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Quantum systems with SU(N) symmetry are paradigmatic settings for quantum many-body
physics. They have been studied for the insights they provide into complex materials and their
ability to stabilize exotic ground states. Ultracold alkaline-earth atoms were predicted to exhibit
SU(N) symmetry for N = 2I+1 = 1, 2, . . . , 10, where I is the nuclear spin. Subsequent experiments
have revealed rich many-body physics. However, alkaline-earth atoms realize this symmetry only
for fermions with repulsive interactions. In this paper, we predict that ultracold molecules shielded
from destructive collisions with static electric fields or microwaves exhibit SU(N) symmetry, which
holds because deviations of the s-wave scattering length from the spin-free values are only about 3%
for CaF with static-field shielding and are estimated to be even smaller for bialkali molecules. They
open the door to N as large as 32 for bosons and 36 for fermions. They offer important features
unachievable with atoms, including bosonic systems and attractive interactions.

I. INTRODUCTION

The prediction and experimental realization of
SU(N = 2I + 1) symmetry in ultracold alkaline-earth
atoms [1–4] with nuclear spin I has allowed the study
of a wealth of phenomena: bosonization of high-spin
fermions by measurements of collective modes [5–7],
flavor-selective Mott transitions in a lattice [8], and the
SU(N) Fermi-Hubbard model’s equations of state [9–11]
and short-ranged magnetic correlations [12]. The sym-
metry is also responsible for the temperature T = 1nK
reached in Ref. [12]; this is the lowest temperature ever
achieved for fermions. Unlike ordinary SU(2) spins,
quantum fluctuations need not become classical for large
spin. Consequently, exotic behavior is predicted to occur
in lattices as the temperature is lowered further. Pre-
dicted phases abound for different lattice geometries and
N , including chiral spin liquids, a topological phase of
matter never before observed [13, 14]. The itinerant or
doped SU(N) Hubbard models are little explored and
likely to show extremely rich phenomena.

However, alkaline-earth-atom realizations of SU(N)
physics have important limitations. One constraint is
that, to have I ̸= 0 (N > 1), such atoms must be fermions
to satisfy the “even-even” rule of nuclear physics [15].
Another constraint is that, empirically, all the interac-
tions in the experimentally viable ultracold alkaline-earth
atoms, Sr and Yb, are repulsive, i.e., have a positive scat-
tering length a [4]. Moreover, the important tool of mag-
netic Feshbach resonances that is used to tune interac-
tions in alkali atoms is absent for ground-state alkaline-
earth atoms, since they lack unpaired electrons.

Rapidly advancing experiments with ultracold
molecules offer exciting possibilities for many-body
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physics, quantum technologies, precision measurement,
and studying chemical reactions [16–20]. A wide variety
of ultracold molecules have been produced [16], including
alkali-metal dimers produced by assembly of ultracold
atoms, and other species produced by direct laser
cooling. Experiments revealed losses that occur when
molecular collisions reach short range (R ≲ 100 a0),
which impede the creation of interesting many-body
states. They occur for both reactive and non-reactive
molecules. This discovery stimulated theoretical pro-
posals to shield the molecules from short-range loss
by creating intermediate-range repulsive interactions
using static electric fields [21–25] or microwave radiation
[26, 27]. These have now been demonstrated experi-
mentally [28–34]. Notably, Bose-Einstein condensation
has recently been achieved for NaCs using two-color
microwave shielding [35].

In this paper, we show that shielded molecules can
realize SU(N) systems that circumvent the constraints
of alkaline-earth atoms, and introduce other interesting
properties. Fermionic and bosonic molecules are avail-
able, and the sign and magnitude of the scattering length
can be tuned by varying the control fields that generate
the shielding [25, 27]. The dipolar interactions may also
be tuned. Experimentally available molecules can realize
all N up to N = 36, for Na40K [32], much larger than for
Sr (N = 10) and Yb (N = 6).

