could, in principle, enter a propeller phase that causes the star to spin
down as in the disk scenario. However, in the case of quasi-spherical accretion, the
fallback episode is expected to last at most a free-fall timescale tff ∼ (Gρ)−1/2, deter-
mined by the density ρ of the infalling outer layers of the progenitor participating in
the fallback. In general, tff could reach at most ∼ 107 s for red supergiant progenitor
stars, whose envelopes have typical densities ρ ∼ 10−7 g cm−3 (Metzger, Beniamini,
and Giannios, 2018). Therefore, it is unlikely that a propeller phase acting on such
short timescales (of the order of ∼ 1 yr) could result in equally long spin periods as
the disk scenario.

3.6 The 18-min periodic radio transient GLEAM-X J162759.5-
523504.3

During the GaLactic and Extragalactic All-sky MWA eXtended survey (GLEAM-X)
(Hurley-Walker et al., 2022b) with the Murchison Widefield Array (MWA), a pecu-
liar periodic radio transient has been discovered displaying a periodicity of 1091 s
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FIGURE 3.6: Long-period pulsars in the supernova fallback-accretion
picture. The coloured regions show the values of the initial magnetic
field B0 and disk fallback rate Ṁd,0 that allow the neutron star to reach
a spin period of 1091 s for GLEAM-X J1627 (top left panel), 1318 s for
GPM J1839–10 (top right panel) and 75.9 s for PSR J0901-4046 (bottom
panel) in less than 107 yr. The colour code indicates the time at which
the neutron stars have reached their respective periods and can be
interpreted as a lower limit on the source’s current age. The contour
lines indicate the total fallback mass that has been accreted by the
disk in the same time interval. For PSR J0901-4046, the gray contour
line represents where the magnetic field value at t = Age is equal to
the estimated magnetic field of PSR J0901-4046 from the spin-down

formula.
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(Hurley-Walker et al., 2022a). The source was detected during two radio outburst
periods in January and March 2018, displaying a very variable flux (going from un-
detected to values as high as 20 − 50 Jy), ∼ 5% duty cycle, 90% linear polarisation,
and a very spiky and variable pulse profile.

From a detailed timing analysis, a dispersion measure of DM = 57 ± 1 pc cm−3

was calculated, converting to a distance of 1.3 kpc according to the Galactic electron-
density model of Yao, Manchester, and Wang (2017). The period derivative was
loosely constrained to Ṗ < 1.5 × 10−9 s s−1. Assuming that the source is an isolated
neutron star spinning down due to the classical electromagnetic dipole formula, this
gives a relatively weak constraint on the dipolar magnetic field of Bdip < 1017 G
through Equation (1.46). We can also obtain an upper limit on the spin-down power
Ėrot = INSωω̇ < 1028 erg s−1. If we roughly estimate an isotropic radio luminos-
ity from the flux detected during the outburst phase and the distance estimated
from the DM, we obtain a value of ∼ 1031 erg s−1. From this, we deduce that the
spin-down alone is insufficient to power these very bright radio flares. The radio
characteristics, such as the large flux variability, the radio outburst activity, and the
high linear polarisation seem analogous to those observed in radio-active magne-
tars, whose activity is believed to be triggered and powered by the evolution and
decay of their strong magnetic fields (see also Section 1.13 and Thompson and Dun-
can, 1995; Duncan and Thompson, 1996). However, GLEAM-X J1627’s exceptionally
long spin period would make this source stand out among them.

As shown in Figure 3.1, assuming GLEAM-X J1627 is indeed a magnetar that has
spun down via dipolar losses alone, in the limiting case of a constant magnetic field,
the magnetar would require an age ≳ 106(108) yr and a very strong magnetic field
of 1016(1015)G to reach its spin period of 1091 s. As argued in Section 3.2, sustaining
such a strong magnetic field over this lifetime is difficult to reconcile with crustal
magnetic-field evolution models that predict field decay on the Hall timescale; in this
case ∼ 103 yr. For comparison, SGR 0418+5729 is most likely the oldest magnetar
detected so far with a characteristic age of ∼ 107 yr and has an inferred magnetic
field of ∼ 1013 G (Magnetar Outburst Online Catalogue http://magnetars.ice.
csic.es/ Coti Zelati et al., 2018). Moreover, if the star’s magnetic energy reservoir
has decayed in time, it becomes challenging to explain the current magnetar-like
activity observed from this source.

A more promising explanation for GLEAM-X J1627 that requires less extreme
conditions is a magnetar that has experienced accretion from a fallback disk soon af-
ter the supernova. As outlined in §3.3, a magnetar surrounded by a fallback disk will
pass through the propeller phase and spin down very efficiently on short timescales.
To study this scenario for GLEAM-X J1627, we first fix the initial spin period to
P0 = 10 ms (remember that as long as P ≫ P0, P0 has very little influence on the
long-term evolution); for the neutron star mass and radius we adopt the fiducial
values MNS = 1.4 M⊙ and RNS = 11 km. By varying the two parameters B0 and
Ṁd,0 and using Equation (3.20) to determine the torque acting on the star in the dif-
ferent stages, we can numerically integrate Equation (3.19) in time. This allows us
to find those parameter combinations that lead to a spin-down evolution reaching
a period of at least 1091 s. In what follows, we consider a maximum time of 107 yr
for the evolution. The motivation for this limit is two-fold. Firstly, it ensures that
the spin-period evolution curves reach their maximum values during the propeller
phase before magnetic field decay enters into play (see the discussion of Figures 3.3–
3.5 in Section 3.4). Secondly, a limit of 107 yr ensures that we encompass all age esti-
mates of currently known magnetars (see the Magnetar Outburst Online Catalogue
http://magnetars.ice.csic.es/ Coti Zelati et al. (2018)).

http://magnetars.ice.csic.es/
http://magnetars.ice.csic.es/
http://magnetars.ice.csic.es/
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The top panel in Figure 3.6 shows the parameter space of B0 and Ṁd,0, where we
choose an initial magnetic field between 1012−15 G and an initial disk accretion rate
between 1019−29 g s−1. The coloured region represents the combination of parame-
ters that guarantees the neutron star to reach a spin period of 1091 s. The colour code
indicates the age at which the neutron star reaches the desired period for the first
time. The vertical contour lines show the total fallback mass that has been accreted
into the disk over the same time interval (calculated by integrating Equation (3.9) in
time). In this scenario, we observe that (thanks to the propeller phase) a magnetar
with a magnetic field of around 1014 G can reach a spin period of 1091 s on a rela-
tively short time scale of about 103−5 yr for an initial disk accretion rate of around
1023 g s−1 and a total accreted mass of ∼ 10−6M⊙. Note that since GLEAM-X J1627
has been observed to emit periodic radio signals, disk accretion must have ceased to
allow for the radio activity to be restored (see §3.9). Assuming this is the case, the
ages shown in Figure 3.6 should be interpreted as the times at which the neutron
star exited the propeller phase and shifted to standard dipolar spin-down; i.e., they
represent lower limits on the real age of the observed source.

3.7 The 21-min periodic radio transient GPM J1839-10

During recent monitoring of the Galactic plane using the MWA and subsequent
follow-up observations with the Australia Telescope Compact Array (ATCA), Parkes
Murriyang radio telescope, the Australian Square Kilometre Array Pathfinder (ASKAP)
and MeerKAT another mysterious periodic radio source with a periodicity of 1318 s
has been discovered (Hurley-Walker et al., 2023). Further searches in archival data
from the Very Large Array (VLA), the Low Band Ionospheric and Transient Experi-
ment (VLITE) and the Giant Metrewave Radio Telescope (GMRT) demonstrated that
this source has been active for at least 33 years. As for GLEAM-X J1627 the morphol-
ogy and brightness of the observed pulses is very variable, going from undetected to
maximum flux densities in the range of 0.1 Jy − 10 Jy with linear polarisation vary-
ing between 10% and 100% and a duty cycles as large as 20%. The timing analysis
allowed an accurate estimation of the dispersion measure DM = 273.5± 2.5 pc cm−3

which corresponds to a distance of 5.7 ± 2.9 kpc according to the Galactic electron
density model of Yao, Manchester, and Wang (2017). The long-duration activity
of this source allowed us to infer a stringent constraint on its period derivative
Ṗ ≲ 3.6 × 10−13 s s−1. Assuming the source to be an isolated neutron star spin-
ning down via dipole radiation, we find upper limits on the polar magnetic field
Bdip ≲ 1.2 × 1015 G and on the rotational power Ėrot ≲ 8.4 × 1024 erg s−1. A rough
estimate of the radio luminosity obtained from the observed flux densities and the
estimated distance leads to L ∼ 1028 erg s−1. As for GLEAM-X J1627 source, the esti-
mated rotational energy loss is not enough to power the observed radio luminosity.
Furthermore assuming a magnetar is producing the emission of these bright pulses,
extreme values of the magnetic field are necessary to reach such long spin periods
(see Figure 3.1).

We extend the analysis of Ronchi et al. (2022) and we also study the period evolu-
tion in the fallback scenario for GPM J1839–10. We solve the spin evolution equation
Equation (3.19) for different combinations of the two parameters B0 and Ṁd,0 and
determine the parameter space that allows GPM J1839–10 to reach a spin period of
at least P = 1318 s within < 107 yr. We show the results in the middle panel of
Figure 3.6. We notice that the allowed region in the B0 − Ṁd,0 plane is very similar
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to that for GLEAM-X J1627. We again highlight that GPM J1839–10’s disk accretion
must have stopped in order to allow the re-activation of the radio-pulsar mechanism.

3.8 The 76 seconds magnetar: PSR J0901-4046

The long-period pulsar PSR J0901-4046 was recently discovered by the South African
radio telescope MeerKAT. The pulsar manifests a periodicity of P = 75.9 s with a pe-
riod derivative of Ṗ = 2.25 × 10−13 s s−1 (Caleb et al., 2022). From the timing analy-
sis, a dispersion measure of DM = 52± 1 pc cm−3 has been derived which translates
into a distance of ∼ 0.4 kpc. Assuming that this neutron star is spinning down sim-
ply by dipolar losses, the strength of the dipolar magnetic field can be computed to
Bdip ≃ 1.3× 1014 G and its spin-down power to Ėrot ≃ 2× 1028 erg s−1. Such a strong
field is in the typical range of observed magnetars (see Figure 1.12).

Using similar considerations as for GLEAM-X J1627 and GPM J1839–10 and as-
suming that PSR J0901-4046 is an isolated neutron star, which has spun down due
to electromagnetic dipolar losses alone, we can reproduce the observed period, if its
magnetic field remained almost constant over a lifetime of almost 107 yr (the source’s
characteristic age is τc = P/(2Ṗ) ≃ 5.4 Myr). If we instead consider the fallback disk
scenario, we can relax these conditions. As before, we solve the spin evolution equa-
tion Equation (3.19) for different combinations of the two parameters B0 and Ṁd,0
and determine the parameter space that allows PSR J0901-4046 to reach a spin period
of at least P = 75.9 s within < 107 yr. The results are reported in the bottom panel
of Figure 3.6. Also for PSR J0901-4046, disk accretion must have stopped in order
for the radio emission mechanism to be restored. From Figure 3.6, we deduce that
observational characteristics can be explained within our model if this happened at
an age of around 103−4 yr, which we again interpret as a lower limit on the pulsar’s
true age. This constraint on the age is in line with other radio-emitting magnetars or
high-B radio pulsars that show similar radio emission. Furthermore in the case of
PSR J0901-4046, an initial disk accretion rate of around 1024 g s−1, and a total accreted
mass of ∼ 10−5M⊙ are able to explain the observed period.

3.9 Discussion

3.9.1 Re-establishing the radio emission after the propeller

One key piece that we have to discuss is how a neutron star, that enters the propeller
phase to experience effective spin-down, can exit this phase again in order to be ob-
served as a radio-loud object. This is a crucial requirement, given that we need to
explain the radio detection of GLEAM-X J1627, GPM J1839–10 and PSR J0901-4046.
As briefly mentioned in §3.3, the transition from the propeller to the ejector phase
can be naturally explained by an abrupt drop in the accretion rate. As a result, the
magnetospheric radius would move beyond the light cylinder, providing the condi-
tion for the radio emission to be reactivated.

Several factors could play a role in causing such a drop in the accretion flow.
For example, since magnetars are very active young neutron stars that undergo out-
burst and flaring episodes (Coti Zelati et al., 2018; Esposito, Rea, and Israel, 2021),
the energy released in such events could cause the disk to unbind or be completely
disrupted. This would subsequently stop accretion and radio emission could be re-
instated.
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Another explanation could be simply that the fallback disk runs out of matter.
During the propeller phase, the material that reaches the magnetospheric radius is
ejected due to the centrifugal barrier. If the ejected material possesses a velocity su-
perior to the escape velocity, it will become unbound from the system; otherwise, it
will fall back and be reprocessed inside the accretion disk. As the matter feeding the
disk from the supernova fallback is not replenished, we expect the accretion disk to
eventually be completely consumed if the propeller is efficient at unbinding matter
from the system (see for example Ekşi, Hernquist, and Narayan, 2005; Romanova
et al., 2005).

Another possibility is that the fallback disk, which itself evolves with time, un-
dergoes a thermal ionisation instability, which has been outlined in detail in Mi-
neshige, Nomoto, and Shigeyama (1993), Menou, Perna, and Hernquist (2001), Ertan
et al. (2009), and Liu and Li (2015). As the disk spreads and the accretion rate decays
with time, energy dissipation decreases and the disk gradually cools down. In par-
ticular, Menou, Perna, and Hernquist (2001) argued that as the disk accretion rate
falls below a critical value of around 1015 g s−1 and the temperature in the outermost
part of the disk drops below ∼ 104 K, the recombination of free electrons with heavy
nuclei in the plasma is triggered. This transition alters the corresponding magnetic
and viscous properties of the disk, reducing the efficiency of angular momentum
transfer and eventually stopping accretion. As the disk evolves further in time, the
recombination front propagates from the outermost regions inwards so that the ac-
tive region of the disk shrinks. Eventually, accretion onto the neutron star will halt
completely if the disk becomes totally neutralised. Menou, Perna, and Hernquist
(2001) have argued that this transition occurs at around 103−4 yr when the outer disk
radius is ∼ 1010−11 cm. This timescale is comparable to the ones we require in our
fallback accretion scenario for neutron stars to reach spin periods > 10 s (see Fig-
ure 3.6). However, it has also been suggested that the irradiation from the central
source may prevent the disk from becoming completely neutral, allowing it to stay
active for longer times at even lower temperatures (see for example Alpar, Ankay,
and Yazgan, 2001; Inutsuka and Sano, 2005; Alpar, Çalışkan, and Ertan, 2013). In
general, the evolution of a fallback disk is not trivial to model, since it also depends
on the complex interaction with the central compact source. However, if the disk be-
comes inactive and the accretion flow stops due to any of the mechanisms outlined
above, this could explain the transition from the propeller back to the ejector phase.

In Figure 3.7, we show a possible evolutionary scenario for GLEAM-X J1627,
GPM J1839–10 and PSR J0901-4046 that incorporates this drop in accretion rate. In
particular, the top panels show the spin-period evolution. For all three sources we
choose an initial magnetic field B0 = 4 × 1014 G and initial disk accretion rates of
Ṁd,0 = 1024 g s−1 for GLEAM-X J1627 and Ṁd,0 = 1023 g s−1, for GPM J1839–10 and
PSR J0901-4046 respectively. These values fall within the allowed parameter spaces
that guarantee the sources to reach their spin period in less than 107 yr (see Fig-
ure 3.6). Note that for PSR J0901-4046, we fix the value of B0 to a higher value than
the estimated current magnetic field strength in order to take into account the effects
of magnetic field decay. To keep things simple, we set the disk accretion rate to zero
as soon as the three neutron stars reach their observed spin periods of 1091 s, 1318 s
and 75.9 s, respectively. This abrupt stop in the accretion process causes the sources
to transition into the ejector phase and enables the restoration of the radio emission.
From this point on, the spin periods remain effectively constant as the combination
of their large values and magnetic field decay causes the dipolar losses to become
negligible.

On the other hand, if accretion would persist, the neutron stars would continue
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to evolve in a spin-equilibrium, unable to exit the propeller phase. This is possibly
the evolutionary phase currently witnessed for 1E 161348-5055, the 2 kyr-old mag-
netar associated with the SNR RCW103. This source has shown magnetar-like out-
bursts (Rea et al., 2016; D’Aì et al., 2016) and an observed period of 6.67 hr but is
detected only in the X-ray band. Its period evolution has been modeled by Ho and
Andersson (2017) and Xu and Li (2019) using a similar model to our own. However,
while Ho and Andersson (2017) assumed a constant accretion flow, in this work,
we adopt the more realistic prescription of a time-varying accretion (similar to Xu
and Li (2019)) as discussed in §3.3. In this scenario, the long period together with
the young age of 1E 161348-5055 could be explained with a field of ≳ 1015 G (in line
with the results of Ho and Andersson, 2017; Xu and Li, 2019) and a relatively low
initial disk accretion rate of ∼ 1021 g s−1 (see bottom right panel of Figure 3.4 as a
reference). As 1E 161348-5055 is currently not observed in radio, and thus still in the
propeller phase, we infer that the accretion disk is still active, which is compatible
with the source’s age of 2 kyr.

An association of long-period pulsars with supernova remnants could present
additional proof for the fallback disk scenario. However, for GLEAM-X J1627, GPM
J1839–10 and PSR J0901-4046 no clear evidence of SNR associations has been dis-
covered so far. In general, SNRs are expected to have an observational lifetime of
around 104−5 yr (Braun, Goss, and Lyne, 1989; Leahy, Ranasinghe, and Gelowitz,
2020), which is comparable with our inferred timescales for the fallback disk to be
active and accretion spinning down the three sources to their current periods. It
is therefore possible that the associated SNRs are too faint to be detectable at the
present time. Moreover, only around one-third of known young pulsars have a de-
tected SNR remnant (see the ATNF Pulsar Catalog Manchester et al., 2005). The
reasons for this are still a matter of debate and study, but the absence of detected
SNRs for most neutron stars could simply indicate differences in their progenitors,
supernova explosions and interstellar environments (see for example Gaensler and
Johnston, 1995; Cui et al., 2021). We therefore do not consider the lack of SNR as-
sociations for GLEAM-X J1627, GPM J1839–10 and PSR J0901-4046 an issue for the
validity of a fallback disk scenario.

3.9.2 Prediction for the X-ray and radio luminosities of long-period pul-
sars

In the bottom panels of Figure 3.7, we show the evolution of the disk luminos-
ity and spin-down power for GLEAM-X J1627, GPM J1839–10 and PSR J0901-4046.
The accretion luminosity is computed as in Equation (3.13), where we recall that
rin ≃ min(rm, rlc). At very early times, i.e. ≲ 1 yr after the supernova, the accretion
flow is limited by the Eddington limit, suggesting that the disk emits in X-rays at the
Eddington luminosity. As the system evolves and the disk accretion rate starts to
decrease as t−α, the inner disk radius increases following the evolution of the mag-
netospheric radius as rin ∼ rm ∝ t2α/7. As a consequence, the luminosity decreases
roughly ∝ t−9α/7. Once the disk becomes inactive or is completely consumed, the
accretion rate is expected to vanish and the disk becomes undetectable in the X-
rays. Therefore assuming the fallback scenario for long-period radio transients such
as GLEAM-X J1627, GPM J1839–10 and PSR J0901-4046 which require ceasing of the
accretion flow, we predict that X-ray observations should not be able to detect emis-
sion from a residual disk if present. The cold debris of inactive disks could instead
be detectable in the infrared (Wang, Chakrabarty, and Kaplan, 2006; Posselt et al.,
2018). However, if the central neutron stars are indeed young (around 105 yr) and
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FIGURE 3.8: Evolutionary tracks for crust-dominated (top panel) and
core-dominated (bottom panel) B-field configurations as a function of
the characteristic age. Labels showing the real age are also marked
along the curves in grey. Superimposed, are the X-ray luminosity of
different pulsar classes, in particular radio-loud magnetars (grey cir-
cles), XDINSs (light blue) and low-field magnetars (gray names). The
shaded region corresponds to the limits on the X-ray luminosity and
the characteristic age derived for GLEAM-X J1627 (Figure taken from

Rea et al., 2022).
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have strong magnetic fields, they could emit thermal X-rays from their surfaces with
luminosities up to ∼ 1031−35 erg s−1 due to the dissipation of magnetic energy in the
crust (Viganò et al., 2013).

However deep X-ray observations performed with the Chandra X-ray Observa-
tory and XMM-Newton satellite have imposed upper limits of ∼ 1030 erg s−1 (Rea et
al., 2022) and ∼ 1033 erg s−1 (Hurley-Walker et al., 2023) on the X-ray luminosity of
GLEAM-X J1627 and GPM J1839–10, respectively. These limits challenge the magne-
tar interpretation especially for GLEAM-X J1627. Indeed comparing the X-ray lumi-
nosity of this source with cooling curves from magneto-thermal simulations (Viganò
et al., 2021), the predicted age of GLEAM-X J1627 should be > 1 Myr for any rea-
sonable crustal-confined magnetic field (B > 1013 G) (see upper panel in Figure 3.8).
This age constraint is two orders of magnitude higher than that of typical radio-loud
magnetars (which have estimated ages < 20 kyr). At this age, the bright radio bursts
emitted by GLEAM-X J1627 would be unusual for such an old magnetar. On the
other hand if the magnetar has a core-dominated magnetic field or has witnessed
unusual fast cooling (both effects have never been unambiguously observed in a
pulsar or a magnetar), the observed X-ray upper limits would be compatible with a
younger age (see bottom panel in Figure 3.8).

In Figure 3.7 we also show the evolution of the spin-down power that is typically
taken as the energy source for the radio emission of pulsars. In general, after these
neutron stars have exited the propeller phase and recovered the ejector regime, we
expect the spin-down to be caused by electromagnetic torques only so that Ėrot ∝
B2/P4 (see Equation (1.31) and (1.39)). Therefore, if we consider an upper limit for
the magnetic field of around 1015 G and a lower limit for the spin periods after the
propeller regime of around 10 s, we expect that the spin-down power has decayed to
values ≲ 1033 erg s−1 for long-period pulsar. This energy budget together with the
magnetic energy stored in their strong fields is enough to power the observed radio
emission and cause magnetar-like activity for neutron stars of this kind.

3.10 Summary

We have studied the spin evolution of young, isolated neutron stars under the influ-
ence of fallback accretion. We specifically focused on the fallback-disk scenario as a
promising origin of long-period pulsars, a class of objects that recent radio surveys
are starting to unveil. By solving the torque balance equation for a disk accreting
neutron star, we demonstrate that the evolution of such an object can differ signif-
icantly from the standard dipole spin-down. In particular, we find that for a com-
bination of high (but not extreme) magnetic field strengths and moderate fallback
disk accretion rates in agreement with current core-collapse supernova simulations,
neutron stars can enter the propeller phase during their evolution. This leads to ef-
fective spin-down and allows neutron stars to reach spin periods ≫ 10 s on time
scales on the order of ∼ 103−5 yr. Magnetic dipolar losses alone have problems ex-
plaining long spin periods and would require extreme conditions like strong and
long-lasting magnetic fields potentially supported either by a core field component
or other mechanisms such as the Hall attractor.

We have then interpreted the recently discovered objects GLEAM-X J1627, GPM
J1839–10 and PSR J0901-4046, with rotation periods of 1091 s, 1318 s and 75.9 s, re-
spectively, in light of this model, and showed that all three objects could be explained
as highly magnetised neutron stars with a fallback disk accretion history. The possi-
bility to reach such long spin periods in much less than 107 yr is crucial to maintain
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the magnetic field and thus an energy reservoir to power their radio or X-ray activity.
This is particularly important for GLEAM-X J1627, which was observed in outburst
similar to other young radio-loud magnetars.

We showed that for newly born neutron stars with birth fields of B0 ∼ 1014−15 G,
a phase of fallback disk accretion with moderate initial accretion rates of 1022−27 g s−1,
could explain their detection as long-period radio or X-ray pulsars at relatively young
ages (∼ 103−5 yr). On the other hand, in systems where the initial magnetic fields
are lower (∼ 1012−13 G), fallback disk accretion (even if present) is expected to have
a negligible effect on the spin-period evolution. The majority of neutron stars will
therefore primarily undergo standard dipolar electromagnetic spin-down and re-
cover rotation periods below ∼ 12 s. In our framework, we therefore naturally re-
cover the pulsar population which is observed to spin in the range ∼ 0.002–12 s
(see Figure 1.12). Note that the recently discovered radio pulsars PSR J1903+0433
(Han et al., 2021) and PSR J0250+5854 (Tan et al., 2018) with periods of 14 s and 23 s,
respectively, could be easily accommodated within our fallback accretion scenario.
However, both sources can in principle also be explained within the standard evolu-
tionary scenario provided that crustal field decay is very weak (essentially requiring
the absence of a highly resistive pasta layer; see Pons, Viganò, and Rea, 2013).

We also mentioned the X-ray emitting magnetar at the centre of the 2 kyr-old
SNR RCW103, which requires (ongoing) fallback to explain its 6.67 hr period and
radio-quiet nature. Finally note that classical magnetars with periods ≲ 12 s would
correspond to those systems where only strong fields are present, but fallback disk
accretion does not take place or is inefficient because of a low Ṁd,0.

In conclusion, fallback disk accretion after the supernova explosions of massive
stars is expected to affect the evolution of newly born neutron stars. Depending on
the relative intensities of the initial pulsar magnetic field and accretion rates, this
scenario could represent an important ingredient to explain the connection between
different neutron star classes and specifically shed light on the nature of the long-
period radio sources recently discovered.



93

Chapter 4

Population study of long-period
pulsars in the neutron star and
white dwarf rotating dipole
scenarios

4.1 Introduction

As we have discussed in Chapter 3, the discovery of ultra-long periodic coherent
radio emitters challenges our current knowledge of neutron-star emission and evo-
lution. Some of these new sources seem to be extreme neutron-star pulsars (e.g.,
the 76-s source PSR J0901-4046; Caleb et al. 2022), while the interpretation of oth-
ers is still uncertain (e.g., the 18-minute source GLEAM-X J1627 Hurley-Walker et al.
2022a, and the 21-minute GPM J1839–10 Hurley-Walker et al. 2023). The periodic ra-
dio emission features of GLEAM-X J1627 and GPM J1839–10 are similar to other ra-
dio magnetars, and their long periodicity can be explained through past supernova
fallback accretion (see Chapter 3, e.g., Alpar, Ankay, and Yazgan, 2001; Chatterjee,
Hernquist, and Narayan, 2000; Ertan et al., 2009; Tong et al., 2016; Ronchi et al., 2022).
X-ray observations with the Chandra X-ray Observatory and XMM-Newton satellite
allowed to derive deep X-ray luminosity limits of ≲ 1030 erg s−1 and ≲ 1033 erg s−1

for GLEAM-X J1627 and GPM J1839–10 , respectively that challenge the magnetar in-
terpretation (Rea et al., 2022; Hurley-Walker et al., 2023). By considering these upper
limits, magneto-thermal evolution models (Viganò et al., 2013; Viganò et al., 2021)
predict cooling ages of these two new sources that exceed 1 Myr, far beyond any
currently observed magnetar (Rea et al., 2022).

In contrast, slow spin periods are common in magnetic white dwarfs (Ferrario
and Wickramasinghe, 2005; Ferrario, Wickramasinghe, and Kawka, 2020). Although
isolated magnetic white dwarfs exhibit magnetic-field strengths between 106 to 109 G
(Ferrario, de Martino, and Gänsicke, 2015; Ferrario, Wickramasinghe, and Kawka,
2020), lower than neutron star B-fields spanning 108 to 1015 G (see also Figure 1.12,
magnetic white dwarfs have also been proposed to emit spin-down-driven radio
emission similar to neutron stars (Zhang and Gil, 2005). To date, two radio-emitting
white dwarfs have been detected, the binary systems AR Sco (P ∼ 1.95 min in a
3.5 hr orbit; Marsh et al. 2016) and J1912−4410 (P ∼ 5.3 min in a 4 hr orbit; Pelisoli
et al. 2023). The radio emission of both systems is partly compatible with dipo-
lar spin-down (Geng, Zhang, and Huang, 2016; Buckley et al., 2017; du Plessis et
al., 2019), but also has a significant component resulting from the intrabinary shock
with the wind of the companion star. The lack of an optical/infrared counterpart
to GLEAM-X J1627 at the estimated distance of 1.3 kpc rules out a similar binary
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system for this source (Rea et al., 2022). However, it does not exclude lower mass
companions or the possibility of a relatively cold isolated magnetic white dwarf.

In this chapter based on the work in Rea, Hurley-Walker, Pardo-Araujo, Ronchi,
Graber, Coti Zelati, De Martino, Bahramian, McSweeney, Galvin, Hyman, and Dall’Ora
(2023), we study GLEAM-X J1627 and GPM J1839–10 in the context of the radio
emission expected from the spin-down of an isolated neutron star and white dwarf
by means of death-line analyses (Section 4.3) and population-synthesis simulations
(Section 4.4). In the following section I will review briefly our current knowledge on
magnetic white dwarfs.

4.2 Magnetic white dwarfs

To date we have detected around 600 isolated white dwarfs exhibiting magnetic
fields in the range 103 − 109 G and another 200 in binary systems (see Ferrario, de
Martino, and Gänsicke, 2015; Ferrario, Wickramasinghe, and Kawka, 2020, for a re-
view). As white-dwarf atmospheres are rich in hydrogen and helium, the Zeeman
splitting of spectral lines provides a direct measure of the magnetic field strength
on the surface of these stars. Circular polarisation in the spectrum, caused by the
presence of a strong magnetic field, is another indicator of the magnetism in white
dwarfs (Ferrario, de Martino, and Gänsicke, 2015; Ferrario, Wickramasinghe, and
Kawka, 2020; Caiazzo et al., 2021). Studies of the local distribution of white dwarfs
have revealed that between 10% and 20% of the white dwarf population exhibits rel-
evant magnetic fields (see, e.g., Holberg et al., 2016; Bagnulo and Landstreet, 2021).