The properties of SU(N) molecular systems open inter-
esting paths for many-body physics. Attractively inter-
acting SU(N) systems are predicted to have rich pairing
structures, for example transitions between color super-
fluid and trion phases [36–41], with similarities to the
crossover from a confining hadronic phase to a parton gas
in high-energy physics [42]. Bosonic SU(N) systems have
garnered interest as integrable systems [43], holographic
duals [44], and ferromagnets with non-Abelian symmetry
breaking [45]. Such examples offer a small glimpse of the
possibilities offered by shielded ultracold molecules.
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Section II presents coupled-channel calculations for
CaF collisions shielded with a static electric field. Even
CaF, which has much larger spin couplings than bial-
kali molecules, satisfies SU(N) symmetry to about 3%
relative accuracy. We develop a model to estimate quan-
titatively the nuclear-spin dependence of interactions for
other molecules. This shows that SU(N) symmetry will
hold to even higher accuracy for alkali dimers. Section
III derives many-body models for these systems, espe-
cially the SU(N) Hubbard models that describe shielded
molecules in an optical lattice. Section IV summarizes,
suggests experiments to verify the predictions, and out-
lines next steps for the field.

II. SHIELDED INTERACTIONS OF
MOLECULES

A pair of polar molecules, k = 1, 2, interact at long
range via the dipole-dipole interaction

Ĥdd = −3(µ1 · R̂)(µ2 · R̂)− µ1 · µ2

4πϵ0R3
, (1)

where R is the intermolecular distance, R̂ is the corre-
sponding unit vector, and µk is the dipole moment of
molecule k which lies along the molecular axis. For an s-
wave collision, with relative angular momentum (partial-
wave) quantum number L = 0, the dipole-dipole interac-
tion averages to zero. However, it has matrix elements
between L = 0 and 2, both diagonal and off-diagonal in
molecular pair state. The matrix elements off-diagonal
only in L cause an effective long-range attraction pro-
portional to d4/R4 [46], where d is the space-fixed dipole
moment of each molecule (for static-field shielding) or
the rotating dipole (for microwave shielding).

Both static-field and microwave shielding operate by
engineering a field-dressed pair state to be a small energy
∆E below the initial state of interest. Matrix elements
of Ĥdd that connect the two pair states produce a re-
pulsive contribution to the interaction potential for the
upper (initial) state. Shielding occurs when the repul-
sion is sufficient to prevent pairs of colliding molecules
coming close together. The repulsion is proportional to
(d4/∆E)/R6 at long range.

The combination of long-range attraction and shorter-
range repulsion produces a potential well at long range,
whose depth and position depend on the molecule and
the field applied. This allows considerable control over
the scattering length, which for some molecules may be
tuned from positive to negative values and even through
poles [25, 27].

We focus here on static-field shielding, using coupled-
channel scattering calculations on CaF as an example.
The methods used are described in Ref. [24] and their
numerical convergence is described in Methods. We begin
with spin-free calculations (Sec. II A) and then consider
the effects of electron and nuclear spins (Sec. II B).

FIG. 1. SU(N) symmetry in intermolecular interac-
tions and its consequences. (a) Effective potentials (adia-
bats) for CaF in the spin state (g,mg) = (1, 0) (solid circles)
are nearly equal to the spin-free adiabats (solid lines) for fields
of 23 and 24.5 kV/cm. Adiabats for other spin states are even
closer to the spin-free curves. (b-d) Examples of many-body
physics enabled by shielded ultracold molecules: (b) forma-
tion of bound molecular clusters and their dissociation by
thermal (temperature T ) or quantum (e.g. lattice tunneling
t) fluctuations, reminiscent of deconfinement in QCD, (c) or-
dered phases in optical lattices including charge density waves
(CDW) and color superfluids (CSF), and (d) states with large
quantum fluctuations arising from large N and the high de-
gree of symmetry.

A. The spin-free case

We consider collisions between molecules in the state
(ñ,mn) = (1, 0), for which static-field shielding is most
effective. The single-molecule eigenstates are labeled by
hindered-rotor quantum numbers ñ, which correlate at
zero field with the free-rotor quantum number n, and
mn, its projection onto z.
It is helpful to consider the effective potentials for

scattering. We define these as adiabats that are the
R-dependent eigenvalues Ui(R) of the pair Hamiltonian
given in Methods. Figure 1 shows the spin-free adia-
bats for s-wave scattering for two CaF molecules in state
(ñ,mn) = (1, 0) at two values of an applied electric field
F that produce effective shielding.
There are two sources of 2-body loss. First, the re-

pulsion does not extend all the way to R = 0. There is
a repulsive barrier, and some colliding pairs may tunnel
through it to reach short range (R ≲ 100 a0), where loss
may occur. Secondly, there can be inelastic collisions that
produce molecules in lower field-dressed states, particu-
larly in the pair state just below the initial one. The solid
lines in Fig. 2(a) show the calculated rate coefficients for
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FIG. 2. Collision rate coefficients and features of the
spin-free effective potential for CaF. (a) Rate coefficients
for elastic scattering (red), inelastic scattering (green) and
short-range loss (black) for CaF at collision energy Ecoll = 10
nK × kB, over the range of electric fields where shielding is
effective. The calculations use the spin-N206-L6 basis set
described in Methods. Solid lines show spin-free calcula-
tions. Dashed lines show the corresponding results for initial
(g,mg) = (1, 1) + (1, 1). The blue dashed line shows the con-
tribution from the 1-molecule inelastic transition to (1,0). (b)
The inner turning point Rt (red) and phase integral Φ (blue)
over the same range of field.

spin-free elastic scattering and total (inelastic + short-
range) loss for CaF as a function of F [24]. The overall
effectiveness of shielding may be characterized by the ra-
tio γ of rate coefficients for elastic scattering and loss; this
can be up to 107 for CaF and much larger for molecules
such as NaCs [25]. The calculations also provide the
complex s-wave scattering length, a(F ) = α(F )− iβ(F ),
where β arises due to loss and L-changing collisions and
is small when shielding is effective. The real part α(F )
is of principal interest here. Figure 3(a) shows α(F ) for
CaF from spin-free coupled-channel calculations.

B. Dependence on spin state

SU(N) symmetry exists when the shielded interactions
are almost independent of molecular spin state and diag-
onal in it. Here we describe an approach to estimate the
dependence on spin state and present quantum scatter-
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FIG. 3. Effect of spins on scattering length. (a) Real
part α(F ) of the scattering length for CaF from spin-free cal-
culations. (b) Scattering lengths αjj′(F ), including the ef-
fects of spin, shown as differences from field-free values. Solid
lines are from coupled-channel calculations; dashed lines are
from the model of Eq. 4. Each spin combination is labeled by
gmg + g′m′

g.

ing calculations for CaF that validate the estimate. We
then give estimates of the spin dependence for a variety
of ultracold molecules of current experimental interest.
Electron and nuclear spins are described by the Hamil-

tonian for fine and hyperfine structure, ĥfhf , given in
Methods. For CaF in a strong electric field, the elec-
tron spin s = 1/2 and the nuclear spin i = 1/2 of 19F
couple to form g, with projection mg; these are approx-
imately conserved and can take values (g,mg) = (0, 0),
(1,0) and (1,±1).
We first diagonalize the single-molecule Hamiltonian,

including ĥfhf . We calculate the space-fixed dipole
moments dj = ⟨j|µz|j⟩ for j = (ñ,mn, g,mg) with
(ñ,mn) = (1, 0). It is convenient to define fractional
changes ∆dj = (dj − d0)/d0 from the spin-free value d0.
These depend only weakly on F : for CaF at F = 23
kV/cm, the values are −1.9 × 10−5, 8.3 × 10−4 and
−4.4 × 10−4 for the states (g,mg) = (0, 0), (1, 0) and
(1,±1), respectively. The coefficient of the long-range
attraction is proportional to d4j and thus differs by at

most 0.33% from d40. We may expect that the effective
potentials will differ by about this amount.