The origin of magnetism in white dwarfs is not well understood. Different pro-
cesses can play a role in generating strong magnetic fields during the evolution of
white dwarfs and their progenitors also depending on their physical properties. As
for the neutron star case (see Section 1.5) one hypothesis is the fossil origin scenario.
In this case the magnetic field is inherited from the progenitor star and is amplified
due to flux conservation during the contraction to a white dwarf. This require a
progenitor already having a strong magnetic field. It is commonly believed that the
progenitors of magnetic white dwarfs are Ap and Bp-type stars which usually pos-
sess a strong magnetic field up to tens of kiloGauss (Ferrario and Wickramasinghe,
2005). However, given the incidence of magnetism in the white-dwarf population
Kawka and Vennes (2004) showed that the local density of Ap and Bp stars is not suf-
ficient to account for the entire magnetic white dwarf population. Therefore, it has
also been suggested that dynamo processes during binary interactions and stellar
mergers can play a role in shaping the magnetism of these objects (Tout et al., 2008).
An alternative theory is that magnetic fields in white dwarfs can be produced and
amplified due to convective processes during the crystallisation of the liquid core
at times of around 1 Gyr after the white dwarf formation (Isern et al., 2017). This
hypothesis is supported also by observational evidence of an increasing occurrence
of magnetism in older white dwarfs (Bagnulo and Landstreet, 2021). Observations
have also shown that magnetic white dwarfs tend to be on average more massive
than the non-magnetic ones with an excess mass of around 0.07 M⊙ (Liebert, 1988;
Kepler et al., 2013; Bagnulo and Landstreet, 2021). This supports the theory that
magnetic white dwarfs originate from massive A and B-type progenitors, close to
the limit of around 8 M⊙ above which neutron stars are created. Also, the merger
scenario can be a viable explanation since after the merger a more massive outcome
is expected (García-Berro et al., 2012).
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FIGURE 4.1: Relation between the logarithm of magnetic field
strengths and spin periods of the currently known magnetic white
dwarfs with a reliable measurement of these two quantities (see Fer-
rario, Wickramasinghe, and Kawka, 2020). On the top and right pan-
els we report the corresponding histograms for the two quantities
with the corresponding fit with Gaussian distributions (see text for

more details).

In general, white dwarf spin periods are not easily determined. For magnetic
white dwarfs, the magnetic activity and the presence of magnetic spots on the sur-
face can induce spectroscopic, polarimetric and photometric variability that together
with asteroseismology techniques can be used to estimate the spin period (see Wick-
ramasinghe and Ferrario, 2000; Ferrario, de Martino, and Gänsicke, 2015; Ferrario,
Wickramasinghe, and Kawka, 2020, and references therein). The measured spin pe-
riods are in the range of a few hundred seconds up to decades or even centuries
and show that white dwarfs are slow rotators. Such a large range of spin periods
can not be explained with angular momentum conservation during the contraction
phase and is likely evidence for different physical processes playing a role during
the formation and evolution of white dwarfs. For example, efficient angular mo-
mentum transfer from the core to the envelope and large-scale angular momentum
loss during post-main-sequence evolution can contribute to slowing down the rota-
tion. Moreover, magnetic fields are likely to lead to increased braking of the stellar
core as it approaches the white dwarf state. Binary interaction and accretion phases
during the progenitor evolution and mergers also play a role in shaping the final
spin period (Wickramasinghe and Ferrario, 2000). Figure 4.1 shows the magnetic
field versus rotation period of all currently known magnetic white dwarfs. We note
that there is no significant correlation between field strength and spin period.
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4.3 Death valleys for neutron-star and white-dwarf radio pul-
sars

Radio emission from rotating magnetospheres is usually explained as a result of
pair production just above the polar caps (Ruderman and Sutherland, 1975). How-
ever, as we have seen in Section 1.9.3, for certain limiting periods, magnetic-field
strengths and geometries, radio pulsars can no longer produce pairs, and radio emis-
sion ceases.

The parameter space in the P − B plane (or equivalently P − Ṗ plane as B and Ṗ
are related via Equation (1.46)) below which radio emission is quenched is called the
“death valley” (Chen and Ruderman, 1993; Zhang, Harding, and Muslimov, 2000,
see also Section 1.9.3). This death valley encompasses a large variety of death lines
depending on the magnetic-field configuration (e.g., dipolar, multi-polar, twisted),
the nature of the seed gamma-ray photons for pair production (i.e., curvature or
inverse Compton photons), the pulsar obliquity, the stellar radius and moment of
inertia (see Suvorov and Melatos 2023 for a death-valley discussion for long-period
pulsars). To date, these death-line models have been applied exclusively to neutron
star pulsars because, until very recently, no white dwarf pulsed radio emission had
been detected. However, magnetic white dwarfs might not be unlike neutron star
pulsars in generating coherent radio emission through magnetospheric spin-down
losses (Zhang and Gil, 2005), albeit with different stellar radii, masses and magnetic
fields.

Figure 4.2 shows death valleys for neutron star and white dwarf pulsars as red
and blue-shaded regions, respectively. Their boundaries are marked by two death-
line extremes (Chen and Ruderman, 1993), representing the broadest range of B-field
configurations (see Section 1.9.3). I report them here for convenience:

• a pure dipole configuration (see Equation (1.71)):

Bp ≳ 2.0 × 1012 G
(

R
106 cm

)−19/8 ( P
1 s

)15/8

; (4.1)

• an extremely twisted, multipolar magnetic field located in a small spot above
the polar cap (see Equation (1.72)):

Bp ≳ 8.3 × 1010 G b−1/4
(

R
106 cm

)−2 ( P
1 s

)3/2

. (4.2)

where b is the ratio between the spot’s B-field and the dipolar strength Bp (here
we assume an extreme value of b = 10 as in Section 1.9.3).

These death lines can be also represented in the P − Ṗ diagram by considering
Equation (1.46) as an estimate of the magnetic field strength at the pole and making
explicit the dependence on the mass and radius:

Bp =

(
3c3

5π2

)1/2

M1/2R−2P1/2Ṗ1/2 (4.3)

≃ 5.7 × 1019 G
(

M
1M⊙

)1/2 ( R
106 cm

)−2

P1/2Ṗ1/2,
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FIGURE 4.2: Surface dipolar magnetic field, B, against spin period,
P, for observed isolated neutron stars and magnetic white dwarfs.
GPM J1839–10 and GLEAM-X J1627 are interpreted as isolated neu-
tron stars or white dwarfs. Arrows represent upper B-field limits.
We show isolated ATNF radio pulsars (Manchester et al., 2005) (gray
dots), pulsars with magnetar-like X-ray emission (red stars; gray cir-
cles highlight the radio magnetars), including the long-period mag-
netar 1E 161348-5055 (De Luca et al., 2006; Rea et al., 2016; D’Aì et
al., 2016), X-ray Dim Isolated neutron stars (XDINSs; orange squares)
and Central Compact Objects (CCOs; gold triangles) (Olausen and
Kaspi, 2014; Coti Zelati et al., 2018). Other long-period radio pul-
sars are reported as black circles (Tan et al., 2018; Caleb et al., 2022).
Isolated magnetic white dwarfs are represented by blue dots (Fer-
rario, Wickramasinghe, and Kawka, 2020; Caiazzo et al., 2021; Buck-
ley et al., 2017). Gray dots show upper B-field limits for the binary
white dwarfs AR Sco (Buckley et al., 2017) and J1912-4410 (Pelisoli et
al., 2023; Pelisoli et al., 2024) computed from Equation 4.6. Dashed
(solid) lines correspond to theoretical death lines for a pure dipole
(extremely twisted multipole) configuration. Red and blue shaded
regions indicate neutron star and white dwarf death valleys, respec-

tively.
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where we assumed a moment of inertia I = 2/5MR2. By substituting Equation 4.3
into Equations 4.1 and 4.2 we obtain the following corresponding death lines:

Ṗ ≳ 1.2 × 10−15 s s−1
(

M
1M⊙

)−1 ( R
106 cm

)−3/4 ( P
1 s

)11/4

; (4.4)

Ṗ ≳ 2.1 × 10−18 s s−1b1/2
(

M
1M⊙

)−1 ( P
1 s

)2

. (4.5)

Note that the second death line turns out to be independent of the radius of the star.
Although these death lines rely on simplifications compared to more recent works

(e.g., Zhang, Harding, and Muslimov, 2000), our focus is on the extremes of the death
valley. All newer models incorporating more detailed physics fall within the shaded
region for any reasonable neutron star or white dwarf parameters. For Figure 4.2,
we use a fiducial neutron star radius of RNS = 11 km, in line with recent measure-
ments (Riley et al., 2021; Raaijmakers et al., 2021, see Section 1.3). For white dwarfs,
we assume RWD = 6000 km consistent with the Hamada-Salpeter relation (Hamada
and Salpeter, 1961) and measurements of isolated magnetic white dwarfs (Ferrario,
de Martino, and Gänsicke, 2015; Ferrario, Wickramasinghe, and Kawka, 2020).

We also add observed neutron-star pulsars and magnetic white dwarfs to the
P − B plane in Figure 4.2. For observed neutron star pulsars, we derive surface mag-
netic fields at their poles using P and Ṗ measurements, employing the dipolar loss
formula (Equation (1.46)) assuming MNS = 1.4M⊙ and RNS = 11 km. B-fields at the
poles of isolated white dwarfs are obtained from observations (i.e., Zeeman splitting
of spectral lines; Ferrario, de Martino, and Gänsicke 2015; Ferrario, Wickramasinghe,
and Kawka 2020; Caiazzo et al. 2021). For the radio pulsating white dwarfs AR Sco
and J1912−4410, we estimate upper B-field limits assuming the emission to result
from dipolar losses alone (see Buckley et al., 2017). By combining Equations (1.31)
and (1.44) and assuming an inclination angle χ = π/2, we find the expression:

Bp ∼
(

3c3

8π4

)1/2

R−3
WDP2L1/2

∼ 4.7 × 108 G
(

RWD

6000 km

)−3 ( P
100 s

)2 ( L
1033 erg s−1

)1/2

. (4.6)

For AR Sco and J1912−4410-like systems, Equation (4.6) represents an upper limit on
the B-field since, besides magnetic dipolar losses, the bulk of the spin-down power
is likely lost by a combination of different effects: magnetohydrodynamic (MHD)
interactions of the white dwarf’s magnetic field with the secondary star, outflows
of relativistic charged particles from the magnetic white dwarf and winds from the
companion star (Marsh et al., 2016; Buckley et al., 2017).

Finally, we also show the upper limits on the surface dipolar B-fields of the two
long-period radio sources GLEAM-X J1627 and GPM J1839–10 in Figure 4.2.



4.4. Population synthesis for neutron-star and white-dwarf radio pulsars 99

4.4 Population synthesis for neutron-star and white-dwarf
radio pulsars

We simulate isolated neutron star and white dwarf populations using the framework
of Chapter 6 (see also Ronchi et al. (2021) and Chapter 5) with model parameters ad-
justed for each object type. Initially, we randomly sample the logarithm of the birth
periods and magnetic fields from normal distributions, and the inclination angle
between the magnetic and the rotational axis from a uniform distribution in spher-
ical coordinates. Assuming that neutron stars and white dwarfs spin down due to
magnetospheric torques, we then evolve their periods, P, and inclination angles, χ,
over time by solving the coupled differential equations (Spitkovsky, 2006; Philippov,
Tchekhovskoy, and Li, 2014, see also Section 1.8):

Ṗ =
π2

c3
B2R6

IP
(
κ0 + κ1 sin2 χ

)
, (4.7)

χ̇ = −π2

c3
B2R6

IP2 (κ2 sin χ cos χ) , (4.8)

where we assume for simplicity I = 2/5(MR2) and κ0 ≃ κ1 ≃ κ2 ≃ 1 for pulsars
surrounded by magnetospheres (see discussion in Section 1.8). Finally, we determine
the number of stars that point towards the Earth by assuming a random direction for
the line of sight and employing a prescription for the aperture of the radio beam as
outlined below (see Chapter 6 for more details).

To compare the impact of various initial model assumptions on the final spin-
period distributions, we carry out the population simulations summarised in Ta-
ble 4.1 and Figures 4.3–4.5. Specifically, in Table 4.1, to help the reader, we count the
objects falling within the period ranges 10 − 102 s, 102 − 103 s, and 103 − 105 s. We
then distinguish objects intercepting our line of sight and those with Ė > 1027 erg s−1

(see Figures 4.3–4.5 for the exact Ė and P distributions). The latter limit has no in-
trinsic meaning, but was chosen as a reference to show how many sources would
have sufficient rotational power to support GPM J1839–10’s radio luminosity.

4.4.1 Neutron star population synthesis

We simulate 107 neutron stars with random ages sampled from a uniform distribu-
tion up to a maximum age of 109 yrs. This translates to a birth rate of one neutron
star per century, consistent with the Galactic core-collapse supernova rate (Rozwad-
owska, Vissani, and Cappellaro, 2021). To assign each neutron star a birth field, we
then sample the logarithm of the field (in Gauss) from a normal distribution with
mean µlog B = 13.25 and a standard deviation of σlog B = 0.75 (see, e.g., Gullón et al.,
2014; Gullón et al., 2015; Cieślar, Bulik, and Osłowski, 2020). Unless stated other-
wise, we adopt MNS = 1.4 M⊙ and RNS = 11 km. We sample the logarithm of the
initial period from a normal distribution with mean µlog P = -0.6 (corresponding to
0.25 s) and standard deviation σlog P = 0.3 (Popov et al., 2010; Gullón et al., 2014; Xu
et al., 2023).

We further incorporate magnetic-field decay due to Ohmic dissipation and the
Hall effect through magneto-thermal evolution curves from Viganò et al. (2013) and
Viganò et al. (2021) (see also Chapter 6 for more details) and assume a radio beam an-
gular aperture ∝ P−1/2 (see Equation (1.57) and Lorimer and Kramer, 2012) where
we assume an emission radius rem = 300 km (Johnston and Karastergiou, 2019).
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FIGURE 4.3: Population-synthesis results for models NS1_Bdecay
(black) and NS2_Bconst (green). Top panels show P − Ṗ diagrams
for both simulations, respectively. Light grey dots represent initial
neutron star populations, dark grey and light green final popula-
tions. The subsets of objects intercepting our line of sight (los) are
shown in black and dark green. Lines of constant B-fields and the
death lines defined in Equations 4.4 and 4.5 are indicated for ref-
erence. Histograms above the P − Ṗ diagrams represent the corre-
sponding period distributions. The bottom left panel shows Ė versus
spin period for the evolved populations, while the bottom right panel
highlights the cumulative period distributions. With the black square
and black star we also report the two sources GLEAM-X J1627 and
GPM J1839–10. In the Ė versus spin period diagram we report both
the upper limit on the Ė and the estimated radio luminosity for the
two sources. Yellow dots highlight the observed isolated pulsar pop-
ulation given in the ATNF pulsar catalogue (Manchester et al., 2005).
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FIGURE 4.4: Population-synthesis results for models NS4_Bconst (or-
ange/red), NS2∗_Bconst (blue), and NS4∗_Bconst (pink). Panels, lines
and yellow dots are equivalent to those in Figure 4.3. In both left pan-
els, evolved objects sampled from the log-normal (power-law) con-
tribution to the initial period distribution are shown in orange (red).
Right panels show evolved populations of models NS4∗_Bconst and
NS2∗_Bconst based on a bimodal B-field distribution. Across all pan-
els, light shades depict evolved populations, while objects intercept-

ing our lines of sight are shown in dark shades.
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Model NS1_Bdecay serves as a reference with standard population assumptions (Fig-
ure 4.3 top-left). These are typical initial parameters compatible with the current ob-
served pulsar population (yellow dots in Figures 4.3 and 4.4). However, they cannot
predict any long-period pulsars.

We continue with investigating more extreme scenarios, focusing first on an evo-
lution without field decay. Strong fields could be maintained over long timescales
if electric currents are predominantly present in the neutron star core (e.g., Viganò
et al., 2021). Consequently, neutron stars experience a more pronounced spin-down,
reaching longer periods. For model NS1_Bconst, we thus repeat the set-up of NS1_Bdecay
but with constant B-field at the very limit of what is physically viable. However,
adding the constant-B assumption is insufficient to slow down the population sub-
stantially (see Table 4.1). For subsequent models, we continue with the extreme
constant B-field case to explore the impact of other assumptions.

In model NS2_Bconst, we also relax the standard beaming assumption, adjust-
ing the radio beam angular aperture to obtain a duty cycle of roughly 20% inde-
pendent from the spin period P, in line with observations of GLEAM-X J1627 and
GPM J1839–10. To do so, we consider an orthogonal rotator and compute the beam
aperture that would result in a duty cycle of 20% (δ = 0.2) for this configuration. This
implies that the angular aperture of the beam has to be ρem = δπ = 36◦ (see also
Section 1.9. This adjustment results in an increase of the number of pulsars crossing
our line of sight especially in the long period tale (see Figure 4.3 top-right and bot-
tom panels). For the remaining simulations, we thus maintain this prescription of
the beaming unless stated otherwise.

Next, we explore different initial spin-period distributions, mimicking a possible
interaction with initial fallback accretion (see, e.g., Alpar, Ankay, and Yazgan, 2001;
Ertan et al., 2009; Tong et al., 2016; Ronchi et al., 2022). For models NS3_Bconst to
NS6_Bconst, we add a power law with an arbitrary cut-off at a period of 105 s to
the aforementioned log-normal distribution of the observed pulsar population. We
specifically consider a power law, as the spin-down is likely determined by different
fallback accretion rates. Note that the cut-off does not affect our final results, but
reflects the maximum spin reachable by fallback accretion (see Figures 3.4 and 3.5
and Ronchi et al., 2022). We arbitrarily assume that both distributions are equally
normalised, sampling 50% of neutron stars from either distribution, maintaining a
birth rate of 1 neutron star per century. This prescription is still consistent with the
log-normal population resulting in the observed radio pulsars (Gullón et al., 2015,
see also yellow dots in Figures 4.3 and 4.4). For models NS3_Bconst and NS4_Bconst
(see Figure 4.4 left panels), we assume a corresponding power-law index of -3 and
-1, respectively. NS5_Bconst investigates a duty cycle of 10% (δ = 0.1), i.e., ρem =
δπ = 18◦, while for NS6_Bconst, we explore the effect of the assumed mass, setting
MNS = 2M⊙.

Since stronger magnetic fields enhance the spin-down, we also investigate the
effect of a bimodal B-field distribution (four models denoted with an asterisk (∗)
in Table 4.1). In particular, besides the log-normal distribution, we consider that
50% of neutron stars are formed with a strong field uniformly distributed in log B ∈
[13.5, 14.5] following Gullón et al. (2015). NS2∗_Bdecay and NS2∗_Bconst consider
only the log-normal for the initial period distribution and a decaying and constant
magnetic field, respectively, while for NS4∗_Bdecay and NS4∗_Bconst, we explore the
log-normal plus power law for the initial period (see Figure 4.4 right panels).
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FIGURE 4.5: Population-synthesis results for models WD1 (purple) and
WD4 (seagreen). Panels and lines are similar to Figure 4.3 and Fig-
ure 4.4. Gray dots represent initial white dwarf populations, pink and
light seagreen final populations. The subsets of objects intercepting
our line of sight are shown in purple and dark seagreen. Note that
the death valley and the upper limits for the two long period sources
refer to the WD case (see Figure 4.2, Section 4.3, and Section 4.4.2).
Note that the two cases have different masses and radii, which re-

flects in different B-field lines, death valley and Ė limits.
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4.4.2 White dwarf population synthesis

Magnetic white dwarfs spin down slower than neutron stars due to larger moments
of inertia, larger spin periods and lower B-fields (see Equation 1.42). Moreover,
magnetic fields of magnetic white dwarfs do not exhibit relevant magnetic-field de-
cay due to longer Ohmic dissipation timescales (e.g., Cumming, 2002) and can be
taken as constant (Ferrario, Wickramasinghe, and Kawka, 2020). Considering Equa-
tion (1.14) we obtain a rough estimate of the Ohmic timescale in white dwarfs:

τOhm ≃ 4.4 × 109 yr
( σ

1021 s−1

)( L
1000 km

)2

, (4.9)

where we consider typical values of the conductivity from Cumming (2002). Con-
sequently, current isolated white dwarf periods and magnetic-field strengths closely
reflect those at birth.

To model these birth distributions, we consider a sample of 37 magnetic white
dwarfs with reliable spin-period and magnetic-field measurements (Ferrario, Wick-
ramasinghe, and Kawka, 2020). We fit Gaussian functions to the distributions of the
logarithm of the periods and B-fields, deriving a mean of µlog P = 3.94 and stan-
dard deviation of σlog P = 1.0, and µlog B = 6.91 and σlog B = 1.09, respectively (see
Figure 4.1). The white dwarf birth rate in the Milky Way has been predicted to be
around 100 per century assuming a Galaxy radius of 20 kpc and a Galactic disk
height of 0.5 kpc (Holberg et al., 2016). For our population synthesis, we then simu-
late 108 magnetic white dwarfs with ages drawn from a uniform distribution up to
a maximum of 109 yr, consistent with a birth rate of 10 per century assuming 10% of
the white dwarfs being magnetic (see, e.g., Holberg et al. 2016 but also Bagnulo and
Landstreet 2021 who recently found 22%). We then assign initial P and B values from
our fitted distributions. Results of four simulation configurations are summarised
in Table 4.1 and Figure 4.5.

We further assume a white dwarf radio beam angular aperture independent of
P. For models WD1 and WD2, we adjust our approach to obtain a 20% and 10% duty
cycle, corresponding to beam apertures ρem = 18◦ and 36◦, respectively (see Sec-
tion 4.4.1). For WD3 and WD4, we set the beaming as in WD1 but vary mass and radius.
In particular, using the Hamada-Salpeter mass-radius relation for He white dwarfs
(Hamada and Salpeter, 1961), we consider MWD = 1.2 M⊙ and RWD = 4000 km for
a high-mass white dwarf in WD3 and MWD = 0.6 M⊙ with RWD = 9000 km for a
low-mass white dwarf in WD4.
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dwarf rotating dipole scenarios

4.5 Results and discussion

Figure 4.2, provides an overview of long period sources in the classical scenario of
neutron star pulsar radio emission (see section 1.9.3) based on magnetospheric pair
production. While this scenario can in principle accommodate GLEAM-X J1627, it
cannot account for GPM J1839–10 as the source sits below even the most extreme
death line. However, note that both objects have radio luminosities exceeding their
Ės by 2-3 orders of magnitudes (see Hurley-Walker et al., 2022a; Hurley-Walker et al.,
2023, and Section 3.6, and 3.7) implying that dipolar spin-down alone cannot explain
the observed luminosities. Hence, the emission scenario for long-period emitters is
necessarily more complex than for normal radio pulsars, possibly resembling radio
magnetars, where the electromagnetic emission can be powered by the energy stored
in the strong magnetic field (see also Rea et al., 2022, and Section 1.13).

Figure 4.2 also highlights that a similar mechanism in magnetic white dwarfs
could in principle contribute to the radio emission of GLEAM-X J1627, AR Sco and
J1912−4410 in the white-dwarf scenario. However, GPM J1839–10’s bright radio
emission cannot be easily reconciled even in the isolated magnetic white dwarf case.
For white dwarfs in binary systems such as AR Sco and J1912−4410, the interactions
of the companion’s wind with the white dwarf’s magnetosphere can replenish the
magnetosphere with plasma and enhance the radio emission (Geng, Zhang, and
Huang, 2016). Deep optical and IR observations ruled out main sequence stars for
GLEAM-X J1627 (Rea et al., 2022), but deeper observations are needed to exclude
any binarity. On the other hand, GPM J1839–10’s limits (Hurley-Walker et al., 2023)
cannot provide strong constraints given its larger distance.

Our neutron star population synthesis models summarised in Table 4.1 show
that a large population of long-period radio emitters can not be easily explained as
neutron star pulsars. Neither standard population assumptions nor the most ex-
treme scenarios invoking no field decay (Figure 4.3), initial slow-down via fallback
accretion, 20% duty cycles or stronger birth fields (Figure 4.4) result in sufficiently
energetic neutron star pulsars with periods > 1000 s pointing towards the Earth (ir-
respective of mass). A difference by a factor of a few in the neutron star birth rate
does not alter this conclusion.

On the other hand, white dwarf population synthesis highlights that long-period
magnetic white dwarfs are more common than neutron star pulsars. This is primar-
ily because they are born with longer spin periods. This combined with their lower
magnetic field and larger moment of inertia reduce the effectiveness of the dipolar
spin-down process. Only white dwarfs with small spin periods and large magnetic
field experience appreciable spin down (see Figure 4.5). Therefore the abundance
of slow rotators (Table 4.1) in the white-dwarf scenario mainly reflects their birth
properties. However, Figure 4.2 shows that the known sample of isolated magnetic
white dwarfs are not expected to emit coherent radio emission via standard pair
production, being all located below the most extreme death line.

4.6 Conclusions

In this chapter, we studied long-period pulsars in the rotating neutron-star and
white-dwarf dipole scenario, one of the most likely interpretations given their co-
herent and highly polarised emission. We also perform population synthesis sim-
ulations to try to asses the likelihood of detecting long-period sources originating
from these scenarios.
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We find that the classical particle acceleration mechanism for rotating dipoles
(see Section 1.9.3) fails to provide a satisfactory explanation for the radio emission
of GPM J1839–10 in either the neutron star or white dwarf scenario. In contrast,
all observed isolated magnetic white dwarfs with measured B-fields fall below the
most extreme death lines, possibly explaining their radio non-detection. The radio
emission observed from the binary white dwarfs AR Sco and J1912−4410 might be
enhanced by the presence of their companion star within the white dwarf pulsar
light cylinder. However, for GLEAM-X J1627 optical and IR observations could rule
out main sequence companion stars (Rea et al., 2022). For GPM J1839–10 a similar
constrain was not possible given the larger distance (Hurley-Walker et al., 2023).

Moreover, in the neutron star scenario, we do not expect a large population of
ultra-long period pulsars to possess enough energy to power the observed coherent
emission under any (physically motivated or extreme) assumptions. While many
more slow white dwarf pulsars can be expected possessing enough rotational en-
ergy, we however still lack a mechanism to explain the bright radio emission. There-
fore, if GLEAM-X J1627 and GPM J1839–10 are confirmed as isolated neutron star
or white dwarf pulsars, this would call for a revision of our understanding of ra-
dio emission from dipolar magnetospheres. Corroborating the neutron star scenario
would further require a significant re-examination of our understanding of initial
neutron star parameters (birth rates, magnetic-field distribution, etc.) and their evo-
lution at the population level.
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Chapter 5

Analyzing the Galactic pulsar
dynamics with machine learning

5.1 Introduction

Neutron stars have been observed to travel through the Galaxy with typical veloc-
ities of around several hundreds of kilometers per second, reaching more than a
thousand kilometers per second in some extreme cases (Chatterjee et al., 2005; Hobbs
et al., 2005; Hui and Becker, 2006; Pavan et al., 2014). Accurate information on neu-
tron star positions and velocities in the Milky Way usually comes from radio tim-
ing and interferometric observations (see Chapters 8 and 9 in Lorimer and Kramer,
2012; Liu et al., 2020, and references therein) or high spatial resolution X-ray obser-
vations with, e.g., the Chandra X-ray observatory (Motch et al., 2009). These obser-
vations provide measurements of the pulsars’ angular positions in the sky and their
proper motions projected onto the celestial sphere. In some cases, the radio pulse
dispersion measure (DM) or the X-ray absorption density (NH) together with Galac-
tic free electron-density and hydrogen-density models (Balucinska-Church and Mc-
Cammon, 1992; Taylor and Cordes, 1993; Cordes and Lazio, 2002; Yao, Manchester,
and Wang, 2017) can also yield a rough distance estimate. Moreover, in a few cases,
a parallax measurement (Deller et al., 2009; Matthews et al., 2016; Wang et al., 2017;
Deller et al., 2019) or the presence of a Supernova Remnant (SNR) (Yao, Manchester,
and Wang, 2017) might provide better distance measurements.

Such high proper velocities of the neutron star population as a whole exceed
those of their progenitors (typically massive OB stars) (see Hansen and Phinney,
1997; Lai, Chernoff, and Cordes, 2001, and references therein), and cannot be ex-
plained by the neutron stars’ motion in the Galactic gravitational potential alone.
The mechanisms providing such high velocities are still unclear but are likely re-
lated to the underlying supernova explosion. One possibility is that the central core
of an exploding star receives a kick due to an asymmetric ejection of material from
the star’s outer layers; a direct result of momentum conservation (Shklovskii, 1970;
Dewey and Cordes, 1987; Mandel and Müller, 2020). Additionally, the anisotropic
emission of neutrinos has been suggested to impart kicks on compact remnants
(Bisnovatyi-Kogan, 1993; Fryer and Kusenko, 2006; Tamborra et al., 2014; Nagakura,
Sumiyoshi, and Yamada, 2019).

However, constraining the neutron stars’ natal kick-velocity distribution from
current observational data is not straightforward. Most pulsars, especially those
with very high velocities, have moved far away from their birth places, and their
proper motions have been modified by the Galactic gravitational potential. Thus,
the current velocity of a pulsar may differ substantially from its velocity at birth.
Knowing the exact pulsar age and its current 3D spatial velocity, we are in principle
able to recover the initial conditions by integrating the pulsar’s orbit back in time.
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However, in general we lack information about the pulsar’s line-of-sight velocity,
and accurate knowledge about its age, since the characteristic age estimated from
the pulsar period and its derivative can differ significantly from the true age (see
e.g. Kaspi et al., 2001; Viganò et al., 2013, and Section 1.8). Furthermore, estimates
of pulsar distances have typically large associated errors due to uncertainties in the
underlying density models used to convert pulsar DM or NH into distance estimates
(Lorimer et al., 2006; He, Ng, and Kaspi, 2013; Deller et al., 2019).

Reconstruction of the three-dimensional initial position and velocity distribution
of pulsars, and comparison with the observed Galactic neutron star population is
therefore a complicated task that requires careful simulations as well as detailed
estimates of the observational biases of multi-band surveys. Several studies have
performed statistical and population synthesis analyses to recover the distributions
of important neutron star parameters from the observed population (see e.g. Ar-
zoumanian, Chernoff, and Cordes, 2002; Brisken et al., 2003; Hobbs et al., 2005;
Faucher-Giguère and Kaspi, 2006; Gullón et al., 2014; Verbunt, Igoshev, and Cator,
2017; Cieślar, Bulik, and Osłowski, 2020). While these models are broadly able to
explain the observational data, high degrees of degeneracy between the different in-
put parameters make it difficult to exactly pin down the distributions that control
the pulsars’ birth properties, such as their natal kick velocities. Nonetheless, disen-
tangling the birth properties of the isolated neutron star population in our Galaxy is
crucial as it has important implications for several lines of research, including for-
mation mechanisms of these compact stars, the evolution of massive stars, as well
as extreme events such as Gamma-Ray Bursts (GRBs), Fast Radio Bursts (FRBs) and
peculiar types of supernovae.