To test this simple model of the interactions, we per-
form full coupled-channel calculations including electron
and nuclear spins for both molecules. Details are in
Methods. The calculations produce scattering lengths
ajj′ and rate coefficients for elastic scattering and loss,
as before, but now for each pair of spin states j = (g,mg)
and j′ = (g′,m′

g). In zero magnetic field there are 7 dis-
tinct pairs, because pairs with (mg,m

′
g) = (0,±1) are

equivalent, as are the pairs (±1,±1), though the latter
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FIG. 4. Effect of spins on the adiabats. Fractional dif-
ferences ∆Ujj′(R) between adiabats with and without spin,
defined by Eq. 2, for CaF at 23 kV/cm. Each spin combina-
tion is labeled by gmg + g′m′

g.

are different from (±1,∓1).
Shielding remains effective for all spin states, even

for distinguishable pairs. However, there are additional
inelastic transitions for some spin states due to spin-
changing collisions. In particular, a molecule initially
in (g,mg) = (1, 1) can undergo a transition to (1,0). The
rate coefficient for this process in a collision of two such
molecules is shown as a blue dashed line in Fig. 2(a).
The elastic and short-range loss are almost unaffected,
but the total inelastic loss is modified as shown by the
dashed green line. The spin-changing rate coefficients
are no larger than 10−14 cm3 s−1 and the ratio γ re-
mains above ∼ 105. The spin-changing rates are similar
for other collisions involving a molecule in state (1,1),
and otherwise very small. This satisfies the requirement
that the interactions are diagonal in spin state.

The real part of the scattering length α(F ) depends
only weakly on spin state. The solid lines in Fig. 3(b)
show the differences δαjj′(F ) = αjj′(F )−α0(F ) between
the scattering lengths and the spin-free value α0(F ) of
Fig. 3(a) as a function of field. The values αjj′ not shown
are close to (αjj + αj′j′)/2. This demonstrates that the
scattering lengths are independent of spin state to within
about 5% for shielded CaF.

The coupled-channel calculations provide adiabats as
in Fig. 1, but now for each spin combination. They are
almost indistinguishable on the scale of Fig. 1. However,
they cross zero at slightly different inner turning points
Rtjj′ , so to show their differences we define

∆Ujj′(R) =
Ujj′(R+Rtjj′ −Rt0)− U0(R)

U0(R)
, (2)

shifting Ujj′(R) slightly in R so that its turning point
matches Rt0. Fig. 4 shows ∆Ujj′(R) for all spin combi-
nations of CaF at 23 kV/cm. The differences between
the adiabats including spin and the spin-free adiabat are
no more than 2% over the entire classically allowed range
of R. The effective potential for interaction of molecules

in spin states j and j′ has long-range form

Ujj′(R) = −
4ℏ2D2

jj′

15µredR4
, (3)

where Djj′ = djdj′µred/(4πϵ0ℏ2) is the dipole length for
space-fixed dipoles dj and dj′ . At large R, the ratios of
the adiabats are accurately given by the corresponding
ratios of D2

jj′ .
We have developed a model for the effective potentials

and scattering lengths for shielded collisions, which al-
lows simple estimates of the spin-dependence of the scat-
tering length for CaF and other molecules. The model is
derived in Methods and gives

dα

dD
≈(α− 2Rt)/D − 2Φ

√
8/15 sec2

(
Φ− π

4

)
, (4)

where Φ is a phase integral involving the spin-free po-
tential and Rt is its zero-energy turning point. These
quantities are shown for CaF in Fig. 2(b), as a function
of field.
The dashed lines in Fig. 3 show the results of the model

for δαjj′ , compared to the coupled-channel results includ-
ing spin for CaF (solid lines). The model captures the
overall behavior well. Details of the model for CaF at 23
kV/cm are given in Extended Data Table I, including the
spin combinations not shown in Fig. 3. At this field, Φ
for CaF is slightly less than 3π/4; this is close to a pole
in α as a function of Φ, with α large and negative. Here
the second term in Eq. 4 dominates, and small changes in
Φ cause large fractional changes in α. Nevertheless, even
for CaF at 23 kV/cm, where dj varies by up to 0.13%
between spin states, the values of δαjj′ are no more than
3% of α. For systems where Φ is not close to a pole, there
will be less amplification of dα/dD by the last term in
Eq. 4.
CaF has only 4 spin states, so can be used realize