In this chapter, based on the work published in Ronchi, Graber, Garcia-Garcia,
Rea, and Pons (2021), we focus on characterising initial pulsar properties using ma-
chine learning techniques (see Chapter 2). I will describe the technical aspects re-
lated to these efforts and show that a machine-learning framework can be used to
estimate parameters with high accuracy. For this feasibility study, we restrict our-
selves to a simplified approach, where selection effects and observational biases are
neglected and reduced physical models are sufficient. In particular, we focus on
the dynamical properties of the pulsar population and explore the possibility of in-
ferring the parameters that control a given Galactic pulsar kick-velocity and scale-
height distribution at birth (the two quantities that largely control the spatial dis-
tribution of pulsars in the Milky Way) through neural networks. For this purpose,
we implement a basic population synthesis code in Python and simulate the dy-
namical evolution of a synthetic population of isolated neutron stars for a variety
of different birth-position and natal-kick distributions. These evolved mock popula-
tions are then fed into a suitably structured machine-learning pipeline with the aim
of recovering the underlying parameters controlling the distributions. We show that
this procedure is successful at estimating birth characteristics. Additionally, we link
our framework to the observed sample of pulsars with measured proper motion in
a phenomenological way and discuss implications for future pulsar survey efforts,
e.g., with the Square Kilometer Array (SKA).

In Section 5.2, I describe the methods used to simulate and evolve a mock neu-
tron star population in time. Section 5.3 contains a description of the machine-
learning framework, including the generation of our datasets (Section 5.3.1), the
employed network architectures (Section 5.3.2) as well as details of the training pro-
cess (Section 5.3.3). In Section 5.4, I present our experiments, which are discussed
in detail and connected with observational data in Section 5.5. Finally, I provide a
summary and outlook in Section 5.6.
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5.2 Population synthesis: dynamics

A widely used approach to investigate the properties of the observed neutron star
population is through population synthesis (see e.g. Narayan and Ostriker, 1990;
Faucher-Giguère and Kaspi, 2006; Gonthier et al., 2007; Kiel et al., 2008; Kiel and
Hurley, 2009; Osłowski et al., 2011; Levin et al., 2013; Gullón et al., 2014; Bates et
al., 2014; Cieślar, Bulik, and Osłowski, 2020, and Section 1.15). These frameworks
aim to simulate the evolution of a population of neutron stars from birth until today.
The resulting mock population is then compared with the real observed population
in order to constrain and validate the physical model assumptions that entered the
simulation. In particular, the population synthesis approach relies on assumptions
about the distributions of the birth properties of the mock neutron stars, and typ-
ically takes advantage of Monte–Carlo methods to construct the initial parameters
of each simulated star. Starting from these initial conditions, the mock population
is then evolved over time according to some evolutionary prescriptions, and even-
tually contrasted with real data. For the development of our population synthe-
sis framework, we largely follow Faucher-Giguère and Kaspi (2006), Gullón et al.
(2014) and Cieślar, Bulik, and Osłowski (2020). In this chapter we will focus on
the dynamical properties while in the next chapter we will extend the analysis to the
magneto-rotational properties of neutron stars. The necessary ingredients are briefly
summarised in the following.

5.2.1 Age

The age, tage, of each neutron star is randomly drawn from a uniform probability
distribution between 1 and 107 yr. By choosing a uniform distribution, we assume
that the birth rate of neutron stars is constant in the chosen time range. For all sim-
ulations of the synthetic neutron star population, we choose an average neutron
star birth rate of 1 neutron star per century, compatible with the core-collapse su-
pernova rate in the Galaxy (Rozwadowska, Vissani, and Cappellaro, 2021, see also
Section 1.14). This yields a total of 105 simulated neutron stars for each synthetic
population, whose evolution we can compute within reasonable timescales.

5.2.2 Birth position

To define the initial positions, we use both a Cartesian reference frame (x, y, z) and
a cylindrical reference frame (r, ϕ, z), whose origins are located at the centre of the
Galaxy. Here, r represents the distance in kiloparsec from the Galactic centre, ϕ is
the azimuthal angle in radians and z is the distance from the Galactic plane. The two
coordinate systems are related by the transformation:

x = r cos ϕ,
y = r sin ϕ,
z = z.

(5.1)

We assume that the Sun is located at the coordinates x = 0 kpc, y = r⊙, z = z⊙,
where r⊙ = 8.3 kpc and z⊙ = 0.02 kpc (see Pichardo et al., 2012, and references
therein). We calculate the initial position at birth of each neutron star in both cylin-
drical and Cartesian galactocentric reference frames. To do so, we execute the fol-
lowing steps:
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i) First, we draw a random distance r from the Galactic centre for each neutron
star ranging between 10−4 and 20 kpc according to a pulsar radial density dis-
tribution P(r). In particular, we follow the Milky Way’s pulsar surface density
ρ(r) defined by Equation (15) in Yusifov and Küçük (2004) to determine the
probability density function for the radial distance, i.e.:

P(r) = 2πrρ(r), (5.2)

with

ρ(r) = A
(

r + r1

r′⊙ + r1

)a

exp
[
−b
(

r − r′⊙
r′⊙ + r1

)]
, (5.3)

where A = 37.6 kpc−2, a = 1.64, b = 4.0, r1 = 0.55 kpc and r′⊙ = 8.5 kpc is
the Sun’s distance from the Galactic centre projected on the Galactic disk. Al-
though different from the r⊙ value assumed above, we keep r′⊙ = 8.5 kpc in
this parametrisation in order to be consistent with the results of Yusifov and
Küçük (2004). We note that this is the distribution for evolved pulsars rather
than that of their progenitors and Yusifov and Küçük (2004) find small dis-
crepancies between this distribution and that of OB stars. However, Faucher-
Giguère and Kaspi (2006) show that the evolved pulsar population is well de-
scribed by birth positions drawn from the density distribution in Equation (5.3)
and argue that differences fall within the current uncertainties of pulsar dis-
tance measurements. Given the lack of a more realistic description, we there-
fore adopt the above prescription.

ii) Neutron stars are born mainly within the Galactic spiral arms, as these regions
are rich in massive OB stars (Chen et al., 2019). We implement a model for
the galactic spiral structure that includes four arms with a logarithmic shape
function, which gives the azimuthal coordinate, ϕ, as a function of the distance
from the Galactic centre:

ϕ(r) = k ln
(

r
r0

)
+ ϕ0. (5.4)

Our values of the model parameters, i.e., the winding constant k, the inner ra-
dius r0 and the inner angle ϕ0 are reported in Table 5.1 and evaluated from
Table 1 in Yao, Manchester, and Wang (2017) in order to match the same func-
tional form as defined in Equation (5.4). For our analysis, we follow Faucher-
Giguère and Kaspi (2006) and do not include the Local arm, whose density is
much smaller than that of the four major arms (Cordes and Lazio, 2002; Yao,
Manchester, and Wang, 2017). For each star, we then randomly select one of the
four spiral arms with equal probability, and evaluate the angular coordinate,
ϕ, for its given r according to Equation (5.4).

The spiral pattern of the Galaxy is not static and as a first approximation can be
considered as a rigid structure which rotates with an approximated period T =
250 Myr (Vallée, 2017; Skowron et al., 2019). Knowing the age of an object and
assuming a rotational angular velocity of Ω = 2π/T for the spiral structure,
we can derive the angular position at birth of each neutron star. Note that the
Galaxy rotates in the clockwise direction, i.e., toward decreasing ϕ angles.

After obtaining the corresponding angular coordinate for each neutron star
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TABLE 5.1: Parameters of the Milky Way spiral arm structure: the
winding constant k, the inner radius r0 and the inner angle ϕ0
(adapted from Table 1 in Yao, Manchester, and Wang (2017); see Sec-

tion 5.2.2 for more details).

Arm number Name
k r0 ϕ0
[rad] [kpc] [rad]

1 Norma 4.95 3.35 0.77
2 Carina-Sagittarius 5.46 3.56 3.82
3 Perseus 5.77 3.71 2.09
4 Crux-Scutum 5.37 3.67 5.76

birth position, we add noise to both coordinates r and ϕ to smear out the dis-
tribution and avoid artificial features near the Galactic centre. For this purpose,
we add a correction ϕcorr = ϕrand exp (−0.35r/kpc) to the ϕ coordinate, where
ϕrand is randomly drawn from a uniform distribution in the interval [0, 2π),
and to the r coordinate a correction rcorr randomly drawn from a normal dis-
tribution centred at 0 with standard deviation σ = 0.07r. Although this pre-
scription was introduced by Faucher-Giguère and Kaspi (2006) (see their Sec-
tion 3.2.1) in a somewhat arbitrary manner, the resulting stellar distribution
broadly agrees with that observed for very young high-mass stars as shown in
Reid et al. (2019).

Then the birth position in polar coordinates of each neutron star is given by
(r + rcorr, ϕ(r) + Ωtage + ϕcorr) with units [kpc, rad].

iii) To determine the height z in kiloparsec from the Galactic plane of each neutron
star, we adopt an exponential disk model as given by Wainscoat et al. (1992).
It is shaped by the characteristic scale-height parameter hc:

P(z) =
1
hc

exp
(
−|z|

hc

)
. (5.5)

For our machine-learning experiments, we will vary the scale height in the
range [0.02, 2] kpc to simulate neutron star populations with different spread
in Galactic height. This range encompasses the value hc = 0.18 kpc, which was
adopted by Gullón et al. (2014) to match radio pulsar observations, and which
is also compatible with the population of young massive stars in the Galactic
disk (Li et al., 2019). We will consider hc = 0.18 kpc below, whenever a fiducial
scale height is required for our synthetic pulsar population. The coordinate z
of each neutron star is then randomly drawn according to this height proba-
bility distribution in a range of 10−4 to 5 kpc. We choose a maximal distance
of 5 kpc from the Galactic plane to model a fixed galactic volume for all of our
simulation runs, while also ensuring sufficient resolution for the objects in the
galactic disc for those models with small scale heights. Subsequently, for each
star we randomly choose if z is positive or negative determining in this way a
position above or below the Galactic plane.
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TABLE 5.2: Parameters of the Milky Way gravitational potential taken
from Table 1 in Marchetti, Rossi, and Brown (2019); see also Bovy

(2015).

Component Parameters

nucleus (n) Mn = 1.71 × 109M⊙
Rn = 0.07 kpc

bulge (b) Mb = 5.0 × 109M⊙
Rb = 1.0 kpc

disk (d) Md = 6.8 × 1010M⊙
ad = 3.00 kpc
bd = 0.28 kpc

halo (h) Mh = 5.4 × 1011M⊙
Rh = 15.62 kpc

5.2.3 Initial velocity

We assume that the initial velocity of the neutron stars in the Galaxy is given by two
contributions: the progenitor velocity in the Galactic gravitational potential and a
kick speed imparted onto the neutron stars as a result of the supernova explosion
(see also Section 1.4). We consider a progenitor circular orbital speed given by the
following relation:

vorb =

√
r

∂ΦMW (r, z)
∂r

, (5.6)

where ΦMW is the Milky Way gravitational potential discussed below. We assume
that each neutron star has an initial kick velocity vk, whose 3D magnitude vk is
randomly drawn from a Maxwell distribution, shaped by the dispersion parameter
σk:

P(vk) =

√
2
π

v2
k

σ3
k

exp

(
−v2

k

σ2
k

)
. (5.7)

For our machine-learning purposes, we will vary σk in the range [1, 700] km s−1

and randomly draw 3D velocity magnitudes from the resulting distribution in the
range [0, 2500] km s−1. This spread allows us to easily accommodate the fastest ob-
served neutron stars whose velocities have been estimated to surpass 1000 km s−1

(see for example Chatterjee et al., 2005; Hui and Becker, 2006; Pavan et al., 2014).
Based on pulsar timing measurements, Hobbs et al. (2005) have suggested that σk =
265 km s−1 provides a viable explanation for the proper motions of observed neutron
stars. We will use this as a fiducial value below. For a given kick-velocity magnitude,
we then associate a random direction to this velocity in order to evaluate the three
components (vk,r, vk,ϕ, vk,z) in galactocentric cylindrical coordinates. Therefore, the
three components of the total initial velocity of each neutron star in the galactocen-
tric reference frame are computed as (vk,r, vorb + vk,ϕ, vk,z).
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5.2.4 Galactic potential

As typical for spiral galaxies like the Milky Way, we assume an axisymmetric Galac-
tic potential ΦMW (Carlberg and Innanen, 1987; Bovy, 2015) that does not incorporate
the impact of the spiral arms themselves. We specifically consider a four-component
Galactic potential model consisting of a nucleus (Φn), a bulge (Φb), a disk (Φd) and
a halo (Φh) as discussed in Marchetti, Rossi, and Brown (2019):

ΦMW = Φn + Φb + Φd + Φh. (5.8)

The nucleus and the bulge are described by a spherical Hernquist potential (Hern-
quist, 1990):

Φn = − GMn

Rn + R
, (5.9)

Φb = − GMb

Rb + R
. (5.10)

where the coordinate R =
√

r2 + z2 is the distance from the Galactic centre in spher-
ical coordinates. The disk has a Miyamoto-Nagai disk potential (Miyamoto and Na-
gai, 1975):

Φd = − GMd√
K2 + r2

, (5.11)

where K = ad +
√

z2 + b2
d is the shape parameter with ad as the scale length and bd

the scale height of the disk. The halo has a Navarro-Frenk-White potential (Navarro,
Frenk, and White, 1996):

Φh = −GMh

R
ln
(

1 +
R
Rh

)
. (5.12)

The parameters of this model are reported in Table 5.2 and were derived by Bovy
(2015) through a fit of the mass profile of the Milky Way. We assume that these
contributions to the galactic potential are stationary in time, i.e., they do not evolve
over the time span we consider for the dynamical evolution.

5.2.5 Dynamical evolution

Given the initial conditions defined above, i.e., the initial position, initial velocity
and the Galactic gravitational potential, we can solve the equations of motion to
determine the neutron stars’ dynamical evolution. The system of dynamical equa-
tions that requires solving to determine the orbits of the neutron stars in the galactic
potential is given by the Newtonian equations of motion: r̈ = −∇ΦMW. In cylindri-
cal galactocentric coordinates the three components of this vector equation take the
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form: 

r̈ − rϕ̇2 = −∂ΦMW

∂r
,

2ṙϕ̇ + rϕ̈ = −1
r

∂ΦMW

∂ϕ
,

z̈ = −∂ΦMW

∂z
.

(5.13)

For each neutron star, we numerically integrate the above equations in time from t =
0 yr to t = tage using a discrete time step. We use the Python package scipy.integrate.
odeint and to speed up the computational time also employ the module jit (“just
in time") from the Numba package (https://numba.pydata.org/, Lam, Pitrou, and
Seibert 2015).1 To asses the performance of our integration method, we check that
both the total energy (i.e., the potential plus kinetic energy) and the z-component of
the total angular momentum of all the stars in our simulation are conserved. For
simplicity, we assume that all pulsars have the same mass and we find that both
quantities are conserved with a relative error of ≲ 10−7. The output of the dynam-
ical evolution consists of the position and velocity of each neutron star computed
in both galactocentric (GC) and equatorial ICRS (International Celestial Reference
System) frames. To transform between different coordinate systems, we employed
the method coordinates from the Python library Astropy (Astropy Collaboration
et al., 2013; Astropy Collaboration et al., 2018), where we adopted a galactocentric
distance of r⊙ = 8.3 kpc and Galactic height of z⊙ = 0.02 kpc for the Sun.

5.3 Machine-learning set-up

For our analysis, we will focus on artificial neural networks (ANNs). ANNs are al-
gorithms inspired by the structure of biological brains that can be thought of as nets
of interconnected neurons that exchange information from one to another (see Sec-
tion 2.2). When the network receives an input, it is able to process it to produce an
output, like a biological brain responds to external stimulation. In ANNs, neurons
are usually organised in a stack of layers. Each neuron in a layer receives input sig-
nals (typically real numbers) from the neurons in the previous layer and produces an
output signal by applying a non-linear activation function to a linear combination of
the input signals according to certain weights and a bias. The output is then passed
to the neurons in the following layer, and so on, until the final layer is reached and
the output is generated. In our particular case, we will focus on supervised learning,
where training the neural network consists of making it produce a specific target out-
put when a particular input is passed through it. This is achieved by (i) labeling the
input samples in the training dataset with a label indicating the property that the
network has to learn (the so-called ground truth) and (ii) iteratively adjusting the
values of weights and biases, also called network parameters, in order to minimise
a specific loss function which measures the distance between the network output
prediction and the target ground truth (see Section 2.3.4).

Among their numerous applications, ANNs have been employed in regression
problems where the network is trained to infer the values of continuous variables
for the given input data. This is the kind of problem we are after since we want our

1Numba translates Python functions into optimised machine code at run-time, which allows us to
achieve a speed-up by about a factor of 6.

https://numba.pydata.org/
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FIGURE 5.1: Examples of 128 × 128 resolution maps in the galacto-
centric xy-plane extending from −20 to 20 kpc in both x and y direc-
tion and showing (in order from left to right) the density of simulated
neutron stars, the distribution of average values of the vr, vϕ and vz
velocity components for a population of neutron stars simulated with
hc = 0.18 kpc and σk = 265 km s−1. For visualisation purposes, we
represent the data using a colourmap to highlight the resulting struc-
tures; red regions are characterised by a higher density of stars or
higher average magnitude of the velocity components, respectively,
while blue areas correspond to lower densities and lower velocity
magnitudes. We note that the spiral-arm pattern is still recognisable
in the position-density map although high kick velocities tend to blur
and disperse the stellar density distribution. In the vr-velocity map,
the inter-arm regions are visible as high-velocity areas, because dur-
ing the dynamic evolution the space between the spiral arms is pro-
gressively filled with high velocity stars that have escaped from their
birth places. The other two velocity components exhibit smoother be-

haviour because the spiral-arm structure is smeared out.
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FIGURE 5.2: Examples of 128 × 64 resolution maps in the equatorial
ICRS frame extending from 0◦ to 360◦ in RA and from −90◦ to 90◦

in DEC and showing (in order from left to right) the density of sim-
ulated neutron stars, the distribution of average values for the µRA,
µDEC proper-motion components for a population of neutron stars
simulated with hc = 0.18 kpc and σk = 265 km s−1. For visualisation
purposes, we represent the data using a colourmap to highlight the
resulting structures; red regions are characterised by a higher density
of stars or a higher average magnitude of the velocity components, re-
spectively, while blue areas correspond to lower densities and lower
velocity magnitudes. Note that the Galactic silhouette is visible as a
stream in the position map with an enhanced stellar density close to
the Galactic Centre. Due to low-number statistics, the regions outside
the Galactic stream in the proper-motion maps are dominated by sta-
tistical fluctuations, i.e., the corresponding high-velocity regions are
attributed to a small number of high proper-motion stars that have
escaped the disk. As a result, the disk itself is dominated by stars

with lower proper motion.
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network to infer certain parameter values given the evolved neutron star population.
In the remainder of this section, we discuss (i) the simulation data we create for our
ML experiments (Section 5.3.1), then (ii) focus on the specific network architecture
employed (Section 5.3.2), and finally (iii) describe the details of our training process
(Section 5.3.3).

5.3.1 Dataset creation and processing

The goal of our ML approach is to predict the parameters that control the dynam-
ical properties of an evolved neutron star population. In particular, we focus on
predicting the kick-velocity parameter σk and the scale-height parameter hc, which
predominantly affect the distribution of pulsars in the Milky Way. To extract these
from an evolved population, and follow a supervised learning approach, we first
need to train a neural network on a series of simulated populations (created by ex-
ploring the ranges for σk and hc). Following the prescription described in Section 5.2,
we perform the following simulation runs:

S1 We generate 10 datasets with an increasing number of samples (specifically
4, 8, 16, 32, 64, 128, 256, 512, 1024 and 20000 simulated populations) by uni-
formly varying the parameter σk of the kick velocity distribution in the range
[1, 700] km s−1.2 We also generate a test dataset with 1000 samples, each one
simulated with σk randomly drawn from a uniform distribution in the same
range of values. For these simulations, we keep the characteristic scale of the
z-distribution fixed to its fiducial value hc = 0.18 kpc.

S2 We fix the kick-velocity parameter to its fiducial value σk = 265 km s−1 and
generate a dataset of 20000 samples of simulated populations by uniformly
varying the scale-height parameter hc in the range [0.02, 2] kpc. We also gen-
erate a test dataset with 1000 samples, each one simulated with hc randomly
drawn from a uniform distribution in the same range of values.

S3 We generate 6 datasets, where we uniformly vary the kick-velocity parame-
ter σk in the range [1, 700] km s−1 as well as the characteristic scale of the z-
distribution hc in the range [0.02, 2] kpc. We choose the dataset sizes 16 = 4× 4,
64 = 8 × 8, 256 = 16 × 16, 1024 = 32 × 32, 4096 = 64 × 64 and 16384 =
128 × 128 given by all the combinations of σk and hc values. As an example:
the 16 populations in the first set are obtained by combining each of the 4 val-
ues of the σk parameter with all 4 values of the hc parameter. We also generate
a test dataset with 1000 samples, each one simulated with both σk and hc ran-
domly drawn from uniform distributions in their respective parameter ranges
specified above.

As addressed in detail in Section 5.4, the smaller simulation datasets will be used
to explore the network behaviour. The largest datasets containing 20000 and 16384
samples, respectively, and the test datasets with 1000 samples will be used to per-
form the final training experiments and assess the actual network accuracy in gen-
eralisation scenarios.

After the runs have been performed, we transform the output of the simula-
tion into a representation that can be interpreted by a ML pipeline. Since ANNs
require the use of structured data, we represent the position and velocity output

2To generate our simulation data, we partially employ the package Hydra (https://hydra.cc/,
Yadan 2019), which allows us to easily sweep entire parameter ranges.

https://hydra.cc/
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of the simulations in the form of 2D binned density and velocity maps both in the
galactocentric and ICRS reference frames. The density maps give information about
the density of neutron stars in the Galaxy by providing the number count of stars
in each spatial bin. On the other hand, velocity maps contain information about
the kinematic properties of the neutron stars by providing the average magnitude
of the stellar velocity components in each spatial bin. In the galactocentric maps
the Galaxy is represented face on and projected onto the xy-plane of the Cartesian
galactocentric frame, extending from −20 kpc to 20 kpc in x and y direction. The
ICRS maps instead extend from 0◦ to 360◦ in right ascension (RA) and from −90◦ to
90◦ in declination (DEC). To each map we apply a smoothing Gaussian filter (with
radius 4σ and σ = 1) in order to add some blurring and avoid sharp features. By
doing so, we reduce noisy high-frequency features and thus make the training more
stable, presumably resulting in better generalisation capabilities. Therefore, for each
simulated population we have:

• 1 density map in the galactocentric frame.

• 3 velocity maps, one for each component of the velocity in cylindrical galacto-
centric coordinates vr, vϕ and vz in [km s−1].

• 1 density map in ICRS coordinates.

• 2 proper motion maps, one for each component of the angular proper motion
projected on the celestial sphere µRA and µDEC in [mas yr−1].

This set of maps for each population is labeled with the corresponding values of the
parameters σk and hc used to simulate that specific population.

We will test the ML performance on three different map resolutions. Thus, we
generate each of the above datasets with resolutions 32× 32, 128× 128 and 512× 512
square bins. Note that in the ICRS maps the DEC coordinate axis range is half that of
the RA coordinate axis. Hence, these maps have half the bins along the DEC coordi-
nate and their resolution is 32 × 16, 128 × 64 and 512 × 256 square bins. For brevity
hereafter we will refer to the three resolutions as 32, 128 and 512 resolutions for both
galactocentric and ICRS maps, respectively. An example of the maps with resolution
128 for a simulation with fiducial values hc = 0.18 kpc and σk = 265 km s−1 is shown
in Figures 5.1 and 5.2.

Before loading the maps into our ML pipeline, they are normalised so that each
bin contains a continuous value between 0 and 1. The same applies to the related
labels so that their values range continuously between 0 and 1. The aim of normal-
isation is to speed up the training process and make convergence easier since all
inputs will provide signals of similar magnitude to the loss-function minimisation
(see Section 2.3.1). This is useful especially for multi-parameter and multi-channel
training, that is when we train a network to predict more than one parameter or use
channels that have different absolute magnitudes. In these cases, training without
normalisation might lead to slower, worse or even no convergence at all. Apart from
the blurring and normalisation described above, we do not apply any additional pre-
processing steps to our input data.

5.3.2 Network architecture

For the implementation of our ML pipeline we use PyTorch (Paszke et al., 2019),
an optimised tensor library for deep learning using GPUs and CPUs, that is writ-
ten in Python. The simplest neural network that can be used for this task is a fully
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FIGURE 5.3: Schematic representation of our CNN architecture for an
input of galactocentric maps with resolution 128 × 128 and 4 chan-
nels (1 density map plus 3 velocity maps). A module formed by two
blocks that each contain a convolution layer and max pooling layer is
followed by a fully connected linear network with one hidden layer.
The final network output is either a single parameter or two parame-

ters depending on the experiment specifics.

connected neural network also referred to as a multi-layer perceptron (MLP) (see
Section 2.2.1) with only two layers of neurons, which are referred to as the input
and output layer, respectively. As this is the starting point to develop more compli-
cated and advanced architecture models, we first test how this simple configuration
behaves. The number of neurons for the input layer is equal to the total number
of input features, i.e., C × W × H. Here, C is the number of input channels (cor-
responding to the total number of maps used), while W and H are the number of
bins in width and height, respectively. The number of neurons in the output layer
is equal to the number of regression parameters that we would like to predict, i.e., 1
or 2 in our experiments. For the activation function we use the Rectified Linear Unit
(ReLU) defined as ReLU(x) = max (0, x) (see Section 2.2.3). To obtain the output
values, the ReLU activation function is applied to a linear combination of the input
features with weights and a bias.

A more sophisticated model architecture is represented by a convolutional neu-
ral network (CNN). CNNs are a particular type of deep neural network that have
proven to be very successful in regression and classification tasks when applied to
structured and matrix-like 2D inputs (see Section 2.2.2 and Rawat and Wang, 2017,
for a review). The basic structure of CNNs consists of convolutional, pooling, and
fully connected layers. Convolutional layers are multi-channel filters that slide along
the 2D input maps and are able to extract feature maps. The role of the pooling layer
is to down-sample the output of a convolutional layer. This inevitably causes a loss
of information but in general helps to improve the training efficiency by increasing
the size of the receptive field (i.e., the region of the input that produces the feature
for each neuron) and reducing the number of trainable parameters. The fully con-
nected layers collect all the output features from the convolution layers into a 1D
input and return the final output prediction.

The detailed structure of the CNN we built for our case study can be found in
Table 5.3. A schematic representation of its structure for a 4-channel input with
galactocentric maps is also shown in Figure 5.3 as an example. It consists of the
following layers:

• A 2D convolution layer with kernel size 3 × 3, C input channels, 32 output
channels, stride 1 and no padding.

• A 2D Max pooling layer of size 2 × 2 with stride 2 and no padding.

• A 2D convolution filter with kernel size 3 × 3, 32 input channels, 64 output
channels, stride 1 and no padding.
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TABLE 5.3: CNN architecture. The total number of input and out-
put features is reported. C is the number of used channels, while W
and H represent the number of bins (i.e. the resolution) in width and
height of the density and velocity maps, respectively. Input and out-
put feature numbers have been rounded down to the lower integer.

Layer Input Output

Conv2d + ReLU C × W × H 32 × (W − 2)× (H − 2)
MaxPool2d 32 × (W − 2)× (H − 2) 32 ×

(W
2 − 1

)
×
(H

2 − 1
)

Conv2d + ReLU 32 ×
(W

2 − 1
)
×
(H

2 − 1
)

64 ×
(W

2 − 3
)
×
(H

2 − 3
)

MaxPool2d 64 ×
(W

2 − 3
)
×
(H

2 − 3
)

64 ×
(W

4 − 3
2

)
×
(H

4 − 3
2

)
Linear + ReLU 64 ×

(W
4 − 3

2

)
×
(H

4 − 3
2

)
64

Linear 64 1(2)

• A 2D Max pooling layer of size 2 × 2 with stride 2 and no padding.

• A fully connected linear layer with flattened input from the convolutional
modules’ output and 64 output neurons.

• A fully connected linear layer with 64 input neurons and 1 or 2 output neurons
(depending on the number of parameters we would like to predict).

For the convolutional and pooling layers the stride parameter regulates the amount
of displacement in bins with which the filter moves over the map at each step.
Padding adds one or more bins at the border of the 2D maps, so that the filters
can move and cover the whole map without leaving any bins out. We use a padding
of 0 because the borders of the maps do not contain relevant information.

The choice of this architecture was found by trial and error experiments where
we started from a very simple structure and progressively increased the complexity,
adding more and more layers to acquire the desired accuracy in predicting the input
parameters.

5.3.3 Training process

For the training of the network, we use the root-mean-square error (RMSE) both for
the loss function and validation metric, i.e., to compute the distance between the net-
work predictions and the ground truths of the hc and σk parameters. In general, val-
idation occurs at the same time as training and consists of testing the network over
a dataset different from the training set. This is needed to asses the ability of the net-
work to generalise what it is learning to an unknown dataset (see Section 2.3). The
minimisation of the loss function occurs through gradient descent and backpropa-
gation (Kelley, 1960; Ruder, 2017), i.e., computation of the loss-function gradients
with respect to all network parameters (weights and biases). These gradients taken
with a negative sign indicate the directions towards which the network parameters
should be updated so that the loss is reduced, and hence the network predictions
move closer to the true, expected labels. In this regard, a crucial aspect to ensure the
best performance of a neural network is to properly initialise the weights and biases
(see Section 2.3.2). For this purpose we use the Kaiming initialisation method (He
et al., 2015) in order to avoid exploding or vanishing gradients during the training.

The training process itself is regulated by several hyperparameters. The first
one is the learning rate, which is a coefficient for the weight updates. In general,
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a larger learning rate results in updates of larger magnitude, which could in turn
lead to faster convergence, but might also reduce the stability of the training pro-
cess and thus increase the risk of overshooting the minima of the loss landscape. A
second hyperparameter is the batch size, which defines the number of samples that
are packed together and passed through the network before an optimisation step is
performed. In general, for bigger training datasets, a larger batch size helps to in-
crease the efficiency and stability of the training process, since the gradient-descent
steps are averaged over many samples and noise is reduced (see Section 2.3.3). For
the gradient-descent optimiser, we use the Adaptive Moment Estimation (Adam)
(Kingma and Ba, 2014). As its name suggests, Adam adds an adaptive momentum
term to the gradient descent to automatically modify the learning rate and accelerate
convergence (see Section 2.3.4). When using the Adam optimiser, the chosen initial
value of the learning rate represents only an upper limit.

We fix the maximum number of learning epochs to 1024. Every epoch the net-
work performs a series of optimisation steps by going through the whole training
dataset once. Then epoch-averaged loss and validation metric values are computed.
If the validation metric value has improved with respect to the previous epoch the
current status of the optimised network is saved. We set an early stop of 128 epochs,
so that if the validation metric does not improve over this epoch span, the train-
ing process automatically stops and the weights of the best epoch are stored. This
prevents the network from overfitting the training samples, which would reduce its
ability to generalise over unknown data.

5.4 Experiments

For our machine-learning experiments we use the hardware and software specified
in Appendix A.1. As a first step, we perform several tests to analyze which config-
uration of the input feature maps provides the best training experience and which
proposed neural network architecture, either the MLP or the CNN, behaves better.
Regarding the input configuration, we would like to understand (i) what the best
type of maps is (galactocentric vs equatorial ICRS); (ii) how many input channels are
needed to obtain good results (do density maps provide enough information alone
or does the addition of velocity maps improve the results?); (iii) which resolution of
the input maps provides the best result. To do so, we first compare the behaviour
of the MLP and the CNN when trained to predict a single parameter. We explore
different types of input signals by varying the resolution of the density and velocity
maps as well as the number of input channels. Once we find the optimal config-
uration for the input maps and the best performing network, we proceed to test
its generalisation power. A similar strategy is then followed for the two-parameter
prediction.

5.4.1 Single-parameter predictions

Data-representation and architecture comparison

We focus on predicting the parameter σk of the Maxwell kick velocity function and
employ the density and velocity maps generated from simulation run S1. We keep
aside the dataset with 20000 samples as it will be used to asses the generalisation
power of the best performing network (see Section 2.3). Thus, we have training sets
with increasing number of samples (from 4 to 1024) and increasing map resolution
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FIGURE 5.4: MLP best training RMSE values for the training process
on the single parameter σk of the Maxwell kick-velocity distribution,
as a function of the training dataset size and the resolution (red, blue,
and orange curves for 32, 128 and 512, respectively) using the four
different input configurations T1 (GC position), T2 (GC position +

velocity), T3 (ICRS position) and T4 (ICRS position + velocity).



5.4. Experiments 125

10 100 1000
Sample number

0

5

10

15

20

25

R
M

SE
 lo

ss
 [k

m
 s

1 ]

GC position
32
128
512

10 100 1000
Sample number

0

5

10

15

20

25

R
M

SE
 lo

ss
 [k

m
 s

1 ]

GC position + velocity
32
128
512

10 100 1000
Sample number

0

5

10

15

20

25

R
M

SE
 lo

ss
 [k

m
 s

1 ]

ICRS position
32
128
512

10 100 1000
Sample number

0

5

10

15

20

25

R
M

SE
 lo

ss
 [k

m
 s

1 ]

ICRS position + velocity
32
128
512

FIGURE 5.5: CNN best training RMSE values for the training process
on the single parameter σk of the Maxwell kick-velocity distribution,
as a function of the training dataset size and the resolution (red, blue,
and orange curves for 32, 128 and 512, respectively) using the four
different input configurations T1 (GC position), T2 (GC position +
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(32, 128, 512). For each of these training sets, we compare the performance on four
different kinds of input information:

T1 Galactocentric position information: 1 density map in galactocentric coordi-
nates (1 channel).

T2 Galactocentric position and velocity information: 1 density map plus 3 velocity
maps in galactocentric coordinates (4 channels).

T3 ICRS position information: 1 density map in equatorial ICRS coordinates (1
channel).

T4 ICRS position and velocity information: 1 density map plus 2 proper motion
maps in equatorial ICRS coordinates (3 channels).

We fix the network architectures and the training set-up as described in Section 5.3.2
and Section 5.3.3. For these initial experiments, we do not incorporate validation
but only focus on the training results for different types of datasets, as we are not
yet interested in evaluating the generalisation power of the networks. To assess the
convergence of the training runs, we set a threshold for the σk RMSE training loss
to 10 km s−1. If the final RMSE value is higher than this threshold the training is
repeated up to a maximum of 8 times. If convergence is not reached after 8 trials we
take the trained model with the lowest final RMSE. For each training experiment,
we also monitor the computational time needed to perform a single optimisation
step on a single data batch (see Appendix A for more details).

Initially, we perform a search for the starting value of the learning rate that pro-
vides the best results. In particular, for the MLP we find that to ensure a decaying
RMSE value during training, the initial learning rate needs to be decreased as the
input-map resolution increases. Therefore, after several tests, we set the initial learn-
ing rate to 10−4, 10−5 and 10−6, respectively, for the 32, 128 and 512 resolution maps.
The CNN instead is more flexible and stable and all three initial learning rates are
suitable for every resolution. In this case, we set it to 10−4 to obtain training conver-
gence in the smallest number of epochs.

Next, we tune the batch size to make the learning process more stable and effi-
cient as the number of training samples increases. In general, we keep the batch size
to 1 for the dataset sizes 4, 8, 16, 32 and progressively increase it to 4, 8, 16, 32, 64
as the dataset size increases to 64, 128, 256, 512, 1024, respectively. Only when test-
ing the performance of the MLP on the T2 input configuration, we need to further
fine tune the batch size in order to reach acceptable values of the RMSE. In all other
cases, the batch sizes mentioned above work well.

The results of our experiments using the MLP and the CNN on the training
datasets from S1 with configuration T1, T2, T3 and T4 are shown in Figures 5.4 and
5.5, respectively (see Appendix A for the timing results), highlighting the best con-
verged RMSE values as a function of the training dataset size and the resolution.

First of all, we note that for both model architectures, ICRS maps allow us to
obtain slightly better results in terms of the best RMSE values. An explanation for
this could be that only the ICRS maps contain 3D information of the Galaxy, i.e.,
they encode the stellar height distribution with respect to the Galactic disk which
correlates with the kick-velocity magnitude. In fact, the higher the kick velocity
of newborn neutron stars the more spread out their distribution in galactic height
z at the end of the dynamical evolution. On the other hand, galactocentric maps
show the Galaxy represented face on and the information on the stars’ height z with
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respect to the Galactic plane is hidden. Therefore, it is likely easier for the networks
to distinguish populations with different σk by processing the ICRS maps.

We also note that the addition of the velocity or proper motion information has
opposite effects on the two model architectures. In particular, on one side it worsens
the MLP performance, as the best RMSE almost doubles. On the other side, it helps
the CNN in reducing the overall RMSE. We interpret this as an indication that, as
the complexity of the input data increases, a deeper (with more layers) and more
sophisticated model architecture like the CNN is more suitable to process the input
data and extract meaningful features to perform the regression task. However, the
improvement is not dramatic, which could suggest that the density maps already
provide enough information to distinguish, with sufficient precision, populations
simulated with different σk values.

Concerning the resolution, we observe that higher resolutions allow us to reach
slightly lower RMSE values with both the MLP and the CNN but at the expense
of longer computation time (see Figures A.1 and A.2 in Appendix A). We therefore
consider the small differences between the best RMSE values obtained with 128 and
512 resolutions not sufficient to justify the choice of the higher resolution. Hence, the
use of the 128 resolution appears to be a good compromise to ensure good accuracy
and reasonably fast training.

In light of these results for the single-parameter estimation, we conclude that
the optimal representation to be used for training is composed of the ICRS density
plus proper motion maps with 128 resolution. Moreover, as the CNN obtains the
best results and appears more stable and flexible when compared to the simple MLP
(especially for the multi-channel input features), we employ our CNN architecture
in the following experiments, which should also be less prone to overfitting.

Generalisation Results

As the next step, we separately train the CNN to predict the σk and hc parameters
by using the two big datasets with 20000 simulations each (see S1 and S2). As input
features, we use the 3-channel ICRS representation with one density map and two
proper motion maps with 128 resolution that ensure the best results as suggested by
our earlier experiments. We randomly split both datasets into training and valida-
tion subsets with a relative percentage of 80/20%, respectively. Therefore, training
is performed over 16000 simulations, randomly sampled from the entire datasets,
while validation is performed over the remaining 4000 simulations. We adopt an
initial learning rate of 10−4, a batch size of 64, set the total number of learning epochs
to 1024 and an early stop at 128 epochs to avoid overfitting. We set the convergence
threshold for σk to 10 km s−1 and for hc to 0.5 kpc. The evolution of the training and
validation losses is shown in the left panels of Figure 5.6.

The predictions of the trained network on the validation set for σk and hc are
summarised in the central panels of Figure 5.6 and Table 5.4. In the first case, the
network is able to predict the value of the kick-velocity parameter σk for the simu-
lations in the validation dataset with a RMSE uncertainty of 4.4 km s−1, computed
over the whole range [1, 700] km s−1. This is indicated by the red dashed lines in
the residuals plot (see top central panel of Figure 5.6), which delimit the 68% un-
certainty region. In the second case, the network is able to predict the value of the
scale-height parameter hc for the simulations in the validation dataset with a RMSE
uncertainty of 0.017 kpc, computed over the whole range [0.02, 2] kpc (see bottom
central panel of Figure 5.6). Note that in both experiments, the residuals spread out
as the target values increase. We visualise this by computing a running RMSE with
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increasing target values. As is shown by the orange regions in the residuals plots,
the running RMSE increases from 1.4 to 7.1 km s−1 for σk and from 0.013 to 0.028 kpc
for hc, respectively. However, the average residuals are consistent with 0 over the
entire target value ranges as marked by the blue line in the residual plots, showing
no anomalous trends in the predicted values.

In the right panels of Figure 5.6, we also show the relative error to highlight
the precision with which the network is able to predict the σk and hc parameters
for a given target value. We observe that the precision of the predictions improves
with increasing σk and hc and eventually stabilises to a relative error of around 0.01.
This is highlighted by the blue lines, which show the trend of the mean relative
error (MRE) as a function of the target parameters. The red dashed lines correspond
instead to the MRE computed on the whole parameter ranges and are equal to 0.014
and 0.024 for σk and hc, respectively. The fact that the precision of the predictions
decreases at the lower end of the target ranges suggests that (for our chosen network
set-up) the input maps become harder to distinguish as the neutron stars’ initial kick
velocities and their galactic birth heights decrease in magnitude.

We then evaluate the generalisation capability of the two trained networks on the
corresponding test-sets with 1000 samples each. We find RMSEs of 4.8 km s−1 and
0.019 kpc and MREs of 0.018 and 0.029 for σk and hc, respectively. To further assess
the confidence intervals of both estimators, we evaluate the RMSE and the MRE of
the parameter values predicted by the two networks over 1000 bootstrapped sets of
the related test sets. We find that the RMSE variation is around 3%, while the MRE
variation is around 11% for both predicted parameters. These results indicate that
the trained networks are able to generalise well over unseen datasets.

5.4.2 Two-parameter predictions

Data-representation comparison

To see how the CNN behaves when two parameters, i.e., the kick-velocity parame-
ter σk and the characteristic scale height hc, are inferred simultaneously, we use the
dataset of maps generated from simulation run S3 (see Section 5.3.1). In this case,
we have training sets with increasing number of samples, 16 = 4x4, 64 = 8x8, 256 =
16x16, 1024 = 32x32, 4096 = 64x64. We leave aside the largest dataset with 16384 =
128x128 simulations for our final generalisation experiment. Given the results of the
single-parameter training experiments, we choose the 128 resolution maps and com-
pare the CNN’s performance on the four kinds of input information T1, T2, T3 and
T4 as we did for the single-parameter case (see Section 5.4.1). We fix the CNN archi-
tecture and the training set-up as described in Sections 5.3.2 and 5.3.3, respectively.
As for the single-parameter comparison, we only focus on the training behaviour
for this initial comparison. We keep track of the RMSE training losses for both pa-
rameters separately, but training proceeds by minimising the total loss computed on
both parameters. We set the convergence threshold for σk to 10 km s−1 and for hc to
0.5 kpc; if convergence is not reached for both parameters after 8 training trials we
quote the experiment with the best performance. As before, we also keep track of
the computational time for a single optimisation step (see Appendix A). The initial
learning rate is set to 10−4, while the batch size is changed according to the dataset
size. In particular, we use a batch size of 1, 4, 16, 64, 128 for the dataset sizes 16, 64,
256, 1024 and 4096, respectively.
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FIGURE 5.7: CNN best training RMSE values for the training process
on the two parameters σk of the Maxwell kick-velocity distribution
(left panel) and characteristic scale height hc (right panel) as a function
of the training dataset size for the four different input configurations
T1 (GC position), T2 (GC position + velocity), T3 (ICRS position) and

T4 (ICRS position+ velocity).

The results of our experiments using the CNN for the two-parameter prediction
on the training datasets from S3, with configuration T1, T2, T3 and T4 are sum-
marised in Figure 5.7 (see Appendix A for the timing results). As in the single-
parameter case, we find that the best results are provided by the ICRS maps, which
allow us to reach the lowest training RMSE losses for both parameters. In partic-
ular, for the ICRS 3-channel input, the CNN is able to reach a training RMSE loss
≲ 5 km s−1 for the σk parameter, comparable with the single-parameter case. For hc,
the CNN reaches a training RMSE ≲ 0.1 kpc. However, we note a drop in accuracy
for the σk parameter when only the ICRS density maps are used. As already men-
tioned in Section 5.4.1, information on the stars’ z-coordinate is encoded in the ICRS
maps. As we simultaneously vary the initial kick velocities and the galactic heights
of the pulsars’ birth places, the degeneracy between the effects of these two parame-
ters becomes relevant. This makes a distinction of the impact of one parameter over
the other more difficult for the network, when only ICRS density maps are provided
(see also Section 5.4.2). Adding two extra channels that contain information about
the stars’ proper motion thus helps to improve the accuracy on the kick-velocity
parameter estimation. The results of these initial explorations are promising and
indicate that our simple CNN architecture has good predictive power for both pa-
rameters, if provided with all three input channels in the ICRS representation.

Generalisation Results

As for the single-parameter analysis, we assess the actual performance of the net-
work when simultaneously predicting σk and hc by training the CNN on the biggest
dataset with 16384 = 128 × 128 simulations (see run S3). As discussed above, we
use the 3-channel ICRS representation with one density map and two proper motion
maps with 128 resolution as input features. We split the entire dataset into training
and validation subsets with a relative percentage of 80/20%, respectively, leading to
13107 samples in the training and 3277 samples in the validation dataset and use the
same configuration as in Section 5.4.1. The evolution of the individual training and
validation losses is shown in the left panels of Figure 5.8.
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TABLE 5.4: Summary of the CNN generalisation results on the vali-
dation and test (in parenthesis) datasets for the single-parameter and

two-parameter cases.

1-par. generalisation 2-par. generalisation
Parameter RMSE MRE RMSE MRE

σk 4.4 (4.8) km s−1 0.014 (0.018) 8.8 (9.1) km s−1 0.039 (0.033)
hc 0.017 (0.019) kpc 0.024 (0.029) 0.038 (0.041) kpc 0.061 (0.057)

The results for the trained network’s prediction on the validation set for both
parameters are shown in the central panels in Figure 5.8 and summarised in Ta-
ble 5.4. The network is able to predict σk and hc with an average RMSE uncertainty
of 8.8 km s−1 and 0.038 kpc, respectively, which is approximately doubled compared
to the single-parameter experiment. These RMSE values are computed over the full
target ranges and represented by the red dashed lines in the residuals plots (see cen-
tral panels of Figure 5.8). As in the single-parameter case, we observe that the RMSE
uncertainties increase with increasing target parameters as indicated by the orange
regions in the residuals plots. The relative errors represented in the right panels of
Figure 5.8 show the same decreasing trend with the target value as for the single-
parameter predictions, albeit with larger relative errors. When computing the MRE
over the whole range of the two target parameters, we obtain 0.039 and 0.061 for
σk and hc, respectively. These values are highlighted by the red dashed lines in the
right panels of Figure 5.8.

We then evaluate the generalisation capability of the trained network on the test
set with 1000 samples. We find RMSEs of 9.1 km s−1 and 0.041 kpc and MREs of
0.041 and 0.057 for σk and hc, respectively. As before, we evaluate the confidence
intervals of the two estimators over 1000 bootstrapped sets of the test set and find
that the RMSE and MRE variations are around 3% and 8%, respectively, for both
predicted parameters. This indicates that also in the two-parameter prediction the
trained network is stable and guarantees a good level of generalisation power.

However, we find that the CNN trained to simultaneously predict σk and hc is
not able to reach the same level of accuracy as in the experiments where a single
parameter was predicted at a time. This could be due to three distinct causes: (i) ei-
ther our neural network is not sophisticated enough to discern between the effects of
both parameters on the simulation outcomes represented in the ICRS maps, (ii) our
choice of ICRS maps as input does not provide sufficient information for the network
to distinguish between both parameters, or (iii) this is a physical (real) degeneracy,
and there is a limit to what we can measure. To investigate this issue, we train the
CNN to predict only the parameter hc using the same two-parameter dataset used
above where both σk and hc are varied. After predicting on the validation dataset, we
obtain a RMSE accuracy of 0.038 kpc which is equal to the result obtained above for
the two-parameter prediction. This suggests that the network complexity is suitable
to predict either one or two parameters simultaneously. Limitations in performance
are therefore either due to an inadequate input representation or a physical degen-
eracy that imposes a natural accuracy threshold. While we cannot distinguish these
two with our current simulation and ML pipeline, we can illustrate the underlying
problem in the following way: Figure 5.9 shows the residuals of the scale-height pa-
rameter hc versus the residuals of the kick-velocity parameter σk for the predictions
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FIGURE 5.9: Scatter plot of residuals of the predicted scale-height pa-
rameter hc versus residuals of the predicted kick-velocity parameter
σk for the validation dataset of our two-parameter generalisation ex-

periment. An anticorrelation can be observed.

over the validation set. The overall negative slope indicates that the network tends
to overpredict hc in those simulations where σk is underestimated and vice versa;
i.e., large (small) hc values have the same overall effect on the phenomenology of
the pulsar population as large (small) σk values and the network struggles to dis-
tinguish these cases. This highlights the degeneracy between the two parameters
already discussed above, which might be broken if the data itself were represented
in a different way or additional input information about each neutron star (beyond
position and velocity) were provided.

5.5 Discussion

In this chapter, we have studied the potential of an artificial neural network to es-
timate with high accuracy the dynamical characteristics of a mock population of
isolated pulsars. Implementing a simplified population-synthesis framework, we
focused on the pulsar natal kick-velocity distribution and the distribution of birth
distances from the Galactic plane. Taking into account the Galaxy’s gravitational
potential and evolving the pulsar motions in time, we generate a series of simula-
tions that are used to train and validate a suitably structured convolutional neural
network.

The generalised results presented in the previous sections are obtained in a very
idealised and simplified scenario, implying that caution is required when the uncer-
tainties for the prediction of the kick-velocity dispersion, σk, and birth scale height,
hc, are taken at face value and conclusions for the real pulsar population are drawn.
In particular, our simulations assume that the distribution of neutron-star progeni-
tors in Galactic height is represented by the exponential thin-disk model, and that
the kick-velocity magnitudes follow a Maxwellian distribution. While the choice
of an exponentially thin disk is commonly adopted (Wainscoat et al., 1992; Polido,
Jablonski, and Lépine, 2013; Li et al., 2019) and can be justified theoretically as
the outcome of a self-gravitating isothermal disk (Spitzer, 1942), the choice of a
Maxwellian model for the kick-velocity distribution is difficult to motivate from a
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FIGURE 5.10: Proper motion trajectories in the ICRS reference frame
of the selected observed 216 neutron stars (upper panel) and 2000 mock
neutron stars simulated using the fiducial values for the kick velocity
and scale height (σk = 265 km s−1 and hc = 0.18 kpc) and sampled
using the wight function f (d⊙) (lower panel). The current locations
of the neutron stars are indicated by the coloured circles, whereas
the tracks indicate their motion for the past 0.5 Myr, assuming no ra-
dial velocity and neglecting the effects of the Galactic potential. The
colour encodes the heliocentric distance, d⊙, of the neutron stars. The
corresponding data is provided in Table B.1. In the background, we
show in grey all non-binary pulsars in the ATNF catalogue (those in
the Small and Large Magellanic Clouds as well as those in globu-
lar clusters are included). The red star highlights the position of the

Galactic Centre.
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theoretical standpoint. The Maxwellian model has found empirical support as it has
been shown to well describe the proper motions of observed pulsars (Hobbs et al.,
2005). It is for this reason, and its rather simple mathematical form, that the Maxwell
kick-velocity distribution is often adopted in population synthesis studies of com-
pact stars (Sartore et al., 2010; Cieślar, Bulik, and Osłowski, 2020). However, the
real functional form of the kick-velocity distribution is still unknown and debated.
Several authors have studied the kick-velocity problem and concluded that other
models explain observed proper motions of neutron stars equally well. For exam-
ple, by using maximum-likelihood methods Arzoumanian, Chernoff, and Cordes
(2002) found that a bimodal Gaussian distribution with a low-velocity and a high-
velocity component is the preferred model to describe the observed proper motion
of a sample of 79 radio pulsars. Faucher-Giguère and Kaspi (2006) studied the ve-
locity component along the Galactic longitude for a sample of 34 pulsars observed
with interferometric techniques (Brisken et al., 2002; Brisken et al., 2003). After
testing a two-component Gaussian model as well as a variety of single-component
models, they opted for a single-component description with an exponential shape,
although a two-component model could not be ruled out due to the poor statis-
tics of their sample. More recently, Verbunt, Igoshev, and Cator (2017) and Igoshev
(2020) analyzed a sample of isolated young pulsars and found that a two-component
Maxwellian model explained the observed sample best.

In general, the presence of a low-velocity and a high-velocity component could
indicate different progenitor properties as well as birth scenarios for the pulsar pop-
ulation. Numerical simulations of supernova explosions have, for example, sug-
gested that neutron stars with lower kick velocities could be generated in the core-
collapse supernovae of progenitors with small iron cores or in electron-capture su-
pernovae (Podsiadlowski et al., 2004; Mandel and Müller, 2020). While also possible
scenarios for isolated systems (Janka, 2017), such conditions might generally affect
those neutron stars born in binaries (Giacobbo and Mapelli, 2020), where mass-loss
episodes could strip their progenitors off their hydrogen envelopes. This might
favour the formation of small iron cores or accretion-induced electron-capture su-
pernovae, resulting in weaker natal kicks (Schwab, Podsiadlowski, and Rappaport,
2010; Tauris et al., 2013). Only for the strongest kicks can the binaries be disrupted
by the supernova and both companions expelled; otherwise the two stars remain
gravitationally bound. Such effects are neglected in our simplified model but could
in principle generate an imprint on the observed neutron-star population.

Up to this point, we have not considered any kind of selection effects or observa-
tional biases and effectively assumed that all the neutron stars in our simulation are
detectable. While this provides direct insight into how various initial conditions af-
fect the evolved population of neutron stars, a direct comparison with observational
data in principle requires a careful treatment of biases. For example, due to beaming
effects not all Galactic radio pulsars are visible from Earth (Tauris and Manchester,
1998; Melrose, 2017, see also Section 1.9), while survey sensitivity thresholds and
instrumental limitations might hamper the detection of faint or far away sources
(Manchester et al., 2001; Johnston et al., 2008; Stovall et al., 2014; Coenen et al., 2014;
Good et al., 2020, see also Section 1.12). Additionally, timing noise can significantly
limit the sensitivity and precision in the detection of pulsar proper motions via tim-
ing analysis techniques (Hobbs et al., 2004; Lentati et al., 2016; Parthasarathy et al.,
2019). With the aim of obtaining a rough idea on how selection effects and biases
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FIGURE 5.11: Distribution of heliocentric distances d⊙ (left panel) and
proper-motion magnitudes, µtot, (right panel) for the 216 neutron stars
with measured proper motion (grey histograms). For comparison, we
also show the distances and proper-motion magnitudes for 216 simu-
lated neutron stars (blue histograms) randomly sampled from a mock
population generated with the fiducial parameters σk = 265 km s−1

and hc = 0.18 kpc (red histograms). For the weighted sampling, we use
the weight function f (d⊙) = d−1

⊙ exp(−0.5d⊙) (see the text for more
details).

could potentially influence a future comparison with observational data, we per-
form the following experiment. We first collect those neutron stars that have mea-
sured proper motions. As the main resource, we use the ATNF pulsar catalogue3

(Manchester et al., 2005), but in some cases we provide proper motion results from
more recent analyses (see Appendix B for details). We find a total of 417 neutron
stars whose angular positions, proper motions in ICRS coordinates, spin periods,
spin-period derivatives, DM values and distance estimates are reported in Table B.1.
Out of these objects, we remove those stars that belong to the Magellanic Clouds,
are associated with globular clusters or have a binary companion. We further se-
lect only those neutron stars with a spin-period derivative Ṗ > 10−17 to exclude
those that have potentially been recycled. Finally, we consider only those for which
an estimate of the heliocentric distance d⊙ is available; in the case of radio pulsars
we quote values that are derived from their respective DMs using the free-electron
density model of Yao, Manchester, and Wang (2017) (YMW16 model hereafter). As
some neutron stars have a DM that exceeds the maximum Galactic DM allowed by
the YMW16 model, these cases are assigned a default distance of 25 kpc. We ex-
clude those cases unless an alternative distance measurement is available. Applying
these filters we obtain a sample of 216 Galactic, likely isolated neutron stars, whose
positions and proper motions are illustrated in the upper panel in Figure 5.10.

In the left panel of Figure 5.11, the grey histogram shows the distribution of
their heliocentric distances. Even if subject to some uncertainties due to impreci-
sions in the YMW16 model, the distance distribution peaks around 1 kpc, followed
by a sharp exponential decrease. For a realistic pulsar distribution and in the ab-
sence of selection effects, we would expect the number of neutron stars to increase
with distance due to an increase in the explored volume, until reaching a maximum
at a distance of about 10 kpc, which comprises the region around the Galactic Cen-
tre (see the red histogram in the left panel of Figure 5.11). Thus, the shape of the

3https://www.atnf.csiro.au/research/pulsar/psrcat/

https://www.atnf.csiro.au/research/pulsar/psrcat/
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grey distribution in Figure 5.11, as expected, indicates that our observed sample of
neutron stars with measured proper motions is incomplete in distance and subject
to selection biases. By looking at the right panel of Figure 5.11, we also note that a
selection bias on distance is also reflected in the distribution of the total proper mo-

tion magnitudes (grey histogram), computed as µtot ≡
√

µ2
RA + µ2

DEC. Indeed, since
the nearest stars are also characterised by larger angular proper motions, there is a
tendency to detect high proper-motion stars with higher probability.

In this first empirical approach, we follow a more agnostic approach to intro-
duce a comparable selection effect in our simulated populations. Specifically, we
use a weighted random-sampling routine to select n pulsars from our mock pop-
ulations, where each simulated star is assigned a weight according to a function
f (d⊙) of its heliocentric distance. This weight function has to assign larger weights
to closer neutron stars in order to ensure their higher detection probabilities and has
to be chosen such that we recover the observed distance distribution with sufficient
accuracy. To find f (d⊙), we simulate a mock population with the fiducial values
of the kick velocity and scale height, that is σk = 265 km s−1 and hc = 0.18 kpc, re-
spectively (red histograms in Figure 5.11). After using a given f (d⊙) to weight the
simulated neutron stars, we sample 216 mock stars and compare their distance and
proper-motion distributions (shown as blue histograms in Figure 5.11) with those
of the observed sample by performing two-sample Kolmogorov-Smirnov (KS) tests.
After testing various functional forms, we find that f (d⊙) = d−1

⊙ exp(−0.5d⊙) is
able to reproduce the observed distributions with a good level of accuracy. More
precisely, for this choice of f (d⊙), the KS tests performed over 1000 distinct compar-
isons give average p-values of ∼ 0.3 and ∼ 0.6 for the distance and proper-motion
comparison, respectively. This means that at 95% confidence level, we cannot re-
ject the null hypothesis that the simulated and observed samples are drawn from
the same underline distribution. We have also verified that for this weight func-
tion, the KS tests always provide p-values > 0.05 when comparing the observed
sample with the simulated populations for reasonable values of σk and hc. Only in
the cases where σk and hc assume extreme values (near the edges of their respective
ranges) the p-values might drop below 0.05. However, these cases are associated
with simulations with extreme initial conditions that are unlikely to reproduce the
observations. For our basic experiment, we further make the simplified assumptions
that f (d⊙) emulates all selection biases and that it is the same for every number n of
sampled neutron stars. We stress that for the purpose of this initial analysis, we do
not aim to accurately constrain the selection function that affects the observed popu-
lation of neutron stars. Instead, we study how the introduction of realistic selection
biases will alter the predictive power of our machine learning framework. Although
one might intuitively attribute the exponential factor in f (d⊙) to scattering in the
interstellar medium at large distances, the underlying nature and the precise form
of the true selection function is certainly more complicated. We expect it to encom-
pass a series of effects due to the physics of the interstellar medium and the pulsar
emission itself, as well as selection effects of pulsar surveys and pulsar searches. We
reserve a more accurate study disentangling the different effects that contribute to
f (d⊙) to future work.