SU(N) up to N = 4. Other molecules, particularly al-
kali dimers, can reach much greater N : singlet molecules
with two spin-3/2 nuclei, such as Na87Rb or Na39K, can
reach N = 16, while bosonic molecules with larger spins,
such as NaCs, can reach N = 32. Fermionic Na40K can
reach N = 36.
Alkali dimers have a hyperfine Hamiltonian [47] similar

to that for CaF, but with the electron spin replaced by a
second nuclear spin and additional terms arising from nu-
clear quadrupole coupling. Coupled-channel calculations
that fully include spin are challenging for these molecules,
because the spin space is so much larger: for NaCs, for
example, the number of spin functions for the pair is 64
times larger than for CaF, and the computer time scales
as the cube of this. Nevertheless, we can estimate the
spin dependence, using the understanding gained from
CaF. The changes in scattering length from the field-free
value are

δαjj′ = (Djj′ −D0)
dα

dD
≈ D0 (∆dj +∆dj′)

dα

dD
. (5)
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FIG. 5. Predicting spin-dependent changes in scat-
tering length for NaCs from the model. (a) Spin-free
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αjj from Eq. 4, including the effects of spin, shown as differ-
ences δαjj from field-free values. Results are shown for spin
states j with maximum and minimum values of dj and span
the range of possible values of δαjj .

Molecule F (kV/cm) |(dmax − dmin)/d0| Rt0 (a0)
RbCs 2.7 4.3× 10−4 750
Na39K 7.1 8.3× 10−5 630
Na40K 7.1 8.9× 10−5 a
Na41K 7.0 1.0× 10−4 620
NaRb 4.5 4.9× 10−4 650
NaCs 2.5 2.4× 10−5 870
CaF 23 1.3× 10−3 380

aFor Na40K, which is fermionic, the lowest channel has
L = 1 and its adiabat never drops below zero energy.

TABLE I. Spread of dipole moments among different
spin states. Range of dipole moments (dmax − dmin)/d0 for
different spin states of the field-dressed level (ñ,mn) = (1, 0)
for alkali dimers and CaF. For each molecule, we choose an
electric field where static-field shielding is effective, but the
ranges of dipole are only weakly dependent on field. The value
of Rt0 is also given at the chosen field, but this depends much
more strongly on field.

Table I summarizes the range of ∆dj across spin states,
for several ultracold molecules of current interest, for the
field-dressed level (ñ,mn) = (1, 0) that can be shielded
with a static electric field. All the alkali dimers have
ranges substantially smaller than CaF.
NaCs is particularly interesting, because α can be

tuned close to zero at F ≈ 2.395 kV/cm [25], in the
region where shielding is effective. It has 32 hyperfine
states and a particularly small range of dipoles, because
NaCs has unusually small nuclear quadrupole coupling
constants [48]. Figure 5(a) shows Rt0(F ) and α0(F ) from
spin-free coupled-channel calculations on NaCs. Figure
5(b) shows δαjj(F ) from Eq. 4 for the hyperfine states
with the largest and smallest values of dj . The variation
in αjj′ between spin states is only about 0.1% at most
fields, and only about 3 a0 around the zero in α.

III. MANY-BODY PHYSICS

Molecular systems with an SU(N) symmetry offer vast
new possibilities for quantum simulation and many-body
physics. The large spin degeneracy and the high symme-
try enhance quantum fluctuations, stabilize exotic states
of matter such as chiral spin liquids [13, 14], and pro-
duce interesting dynamics, such as controllable prether-
malization [49]. Experiments will fall into two categories:
experiments in continuous space with just a trap, and op-
tical lattice experiments.
In continuum experiments, the use of molecules will en-

rich the SU(N) phenomena studied with alkaline-earth
atoms and also allow exploration of totally new areas.
Ref. [50] has demonstrated quantum gas microscopy,
which remains in development for fermionic alkaline-
earth atoms. The large number of hyperfine states will
allow exploration of repulsive SU(N) models with much
larger N than for alkaline-earth atoms; this will enhance
quantum fluctuations and topological order [13, 14]. The
larger N may also allow even lower temperatures than
in alkaline-earth atoms, which already reach record-low
temperatures for fermions [12].
Attractive and bosonic systems are also rich areas.

Attractive gases, both with and without an optical lat-
tice, may allow experiments to explore the formation of
energetically favorable clusters and their ordering, with
connections to both condensed [36–41] and high-density
nuclear matter [42]. Bosonic SU(N) systems have been
considered, for example as integrable systems [43], non-
Abelian ferromagnets [45] and holographic duals [44].
To explore these areas efficiently and connect exper-

iments to models studied in many-body physics, it is
necessary to reduce the coupled-channel results to an ef-
fective interaction. This is analogous to replacing the
complicated interatomic potential for atoms with a delta-
function. Due to the range of thousands of bohr and
1/R4 tail, a contact potential is probably adequate only
for very dilute gases. The strength of the delta-function
interaction can be determined from the scattering length
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in the coupled-channel calculations. Higher densities will
probably require more accurate effective potentials based
on the complete adiabats.

Optical lattice experiments with molecules provide an-
other wide-ranging arena for SU(N) many-body physics.
In a sufficiently deep lattice, with temperatures and in-
teractions small compared to the band gap, the system
is described by an SU(N) Hubbard Hamiltonian,

Ĥ = −t
∑

⟨i,j⟩,σ

(
ĉ†iσ ĉjσ + h.c.

)
+

U

2

∑
i,σ,τ

n̂iσn̂iτ

+
∑
ij;στ

Vij

2
niσnjτ +

∑
iσ

(ϵσ − µσ)n̂iσ, (6)

where ciσ and c†iσ are annihilation and creation opera-

tors at site i for hyperfine state σ, and niσ = c†iσciσ,
Vij = C3(1 − 3 cos2(Θij))/|r⃗i − r⃗j |3 with Θij the angle
between the intermolecular separation and the electric
field is the dipole interaction between molecules i and j,
and ϵσ and µσ are the number operator, single-molecule
energy and chemical potential for component σ. The
tunneling energy t is

t = −
∫
d3r w∗(r)

(
− ℏ2

2m
+ V (r)

)
w(r + d), (7)

where d is a nearest-neighbor lattice vector, m is the
molecular mass, V (r) is the lattice potential of a molecule
at center of mass position r⃗, and w(r) is the lowest-band
Wannier function obtained from the single-particle band
structure. When the spread of the Wannier functions is
much larger than the interaction range,

U =
4πℏ2a
m

∫
d3r |w(r)|4, (8)

where a is the scattering length. Due to the large spatial
extent of the interaction potential, Eq. 8 may provide
only a rough estimate of U . Quantitative calculations
of U can be performed by solving the two-body prob-
lem numerically. This is a challenging calculation, but
is tractable when the lattice is deep enough. Although
the single-molecule energies in the last term of Eq. (7)
apparently break SU(N) symmetry, they are irrelevant

because N̂σ =
∑

i n̂iσ, is conserved.

IV. OUTLOOK

Realization of SU(N) symmetry in ultracold molecules
will unlock a broad range of new physics, with strong con-
nections to condensed matter and other areas of many-
body physics.

A first step will be to confirm and quantify the de-
gree of symmetry experimentally. Initial characteriza-
tions may be performed by measuring the kinetics of
evaporation or cross-dimensional thermalization, already
measured for one spin component of 40KRb [29]. For a

system with SU(N) symmetry, these are independent of
hyperfine state. Spectroscopy can provide more accurate
measurements, analogous to those for SU(N) symmetry
with alkaline-earth atoms [51]. Two-photon microwave
or Raman spectroscopy can measure the difference in in-
teraction energy when the spin state is changed. A use-
ful limit is a deep lattice where tunneling is negligible,
so photons will drive one-molecule hyperfine transitions
on doubly-occupied sites. Amplitude-modulation spec-
troscopy has also been used to measure interactions of
atoms in lattices to high precision [52]. With the SU(N)
symmetry confirmed, experiments can begin probing the
many-body phases of matter and dynamics offered.
This work also opens areas of theoretical research in

both molecular collisions and many-body physics. Al-
though the treatment of the alkali dimers in Sec. II B
is sufficient to estimate the degree of SU(N) symmetry,
full coupled-channel calculations are needed for quanti-
tative results. This challenges current methods due to
the large number of nuclear states. Although we have
focused here on shielding with static electric fields, we
expect that microwave shielding will provide interactions
with a comparable degree of SU(N) symmetry. Coupled-
channel calculations are needed to verify this.