We then analyze how the predictive power of the CNN evolves as a function
of the number n of neutron stars, sampled with the above weight function f (d⊙).
To do so, we vary n from 200 to 2000 in steps of 200, and in each case re-sample
the 16384 simulated populations from run S3, where both σk and hc are varied. Af-
ter applying a 80/20% training-validation split, we retrain the CNN on each of the
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FIGURE 5.12: Trend of the RMSE (left panel) and MRE (right panel)
uncertainties on the prediction of the two parameters σk (blue) and hc
(red) as a function of the number of neutron stars n in the resampled
simulations in the validation sets. To train and validate the CNN, we
use the 16384 simulated populations from simulation run S3 (with
a 80/20% training/validation split), where both σk and hc are varied,
and which are resampled with increasing number of stars n according

to the weight function f (d⊙) = d−1
⊙ exp(−0.5d⊙).

down-sampled simulations. As before, we use the 3-channel ICRS input maps (i.e.,
density plus proper motion information) but instead opt for a resolution of 32 × 16
bins to accommodate the smaller number of stars represented in our maps. We have
verified that a higher resolution of 128 × 64 bins does not affect the training results
significantly, but slows down the training process; we therefore choose the lower
resolution. We use the same training hyperparameters as in Section 5.4.1, that is an
initial learning rate of 10−4, a batch size of 64 and an early stop at 128 epochs. Once
trained for each n value, we apply the CNN to the validation sets and compute the
root-mean-square error (RMSE) and mean relative error (MRE) for the σk and hc pre-
dictions as a function of n.

In the left panel of Figure 5.12, we show how the RMSE uncertainties for the pre-
dictions of the two parameters σk (blue) and hc (red) diminish with increasing number
of neutron stars n sampled from the simulations. We observe that both curves (with
the appropriate rescaling) follow very similar trends. On the right, we show instead
how the MREs evolve with n, indicating how the precision of the two-parameter pre-
diction improves with the number of detected neutron stars. This plot shows that,
under the assumptions that selection effects are unaltered and the underlying kick-
velocity and birth-height distributions have a Maxwellian and exponential shape,
respectively, our trained CNN is able to predict σk and hc with a relative error of
∼ 0.35 for a sample of 2000 stars (see also lower panel of Figure 5.10 as a reference).

These results highlight that the number of neutron stars plays a crucial role for
the level of accuracy that the CNN can reach. As expected, a larger number of stars
provides more information, which allows the CNN to pinpoint differences between
populations evolved from different initial conditions, also when selection effects are
introduced. Future observational efforts aimed at detecting and characterising new
pulsars will thus play an important role in constraining the birth properties of neu-
tron stars. Specifically, the advent of the Square Kilometer Array (SKA) will rep-
resent an important step forward into this direction. Due to its large sensitivity (a
factor of 10 better than other radio telescopes) and its long baseline (up to 3000 km),
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SKA has the potential to increase the number of discovered pulsars by a factor 10
(Smits et al., 2009; Smits et al., 2011). This will allow more precise timing and astro-
metric measurements of pulsar positions as well as distances and proper motions. A
larger and more precise dataset could also help to better constrain the shape of the
kick-velocity distribution and differentiate between models that try to explain the
origin of the natal kicks (Tauris et al., 2015).

5.6 Summary

In this work, we have analyzed the possibility of using machine-learning (ML) tech-
niques to reconstruct the dynamical birth properties of an evolved population of
isolated neutron stars. For this purpose, we developed a simplistic population-
synthesis pipeline to simulate the dynamical evolution of Galactic neutron stars
and subsequently used these simulations to train and validate two different neu-
ral networks. We specifically focused on their ability to predict two parameters that
strongly impact on the phenomenology of the evolved population: the dispersion,
σk, of a Maxwell kick-velocity distribution and the scale height, hc, of an exponen-
tial distribution for the Galactic birth heights. This was achieved by providing the
networks with two-dimensional stellar density and velocity maps in galactocentric
and equatorial (ICRS) coordinate frames. We found that a convolutional neural net-
work (CNN) is able to estimate the physical parameters with high accuracy when
multiple input channels, i.e., position and velocity information, are provided. In
particular, when simultaneously predicting σk and hc from ICRS maps, the network
is able to reach absolute uncertainties lower than 10 km s−1 and 0.05 kpc, respec-
tively, corresponding to a relative error of around 10−2 for both parameters. Albeit
obtained under simplified assumptions, our feasibility study has thus demonstrated
that ML techniques are indeed suitable to infer information about the pulsar popu-
lation. Our phenomenological analysis incorporating proper-motion measurements
(an attempt at including observational biases in an agnostic way) has further high-
lighted that increasing the sample of known pulsars and accurately measuring their
current characteristics with future telescopes is crucial to tightly constrain the birth
properties of the neutron stars in the Milky Way. In particular, our trained CNN is
able to predict σk and hc with a relative error of ∼ 0.35 for a sample of 2000 pulsars
with measured proper motions.

We also demonstrated that one of the main factors in limiting the accuracy of the
CNN’s predictions in our set-up is the degeneracy between σk and hc; as they both
affect the evolved populations in a similar way, the network struggles to disentangle
their effects. This limitation is a direct consequence of our simplified population-
synthesis framework. In future works, we will go beyond modelling the dynamical
evolution and focus on incorporating additional physics such as magneto-thermal
and spin-period evolution. We will further model their emission in different electro-
magnetic bands and study corresponding detectability limits by addressing selection
effects as well as observational survey biases. Such additional input information
could potentially break the degeneracy between the kick-velocity and the Galactic
height distributions and provide more accurate model constraints on σk and hc as
well as other input parameters.

The ultimate goal will be to use multi-wavelength observations of the Galactic
neutron star population and take advantage of ML, combined with population syn-
thesis, to recover their birth properties, such as the natal kick-velocity, spin-period
or magnetic-field distribution. In the next chapter we will focus on inferring the
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magneto-rotational properties of the pulsar population by adopting a more sophis-
ticated simulation based inference approach.



141

Chapter 6

Simulation-based inference for
pulsar population synthesis

6.1 Introduction

As one of the end points of stellar evolution of massive stars, neutron stars are influ-
enced by many extremes of physics including strong gravity, large densities, fast ro-
tation and extreme magnetic fields (see Chapter 1). Consequently, these compact ob-
jects have been connected with several of the most energetic transient phenomena in
our Universe such as fast radio bursts, superluminous supernovae, ultra-luminous
X-ray sources, long- and short-duration gamma-ray bursts, and gravitational-wave
emission (e.g., Bachetti et al., 2014; Metzger et al., 2014; Berger, 2014; Abbott et al.,
2017b; Margalit et al., 2018; Petroff, Hessels, and Lorimer, 2022). Accurately mod-
elling these processes requires a detailed understanding of neutron-star properties,
which also set constraints on massive stellar evolution. Inferring the birth proper-
ties of neutron stars and the physics that govern their subsequent evolution is, thus,
crucial for other fields of astrophysics.

Detecting and accurately characterizing individual objects within the entire neutron-
star population is, hence, critical. As a result, the number of known pulsars (those
neutron stars that emit regular electromagnetic pulses) has steadily increased since
the first detection in 1967 (Hewish et al., 1968) and we currently know around 3,000
of these objects (Manchester et al., 2005).1 These are visible across the full electro-
magnetic spectrum and their emission is predominantly driven by their enormous
rotational energy reservoirs. Roughly 300 of these sources are in binaries. They were
strongly influenced by accretion from their companions and spun up to short rota-
tion periods earlier in their lives. The remaining sources are isolated neutron stars.
Due to observational limitations and diverse emission properties, we cannot detect
these with a single telescope, but instead have to focus on certain subpopulations.
With around 1,100 members, a subset of isolated radio pulsars constitutes the largest
fraction of neutron stars detected in a single survey (Posselt et al., 2023). However,
these numbers only cover a tiny portion of the approximately one billion neutron
stars expected in our Milky Way alone.

To bridge the gap between expected and observed neutron stars, we take advan-
tage of population synthesis (see also Section 1.15 and Chapter 5). This approach re-
lies on producing a large catalogue of synthetic pulsar populations which are passed
through a set of filters to mimic observational constraints. The resulting populations
are then contrasted with the true observed sample to find those parameter regions
that best explain the data. Although different versions of this methodology have
been applied to pulsar data for several decades (e.g., Narayan and Ostriker, 1990;

1https://www.atnf.csiro.au/research/pulsar/psrcat/

https://www.atnf.csiro.au/research/pulsar/psrcat/
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Lorimer, 2004; Faucher-Giguère and Kaspi, 2006; Gonthier et al., 2007; Bates et al.,
2014; Gullón et al., 2014; Gullón et al., 2015; Cieślar, Bulik, and Osłowski, 2020), the
complexity of models that capture the properties of observed Galactic neutron stars
significantly complicates the comparison between the simulated populations and
the observed one. This is especially true if we are interested in quantifying uncer-
tainties for our neutron-star parameters, because Bayesian MCMC methods (Feroz,
Hobson, and Bridges, 2009; Foreman-Mackey et al., 2013; Sharma, 2017; Ashton et
al., 2019; Speagle, 2020, the standard tool for this kind of question, see, e.g., ) become
infeasible for pulsar population synthesis unless significant simplifications for sim-
ulation models and the likelihood function are made (Cieślar, Bulik, and Osłowski,
2020). The main reason for this is that we can no longer write down an explicit like-
lihood for realistic neutron-star simulation frameworks. In this chapter, we, thus,
focus on SBI (also known as likelihood-free inference; see Chapter 2 and Cranmer
et al., 2020, for a recent review) in the context of pulsar population synthesis for the
first time.

In the past few years, SBI has successfully challenged traditional approaches
such as approximate Bayesian computation (e.g., Rubin, 1984; Beaumont, Zhang,
and Balding, 2002; Dean et al., 2011; Frazier et al., 2017) in those areas of science that
rely on complex simulators which lead to intractable likelihoods. The existence of
such a simulator, essentially acting as a forward model, is the only requirement for
SBI. As such, the approach is ideal for astrophysics and has been recently applied to
parameter estimation in, e.g., cosmology (Alsing et al., 2019; Lemos et al., 2023; Lin
et al., 2023; Hahn et al., 2023), high-energy astrophysics (Mishra-Sharma and Cran-
mer, 2022; Huppenkothen and Bachetti, 2022), gravitational-wave astronomy (Dax
et al., 2021; Cheung et al., 2022; Bhardwaj et al., 2023) and exoplanet research (Va-
sist et al., 2023). SBI is particularly powerful in combination with neural networks,
whose benefits for pulsar population synthesis studies was outlined in Ronchi et al.
(2021) (see Chapter 5) by inferring point estimates for the dynamical properties of
radio pulsars in the Milky Way.

In this study, we take a Bayesian perspective to infer posteriors of neutron-star
parameters using SBI. For this purpose, we model the Galactic neutron-star dynam-
ics, the magneto-rotational evolution and the radio emission properties. We then run
snapshots of the total pulsar population at the current time through a set of filters
to mimic observational limitations. The resulting simulation output are synthetic
P-Ṗ diagrams (where P and Ṗ denote the pulsar spin period and its time derivative,
respectively) of the observed pulsar population. We then construct an SBI pipeline,
which we train, validate and test on a large database of these synthetic P-Ṗ dia-
grams to infer posterior distributions of our input parameters. We specifically fo-
cus on five parameters related to the initial period distribution of pulsars and their
magnetic-field properties that crucially affect the positions of stars in the P-Ṗ plane.
We then apply our optimized deep-learning framework, for the first time, to the ra-
dio pulsars detected in the Parkes Multibeam Pulsar Survey (PMPS) (Manchester
et al., 2001; Lorimer et al., 2006), the Swinburne Intermediate-latitude Pulsar Sur-
vey (SMPS) (Edwards et al., 2001; Jacoby et al., 2009) and the low- and mid-latitude
High Time Resolution Universe (HTRU) survey (Keith et al., 2010) (all recorded with
Murriyang, the Parkes radio telescope).

This Chapter based on the work Graber, Ronchi, Pardo-Araujo, and Rea (2023) is
structured as follows: Sec. 6.2 summarizes our population synthesis framework. We
then provide a general overview of SBI as well as our choice of set-up in Secs. 6.3.1
and 6.3.2, respectively, whereas Sec. 6.3.3 summarizes the machine-learning exper-
iments conducted for this study. We next address network training and inference
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FIGURE 6.1: The key ingredients for pulsar population synthesis.
Starting from the bottom left, this approach relies on modelling
the neutron stars’ dynamical evolution as well as their magneto-
rotational properties. For a given beaming geometry and luminosity
model, we then determine the pulsars’ radio emission and its prop-
agation across the Galaxy towards the Earth. For the neutron stars
pointing towards us, we subsequently invoke survey limitations and
sensitivity thresholds to determine those objects that are detectable.
The resulting synthetic populations are compared to the observed

ones to constrain input physics.

results plus corresponding validation approaches in Sec. 6.4, specifically benchmark-
ing our pipeline on test simulations before applying it to the observed pulsar popu-
lation. Finally, we provide a detailed discussion of our approach and results as well
as an outlook into the future in Sec. 6.5.

6.2 Pulsar population synthesis

Our population synthesis framework broadly follows earlier works (see, e.g., Faucher-
Giguère and Kaspi (2006), Gullón et al. (2014), Cieślar, Bulik, and Osłowski (2020),
and Ronchi et al. (2021)). In particular, our simulator employs a Monte-Carlo ap-
proach to sample the relevant neutron-star parameters at birth from corresponding
probability density functions and subsequently evolves these parameters forward
in time. However, to save computation time, we do not follow the procedure in
Chapter 5 (see also Ronchi et al., 2021) and evolve the dynamical properties for
each simulation run. As the dynamical and magneto-rotational properties are in-
dependent, we instead simulate a single dynamical database for a large number of
current pulsar positions and velocities, and subsequently sample from these distri-
butions before determining the magneto-rotational evolution. Prescriptions for both
are summarised below in Sections 6.2.1 and 6.2.2, respectively. We subsequently dis-
cuss the radio emission properties in Section 6.2.3 and then run snapshots of the total
pulsar population at the current time through a set of filters to mimic observational
limitations (see Section 6.2.4). The resulting simulator output are synthetic P-Ṗ di-
agrams of the observed pulsar population (see Section 6.2.5) that will serve as the
starting point for our SBI pipeline discussed in Section 6.3.
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6.2.1 Dynamical evolution

To create our dynamical database, we simulate 107 neutron stars from birth to today.
For each object, we randomly assign an age sampled from a uniform distribution
up to a maximum age of 108 yr, which ensures a constant birth rate of 10 stars per
century. Note that this value, although somewhat higher than typically assumed
(e.g., Keane and Kramer, 2008; Rozwadowska, Vissani, and Cappellaro, 2021), was
chosen to populate our synthetic Milky Way with a sufficient number of neutron
stars within reasonable computation time. As objects older than 108 yr are no longer
detectable as radio pulsars (see below), the following approach provides a realistic
description of the current positions of these sources.

We then define a cylindrical reference frame, (r, ϕ, z), whose origin is located at
the Galactic centre. Here, r, ϕ and z denote the distance from the origin in kpc, the
azimuthal angle in radians and the distance from the Galactic plane in kpc, respec-
tively. In particular, we position our Sun at r = 8.3 kpc, ϕ = π/2, and z = 0.02 kpc
(see Pichardo et al., 2012, and references therein).

To determine the birth locations of individual neutron stars, we address the dis-
tributions of their massive progenitors in the (r, ϕ)-plane and along z separately.
Considering the distribution of free electrons as a tracer of star formation in the
Milky Way which correlates with the massive OB stars that evolve into neutron stars,
we sample the initial positions in r, ϕ according to the Galactic electron density dis-
tribution of Yao, Manchester, and Wang, 2017 (see Figure 1.10). This will also allow
consistency when relating pulsar distances with their dispersion measures DMs in
Section 6.2.4. In addition, as the Galactic matter distribution is not static, we assume
that the Milky Way rotates rigidly in clockwise direction with an angular velocity
Ω = 2π/T, where T ≈ 250 Myr (Vallée, 2017; Skowron et al., 2019). For a given
stellar age, we can thus retrace the angular coordinate, ϕ, at birth.

Moreover, we assume that pulsar birth positions along the z-direction follow
an exponential disk model (Wainscoat et al., 1992) and sample from a probability
density function of the form

P(z) =
1
hc

exp
(
−|z|

hc

)
. (6.1)

We follow the pulsar population studies of Chapter 5 (see also Gullón et al., 2014;
Ronchi et al., 2021) and set the characteristic scale height, hc, to a fiducial value of
0.18 kpc. Note that this is consistent with the distribution of young, massive stars
in our Galaxy (Li et al., 2019). We then randomly assign each star’s z-coordinate a
positive or negative sign to distribute our population above and below the Galactic
plane.

Next, we focus on the pulsars’ birth velocities, which are a combination of the
kick velocity, vk, imparted during the supernova due to explosion asymmetries (see
Janka, Wongwathanarat, and Kramer, 2022; Coleman and Burrows, 2022, and refer-
ences therein), and the velocity, vpr, inherited from the progenitors’ orbital Galactic
motion. Specifically, we sample the magnitude of the kick velocities, vk ≡ |vk|, from
a Maxwell distribution,

P(vk) =

√
2
π

v2
k

σ3
k

exp

(
−v2

k

σ2
k

)
, (6.2)

and then assign a random direction to determine the kick along the r-, ϕ- and z-
directions. For the dispersion parameter, σk, we take a fiducial value of σk ≈ 260 km s−1
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(Hobbs et al., 2005), which is broadly consistent with observed proper motions of ra-
dio pulsars (Hobbs et al., 2005; Faucher-Giguère and Kaspi, 2006; Verbunt, Igoshev,
and Cator, 2017; Igoshev, 2020).

The second velocity component due to the progenitors’ motion depends on the
Galactic gravitational potential, ΦMW, and points along the azimuthal direction:

vpr =

√
r

∂ΦMW (r, z)
∂r

ϕ̂, (6.3)

where ϕ̂ is a unit vector in ϕ-direction. For this study, we consider a Galactic po-
tential that is given as the sum of four components, i.e., the nucleus, Φn, the bulge,
Φb, the disk, Φd, and the halo, Φh, (Marchetti, Rossi, and Brown, 2019). The nucleus
and bulge contributions are described by a spherical Hernquist potential (Hernquist,
1990):

Φn,b = − GMn,b

Rn,b + R
, (6.4)

where R =
√

r2 + z2 is the spherical radial coordinate and G the gravitational con-
stant. The disk has a cylindrical Miyamoto-Nagai potential of the form (Miyamoto
and Nagai, 1975)

Φd = − GMd√(
ad +

√
z2 + b2

d

)2
+ r2

, (6.5)

where ad and bd represent the scale length and scale height of the disk, respec-
tively. Finally, the halo is characterised by a spherical Navarro-Frenk-White poten-
tial (Navarro, Frenk, and White, 1996):

Φh = −GMh

R
ln
(

1 +
R
Rh

)
. (6.6)

The free parameters, Mn,b,d,h, Rn,b,h, ad and bd, can be obtained through fits of the
Milky Way’s mass profile and are given in Table 5.2 (see also Tab. 1 of Marchetti,
Rossi, and Brown (2019) and Bovy (2015)).

After determining the initial positions and velocities for each of our 107 neutron
stars, we perform the dynamical evolution by solving the Newtonian equation of
motion in cylindrical coordinates, r̈ = −∇ΦMW, according to the stars’ respective
ages. In this way, we obtain a database of current pulsar positions and velocities in
the Milky Way.

6.2.2 Magneto-rotational evolution

The primary diagnostic for the pulsar population is the P-Ṗ diagram. For our popu-
lation synthesis study, we focus on rotation-powered radio pulsars, the largest class
of neutron stars (see Section 1.13). Corresponding period and period-derivative
measurements for this population are enabled via radio timing. To first order, ra-
dio pulsars can be approximated as rotating magnetic dipoles, implying that their
spin-down is driven by electromagnetic dipole radiation (see Section 1.8). The loca-
tions of individual neutron stars, and the shape of the population’s distribution, in
the P-Ṗ plane are, hence, determined by their dipolar magnetic fields and rotation
periods at birth, and the subsequent magneto-rotational evolution. The latter cou-
ples the evolution of the pulsar period, P, the dipolar magnetic-field strength, B, at
the pole and the inclination angle, χ, between the magnetic and the rotation axis.
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To capture these physics, we first sample the misalignment angle at birth, χ0,
randomly in the range [0, π/2] according to the probability density (Gullón et al.,
2014)

P(χ0) = sin χ0. (6.7)

We then sample the logarithm of the initial period, P0, (measured in s) and the initial
magnetic field, B0, (measured in G) for each pulsar from normal distributions of the
form (Popov et al., 2010; Gullón et al., 2014; Igoshev, 2020; Igoshev et al., 2022; Xu
et al., 2023)

P(log P0) =
1√

2πσlog P
exp

(
− log P0 − µlog P

2σ2
log P

)
, (6.8)

P(log B0) =
1√

2πσlog B
exp

(
− log B0 − µlog B

2σ2
log B

)
. (6.9)

The means, µlog P, µlog B, and the standard deviations, σlog P, σlog B, are free parameters
of our model and four of those parameters, whose posteriors we set out to infer with
our SBI approach in Section 6.3. We will specifically explore the ranges µlog P ∈
[−1.5,−0.3], µlog B ∈ [12, 14], σlog P ∈ [0.1, 1.0] and σlog B ∈ [0.1, 1.0] to encompass
results of earlier analyses (e.g., Gullón et al., 2014).

Assuming that pulsars spin down due to dipolar emission, we follow Philippov,
Tchekhovskoy, and Li (2014) and Spitkovsky (2006) and solve the following coupled
differential equations (see Equations (1.42)):

Ṗ =
π2

c3

B2R6
NS

INSP
(
κ0 + κ1 sin2 χ

)
, (6.10)

χ̇ = −π2

c3

B2R6
NS

INSP2 κ2 sin χ cos χ, (6.11)

where c is the speed of light, RNS ≈ 11 km the neutron-star radius and INS ≃
2MNSR2

NS/5 ≈ 1.36 × 1045 g cm2 the stellar moment of inertia (for a fiducial mass
MNS ≈ 1.4 M⊙). For realistic pulsars surrounded by plasma-filled magnetospheres,
we choose κ0 ≃ κ1 ≃ κ2 ≃ 1, and note that Equation (6.11) implies that χ decreases
with time, i.e., our pulsars move towards alignment.

The final ingredient is a suitable prescription for the evolution of the dipolar
magnetic-field strength. While the B-field decay in the neutron-star crust is typically
assumed to be driven by the combined action of the Hall effect and Ohmic dissi-
pation (e.g., Aguilera, Pons, and Miralles, 2008a), changes in the magnetic field are
strongly coupled to the thermal properties of the neutron-star interior (e.g., Pons
and Viganò, 2019). This is particularly important for strongly magnetised neutron
stars with fields above ∼ 1013 G and, hence, relevant for a significant fraction of our
simulated pulsar population. In the past decade, several theoretical and numerical
efforts have begun to unveil the complex processes of magneto-thermal evolution
(e.g., Viganò et al., 2013; Viganò et al., 2021; De Grandis et al., 2021; Igoshev et al.,
2021; Dehman et al., 2023, see also Section 1.6). As corresponding simulations are
highly time-consuming, we instead develop a new approach, outlined in detail in
Appendix C and summarised in Figure 6.2, that parametrises a range of magneto-
thermal simulations for different magnetic-field strengths (Viganò et al., 2021). This
prescription allows us to extract magnetic fields up to pulsar ages of around 106 yr.
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FIGURE 6.2: Illustration of the B-field parametrisation used for this
study. The five solid curves represent realistic two-dimensional sim-
ulations of magneto-thermal evolution in the neutron-star crust (Vi-
ganò et al., 2021). We fit these together with the late-time power-
law evolution of the magnetic field with several broken power laws.
The dashed curves shown here are determined for alate = −3.0. The
colours represent the initial magnetic-field strength, B0. To avoid the
field decaying to unrealistically small numbers at very late times, we
sample the final fields from a Gaussian distribution. The procedure,
which allows us to easily extract the dipolar field strength, B, at dif-
ferent times, t, to study the magneto-rotational evolution of our syn-

thetic pulsars, is described in details in Appendix C.
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Above this value, current numerical simulations become unreliable because they
rely on implementations of complex microphysics that are unsuitable for cold, old
stars. Moreover, they do not capture the highly uncertain physics of neutron-star
cores, which become relevant at large ages. We instead incorporate the field evolu-
tion at late times by means of a power law of the form

B(t) ∝
(

1 +
t

τlate

)alate

, (6.12)

where τlate ≈ 2 × 106 yr, t is the time, and the power-law index, alate, is the fifth
free parameter of our model. We note that although the details of core field evolu-
tion are not known, Equation (6.12) is physically motivated because several known
mechanisms exhibit similar power-law behaviour (see Appendix C). We will, hence,
explore the parameter range alate ∈ [−3.0,−0.5]. Finally, to prevent the dipolar mag-
netic field from decaying to arbitrarily small values (in disagreement with observa-
tions of old, recycled millisecond pulsars; see, e.g., Lorimer (2008)), we assume that
the field eventually reaches a constant value. Therefore, we sample the logarithm of
the field, Bfinal, from a normal distribution with mean µlog B,final = 8.5 and a standard
deviation σlog B,final = 0.5 in line with observations of old pulsars.

Following this prescription allows us to determine the spin periods, dipolar field
strengths and misalignment angles for our simulated pulsars at the current time.

6.2.3 Emission characteristics

We next implement a prescription for the radio emission geometry to determine
those pulsars whose beams sweep over the Earth and are, in principle, detectable.
In the canonical model of radio pulsars, their emission is produced close to the stellar
surface in the cone-shaped, open field-line region (Lorimer and Kramer, 2012; John-
ston et al., 2020, see also Section 1.9). Assuming that this entire region is involved
in the emission, geometric considerations allow us to estimate the half opening an-
gle of the emission beam, ρb, (in rad) via (see Equation (1.57) and Gangadhara and
Gupta, 2001)

ρb ≃
√

9πrem

2cP
, (6.13)

where rem is the emission height. The latter is thought to be period independent
and we set it to 300 km following Johnston et al. (2020) (see also references therein).
Note that several studies of pulsars with stable emission profiles have recovered this
ρb ∝ P−1/2 behaviour (e.g., Kramer et al., 1994; Maciesiak and Gil, 2011; Skrzypczak
et al., 2018, and see also Figure 1.7). Knowledge of ρb, then, allows us to obtain the
solid angle, Ωb, covered by a pulsar’s two radio beams (see Equation (1.78)). More
specifically,

Ωb = 4π(1 − cos ρb). (6.14)

As we do not expect biases in how we observe this conal emission for any given pul-
sar, we draw a random line-of-sight angle, α, with respect to the rotation axis in the
range [0, π/2] using the probability density sin α. Combined with the half opening
angle, ρb, and the evolved inclination angle, χ, we can then determine those pulsars
whose radio beams are visible from Earth. We note that as a result of this purely
geometric argument, between ∼ 60 − 95% of our generated pulsars (depending on
the specific choice of magneto-rotational parameters) are typically not detectable.
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TABLE 6.1: Survey parameters for the Parkes Multibeam Pulsar
Survey (PMPS), the Swinburne Intermediate-latitude Pulsar Survey
(SMPS), the low- and mid-latitude High Time Resolution Universe
(HTRU) surveys taken from Manchester et al. (2001) and Lorimer et
al. (2006), Edwards et al. (2001) and Jacoby et al. (2009) and Keith et al.
(2010), respectively. We provide the survey region in Galactic longi-
tude, l, and latitude, b, the central observing frequency f , the channel
width ∆ f , the sampling time τsamp, the telescope gain, G, the number
of observed polarisations, npol, the observing bandwidth ∆ fbw, the in-
tegration time tobs, the degradation factor β, the system temperature,
Tsys, and the S/N threshold for each of the surveys. Corresponding

units are given in brackets in the first column.