The new many-body physics offered by shielded ul-
tracold molecules includes gases, Hubbard models, and
Heisenberg models with large N . Such systems can
have positive or negative scattering lengths, bosonic
or fermionic or constitutents, and dipolar interactions.
These offer fertile ground to study new phases and dy-
namics of quantum matter.
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METHODS

A. Hamiltonian for the spin-free case

The Hamiltonian of spin-free CaF in an electric field is

ĥ = bn̂2 − µ · F . (9)

The molecule is treated as a rigid rotor with rotational
constant b in an electric field F along the z axis; n̂
is the operator for molecular rotation. For 40Ca19F,
b/h ≈ 10.267GHz and |µ| = 3.07D. The corresponding
Hamiltonian for a pair of molecules is

ĥ1 + ĥ2 +
L̂2

2µred
+ Ĥdd − Celec

6 /R6, (10)

where L̂ is the operator for relative rotation of the pair
and µred is the reduced mass. Celec

6 accounts for the
electronic dispersion interaction between the molecules
[24, 54], but has only small effects on the results.

B. Basis sets used in coupled-channel calculations

The methodology used for the coupled-channel calcu-
lations on CaF is as described in Ref. [24], except that
the present calculations use different basis sets.

As in Ref. [24], we use basis sets that are constructed
from symmetrized products of field-dressed rotor func-
tions |ñ,mn⟩ and spin functions |g,mg⟩, together with
functions for the partial-wave quantum number L and
its projection ML. We include rotor functions with ñ
up to 5. For CaF, there are four spin functions for each
monomer rotor state. However, the resulting number of
pair basis functions, Npair, is too large (∼10000 for each
L, ML) to be used directly in coupled-channel calcula-
tions. We therefore include only a relatively small num-
ber of “class 1” pair functions explicitly in the basis set,
with the remaining “class 2” functions taken into account
through Van Vleck transformations as described in ref.
[24].

It is the number of class 1 functions that determines
the overall computational cost. To achieve a manage-
able basis-set size, we include only energetically nearby
rotor pairs in class 1 and move the remainder to class 2.
In the present work, we include 14 rotor pairs in class
1: (ñ,mn) = (0,0)+(1,0), (1,−1)+(1,−1), (1,1)+(1,−1),
(1,1)+(1,1), (1,0)+(1,−1), (1,0)+(1,1), (1,0)+(1,0),
(0,0)+(2,−1), (0,0)+(2,1), (0,0)+(2,0), (1,−1)+(2,−1),
(1,−1)+(2,1), (1,1)+(2,−1) and (1,1)+(2,1). Inclusion
of all spin functions for each of these rotor pairs gives
a total number of symmetrized pair states Npair = 206.
We refer to basis sets based on this as spin-N206.

The spin-dependence of scattering lengths, character-
ized by δαjj′ , converges very fast with respect to the
rotor basis, and is much better than 1% for spin-N206.
The convergence of loss rates is slower, and varies with
field because colliding pairs are more likely to reach short
range when shielding is poor. Nevertheless, at 23 kV/cm,
spin-N206 gives convergence of loss rates to within 1%.
The basis set of partial waves is also important. For

each pair function (rotor plus spin), we include partial
waves L up to 6 and refer to the resulting basis sets as
spin-N206-L6. For each spin combination, calculations
are performed for only a single value of Mtot = mn,1 +
mn,2 +mg,1 +mg,2 +ML, such that the s-wave channel
for the initial state is included in the basis set. The total
number of coupled channels in class 1 varies from 556 to
652. Based on comparisons between spin-N206-L6 and
spin-N206-L4, we estimate that spin-N206-L6 gives δαjj′

converged to better than 1% and loss rates converged
within 10%.