Survey PMPS SMPS HTRU mid HTRU low

sky region −100◦ < l < 50◦ −100◦ < l < 50◦ −120◦ < l < 30◦ −80◦ < l < 30◦

|b| < 5◦ 5◦ < |b| < 30◦ |b| < 15◦ |b| < 3.5◦

f (GHz) 1.374 1.374 1.352 1.352
∆ f (kHz) 3000 3000 390.625 390.625
τsamp (µs) 250 125 64 64
G (K Jy−1) 0.735 0.735 0.735 0.735

npol 2 2 2 2
∆ fbw (MHz) 288 288 340 340

tobs (s) 2100 265 540 4300
β 1.5 1.5 1.5 1.5

Tsys (K) 21 21 23 23
S/N threshold 9 9 9 9

We proceed with determining the emission characteristics of those neutron stars
that point towards the Earth. In particular, we follow Maciesiak, Gil, and Ribeiro
(2011) and express the intrinsic pulse width (measured in s) of our simulated pulsars
as follows (see Equation (1.61)):

wint =
2
π

arcsin

√√√√sin2 ( ρb
2

)
− sin2

(
α−χ

2

)
sin (α) sin (χ)

P, (6.15)

where we replace β = α − χ. Finally, as the radio emission is ultimately powered
by the stars’ rotational energy reservoir, we follow the common procedure (e.g.,
Faucher-Giguère and Kaspi, 2006) and assume that the intrinsic radio luminosity,
Lint, (in erg s−1) for each pulsar depends on the spin-down power, Ėrot ∝ Ṗ/P3 (see
Section 1.9.4). In particular, we assume

Lint = L0

√
Ṗ
P3 . (6.16)

where L0 is a normalisation factor whose logarithm we sample from a normal dis-
tribution with mean µlog L = 35.5 and standard deviation σlog L = 0.8 to eventually
recover observed luminosities (see also Faucher-Giguère and Kaspi, 2006; Gullón et
al., 2014).
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6.2.4 Simulating detections

Armed with the knowledge of intrinsic pulsar properties, we now turn to the pos-
sibility of detecting those objects whose emission beams cross our line of sight. Fol-
lowing Section 1.10, first, the bolometric radio flux, S, that reaches us from any given
simulated pulsar is equal to

S =
Lint

Ωbd2 , (6.17)

where d is the distance known from the dynamical evolution outlined in Section 6.2.1.
To determine the corresponding radio flux density, S f , (measured in Jy) at a specific
observing frequency, f , we follow Lorimer and Kramer (2012) and assume that the
radio emission spectrum follows a power law in f (see Equation (1.79)). In par-
ticular, we set the spectral index to −1.6 (Jankowski et al., 2018). We can, hence,
approximate the total fluence of a pulse with width, wint, as S f wint. Assuming that
this fluence stays constant as the radio signal propagates from the pulsar to us, we
estimate the flux density, S f ,obs, that reaches Earth as

S f ,obs ≃ S f
wint

wobs
(6.18)

where wobs is the observed pulse width.
Specifically, as a radio pulse propagates, it experiences dispersion and scatter-

ing caused by interactions with the free electrons and density fluctuations in the
interstellar medium (ISM), respectively. Both mechanisms result in a broader pulse
when compared with the intrinsic width, wint. Further broadening is caused by in-
strumental effects, which are dominated by the sampling time, τsamp, of the hard-
ware used to record radio observations (see Section 1.10). Accounting for these pro-
cesses, we can write the observed pulse width as (Cordes and McLaughlin, 2003):

wobs ≃
√

w2
int + τ2

samp + τ2
DM + τ2

scat. (6.19)

We follow Bates et al. (2014) to determine τDM, encoding the pulse smearing due
to dispersion for a single frequency channel of the telescope’s receiver (see Equa-
tion 1.86). Specifically,

τDM =
e2

πmec
∆ fch

f 3 DM, (6.20)

where e is the electronic charge, me the corresponding mass, ∆ f the hardware-specific
width of a frequency channel at observing frequency, f , and DM is the dispersion
measure. We further use the empirical fit relationship from Krishnakumar et al.
(2015) for τscat, the pulse smearing due to scattering of radio waves by an inhomo-
geneous and turbulent ISM:

τsc = 3.6 × 10−9 s
(

DM
1 pc cm−3

)2.2
[

1.0 + 1.94 × 10−3
(

DM
1 pc cm−3

)2.0
]

. (6.21)

where τscat is measured in s. We moreover account for a significant scatter in the
underlying data (see Fig. 3 in Krishnakumar et al., 2015) by drawing log τscat values
from a Gaussian distribution around the fit (6.21) with a standard deviation of 0.5.
We also incorporate the fact that Krishnakumar et al. (2015) analysed observations
at 327 MHz by rescaling to a given observing frequency, f , assuming a Kolmogorov
spectrum, i.e., τscat ∝ f−4.4 (see Lorimer and Kramer, 2012, for details). As both τDM
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FIGURE 6.3: Observed populations of isolated Galactic radio pulsars
detected with the Parkes Multibeam Pulsar Survey (PMPS), the Swin-
burne Intermediate-latitude Pulsar Survey (SMPS) and the low- and
mid-latitude High Time Resolution Universe (HTRU) survey (high-
lighted in yellow, light blue and purple, respectively). The left panel
shows the distribution of these three populations in Galactic latitude,
b, and longitude, l, while the right panel depicts the detected pul-
sars in the period, P, and period derivative, Ṗ, plane. In the latter,
we also give lines of constant spin-down power, Ėrot, and constant
dipolar surface magnetic field, B, (estimated via Equation (6.10) for
an aligned rotator). Data taken from the ATNF Pulsar Catalogue
(Manchester et al., 2005, https://www.atnf.csiro.au/research/
pulsar/psrcat/). Observational filters are described in detail in the

text.

https://www.atnf.csiro.au/research/pulsar/psrcat/
https://www.atnf.csiro.au/research/pulsar/psrcat/
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and τscat depend on the pulsars’ respective dispersion measure, we again employ the
Galactic electron density distribution of Yao, Manchester, and Wang, 2017 to convert
our simulated neutron-star positions from Sec. 6.2.1 into DM values.

At this stage, we require information for the radio surveys we want to emulate.
We specifically focus on three surveys recorded with Murriyang, the Parkes radio
telescope: the Parkes Multibeam Pulsar Survey (PMPS) (Manchester et al., 2001;
Lorimer et al., 2006), the Swinburne Intermediate-latitude Pulsar Survey (SMPS)
(Edwards et al., 2001; Jacoby et al., 2009), and the low- and mid-latitude High Time
Resolution Universe (HTRU) surveys (Keith et al., 2010). All relevant survey pa-
rameters (including the sampling time, τsamp, the observing frequency, f , and the
channel width, ∆ f , needed to calculate wobs) are summarised in Table 6.1.

To assess if those simulated stars that cross our line of sight are detectable with
a given survey, we first determine if they are located in the surveys’ fields of view.
While PMPS and HTRU have a similar sky coverage, we highlight that SMPS de-
tected pulsars at higher Galactic latitude (see left panel of Figure 6.3). This survey is,
thus, sensitive to older neutron stars which have had sufficient time to move away
from their birth positions closer to the Galactic plane, providing complementary in-
formation on the pulsar population. For those objects that fall within our survey
coverage, we subsequently establish if they are sufficiently bright to be detected.
To do so, we calculate the pulsars’ signal to noise ratio, S/N, using the radiometer
equation (see Section 1.12 and Lorimer and Kramer, 2012):

S/N =
S f ,meanG

√
npol∆ fbwtobs

β
[
Tsys + Tsky(l, b)

] √
P − wobs

wobs
. (6.22)

Here, S f ,mean ≃ S f ,obswobs/P denotes the mean flux density averaged over a sin-
gle rotation period P, G is the receiver gain (see Lorimer et al., 1993; Bates et al.,
2014, for details), npol is the number of detected polarisations, ∆ fbw is the observing
bandwidth, tobs the integration time and β > 1 a degradation factor that accounts
for imperfections during the digitisation of the signal. Moreover, Tsys denotes the
system temperature and Tsky(l, b) is the sky background temperature dominated by
synchrotron emission of Galactic electrons which varies strongly with latitude, l,
and longitude, b. To model the latter, we use results from Remazeilles et al. (2015),
who provided a refined version of the temperature map of Haslam et al. (1981) and
Haslam et al. (1982) (see Figure 1.11. As the underlying data were obtained at 408
MHz, we rescale to the relevant observing frequencies by assuming a power-law
dependence of the form Tsky ∝ f−2.6 (Lawson et al., 1987; Johnston et al., 1992).

A synthetic pulsar counts as detected, if the value obtained from Equation (6.22)
exceeds the surveys’ sensitivity thresholds. We aim to recover the numbers of de-
tected isolated Galactic radio pulsars for each survey, i.e.

PMPS: 1009 observed pulsars,
SMPS: 218 observed pulsars, (6.23)
HTRU: 1023 observed pulsars.

To obtain these values, we used the data from the ATNF Pulsar Catalogue (Manch-
ester et al., 2005)2 and removed extragalactic sources and those in globular clus-
ters. We further applied a cut-off in period (P > 0.01 s) and period derivative

2https://www.atnf.csiro.au/research/pulsar/psrcat/

https://www.atnf.csiro.au/research/pulsar/psrcat/
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(Ṗ > 10−19 s s−1; for those pulsars with measured Ṗ values) to remove those ob-
jects that have (likely) undergone recycling from a companion star and cannot be
modeled with the framework discussed so far. The locations of the observed objects
in the P-Ṗ plane are shown in the right panel of Figure 6.3.

6.2.5 Simulation output

To simulate our mock observed pulsar populations, we do not make any assumptions
on the neutron-star birth rate at this stage. Instead, we randomly sample a subset of
105 neutron stars from our dynamical database (see Section 6.2.1). We subsequently
evolve these stars magneto-rotationally as outlined in Section 6.2.2 and assess how
many of them are detected by each of the three surveys (see Sections 6.2.3 and 6.2.4),
saving their respective properties. We iterate this process until the number of de-
tected stars matches the number of observed stars in each survey. Note that we
adaptively reduce the number of stars we draw from our dynamical database to
104 and 5 × 103, once we have recovered 90% and 95% of the target values, respec-
tively. The output of a single simulator run, which has a typical computation time
of around 1 − 2 hr, is a data frame containing the properties of those pulsars we can
detect with PMPS, SMPS and HTRU.

The location of the resulting synthetic population and the shape of the stars’
distribution in the P-Ṗ plane is directly controlled by the magneto-rotational param-
eters, µlog B, σlog B, µlog P, σlog P and alate, the five parameters we set out to infer in the
following. Three examples of synthetic P-Ṗ diagrams are shown in the top three
panels of Figure 6.4.

We note that our prescription does not require a by-hand implementation of a
pulsar death line (e.g., Chen and Ruderman, 1993; Rudak and Ritter, 1994; Zhang,
Harding, and Muslimov, 2000, see also Section 1.9.3), beyond which radio emission
ceases. Instead, pulsars become naturally undetectable if they approach the bottom
right of the P-Ṗ plane in our framework. This is due the evolution towards (i) smaller
misalignment angles, χ, resulting in smaller beaming fractions, and (ii) smaller Ṗ
and thus Erot, ultimately leading to sources that are too faint to be detected.

At this point, we also highlight that our approach provides information on the
number of total stars generated over a time scale of 108 yr (the oldest possible age
for stars in our dynamical database), implying that we can directly determine the
birth rate required to reproduce observations for a given survey. Although not the
primary focus of this work, we note two things here: First, the number of detectable
neutron stars per iteration step described above and, thus, the birth rate (as well
as the distribution of stars in the P-Ṗ plane) depends strongly on the five magneto-
rotational parameters. For some parameter combinations, the birth rate can become
unrealistically large and the computation time extensive. To overcome this issue,
we stop our iterative simulation approach once the birth rate exceeds a conserva-
tive limit of 5 neutron stars per century (Keane and Kramer, 2008; Rozwadowska,
Vissani, and Cappellaro, 2021, see also Section 1.14). While this implies that we do
not reach the numbers of observed objects in these simulations, we still use them
in the following to assess if our inference approach can identify those parameter
combinations as unreasonable from the distribution of stars in the P-Ṗ plane alone.
Second, for a single simulation run, we generally do not obtain the same birth rate
for all three surveys and estimates can differ by a factor of ∼ 1 − 3 neutron stars
per century. In principle, we only expect the correct physical simulator to produce
the observed distributions of pulsars across different surveys. The correct simula-
tion framework is, however, not known and constraining the relevant physics is the
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FIGURE 6.4: Examples of simulated pulsar populations and the cor-
responding density maps, which are fed into the simulation-based in-
ference pipeline. The top three panels show synthetic P-Ṗ diagrams
for the three surveys considered in this study generated from three
random sets of magneto-rotation parameters. In particular, test sam-
ple 1 (top left) is the result of a simulation with µlog B ≈ 13.19, σlog B ≈
0.96, µlog P ≈ −0.85, σlog P ≈ 0.51 and alate ≈ −0.86, while test
sample 2 (top right) was generated with µlog B ≈ 13.86, σlog B ≈
0.88, µlog P ≈ −0.42, σlog P ≈ 0.61 and alate ≈ −1.71. Finally, test sam-
ple 3 (top middle) corresponds to µlog B ≈ 13.35, σlog B ≈ 0.24, µlog P ≈
−1.25, σlog P ≈ 0.60 and alate ≈ −2.38. The bottom row show the three
density maps (one for each survey) generated with a resolution of 32
from the P-Ṗ diagram for test sample 1. Here, dark blue encodes re-
gions where no neutron stars are present, while yellow bins represent

the largest density for the binned pulsar distribution.
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main goal of our analysis. To explore this behaviour, we therefore produce neutron
stars until the target values in all three surveys are reached (or exceeded). While
this implies that the number of detected objects in some simulations can be larger
than the observed number of stars for a given survey (by up to a factor of ∼ 3), our
focus on the location and shape of the pulsar distribution in P and Ṗ outlined be-
low circumvents this issue. We will, however, return to the issue of the birth rate in
the discussion in Section 6.5, once we have explained our inference approach and
provided results for our best estimates.

To provide a broad range of synthetic P-Ṗ diagrams for our inference pipeline,
we explore the ranges outlined in Section 6.2.2 and uniformly sample random com-
binations of the five parameters as follows:

µlog B ∈ U (12, 14),

σlog B ∈ U (0.1, 1),

µlog P ∈ U (−1.5,−0.3), (6.24)

σlog P ∈ U (0.1, 1),

alate ∈ U (−3,−0.5).

We generate a total of 360,000 parameter combinations (which we refer to as our in-
put parameters or labels in the following) and simulate the corresponding synthetic
populations in parallel over the course of 6 weeks.

To represent the discrete output of our simulator in a way that can be processed
by a neural network, we follow our earlier study (see Chapter 5 and Ronchi et al.,
2021) and convert a single P-Ṗ diagram for three surveys as seen in the top row
of Figure 6.4 into three two-dimensional density maps (one for each survey) by
counting the number of stars within a given bin. In particular, we set the limits
P ∈ [0.001, 100] s and Ṗ ∈ [10−21, 10−9] s s−1 and test the inference procedure for
a resolution of 32 and 64 bins. To avoid sharp edges in our binned distributions,
we apply a smoothing Gaussian filter (with radius 4σ and σ = 1), which will also
improve the stability during the training of our machine-learning pipeline. An ex-
ample of the resulting density maps is shown in the bottom row of Figure 6.4 for one
of our simulations.

The final preprocessing stage for our simulated data is either a normalisation
or a standardisation step (depending on the choice of set-up discussed below) to
provide the neural network with signals and labels of similar magnitude (see Sec-
tion 2.3). In the former case, the bins in each individual density map are rescaled
such that they contain continuous values between 0 and 1. The same holds for the
corresponding labels, which are normalised over the entire parameter ranges given
in Equation (6.24). On the other hand, standardisation is achieved by using z-scores,
so that the resulting information in each map has a mean of 0 and standard deviation
of 1. The same method is applied to the labels across our entire set of simulations.

6.3 Simulation-based inference

6.3.1 Overview

In Section 2.4 we introduced the simulation-based inference (SBI) framework, here
we will overview the main concepts. The pulsar population-synthesis pipeline sum-
marised in Section 6.2 is a typical example of a stochastic forward model which
aims to emulate real-world observations. We specifically introduced stochasticity by
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FIGURE 6.5: Schematic representation of our inference pipeline for
three input P − Ṗ maps (one for each survey) with resolution 32× 32.
A convolutional neural network (CNN) is first used to extract fea-
tures from our images and produce a compressed representation of
our simulation output, x. We then train a Gaussian mixture density
network (MDN), a flexible neural density estimator, on this latent
representation to approximate the posterior distribution of the sim-

ulation parameters, θ.

sampling relevant variables from underlying probability distributions using Monte-
Carlo techniques. In particular, given the input parameter, θ = {θ1, θ2, . . . }, our sim-
ulator generates a synthetic realisation of the observed data, x. The key challenge is
then to constrain our model parameters in such a way that they are consistent with
true observations, xobs, and our prior knowledge, encoded in the prior distribution,
π(θ). To this end, we want to compute the posterior distribution, P(θ|x), using
Bayes’ theorem

P(θ|x) = π(θ)P(x|θ)
P(x)

, (6.25)

where P(x|θ) is the likelihood of our data, x, given the parameter, θ, and P(x) de-
notes the evidence obtained by marginalizing the likelihood over all θ. However,
for complex simulators like ours, we typically cannot write down an explicit form
of the likelihood function so P(x|θ) is essentially intractable. In addition, even if
the likelihood were tractable, computing the evidence can become very costly as it
involves complicated integrals over a multidimensional parameter space.

Simulation based inference (SBI) circumvents these issues by taking advantage of
the fact that our simulator encodes the likelihood function implicitly (see Section 2.4
and Cranmer et al., 2020, for a recent review). These approaches have been par-
ticularly successful in combination with deep-learning techniques because neural
networks can be used to learn a probabilistic association between a given simula-
tion outcome, x, and the input parameters, θ. This allows an approximation of the
posterior distribution, P(θ|x), without the need to explicitly compute the likelihood.

For the following study, we choose the neural posterior estimation (NPE) ap-
proach (see Section 2.4.1) to directly learn the posterior conditional on our simulated
data (avoiding the additional sampling step required for neural likelihood estima-
tion (NLE) and neural ratio estimation (NRE) as seen in Section 2.4) and take advan-
tage of the corresponding implementation in the open-source Python package sbi
(Tejero-Cantero et al., 2020).3

3https://github.com/sbi-dev/sbi

https://github.com/sbi-dev/sbi
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6.3.2 Deep-learning set-up

As described in Section 2.4.1, for NPE, we approximate the posterior using a fam-
ily of densities, qψ, characterised by the distribution parameters, ψ. For our SBI
pipeline, we then use a neural network, F, to learn these ψ for our simulator output,
x, by adjusting the network weights, w. In particular, we aim to optimise the neural
density estimator such that qF(x,w)(θ) ≈ P(θ|x). As described in Section 2.4.1 this
can be achieved by minimizing the expectation value of the following loss function
(Papamakarios and Murray, 2016)

L(w) = −
N

∑
i=1

log qF(xi ,w)(θi) (6.26)

over a training data set {θi, xi} of size N, provided that N is large and the density
estimator sufficiently flexible. In practice, we maximise the negative of L(w), i.e.,
the total log-posterior. A key advantage of the resulting posterior approximation
is that the evaluation of qF(x,w)(θ) corresponds to a simple forward pass through a
neural network (without the need to simulate additional data), which is very fast.
We will take advantage of this amortised nature of the posterior to assess the quality
of our inferences below.

For our pulsar study, we have drawn the model parameters θi = {µlog B, σlog B,
µlog P, σlog P, alate} from uniform priors as defined previously in Equation (6.24). The
corresponding output, xi, of a single run through the simulator are the three P-Ṗ
density maps (one for each survey) illustrated in the bottom row of Fig. 6.4. In the
following, we stack these maps together to form a three-channel input for our neu-
ral network. Of the 360,000 synthetic simulations produced, we use 90% for training
and validation reserving the remaining 10% for testing purposes. The former data
set is further split into 90% for training (291, 600 populations) and 10% for validation
(32, 400 populations). We note that as each population is represented by three den-
sity maps, we train the following inference pipeline on roughly 875, 000 images. Per-
formance results for the unseen test samples quoted in the following are computed
for 10% of the full test set (3, 600 populations) for computational reasons. The full
workflow and the network architecture are illustrated schematically in Figure 6.5.

Due to the complexity of these data, we do not train a neural density estimator
directly on the density maps. We instead first apply a CNN to extract features from
our images and embed the corresponding information in a lower-dimensional latent
vector. Following a similar procedure as in Chapter 5 (see also Ronchi et al., 2021),
we choose the following baseline architecture for our embedding network:

• 2D convolution layer with kernel size 3 × 3, 3 input channels, 32 output chan-
nels, stride 1, padding 1.

• 2D Max pooling layer with size 2 × 2, stride 2, no padding.

• 2D convolution layer with kernel size 3× 3, 32 input channels, 64 output chan-
nels, stride 1, padding 1.

• 2D Max pooling layer with size 2 × 2, stride 2, no padding.

• Fully connected linear layer with the flattened output from the second pooling
layer as input and 32 output neurons encoding the latent representation.

After each convolution and the fully connected layer, we apply a rectified linear
unit (ReLU) activation function (see Section 2.2.3). The weights for the CNN are
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initialised using the Kaiming prescription (He et al., 2015) to avoid exploding or
vanishing gradients during the training process (see Section 2.3.2).

We subsequently pass the latent vector generated by the CNN to a neural density
estimator. We implement a MDN and specifically opt for a Gaussian-mixture model
(GMM) in five dimensions to approximate the posterior, qF(x,w)(θ), for our five free
magneto-rotational parameters. This implies

qF(x,w)(θ) =
C

∑
c=1

αc N (θ|µc, Σc), (6.27)

where, C denotes the total number of Gaussian components used, αc is the mixture
weight and N (θ|µc, Σc) the multi-variate Gaussian distribution with mean vector µc
and covariance matrix Σc for the c-th component.

For our MDN, we follow sbi’s default implementation and use:

• Three fully connected layers with 32 neurons each.

• Four fully connected output layers which encode the Gaussian mixture weights,
αc, means, µc, diagonal and upper triangular components of the covariance
matrices, Σc, respectively. These contain c, 5c, 5c and 10c neurons, respectively.

We again apply the ReLU activation function after each hidden layer, while weights
for the MDN are initialised with PyTorch’s default initialisation (Glorot and Bengio,
2010).

We subsequently train the entire pipeline using the gradient descent optimiser
Adam (Kingma and Ba, 2014, see also Section 2.3.4). At each epoch the network
undergoes a series of optimisation steps based on the information provided in the
entire training data set before epoch-averaged training and validation metrics are
computed based on the negative of Equation (6.26). In this way during optimisation
the algorithm tend to maximise the training and validation metrics. Note that we
also set an early stop of 20 to prevent overfitting, which implies that the training
process is interrupted (and the weights of the best validation epoch recorded) once
the validation metric has not improved for 20 epochs.
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6.3.3 Experiments

Table 6.2 summarises the 22 different experiments that we have conducted for this
study to assess the performance of SBI for pulsar population synthesis. For this pur-
pose, we varied aspects of the training data as well as the hyperparameters of our
deep-learning pipeline. In particular, for the input we explored two different reso-
lutions for the P-Ṗ maps, 32 and 64, respectively, assessed the network performance
when all three density maps or only two/one are provided, and whether normali-
sation or standardisation during preprocessing leads to different results. We further
studied the impact of using the full training data set or smaller subsets. Moreover,
for the network we varied the number of Gaussian mixture components in our neu-
ral density estimator, the batch size, and the learning rate, and we explored two
different CNNs for our embedding net. In addition to the baseline architecture de-
scribed in Section 6.3.2, we also conducted two experiments with a deeper network
composed of four convolutional blocks. Here, the two convolutional layers intro-
duced previously are followed by an additional layer with 32 and 64 input/output
channels, respectively. Kernel size, stride, padding, subsequent pooling and fully-
connected layers were kept as above.

Due to the computational cost of each training experiment, a full grid search over
all relevant configurations was beyond the scope of this work. We, therefore, opted
to produce a representative set of experiments that provide sufficient information
to study the variation of our inferred posteriors in Section 6.4. Finally note, that
almost all of our optimisations are performed on a Tesla V100 SXM2 GPU with 32 GB
memory. We only trained experiments #3 and #4, for which the full training data set
with a resolution of 64 was too large to be optimised on the GPU, on a CPU with
32 GB RAM. In those two cases, training the network, thus, took markedly longer
than for the other experiments (see below).

6.4 Results

6.4.1 Training

Several metrics for our experiments are summarised in the last four columns of
Tab. 6.2. We observe that the optimisation of our neural networks take between
∼ 1 − 8 hr on the GPU and on the order of a day on a CPU, completing ∼ 30 − 124
training epochs. In general, we find good training behaviour with the validation
metric closely tracking the training metric and little or no overfitting. This is also ev-
ident in the network’s generalisation ability illustrated by the average metrics com-
puted over the unseen test set of 3, 600 simulations. The evolution of the training and
validation metrics for experiment #1 is shown in Fig. 6.6 as an example. We remind
the reader that we aim to maximise the total log-posterior. After visual inspection
of all training curves, we remove experiment #7 due to irregularities in the training
behaviour and experiments #18 and #22 due to a slight tendency to overfitting. Note
that these shortcomings were not directly visible from the training metrics in Ta-
ble 6.2. We also highlight that we find systematically larger training, validation and
test metrics in those experiments where our input density maps were normalised.
In the following, we however assess the quality of the corresponding posteriors and
find that these do not result in better inferences. Beyond this difference, we cannot
identify any significant variation in the metrics between the remaining configura-
tions. We, hence, proceed with an analysis of all experiments apart from numbers
#7, #18 and #22.
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FIGURE 6.6: Training behaviour for baseline experiment #1. We show
training metric (dashed, light blue) and validation metric (solid, pur-
ple) as a function of the training epoch. We seek to maximise the to-
tal log-posterior, ∑N

i=1 log qF(xi ,w)(θi), over the training and validation
data set, respectively, as the network learns. Both losses increase as
expected and the validation curve closely tracks the training curve,
i.e., we see little overfitting. The best validation loss is reached at
epoch 17 and the early stop criterion, thus, causes the training halt

after 37 training epochs.

TABLE 6.3: Magneto-rotational parameters for three random test
samples and the observed pulsar population. The first five rows show
the ground truths, θ, used to simulate the test populations. The sec-
ond block gives the median and 95% credible intervals (CIs) obtained
from inferences with the neural network trained in experiment #1.
The final block contains the median and 95% CIs determined from

the ensemble posterior combining 19 experiments.

Parameters Test sample 1 Test sample 2 Test sample 3 Observed population

G
ro

un
d

tr
ut

hs
,θ

µlog B 13.19 13.86 13.35 -
σlog B 0.96 0.88 0.24 -
µlog P −0.85 −0.42 −1.25 -
σlog P 0.51 0.61 0.60 -
alate −0.86 −1.71 −2.38 -

95
%

C
I

ex
pe

ri
m

en
t#

1 µlog B 13.28+0.18
−0.18 13.73+0.15

−0.15 13.33+0.05
−0.04 13.07+0.07

−0.08
σlog B 0.95+0.08

−0.08 0.79+0.07
−0.07 0.23+0.02

−0.02 0.43+0.03
−0.03

µlog P −0.90+0.13
−0.13 −0.35+0.19

−0.18 −1.17+0.33
−0.34 −0.98+0.25

−0.29
σlog P 0.49+0.10

−0.09 0.73+0.20
−0.15 0.73+0.25

−0.31 0.54+0.33
−0.25

alate −0.83+0.06
−0.06 −1.88+0.35

−0.35 −2.47+0.43
−0.43 −1.77+0.35

−0.38

95
%

C
I

en
se

m
bl

e µlog B 13.29+0.20
−0.20 13.74+0.19

−0.16 13.34+0.05
−0.05 13.10+0.08

−0.10
σlog B 0.96+0.07

−0.08 0.78+0.09
−0.08 0.24+0.02

−0.02 0.45+0.05
−0.05

µlog P −0.92+0.16
−0.15 −0.40+0.20

−0.27 −1.23+0.33
−0.34 −1.00+0.26

−0.21
σlog P 0.49+0.10

−0.09 0.74+0.20
−0.17 0.67+0.30

−0.28 0.38+0.33
−0.18

alate −0.84+0.06
−0.07 −1.76+0.39

−0.43 −2.34+0.43
−0.45 −1.80+0.65

−0.61
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FIGURE 6.7: Benchmark inference for test simulation 1 and 2 us-
ing the network from experiment #1. The corner plot shows one-
and two-dimensional marginal posterior distributions for the five
magneto-rotational parameters. We also show corresponding ground
truths, θ, in light blue and the medians in purple. We observe that the
posteriors cover the θ well. Corresponding 95% CIs are summarised

in Table 6.3.
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FIGURE 6.8: Same as Fig. 6.7 but for test simulations 3.

6.4.2 Benchmark inferences

As a first assessment of our approximated posteriors, we focus on inferring the five
magneto-rotational parameters, µlog B, σlog B, µlog P, σlog P, alate, for simulated popula-
tions where we know the input parameters, θ. We specifically look at the three sim-
ulations, whose P-Ṗ diagrams were illustrated in the top row of Figure 6.4. Cor-
responding ground truths, θ, are summarised in the top five rows in Table 6.3. In
Figures 6.7 and 6.8, we show the resulting one- and two-dimensional marginal pos-
terior distributions obtained by repeatedly sampling from the neural network op-
timised during experiment #1. For all three cases, the posteriors are well defined,
significantly smaller than our prior ranges (6.24) shown along the axes, and centred
around the ground truths, θ, highlighted in light blue. To quantify this, we calcu-
late the 1σ, 2σ and 3σ credible regions, shown as contours in the two-dimensional
posteriors. In the one-dimensional posterior panels, the corresponding 95% credi-
ble intervals (CIs) are given as dashed, black lines, while medians are illustrated as
solid, purple lines. Their numerical values are given in Table 6.3. We observe that
the ground truths, θ, are typically contained within the 2σ credible regions, which
we interpret as evidence that our NPE approach is capable of producing reason-
able posterior distributions. In general, the credible regions for the two parameters
characterizing the initial magnetic-field distribution are narrower than those for the
initial period distribution and the late-time magnetic-field decay. We confirm that
the behaviour is qualitatively similar for the remaining P-Ṗ simulations in our test
set.

We next compare the inferences for our various training experiments. To visu-
alise corresponding differences, we plot the one-dimensional marginalised posteri-
ors for all 19 experiments for the three test samples in grey in Figure 6.9. Ground
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FIGURE 6.9: One-dimensional marginal posteriors for the five
magneto-rotational parameters for the three test simulations inferred
using 19 different NPE experiments shown in grey. The horizontal
axes represent the parameters’ prior ranges. The ground truths are
shown as vertical dashed lines in light blue. We observe variation be-
tween the experiments, specifically for µlog P, σlog P and alate. We also
plot the ensemble posteriors (purple) obtained as a weighted average

of the individual posteriors.
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truths, θ, are shown as dashed lines in light blue. We observe that the width of in-
dividual posterior approximations as well as their medians can vary somewhat be-
tween different test samples and magneto-rotational parameters. Compared across
the full test set, this behaviour is again more dominant for the period and late-time
magnetic-field parameters than for the initial B-field properties. However, no in-
dividual NPEs stand out by exhibiting either particularly good or poor posteriors.
Further note that we also do not see any differences for those experiments with nor-
malised input maps that showed systematically better metrics than those experi-
ments trained on standardised data. This highlights that training behaviour alone
does not provide sufficient information on the quality of the resulting inference.

In light of this, we also determine the combined posterior for all 19 experiments
(Hermans et al., 2021). We calculate the corresponding ensemble posterior, q(θ), as the
weighted average of the individual posteriors:

q(θ) =
19

∑
j=1

wjqFj(θ), (6.28)

where wj represents the weight of the j-th component. Giving equal importance to
each experiment in the ensemble, we choose wj = 1/19. The corresponding one-
dimensional marginalised ensemble posteriors for µlog B, σlog B, µlog P, σlog P and alate
for the three test simulations are illustrated as purple histograms in Figure 6.9. As
expected, they fall within the individual posteriors. The corresponding 95% CIs for
the three test samples, which are typically comparable or slightly wider than those
calculated for experiment #1 posteriors alone, are summarised in the bottom five
rows of Table 6.3.