C. Hamiltonian for fine and hyperfine structure

For a single CaF molecule, the Hamiltonian for fine
and hyperfine structure is

ĥfhf = γŝ · n̂+ζFî · ŝ+t
√
6T 2(C) ·T 2(̂i, ŝ)+cFî · n̂. (11)

Here the first term represents the electron spin-rotation
interaction, while the second and third terms account for
the isotropic and anisotropic interactions between elec-
tron and nuclear spins. T 2(̂i, ŝ) denotes the rank-2 spher-

ical tensor formed from î and ŝ, and T 2(C) is a spheri-
cal tensor whose components are the Racah-normalized
spherical harmonics C2

q (θ, ϕ). The last term represents
the nuclear spin-rotation interaction, which is typically
three orders of magnitude smaller than the others. The
values of the constants b, γ, ζF, t and cF for CaF are the
same as in Ref. [24].

D. Effective-potential model of spin dependence

In a semiclassical approximation [55], the real part α
of the s-wave scattering length for a potential with long-
range part proportional to R−4 may be written in terms
of a phase integral Φ,

α = Rt −
√
8/15D tan

(
Φ− π

4

)
. (12)

Here Rt is the inner turning point at zero collision energy,
with U(Rt) = U(∞) = 0, D is the dipole length, and

Φ =

∫ ∞

Rt

k(R) dR, (13)

where k(R) = (2µred|U(R)|/ℏ2)1/2. The first term in Eq.
12, Rt, is omitted in Ref. [55], but can be a substantial
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fraction ofD for shielded collisions; for CaF at 23 kV/cm,
with D ≈ 1290 a0, Rt contributes about 380 a0 to α.

If we take the spin-free adiabat U0(R) as a reference,
with phase k0(R) and phase integral Φ0, the integral Φjj′

for a slightly shifted potential Ujj′(R) for the interaction
between species in spin states j and j′ is

Φjj′ =

∫ ∞

Rtjj′

kjj′(R) dR

≈
∫ ∞

Rt0

k0(R)
[
1 + 1

2∆Ujj′(R)
]
dR, (14)

where ∆Ujj′(R) is the difference between adiabats de-
fined by Eq. 2 of the main text.

As shown in Extended Data Figure 1, Φjj′ scales ap-
proximately with D2

jj′ and Rt scales approximately with

D−1
jj′ . These dependences apply to varying isotopic com-

bination at constant field, but not to varying field, which
also changes the separation of the field-dressed states.

Differentiating Eq. 12 with these dependences on D

gives

dα

dD
≈−Rt/D −

√
8/15 tan

(
Φ− π

4

)
− 2Φ

√
8/15 sec2

(
Φ− π

4

)
≈(α− 2Rt)/D − 2Φ

√
8/15 sec2

(
Φ− π

4

)
. (15)

The last term is large near any poles in α; it has minima
near Φ/π = integer + 1/4, which is close to the zeroes
in α, but is nevertheless usually the largest term under
shielding conditions.

EXTENDED DATA

(g,mg) + (g′,m′
g) Djj′ Rtjj′ Φjj′/π δαjj′ δαjj′

(model) (c.c.)
(0,0)+(0,0) 1292 381.7 0.6628 2.22 4.28
(0,0)+(1,0) 1293 381.4 0.6638 −46.5 −41.7
(0,0)+(1,1) 1292 381.9 0.6622 26.6 26.3
(1,0)+(1,0) 1294 381.0 0.6648 −95.3 −88.7
(1,0)+(1,1) 1293 381.6 0.6633 −22.1 −19.2
(1,1)+(1,1) 1291 382.1 0.6617 51.0 48.8
(1,1)+(1,−1) 1291 382.1 0.6617 51.0 48.8

TABLE I. Comparing changes in scattering lengths
predicted by the model with coupled-channel calcula-
tions including spin. For CaF at 23 kV/cm, D0 = 1292 a0,
Rt0 = 381.7 a0, Φ0/π = 0.6628 and α0 = −2980 a0. All
lengths are in units of a0.
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