6.4.3 Posterior validation

To further assess whether posterior estimates are well-calibrated, we determine their
coverage (see Section 2.5.2). As outlined in detail in Appendix D, the coverage prob-
ability measures the fraction of test samples for which (for a given credibility level
1 − α) the ground truths, θ, fall within the corresponding 1 − α region of their re-
spective posteriors, qF(x,ϕ)(θ). For a well-calibrated posterior distribution and a suf-
ficiently large number of test samples, this fraction should equal 1 − α. This implies
that the coverage probability as a function of the credibility level is diagonal. In
contrast, for a conservative posterior that is wider than the true posterior, we would
recover a fraction larger than 1 − α. Conversely, for a narrower (overconfident) pos-
terior, the corresponding fraction of test samples is less than 1 − α. In terms of the
coverage, this corresponds to curves above and below the diagonal, respectively,
and can, therefore, be used to assess the quality of approximate posteriors.

We show the coverage probabilities for our different posterior estimates as a
function of the credibility level, 1 − α, in Figure 6.10. We specifically highlight the
coverage for the posterior from experiment #1 (dashed, light blue) and the ensemble
posterior (solid, purple). All remaining experiments are shown in grey. We ob-
serve that the approximate posteriors for individual experiments closely follow the
diagonal, exhibiting either slightly conservative or overconfident behaviour. As ex-
pected, the most conservative estimate is given by our ensemble posterior, which
incorporates variations in the inference for 19 different machine-learning configu-
rations across all 3, 600 test samples. These results provide additional support that
our neural posteriors are trustworthy and have indeed learned to accurately infer
magneto-rotational parameters from simulated P-Ṗ density maps.
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magneto-rotational parameters for the observed pulsar population.
We show inference results for 19 different NPE experiments in grey

and the ensemble posterior in purple.



6.5. Discussion and conclusions 167

6.4.4 Inference on the observed population

Following the benchmark experiments and the coverage determination, we now
turn our attention to the true pulsar populations observed with the PMPS, the SMPS
and the low- and mid-latitude HTRU survey. The corresponding P-Ṗ diagram was
shown in the bottom panel of Fig. 6.3. We represent these populations as three
density maps as outlined in Section 6.2.5 and subsequently feed them through our
trained neural networks to infer the five parameters, µlog B, σlog B, µlog P, σlog P and
alate, assuming that our simulation framework provides a realistic description of the
underlying physics.

We show the corresponding one-dimensional marginal posterior distributions
for individual experiments (grey histograms) and the ensemble (purple histograms)
in Figure 6.11. Additionally, a corner plot for the one- and two-dimensional ensem-
ble posteriors is illustrated in Figure 6.12. Corresponding medians (shown in purple
in the corner plot) and 95% CIs for experiment #1 and the ensemble are also sum-
marised in the last column of Table 6.3.

The general trend (already observed for the simulated populations) that the ini-
tial magnetic-field parameters, µlog B and σlog B, are much better constrained by our
NPE framework than the remaining three values also holds for the observed popula-
tion. As seen in the first two panels of Figure 6.11, all 19 experiments recover narrow
posteriors around similar medians. For the initial period-distribution parameters,
µlog P and σlog P, (see third and fourth panel, respectively), we obtain wider poste-
riors and a larger variety of median values between different experiments. These
posteriors, however, cover similar regions within our prior ranges and are compa-
rable to what we observed for the test samples. In contrast, the inferred posteriors
for alate (the final panel in Figure 6.11) exhibit different behaviour to our benchmark
experiments. In particular, posteriors vary significantly in width between different
experiments with those at the larger (smaller) end of the alate range generally exhibit-
ing narrower (larger) widths. Moreover, several distributions do not overlap at all.
This is manifest as a relatively wide posterior in the ensemble which also shows a
second peak, primarily driven by the right-most individual posterior resulting from
experiment #2. Note that this configuration did not cause irregularities during the
network optimisation or unusual posteriors for our test samples. We, therefore, do
not associate this behaviour with the network itself. The corresponding bi-modality
is also visible in the final row of the corner plot in Figure 6.12. We will discuss our
interpretation of this below.

6.5 Discussion and conclusions

In this study, we have successfully developed a new machine-learning pipeline that
combines pulsar population synthesis with simulation-based inference (SBI) for the
first time and tested the corresponding approach for inferring magneto-rotational
properties of neutron stars.

6.5.1 Simulation framework

We first discussed our implementation of the forward model, i.e., the prescription for
simulating the dynamical and magneto-rotational properties of the Galactic popula-
tion of isolated radio pulsars, modelling their radio emission and subsequently mim-
icking observational limitations for the Parkes Multibeam Pulsar Survey (PMPS),
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FIGURE 6.12: Inference results for the observed pulsar population
using the ensemble posterior of 19 different NPEs. The corner plot
shows one- and two-dimensional marginal posterior distributions for
the five magneto-rotational parameters. We highlight the medians in
purple. Corresponding values and 95% CIs are summarised above

the panels and in Table 6.3.
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the Swinburne Intermediate-latitude Pulsar Survey (SMPS) and the low- and mid-
latitude High Time Resolution Universe (HTRU) survey. We followed earlier frame-
works (e.g., Faucher-Giguère and Kaspi, 2006; Bates et al., 2014; Gullón et al., 2014;
Gullón et al., 2015; Cieślar, Bulik, and Osłowski, 2020) but implemented several key
differences (see also Table 1.1). In particular, we sampled the birth positions of our
pulsars from the Galactic electron distribution (Yao, Manchester, and Wang, 2017)
instead of following the typical approach of combining a spiral-arm model with a
radial pulsar distribution of, e.g., Yusifov and Küçük (2004). The latter is deduced
for the observed, evolved pulsar sample and not the initial population. Moreover,
we have included the (rigid) rotation of the Galaxy, which leads to a more consistent
treatment of the pulsar birth positions compared to earlier analyses (see also Chap-
ter 5 and Ronchi et al., 2021). For the magnetic-field evolution, we used a similar ap-
proach to Gullón et al. (2014) and Gullón et al. (2015) taking advantage of the newest
two-dimensional magneto-thermal simulations (Viganò et al., 2021) and solved for
the coupled evolution of the spin period, P, and the misalignment angle, χ, for a
plasma-filled magnetosphere. To capture the field changes at late times, we devel-
oped a new physically motivated prescription in which the magnetic field, B, de-
cays according to a power law captured by the index, alate. Together with the means,
µlog B, µlog P, and standard deviations, σlog B, σlog P, which characterise the normally
distributed logarithms of the initial periods and the initial fields, we hence obtained
five parameters that control the neutron stars’ magneto-rotational evolution.

To simulate the detection of our synthetic pulsars, we make two main changes
compared to earlier studies. First, we do not model the pulsars’ pseudo luminos-
ity (see Section 1.11) defined as L f ,pseudo ∝ S f ,meand2 (where S f ,mean is the period-
averaged detected flux at frequency f , and d the pulsar distance) but instead as-
sume that the intrinsic neutron-star luminosity, Lint, is proportional to the spin-
down power, Ėrot (see Section 1.9.4). In particular, we considered Lint ∝ Ė1/2

rot to
determine the bolometric radio flux and subsequently propagate the corresponding
pulsed emission towards the Earth. We also used a geometry-based description to
determine the pulsars that are beamed towards us, which earlier works typically
treat in an empirical manner. Finally, we not only looked at PMPS and SMPS but
also incorporated the HTRU survey for the first time. Using the resulting simulation
framework, we then produced 360, 000 synthetic P-Ṗ diagrams which we converted
to one density map per survey in preparation for the neural network. 90% of these
simulations were used for training and validation, and the remaining 10% reserved
for testing.

6.5.2 Inference procedure

The second part of this study is centred on the implementation of the SBI approach,
specifically focusing on neural posterior estimation (NPE), to learn a probabilistic as-
sociation between our simulator output and the input parameters, θ = {µlog B, σlog B,
µlog P, σlog P, alate}. To do so, we first used a convolutional neural network (CNN)
to extract features from our high-dimensional P-Ṗ maps and obtain a compressed
representation, which was then transferred into a flexible neural density estimator.
By taking advantage of the open-source Python package sbi (Tejero-Cantero et al.,
2020),4 we specifically implemented a Gaussian-mixture density model in five di-
mensions to approximate our posterior. To study the sensitivity of the NPE results

4https://github.com/sbi-dev/sbi

https://github.com/sbi-dev/sbi
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on the representation of our input data and the network hyperparameters, we con-
ducted 22 distinct experiments. An inspection of the corresponding training met-
rics led us to discard three experiments due to irregular training behaviour or over-
fitting. The remaining 19 trained neural networks were analyzed further and we
found no significant differences in the resulting inferences when benchmarked on
three random test simulations. The same was observed when validating the posteri-
ors through a coverage calculation over the test set with 3, 600 samples, highlighting
that all 19 posterior estimates are well-calibrated. From this we concluded, in partic-
ular, that the training behaviour is a poor identifier of subsequent inference quality,
because normalisation of input maps led to systematically better training, test and
validation metrics compared to standardizing the input but comparable inferences.
Learning rate and batch size played a negligible role in both set-ups.

We also point out that the use of smaller training data sets did not affect the
inference quality either. While we expect that training sets of ≲ 10% (i.e., 30, 000
simulations) will eventually have an effect on this, databases of 50% (i.e., 150, 000
simulations) are sufficient when inferring five parameters. For comparable studies,
this would imply a significant reduction in simulation time, the most costly part of
these analyses. Similar performances further justify optimizing our networks for
density maps with a resolution of 32 × 32 bins instead of 64 × 64 and the shallower
baseline CNN to speed up the training process. Additionally, we highlight that the
use of different numbers of Gaussian mixture components also led to comparable
optimisation metrics and inference results. Extracting the corresponding mixture
weights, αc, after the optimisation, we find that we only require two or three Gaus-
sians to approximate our posteriors across the entire test data set. We do, however,
point out that training with a larger number of components was faster. Finally, note
that the use of fewer surveys (i.e., one or two density maps only) did not change
the inference results for our five magneto-rotational parameters. Naively, one might
think that complementary information on the pulsar population as, e.g., provided
by SMPS, which is sensitive to older stars at higher Galactic latitudes, would help
the network learn better posteriors. We do, however, not observe such behaviour in
our experiments. Although this might suggest that using single surveys in the future
could be sufficient to constrain neutron-star parameters through population synthe-
sis, we caution that different surveys, in principle, provide additional information
on the neutron-star birth rate (see below) which was not supplied to our neural net-
works, i.e., we focused on the location and shape of the pulsar population in the P-Ṗ
plane only.

Due to the variations in our inference results, and because we could not iden-
tify a single neural network as the best posterior estimator, we also determined the
ensemble posterior through an equally weighted average of the individual experi-
ments. The resulting posterior behaved as expected and showed more conservative
behaviour than the ensemble members. For the next section, we, will, hence, fol-
low the recommendation by Hermans et al. (2021) and use our (most conservative)
ensemble posterior to analyze the observed pulsar population.

6.5.3 Inference results on the observed population

Following the validation of our NPE approach, we subsequently used the ensem-
ble posterior estimator to infer the five magneto-rotational parameters for the true
population of isolated Galactic radio pulsars observed with our three surveys. In
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particular, we found the following best estimates at 95% credible level:

µlog B = 13.10+0.08
−0.10,

σlog B = 0.45+0.05
−0.05,

µlog P = −1.00+0.26
−0.21, (6.29)

σlog P = 0.38+0.33
−0.18,

alate = −1.80+0.65
−0.61.

The corresponding corner plot was shown in Figure 6.12.
As noted during the benchmarking experiments, we generally obtain narrower

posterior distributions for the initial magnetic-field parameters when compared to
the initial period parameters. Difficulties in constraining rotational birth properties
are, however, not a shortcoming of our inference approach itself as this was also
noted by earlier population-synthesis analyses (e.g., Gullón et al., 2014; Gullón et
al., 2015; Cieślar, Bulik, and Osłowski, 2020). Instead, this has a physical reason
that lies in the coupled evolution of the stars’ misalignment angle, rotation period
and magnetic field. While the B-field initially stays constant (see Figure 6.2), pulsars
move from the top left in the P-Ṗ plane diagonally towards the bottom right, follow-
ing lines of constant magnetic field (see, e.g., right panel in Figure 6.3). As they do,
stars with comparable field strengths but different initial periods evolve towards
similar P values. This is a consequence of the fact that the spin period evolution
tends to lose memory of the initial spin periods for t ≫ tem where tem ∝ P2

0 /B2
0, as

seen in Section 3.2.In addition, the misalignment-angle evolution introduces further
degeneracies because all χ decrease with time. However, as the field decays, spin-
down and misalignment evolution slow down and pulsars begin to evolve almost
vertically towards smaller Ṗ values. These processes depend further on B0 and P0 as
stronger initial fields and smaller initial periods result in faster spin-down and faster
evolution towards alignment. This is especially visible for test sample 3 (top right
panel of Figure 6.4), which is characterized by the smallest period mean, µlog P, of all
three test cases. The combined action of these effects is that stars born with different
rotational properties attain similar P at current times. This information loss on the
initial period makes it harder to infer the corresponding parameters. As expected,
test sample 3, therefore, shows the largest 95% CIs for µlog P and σlog P out of our
three test samples (see third column in Table 6.3 and last row in Figure 6.9).

Contrasting the posterior medians from Equation (6.29) to other population-synthesis
studies, we first note that our µlog B estimate is roughly consistent with Gullón et al.
(2014) and Gullón et al. (2015) but somewhat larger than those of Faucher-Giguère
and Kaspi (2006) and Cieślar, Bulik, and Osłowski (2020). Moreover, we obtain a
smaller σlog B than Gullón et al. (2014) and Gullón et al. (2015) and Faucher-Giguère
and Kaspi (2006) but a slightly larger estimate than Cieślar, Bulik, and Osłowski
(2020). Although all four studies determine optimal parameter ranges different to
us, we expect the differences in the initial B constraints to be mainly due to our
more realistic prescription for the magnetic-field and coupled P-χ evolution. A di-
rect comparison between our initial period parameters and earlier literature values
is not possible at this stage, because (following recent results by Igoshev et al. (2022);
see also Xu et al. (2023)) we have considered the periods’ logarithm and not the peri-
ods themselves to be normally distributed. We, however, highlight that our inferred
initial period and magnetic-field parameters are comparable with those of Igoshev
et al. (2022) obtained through a simplified analysis of 56 young neutron stars in su-
pernova remnants. As this study looked at magneto-rotational properties only, the
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FIGURE 6.13: Simulated populations of isolated Galactic radio pul-
sars detected with the PMPS, the SMPS and the low- and mid-latitude
HTRU survey (highlighted in yellow, light blue and purple, respec-
tively) for the parameters inferred via SBI from the observed radio
pulsar population (see Equation (6.29)). The left panel shows the dis-
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Both plots directly compare to the true (observed) population shown

in Figure 6.3.
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TABLE 6.4: Comparison between best parameters for the log-normal
initial magnetic-field and initial period distributions in the literature.
We provide the references and the four relevant parameters. Note
that the first three studies use a different prescription for the initial
period, which prevents a direct comparison with our study. For Gul-
lón et al. (2015) and Cieślar, Bulik, and Osłowski (2020), we com-
pare with model D for the radio-pulsar population and the rotational
model, respectively. The corresponding distributions are illustrated in

Fig. 6.14.

References µlog B σlog B µlog P σlog P

Faucher-Giguère and Kaspi 12.65 0.55 - -
Gullón et al. 12.99 0.56 - -

Cieślar, Bulik, and Osłowski 12.67 0.34 - -
Igoshev et al. 12.44 0.44 −1.04 0.53

This work 13.10 0.45 −1.00 0.38

authors were able to define an explicit likelihood function and perform statistical
inference. In this context, we also point out that although Cieślar, Bulik, and Os-
łowski (2020) derive (relatively narrow) posteriors for a range of pulsar properties
using an MCMC analysis, their underlying simulation framework is significantly
reduced compared to ours invoking, e.g., (unrealistic) exponential field decay, vac-
uum magnetospheres, no coupling between periods and misalignment angles, and
a simplified prescription of the beamed emission. In addition, they make an explicit
assumption on the likelihood that might not accurately capture the complexity of
the pulsar population synthesis even for their simplified model. We reiterate the
robustness of our SBI approach which eliminates the need for an explicit expression
for the likelihood and is, therefore, also suitable for more complex simulators like
ours. Moreover, as outlined above the use of a neural density estimator results in
amortised posterior distributions that allow fast evaluation and sampling. We used
this fact to determine the coverage and validate our posteriors, a procedure that is
infeasible in MCMC approaches due to the time-consuming need for repeated sam-
pling.

6.5.4 Comparing results with earlier works

Contrasting the posterior medians from Equation (6.29) with the results of earlier
population-synthesis studies summarized in Table 6.4 and Figure 6.14, we first note
that our µlog B estimate is roughly consistent with Gullón et al. (2014) and Gullón
et al. (2015) but somewhat larger than those of Faucher-Giguère and Kaspi (2006),
Cieślar, Bulik, and Osłowski (2020) and Igoshev et al. (2022). Moreover, while very
close to Igoshev et al. (2022), we obtain a smaller σlog B than Gullón et al. (2014) and
Gullón et al. (2015) and Faucher-Giguère and Kaspi (2006) and a slightly larger esti-
mate than Cieślar, Bulik, and Osłowski (2020). Although these works determine op-
timal parameter ranges different to us, we expect the variation in the B0 constraints
to be mainly due to our more realistic prescription for the field and the coupled P-χ
evolution (see Table 1.1).

A direct comparison of our initial period parameters and earlier population-
synthesis literature is not possible, because (following recent results by Igoshev et
al. (2022); see also Xu et al. (2023)) we considered the periods’ logarithm and not
the periods themselves to be normally distributed. We, however, highlight that our
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inferred µlog P is comparable with that of Igoshev et al. (2022), whereas our σlog P is
somewhat smaller (see bottom panel of Figure 6.14). Igoshev et al. (2022) focused on
a simplified analysis of 56 young neutron stars in supernova remnants and looked at
magneto-rotational properties only. The authors were, thus, able to define an explicit
likelihood function and perform statistical inference. In this context, we also point
out that although Cieślar, Bulik, and Osłowski (2020) derive (relatively narrow) pos-
teriors for a range of pulsar properties using an MCMC analysis, their underlying
simulation framework is significantly reduced compared to ours invoking, e.g., (un-
realistic) exponential field decay, vacuum magnetospheres, no coupling between pe-
riods and misalignment angles, and a simplified prescription for the beamed emis-
sion. In addition, they make an explicit assumption on the likelihood that might not
accurately capture the complexity of the pulsar population synthesis even for their
simplified model. We reiterate the robustness of our SBI approach which eliminates
the need for an explicit expression for the likelihood and is, therefore, also suitable
for more complex simulators like ours. Moreover, as outlined above, the use of a
neural density estimator results in amortized posterior distributions that allow fast
evaluation and sampling. We used this fact to determine the coverage and validate
our posteriors, a procedure that is infeasible in MCMC approaches due to the time-
consuming need for repeated sampling.

6.5.5 Late-time magnetic-field decay

We now turn our attention to the parameter, alate, the power-law index for the late-
time magnetic-field decay. We newly introduced alate in pulsar population synthe-
sis to account for the highly uncertain, core-dominated field evolution above 106 yr
in a phenomenological way. While corresponding inferences were satisfactory for
our benchmark experiments, we found that posteriors for alate inferred from the ob-
served population differed significantly between our 19 experiments, systematically
resulting in larger 95% CIs for smaller alate medians and vice versa (see right most
panel in Figure 6.11). In addition, several posteriors did not overlap at all across our
prior range, leading to a bi-modality in the ensemble posterior. As we do not see
anything similar for our synthetic simulations, we do not associate this behaviour
with the networks’ performance or the SBI approach itself. Instead, we hypothe-
sise that this is due to shortcomings in our simulation framework. Put differently,
our statistical inferences are only as good as the simulation model used to train our
density estimator. Consequently, we see the complications in inferring alate as an
indication that our treatment of the late-time field evolution via a power law (albeit
physically motivated by the behaviour of known magnetic-field evolution mecha-
nisms) is insufficient to model the observed pulsar population.

Although further work is needed to better understand this aspect of neutron-
star evolution, we can assure ourselves that our current power-law prescription is
not too far away from the truth. To do so, we rerun our simulator with the best
estimates summarised in Equation (6.29) and show the distribution of the resulting
population in Galactic longitude and latitude and P and Ṗ in Figure 6.13. These
are analogous to the respective plots in Figure 6.3. While a detailed comparison
between this simulated and the observed population and a study of implications for
the neutron-star birth rate is beyond the scope of this work, we will highlight a few
main aspects. The distributions looked markedly similar, giving a reasonable level
of confidence in our underlying simulation framework. However, we do see a slight
shift in the SMPS population in the P-Ṗ diagram towards lower Ṗ values. This might
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again hint at missing physics at late times because SMPS is sensitive to somewhat
older pulsars compared to the other two surveys.

6.5.6 Neutron-star birth rate

We can further count the numbers of detected pulsars in all three synthetic surveys
for our best-estimate simulation. Running our simulator ten times to account for
its stochastic nature, we obtain average pulsar counts of 1013, 242 and 1298 for the
PMPS, the SMPS, and HTRU survey, respectively. Comparing these to the true ob-
served counts in Equation (6.23), we find an equivalent number of objects in PMPS
(within the sensitivity limits of our iterative approach of generating and detecting
pulsars as summarized in Section 6.2.5), while we overestimate the SMPS population
by ∼ 11% and the HTRU population by ∼ 27% on average.

To understand these small discrepancies, we return to our earlier discussion of
the neutron-star birth rate in Section 6.2.5. In particular, for our best estimates, we
reach the observed target counts (6.23) for each survey for the following birth rates:

PMPS: ∼ 2.02 ± 0.02 neutron stars per century,
SMPS: ∼ 1.84 ± 0.03 neutron stars per century, (6.30)
HTRU: ∼ 1.66 ± 0.02 neutron stars per century,

where we quote means and standard errors for the ten runs. These estimates are
somewhat smaller than those obtained in earlier population-synthesis studies (Gul-
lón et al., 2014; Faucher-Giguère and Kaspi, 2006) and very close to the recent core-
collapse supernova estimate from Rozwadowska, Vissani, and Cappellaro (2021)
(1.63 ± 0.46 per century). The differences in Equation (6.30) are sufficient to result
in the slight overproduction of objects noted above. We remind that this is because
we continue producing neutron stars until we hit the number of observed pulsars
in all three surveys. In our specific case, PMPS detections require a slightly larger
birth rate than the other two surveys. As mentioned previously, the main reason
for this is that we only expect the correct physical model to produce the same birth
rate across all surveys, again hinting that our simulator is missing some physics.
Nonetheless, besides successfully constraining magneto-rotational parameters for
pulsar population synthesis using SBI for the first time, we do recover birth-rate
results in Equation (6.30) that are very similar across all surveys.

6.5.7 Future directions

In light of the previous conclusions, we intend to further develop our current ap-
proach in a number of ways.

On the simulation side, we will investigate additional luminosity prescriptions
that go beyond our assumption, Lint ∝ Ė1/2

rot , as this is another quantity that can sig-
nificantly affect the pulsar distribution. Varying the exponent in our simulations,
which was beyond the scope of this study due to computational limitations, but us-
ing SBI to constrain corresponding parameter ranges would be a first step in that
direction. Moreover, while we followed Gullón et al. (2014) and Gullón et al. (2015)
and took a significant step forward in incorporating a realistic description of the
neutron-star magnetic field, we already noted above that further investigations into
the field evolution of the neutron-star core at late times will be important for future
population-synthesis frameworks. Finally, new pulsar surveys (in the radio band as



6.5. Discussion and conclusions 177

well as in other wavelengths) might hold the key to further constraining the neutron-
star population. While we did not see a significant improvement in our inferences
using information from one, two or three radio surveys, future studies will benefit
from larger numbers of detected pulsars and accurate classification of telescope and
detection biases. Furthermore, other wavebands, specifically X-rays or gamma-rays,
provide complementary information on the neutron-star population. Our focus on
realistic magnetic-field evolution and the expansion of our approach to new three-
dimensional magneto-thermal simulations (e.g., De Grandis et al., 2021; Dehman
et al., 2023) will be particularly crucial to determine realistic X-ray luminosities of
the most strongly magnetized neutron stars. As highlighted by Gullón et al. (2015),
modeling these so-called magnetars and the isolated radio pulsar population con-
sistently will be crucial to break degeneracies and constrain neutron-star physics
further.

The increase in simulator complexity associated with these improvements will
not only result in more free parameters but also inevitable lead to larger computa-
tion times for our forward model. The approach taken here, i.e., simulating a large
database for input parameter combinations that cover the entire space sufficiently,
will become infeasible. To overcome these hurdles, we will also have to explore new
SBI approaches. Sequential methods (e.g. Papamakarios, Sterratt, and Murray, 2018;
Deistler, Goncalves, and Macke, 2022; Bhardwaj et al., 2023) that reduce the need
for simulations by starting from a relatively small database and adaptively provid-
ing additional simulations (generated for those parts of the parameter space that are
most useful for a neural density estimator to learn a posterior approximation) seem
particularly suited to these tasks.





179

Chapter 7

Summary and conclusions

In this last chapter, I summarise the main results of this work, separately addressing
the two main areas of this thesis, and outline the future directions.

7.1 Towards a unified evolutionary scenario for the neutron-
star population

For this thesis we developed a flexible population-synthesis framework that is able
to model the neutron-star birth properties and evolution in the Galaxy, starting from
different prescriptions for the initial distributions in Galactic height, kick velocity,
spin period, magnetic-field strength and magnetic-field evolution. Moreover, we
simulated the neutron stars’ electromagnetic emission in the radio band and mod-
elled observational biases to emulate the detection with current radio facilities (see
Chapters 1, 5 and 6). By varying the underlying model parameters, our simulation
framework is able to generate different mock neutron-star populations that can be
compared with the real observed population. To do this, we combine for the first
time pulsar population synthesis with a machine learning framework with the aim
of performing parameter inference on the observed data and constraining our phys-
ical models. Neural networks represent a powerful tool to perform this inference
task due to their potential to process multi-dimensional data and extract relevant
features in an automated way (see Chapter 2).

In Chapter 5 we focused on analysing the dynamics of Galactic neutron stars via
simulations. In particular, by varying the natal kick-velocity distribution and the
distribution of birth distances from the Galactic plane we evolved the pulsar trajec-
tories in time, and generated a series of simulated populations. We then studied the
feasibility of using convolutional neural networks to infer the dynamical properties
at birth of a simulated population of neutron stars from density maps storing the
information on their sky positions and proper motions. This proof-of-concept work
showed that neural networks have the potential to predict the parameters govern-
ing the kick-velocity and Galactic height distributions with very good accuracy. The
current limitation of this approach is the lack of observational data as we only know
around 200 neutron stars with measured sky positions and proper motions. We
demonstrated that a good inference accuracy would require about 10 times the cur-
rent number of neutron stars with measured proper motions. Our work highlights
the crucial need for detecting more neutron stars and accurately classifying them, a
goal that can be reached with future radio telescopes such as the Square Kilometer
Array. A future extension of this analysis should focus on the possibility of test-
ing different kick-velocity distributions as recent studies have hinted at a possible
bi-modality in the kick-velocity distribution due to different mechanisms producing
the kicks in the supernova explosion.
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In Chapter 6, we further improved our framework and focused on modelling the
magneto-rotational evolution, the radio emission and the detection of neutron stars
with current radio surveys. This study aimed to constrain the birth distributions of
spin periods and magnetic fields and how these properties evolve in time for the
radio pulsar population. We primarily focused on the radio pulsar population as
we have a wealth of data from large-scale surveys performed with Murriyang (the
Parkes radio telescope) in Australia in the past decades. As we have a fairly good
understanding of the biases and systematics that affect the observed sample from
these surveys, they represent a safe testing ground for our deep-learning approach.

We specifically explored an approach known as simulation-based inference or
likelihood-free inference which represents a step forward from the approach ex-
plored in Chapter 5. There our analysis was limited to point estimates of dynamical
neutron-star properties. With the approach presented in Chapter 6 we can instead
evaluate a posterior distribution for the parameters. As introduced in Chapter 2, in
simulation-based inference a deep neural network is employed as a probability den-
sity estimator that directly maps a given simulation outcome to the posterior prob-
ability distribution of the underlying model parameters without the need to com-
pute the likelihood. This is particularly useful for complex simulators with multi-
dimensional parameter inputs like ours, where defining and computing a likelihood
probability distribution can be complicated or even intractable. To train the network
for our specific problem, we employed density maps containing information on the
spin period and spin period derivative of mock observed pulsar populations sim-
ulated with different distributions of initial magnetic fields and spin periods and
different power laws for the magnetic-field evolution at late times. The trained neu-
ral network is then applied to the real empirical data to derive the posterior distri-
bution of the parameters describing the real observed population of radio pulsars.
We found that the observed radio pulsars can be best described by belonging to an
underlying population born with the logarithm of the initial magnetic field follow-
ing a normal distribution with best parameters µlog B = 13.10+0.08

−0.10, σlog B = 0.45+0.05
−0.05

and the logarithm of initial spin period following a normal distribution with best
parameters µlog P = −1.00+0.26

−0.21, σlog P = 0.38+0.33
−0.18. We also put the first constraint on

the magnetic-field evolution at late times. Our result suggests that assuming a late-
time power law evolution, the magnetic field should decay with a power law-index
alate = −1.80+0.65

−0.61.
A further benefit of the simulation-based inference approach is that the robust-

ness of the results and their uncertainty can be checked using the coverage probabil-
ity test (see Chapter 2 and Appendix D). This allows us to determine if the inferred
posterior is well-calibrated or shows signs of over-confidence or under-confidence.
By applying this test to our trained posterior density estimator we showed that the
predicted posteriors are well-calibrated and our results using a posterior-ensemble
are conservative.

The work completed for this thesis will form the basis to further develop a sim-
ulation framework able to include the high-energy emission of neutron stars. To
this end, we plan to consider the results of new magneto-thermal 3D simulations
(Gourgouliatos, Wood, and Hollerbach, 2016; De Grandis et al., 2020; Dehman et
al., 2023) to explain the thermal X-ray radiation from the neutron-star surface and
a synchro-curvature model (Viganò and Torres, 2015; Viganò, Torres, and Martín,
2015) to describe the high-energy gamma-ray radiation originating in the neutron-
star magnetospheres. We also seek to emulate the observational biases and detection
with current X-ray and gamma-ray facilities in order to compare our models with the
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observed data. This multi-wavelength approach to studying the neutron-star popu-
lation will allow us to consider and analyse the properties of different neutron star
classes in a unified scenario. This will be particularly helpful to remove degenera-
cies and better constrain the parameters describing the neutron-star population as
whole.

Furthermore, we will further improve our simulation-based inference frame-
work by including an active learning approach. After training the density estimator
over an initial set of simulations (much smaller than what we outlined in Chapter 6),
the resulting initial estimate of the posterior distribution obtained for the observed
data can be used to generate additional simulations that more closely reproduce the
observed data. This new dataset of simulations can then be adopted as a new train-
ing set to refine the estimate of the posterior sequentially. This will allow a more
effective inference procedure by concentrating the computational resources on the
regions of the parameter space that is more compatible with the observed data.

7.2 The mystery of long-period pulsars

The second topic that I have explored in this thesis concerns the recent discovery
of three intriguing sources: PSR J0901-4046, the slowest radio neutron-star pulsar
ever detected with a spin period of 76 s and two mysterious periodic radio sources,
GLEAM-X J1627 and GPM J1839–10, with periods of 1091 s and 1318 s, respectively.
The emission properties of these sources are similar to those of magnetars but the
nature of these last two objects is still uncertain. In Chapters 3 and 4 we studied
possible scenarios to produce such long-period sources.

In particular in Chapter 3, by assuming a neutron-star nature for these sources, I
showed that the standard dipolar losses invoked to explain the currently observed
radio pulsar population are insufficient to reach such long spin periods unless ex-
treme (constant) magnetic fields are taken into account. We therefore explored the
possibility that such slow pulsars might be neutron stars spun down during an ini-
tial phase of fallback accretion from the supernova debris. Soon after the supernova,
the matter that remains gravitationally bound to the central compact object can start
to fallback and circularise to form a disk. This disk can interact with the central neu-
tron star and exchange angular momentum depending primarily on the mass accre-
tion rate and the magnetic-field strength of the central neutron star. I showed that
newly born neutron stars with birth magnetic fields of B0 ∼ 1014−15 G, experiencing
a propeller accretion phase from a fallback disk with moderate initial accretion rates
of 1022−27 g s−1, can reach spin periods of thousands of seconds at relatively young
ages (∼ 103−5 yr). On the other hand, neutron stars with lower magnetic fields are
unaffected by the presence of a fallback disk and do not experience a significant
spin-down. Hence, while predicting the existence of a population of neutron stars
with very long periods, this model also explains the normal radio pulsar popula-
tion. However deep X-ray observations have imposed upper limits on the X-ray
luminosity of these two objects that challenge the magnetar interpretation. If they
are neutron stars, they appear to be too cold to possess such strong magnetic fields
according to our current understanding of magneto-thermal evolution in neutron
stars.

In Chapter 4, we considered both the neutron-star and magnetic white-dwarf
origin for these periodic sources and further studied the implications for the two
scenarios. First, we showed that for both scenarios, these objects are difficult to rec-
oncile with the standard model for radio emission due to particle acceleration in
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magnetospheric gaps. Moreover, we performed population synthesis simulations
of both neutron stars and magnetic white dwarfs to assess the possibility of having
long-period sources with a sufficient amount of rotational energy to power the ob-
served radio emission. Accounting for even the most extreme scenario of fallback
accretion and constant magnetic fields, we showed that it is very unlikely to have
a population of long-period neutron stars that still have the rotational energy bud-
get to explain the observations of GLEAM-X J1627 and GPM J1839–10. On the other
hand, since magnetic white dwarfs are born with longer spin periods and possess
larger moments of inertia, a fraction of their population may possess the rotational
energies and the magnetic fields necessary to power the observed emission.

More than 50 years after the first discovery of radio pulsations from neutron
stars, the physical mechanism that produces coherent radio emission from rotat-
ing magnetosphere is still poorly understood. The discovery of PSR J0901-4046,
GLEAM-X J1627 and GPM J1839–10 poses further challenges to our current under-
standing of neutron-star and white-dwarf emission and evolution. The long-period
domain in the radio band has been poorly explored in the past and the fact that
we serendipitously detected these sources indicates that they may be very common.
Future dedicated Galactic plane imaging surveys focusing on long-period sources
will likely discover many more objects of this kind. The theoretical ground work
presented in this thesis will therefore provide useful insights into future discoveries
and help to shed light on the nature of this sources.
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Appendix A

Timing tests

A.1 Hardware and Software

Our test machine features an Intel(R) Xeon(R) Gold 6230R CPU at 2.10GHz with a
single NVIDIA GTX 2080 Ti GPU, 16 GiB RAM, and SSD drives. The system is run-
ning CentOS Linux release 7.8.2003 (Core) with PyTorch 1.2.0, CUDA toolkit 10.0.130
and GPU driver 455.32.00.

A.2 Timing Tests

A.2.1 Timing for Single-parameter Predictions

We report here the timing benchmarks for the MLP and CNN during the single-
parameter training experiments discussed in Section 5.4.1. We run our experiments
on the test machine and individually record the forward pass time (the time needed
to go through the samples in a batch and compute a prediction) and the backward
pass time (the time to compute all the gradients and perform a single optimisation
step) as a function of the batch size and resolution. Our benchmarks for the training
data-sets from simulation run S1 using the four training configurations T1, T2, T3
and T4 are shown in Figures A.1 and A.2, respectively.

The timing benchmark shows that the MLP is slightly faster in performing an op-
timisation step. This is expected due to fewer trainable parameters when compared
to the more complex CNN. We can also see that the forward and backward pass
times per sample decrease with increasing batch size for both the MLP and CNN.
For a larger batch size, several input samples are transferred from the CPU to the
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FIGURE A.1: MLP forward (solid lines) and backward (dashed lines)
pass times per sample in ms for the training process on the single
parameter σk of the Maxwell kick-velocity distribution, as a function
of the batch size and the resolution (red, blue, and orange curves for 32,
128 and 512 respectively) using the four different input configurations
T1 (GC position), T2 (GC position + velocity), T3 (ICRS position) and

T4 (ICRS position + velocity).
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FIGURE A.2: CNN forward (solid lines) and backward (dashed lines)
pass times per sample in ms for the training process on the single
parameter σk of the Maxwell kick-velocity distribution, as a function
of the batch size and the resolution (red, blue, and orange curves for 32,
128 and 512 respectively) using the four different input configurations
T1 (GC position), T2 (GC position + velocity), T3 (ICRS position) and

T4 (ICRS position + velocity).
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FIGURE A.3: CNN forward pass (solid line) and backward pass time
(dashed line) per sample for the two-parameter experiments as a func-
tion of the batch size for the four different input configurations T1
(GC position), T2 (GC position + velocity), T3 (ICRS position) and T4

(ICRS position + velocity).

GPU in one step, reducing the overall number of calls between the two. Thus, on
average, the processing time for an individual sample reduces when the batch size
is increased. Moreover, a higher resolution generally implies an increase in compu-
tational cost, albeit being more pronounced in the case of the CNN than the MLP.
The number of input channels itself has very little effect on our timings. Finally, we
note that ICRS maps are slightly faster to process (in particular for the higher resolu-
tions), due to the fact that their size is smaller compared to the galactocentric maps
(they have half the height in bins).

A.2.2 Timing for Two-parameter Predictions

Following the results for the single-parameter experiments, we restrict our two-
parameter predictions to the CNN model only and fix the resolution of the input
maps to 128. The results of our timing benchmarks using the training data-sets
from simulation run S3 with the four configurations T1, T2, T3 and T4 are shown
in Figure A.3. We again report the timings for the forward and backward passes per
sample as a function of the batch size and the type of input channels provided. As
for the single-parameter case, we conclude that using ICRS maps ensures the lowest
forward and backward pass times.
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Appendix B

Neutron stars with measured
proper motion

In Table B.1, we report the properties of 417 neutron stars with measured proper
motions in RA and DEC. Data for these neutron stars are primarily collected from
the ATNF catalogue1 (Manchester et al., 2005). In some cases, updated estimates
are available and those values quoted and the corresponding references specified.
Note that in those cases, where multiple proper-motion estimates are available, we
choose the ones with the lowest absolute error. The columns report in order: (i) the
object name based on J2000 coordinates; (ii) the right ascension (RA) in hour angle
and (iii) declination (DEC) in degrees with the last digit uncertainty given in paren-
theses; the proper motion in (iv) RA and (v) DEC in milliarcseconds per year with
corresponding uncertainties; (vi) the parallax measured in milliarcseconds with un-
certainty where available; (vii) the position epoch in modified Julian days; (viii) the
spin period in seconds; (ix) the spin-period derivative in seconds over seconds; (x)
the dispersion measure in [pc cm−3] with the last digit uncertainty given in paren-
theses; (xi) the heliocentric distance derived from the DM using the YMW16 free-
electron density model (for some objects the DM exceeds the maximum Galactic
DM allowed by the YMW16 model, which assigns a default value of 25 kpc; when
available, we quote other distance estimates; * indicates a distance derived from
other techniques especially for X-rays and gamma-ray sources, which have no mea-
sured DM); (xii) the classification of the object, i.e., radio pulsar (PSR), binary pulsar
(binary PSR), gamma-/X-ray pulsar (Gamma-/X-ray PSR), magnetar (MAG), X-ray
dim isolated neutron star (XDINS); if the object is associated with a globular cluster
(GC) or the Small Magellanic Cloud (SMC) this is reported in brackets; and (xiii) the
reference for the proper motion measurements, indicated only if different from the
ATNF catalogue, i.e., [1] Motch et al. (2009), [2] Eisenbeiss et al. (2010), [3] Walter
et al. (2010), [4] Stovall et al. (2014), [5] Jennings et al. (2018), [6] Perera et al. (2019),
[7] Dang et al. (2020), [8] Danilenko et al. (2020).

1https://www.atnf.csiro.au/research/pulsar/psrcat/

https://www.atnf.csiro.au/research/pulsar/psrcat/
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Ṗ

D
M

d ⊙
C

la
ss

(A
ss

oc
.)

R
ef

.
[h

m
s]

[◦
’”

]
[m

as
yr

−
1 ]

[m
as

yr
−

1 ]
[m

as
]

[M
JD

]
[s

]
[s

s−
1 ]

[p
c

cm
−

3 ]
[k

pc
]

J1
82

4-
24

52
A

18
:2

4:
32

.0
07

88
(3

)
-2

4:
52

:1
0.

83
4(

8)
−

0.
2
±

0.
2

−
6
±

4
_

54
50

0
0.

00
30

5
1.

61
88

36
×

10
−

18
11

9.
89

2
3.

70
1

PS
R

(G
C

)
[6

]
J1

82
5-

09
35

18
:2

5:
30

.5
94

(2
)

-0
9:

35
:2

1.
2(

2)
−

13
±

11
−

9
±

5
_

57
60

0
0.

76
90

2
5.

23
55

40
×

10
−

14
19

.3
83

3(
9)

0.
26

2
PS

R
J1

82
5-

14
46

18
:2

5:
02

.9
6(

17
)

-1
4:

46
:5

3.
77

(7
)

11
.0

7
±

0.
1

−
27

.6
1
±

0.
1

_
55

31
4

0.
27

92
0

2.
26

69
6
×

10
−

14
35

2.
23
(4
)

4.
44

PS
R

J1
82

6-
13

34
18

:2
6:

13
.1

75
(3

)
-1

3:
34

:4
6.

8(
1)

23
±

2.
5

−
3.

9
±

3.
1

_
52

40
0

0.
10

14
9

7.
52

51
73

8
×

10
−

14
23

1.
0(

10
)

3.
60

6
PS

R
J1

82
9-

17
51

18
:2

9:
43

.1
3(

12
)

-1
7:

51
:0

4(
16

)
22

±
13

−
15

0
±

13
0

_
49

87
8

0.
30

71
3

5.
55

17
4
×

10
−

15
21

7.
10

8(
9)

5.
93

7
PS

R
J1

83
2-

08
27

18
:3

2:
37

.0
13

(2
)

-0
8:

27
:0

3.
7(

12
)

−
4
±

4
20

±
15

_
55

39
7

0.
64

73
3

6.
38

96
19

×
10

−
14

30
0.

86
9(

10
)

4.
04

6
PS

R
J1

83
3-

03
38

18
:3

3:
41

.8
94

5(
1)

-0
3:

39
:0

4.
25

8(
1)

−
17

.3
4
±

0.
09

15
±

0.
3

0.
4
±

0.
06

57
60

0
0.

68
67

3
4.

15
61

01
×

10
−

14
23

4.
53

8(
13
)

5.
17

6
PS

R
J1

83
5-

10
20

18
:3

5:
57

.5
78

4(
10

)
-1

0:
20

:0
4.

50
(6

)
25

±
5

4
±

21
_

54
36

9
0.

30
24

5
5.

91
86

6
×

10
−

15
11

3.
7(

9)
2.

87
4

PS
R

J1
83

5-
11

06
18

:3
5:

18
.4

1(
5)

-1
1:

06
:1

6.
1(

9)
27

±
46

56
±

19
0

_
55

42
9

0.
16

59
2

2.
05

89
2
×

10
−

14
13

2.
67

9(
3)

3.
15

9
PS

R
J1

83
6-

04
36

18
:3

6:
51

.7
90

(2
)

-0
4:

36
:3

7.
7(

1)
−

3
±

2
−

1
±

9
_

49
53

2
0.

35
42

4
1.

66
09

5
×

10
−

15
23

1.
5(

3)
4.

35
8

PS
R

[7
]

J1
83

6-
10

08
18

:3
6:

53
.9

0(
23

)
-1

0:
08

:0
8(

14
)

18
±

65
12

±
22

0
_

48
88

0
0.

56
27

1
1.

17
99

02
×

10
−

14
31

6.
98
(3
)

5.
34

3
PS

R
J1

83
9-

06
43

18
:3

9:
09

.7
88

(7
)

-0
6:

43
:4

4.
5(

4)
4
±

32
−

17
0
±

11
1

_
54

60
3

0.
44

95
5

3.
63

8
×

10
−

15
49

7.
9(

16
)

4.
81

7
PS

R
[7

]
J1

84
0+

56
40

18
:4

0:
44

.5
37

2(
1)

+5
6:

40
:5

4.
85

2(
1)

−
31

.2
1
±

0.
03

−
29

.0
8
±

0.
06

0.
66

±
0.

04
48

71
7

1.
65

28
6

1.
49

48
18

×
10

−
15

26
.7

71
63
(1

7)
2.

18
9

PS
R

J1
84

1+
09

12
18

:4
1:

55
.9

5(
15

)
+0

9:
12

:0
7.

0(
37

)
−

12
±

5
38

±
7

_
48

26
6

0.
38

13
2

1.
09

03
44

×
10

−
15

49
.1

57
9(

43
)

1.
66

4
PS

R
J1

84
3-

11
13

18
:4

3:
41

.2
61

91
7(

12
)

-1
1:

13
:3

1.
06

86
(7

)
−

1.
91

±
0.

06
−

3.
2
±

0.
2

0.
6
±

0.
4

55
00

0
0.

00
18

5
0.

95
54

×
10

−
20

59
.9

64
(8
)

1.
70

6
PS

R
[6

]
J1

84
3-

14
48

18
:4

3:
01

.3
75

0(
3)

-1
4:

48
:1

2.
61

(3
)

10
.5
±

0.
19

12
±

15
_

53
93

4
0.

00
54

7
6.

20
9
×

10
−

21
11

4.
51
(7
)

3.
47

2
PS

R
J1

84
4+

14
54

18
:4

4:
54

.8
94

6(
11

)
+1

4:
54

:1
4.

12
(3

)
−

9
±

10
45

±
6

_
49

36
2

0.
37

54
6

1.
87

23
×

10
−

15
41

.4
85

55
(6

1)
1.

68
3

PS
R

J1
84

7-
04

02
18

:4
7:

22
.8

42
(2

)
-0

4:
02

:1
4.

4(
1)

−
1
±

7
8
±

19
_

57
60

0
0.

59
78

1
5.

16
91

12
×

10
−

14
14

1.
97

9(
5)

3.
41

9
PS

R
J1

84
8-

01
23

18
:4

8:
23

.5
89

5(
15

)
-0

1:
23

:5
8.

33
(5

)
5
±

2
−

26
±

6
_

53
86

8
0.

65
94

3
5.

25
18

2
×

10
−

15
15

9.
53

1(
8)

3.
53

3
PS

R
J1

85
3+

13
03

18
:5

3:
57

.3
18

3(
23

)
+1

3:
03

:4
4.

05
10

(4
1)

−
1.

63
±

0.
02

−
2.

96
±

0.
04

0.
2
±

0.
3

56
55

3
0.

00
40

9
8.

71
61

×
10

−
21

30
.5

69
96
(8
)

1.
31

9
PS

R
[6

]
J1

85
6-

37
54

18
:5

6:
35

.4
1(

16
)

-3
7:

54
:3

5.
8(

2)
32

6.
6
±

0.
5

−
61

.9
±

0.
4

6.
2
±

0.
6

50
45

0
7.

05
52

0
2.

98
×

10
−

14
_

0.
16

*
X

D
IN

S
[3

]
J1

85
7+

05
26

18
:5

7:
15

.8
51

(2
)

+0
5:

26
:2

8.
64

(2
)

19
±

11
−

51
±

20
_

54
61

9
0.

34
99

5
6.

93
11

×
10

−
15

46
6.

4(
12
)

12
.2

57
PS

R
[7

]
J1

85
7+

09
43

18
:5

7:
36

.3
90

42
(1

2)
+0

9:
43

:1
7.

19
60

(4
1)

−
2.

65
2
±

0.
00

4
−

5.
42

3
±

0.
00

6
0.

9
±

0.
1

55
36

7
0.

00
53

6
1.

78
39

5
×

10
−

20
13

.3
14

0(
25
)

0.
76

7
PS

R
[6

]
J1

90
0-

26
00

19
:0

0:
47

.5
82

(4
)

-2
6:

00
:4

3.
8(

5)
−

19
.9
±

0.
3

−
47

.3
±

0.
9

0.
5
±

0.
6

48
89

1
0.

61
22

1
2.

04
53

4
×

10
−

16
37

.9
94
(5
)

1.
23

7
PS

R
J1

90
1+

03
31

19
:0

1:
31

.7
81

(2
)

+0
3:

31
:0

5.
97

(7
)

−
7
±

2
−

45
±

5
_

54
33

6
0.

65
54

5
7.

45
93

×
10

−
15

40
2.

08
0(

12
)

6.
05

3
PS

R
J1

90
1+

07
16

19
:0

1:
38

.9
56

(5
)

07
:1

6:
34

.4
(1

)
23

±
16

−
28

±
33

_
54

53
7

0.
64

40
0

2.
28

72
×

10
−

15
25

2.
81
(7
)

7.
23

7
PS

R
[7

]
J1

90
1-

09
06

19
:0

1:
53

.0
08

7(
3)

-0
9:

06
:1

1.
14

6(
10

)
−

7.
54

±
0.

04
−

18
.2
±

0.
2

0.
52

±
0.

05
50

87
3

1.
78

19
3

1.
63

82
9
×

10
−

15
72

.6
77
(1

8)
2.

89
2

PS
R

J1
90

2+
05

56
19

:0
2:

42
.6

16
(3

)
05

:5
6:

25
.9

2(
6)

−
4
±

5
−

1
±

10
_

54
28

8
0.

74
65

8
1.

28
75

16
7
×

10
−

14
17

7.
48

6(
13
)

4.
19

8
PS

R
[7

]
J1

90
2-

51
05

19
:0

2:
02

.8
48

21
(9

)
-5

1:
05

:5
6.

96
95

(8
)

−
4.

8
±

1.
3

−
4.

4
±

1.
6

_
55

52
0

0.
00

17
4

9.
19

93
×

10
−

21
36

.2
5(

1)
1.

64
5

PS
R

J1
90

3+
01

35
19

:0
3:

29
.9

86
(1

)
+0

1:
35

:3
8.

53
(4

)
3
±

7
−

13
±

14
_

57
60

0
0.

72
93

1
4.

02
50

×
10

−
15

24
5.

16
7(

6)
6

PS
R

J1
90

3+
03

27
19

:0
3:

05
.7

93
21

3(
1)

+0
3:

27
:1

9.
20

91
1(

6)
−

2.
8
±

0.
3

−
6.

6
±

0.
8

0.
3
±

0.
7

55
00

0
0.

00
21

5
1.

88
20

8
×

10
−

20
29

7.
52

45
(6
)

6.
12

2
PS

R
[6

]
J1

90
3-

70
51

19
:0

3:
38

.7
93

5(
3)

-7
0:

51
:4

3.
46

1(
2)

−
8.

8
±

1.
6

−
16

±
2

_
56

52
6

0.
00

36
0

1.
04

3
×

10
−

20
19

.6
6(

1)
0.

93
PS

R
J1

90
4+

00
04

19
:0

4:
12

.7
18

0(
15

)
+0

0:
04

:0
5.

29
(4

)
8
±

9
−

7
±

16
_

54
37

7
0.

13
95

2
1.

18
05

×
10

−
16

23
3.

61
(4
)

6.
36

4
PS

R
J1

90
5+

04
00

19
:0

5:
28

.2
73

43
6(

16
)

+0
4:

00
:1

0.
88

30
(6

)
−

3.
8
±

0.
18

−
7.

3
±

0.
4

_
53

70
0

0.
00

37
8

4.
90

52
×

10
−

21
25

.6
92

3(
12
)

1.
06

4
PS

R
J1

90
5+

07
09

19
:0

5:
53

.6
2(

2)
07

:0
9:

19
.4

(6
)

−
1
±

34
−

12
±

63
_

49
46

6
0.

64
80

4
4.

94
16

×
10

−
15

24
5.

34
(1

0)
4.

98
PS

R
[7

]
J1

90
6+

04
54

19
:0

6:
47

.1
39

70
(7

)
+0

4:
54

:0
9.

04
2(

2)
−

6
±

1
−

14
±

3
_

58
10

0
0.

00
20

8
2.

98
2
×

10
−

21
14

2.
79

3(
2)

4.
09

2
PS

R
J1

90
7+

09
19

19
:0

7:
14

.3
3(

1)
+0

9:
19

:2
0.

1(
2)

0.
6
±

0.
2

4.
2
±

0.
4

_
51

05
2

5.
19

83
5

9.
2
×

10
−

11
_

_
M

A
G

J1
90

7+
40

02
19

:0
7:

34
.6

56
(8

)
+4

0:
02

:0
5.

71
(1

1)
11

±
4

11
±

1
_

48
71

3
1.

23
57

6
5.

40
70

7
×

10
−

16
30

.9
66
(1

4)
2.

46
PS

R



194 Appendix B. Neutron stars with measured proper motion

JN
am

e
R

A
D

EC
µ

R
A

µ
D

EC
pa

ra
ll

ax
Po

s.
Ep

oc
h

P
Ṗ
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Appendix C

Parametrisation of the
magnetic-field evolution

As outlined in Section 6.2.2, a key ingredient for the magneto-rotational evolution of
radio pulsars is a realistic prescription for the evolution of the dipolar magnetic-field
strength, B, up to neutron-star ages of 108 yr. While earlier population-synthesis
studies have typically either neglected magnetic-field decay entirely, or relied on
simplified descriptions invoking decaying exponentials or power laws, we choose a
different approach and take advantage of recent progress in modelling the magneto-
thermal evolution of neutron-star crusts. In particular, we use a set of five magneto-
thermal simulations (Viganò et al., 2021) to fit the early-time magnetic-field evolu-
tion which is driven by the combined action of the Hall effect and Ohmic dissipation
(see, e.g., Pons and Viganò, 2019, and Section 1.6 for details on these mechanisms).

All five curves, shown as solid lines in Figure 6.2, were simulated with realistic
assumption on relevant physics. In particular, the stellar structure and composition
are based on the equation of state SLy4 (Douchin and Haensel, 2001) for a neutron
star of mass 1.4 M⊙, resulting in a radius of 11.74 km. The impurity parameter at
the highest densities in the inner crust is set to 100 (Pons, Viganò, and Rea, 2013),
representing the presence of resistive nuclear pasta phases (see, e.g., Chamel and
Haensel, 2008), whereas the impurity profile for other crustal densities matches the
results of Carreau, Fantina, and Gulminelli (2020) (see their Fig. 5). Furthermore, the
model for the neutron-star envelope is taken from Potekhin, Pons, and Page (2015),
while specific parametrisation for the superfluid and superconducting energy gaps
(SFB for the crustal neutrons, TToa for the core neutrons and CCDKp for the core
protons) were adopted from Ho (2015).

What varies between the different simulations is the initial poloidal magnetic-
field strength, B, taking the values 1012, 1013, 1014, 1015, 5 × 1015 G, respectively. This
also implies different toroidal field strengths, which are typically a factor 10 larger
than the poloidal Bs. We observe in Figure 6.2 that those runs with larger magnetic
fields decay faster. This is a direct result of the Hall effect which depends on B and
acts to redistribute the magnetic-field energy to smaller scales, where it subsequently
decays due to Ohmic dissipation. For sources with B ≲ 1012 G and coupled thermal
evolution, this Hall cascade does not take place and magnetic fields remain pretty
much constant on timescales of the order of 106 yr.

Above this timescale, however, current magneto-thermal simulations become
unreliable because the implementation of relevant microphysics (Potekhin, Pons,
and Page, 2015) is unsuited to old neutron stars with temperatures ≲ 106 K. In ad-
dition, these simulations focus primarily on the crust and do not include a realistic
treatment of the highly uncertain dynamics of the neutron-star core, which should
become relevant above ∼ 106 yr. As we require a prescription for the field above
106 yr for our population synthesis, we develop a simplified parametrisation for the
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late-time magnetic-field evolution that encodes the unknown evolution of the stellar
core. As highlighted in Equation (6.12), we assume that field changes at late times
can be captured by a power law characterised by the index, alate. This choice is
physically motivated because several known magnetic-field evolution mechanisms
exhibit the same functional form. For example, Hall-like physics are encoded by
alate = −1 (Aguilera, Pons, and Miralles, 2008a), while ambipolar diffusion follows
a power law with alate = −0.5 (Goldreich and Reisenegger, 1992).

To directly parametrise the behaviour of the magnetic fields across all relevant B
ranges and times t, we describe the field evolution with the following broken power
laws:

B(t) = B0

(
1 +

t
τ1

)a1
(

1 +
t

τ2

)a2−a1
(

1 +
t

τlate

)alate−a2

for τ1 < τ2 < τlate,

(C.1)

B(t) = B0

(
1 +

t
τ1

)a1
(

1 +
t

τlate

)alate−a1

for τ1 < τlate < τ2, (C.2)

B(t) = B0

(
1 +

t
τlate

)alate

for τlate < τ1 < τ2. (C.3)

Here, the two timescales τ1 ≡ A1Bb1
0 and τ2 ≡ A2Bb2

0 depend on the initial mag-
netic field, B0, while τlate is a constant. The latter together with the free parameters
A1,2, b1,2 and the power-law indices a1,2 can be adjusted to closely fit the numeri-
cal simulations. In particular, we choose τlate ≈ 2 × 106 yr, A1 = 1014, b1 = −0.8,
A2 = 6 × 108, b2 = −0.2, a1 = −0.13, and a2 = −3.0.

For particularly steep power-law indices, alate, the current prescription, in prin-
ciple, allows the magnetic field to decay to unrealistically small values in contrast
with observations of old millisecond pulsars (Lorimer, 2008). To prevent this, we as-
sume that the magnetic field eventually settles at a constant value, Blate, for very late
times. In line with detected old neutron stars, we randomly sample the logarithm of
Blate from a normal distribution with a mean µlog B,final = 8.5 and a standard devia-
tion σlog B,final = 0.5 as already outlined previously. The result of this magnetic-field
prescription for alate = −3.0 is shown as the dashed lines in Figure 6.2.
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Appendix D

Coverage calculation

To validate our neural posterior estimates, we follow Cook, Gelman, and Rubin
(2006) who demonstrated that for a well-calibrated posterior distribution, the small-
est volume that contains the ground truth, θ, for a given sample in a test data set
follows a uniform distribution. This, in turn, implies that the cumulative distribu-
tion function of these quantiles across the entire test set forms a diagonal line. The
graphical representation of this cumulative distribution function is commonly re-
ferred to as the coverage plot (see Section 2.5.2 and Figure 6.10). Put differently, if
we consider a credibility level 1 − α, we expect the ground truth, θ, to fall into this
region for a fraction 1 − α of test samples if the coverage is diagonal.

To calculate the corresponding coverage for our posteriors and assess how well
they are calibrated, we take advantage of the amortised nature of our approximate
posterior. In particular, for each of our 3, 600 test samples, we have access to the
ground truth, θ, and the corresponding posterior approximation, qF(x,ϕ)(θ), where
F(x, w) represents a trained neural network. To determine the coverage, we need to
calculate the quantiles for each θ. In our case, where we infer five magneto-rotational
parameters and the posterior, qF(x,w)(θ), is a five-dimensional probability density
function (see Equation (6.27)), we obtain corresponding quantiles by determining
the so-called highest-density regions (HDRs), i.e., those regions covering our sample
space for a given probability 1 − α that have the smallest possible volume (Hynd-
man, 1996). To obtain these HDRs for each of our test samples, we first compute the
total log-posterior at the ground truth, θ, i.e., log qF(x,w)(θ). From each posterior, we
subsequently draw samples, θs, with s ∈ {1, . . . , S}, for which we also individually
compute the log-posterior, i.e., log qF(x,w)(θs). The HDR for a given test sample with
ground truth, θ, is now the percentage of samples, θs, which satisfy the condition
log qF(x,w)(θs) > log qF(x,w)(θ). To compute the cumulative distribution function
(coverage) across our test set, we repeat this process iteratively for all 3, 600 test
samples to determine, for a given credibility level 1 − α, the fraction of test samples
where the HDR is smaller or equal to 1 − α.

Deviations from the diagonal are present when posterior estimates are either
too wide (conservative) or too narrow (over-confident). In the former case, ground
truths would be enclosed within a given HDRs more often than expected for the true
posterior, while in the latter scenario the opposite applies. The resulting coverage
curves would, thus, lie above and below the diagonal, respectively, highlighting the
benefit of the coverage plot in validating our posteriors.

Finally note that for our ensemble approach, we calculate the HDR with the en-
semble posterior, q(θ), using the condition log q(θs) > log q(θ). The remaining steps
are identical to those outlined above.
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