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A B S T R A C T
Ground Penetrating Radar (GPR) has been widely studied as a tool for extracting soil parameters
relevant to agriculture and horticulture. When combined with Machine-Learning-based (ML) meth-
ods, high-resolution Stepped Frequency Countinuous Wave Radar (SFCW) measurements hold the
promise to give cost effective access to depth resolved soil parameters, including at root-level depth.
In a first step in this direction, we perform an extensive field survey with a tractor mounted SFCW
GPR instrument. Using ML data processing we test the GPR instrument’s capabilities to predict the
apparent electrical conductivity (ECaR) as measured by a simultaneously recording Electromagnetic
Induction (EMI) instrument. The large-scale field measurement campaign with 3472 co-registered
and geo-located GPR and EMI data samples distributed over ∼6600 square meters was performed
on a golf course. The selected terrain benefits from a high surface homogeneity, but also features the
challenge of only small, and hence hard to discern, variations in the measured soil parameter. Based
on the quantitative results we suggest the use of nugget-to-sill ratio as a performance metric for the
evaluation of end-to-end ML performance in the agricultural setting and discuss the limiting factors
in the multi-sensor regression setting.
The code is released as open source and available at https://opensource.silicon-austria.com/xuc/soil-
analysis-machine-learning-stepped-frequency-gpr.

1. Introduction
The availability of accurate soil information is an es-

sential ingredient for many aspects of land management,
ranging from resource-efficient agri- and horticulture to
hydrological hazard mitigation (Zhuo et al., 2019). In recent
years climate change has further increased the importance of
land management based on timely, location-resolved data.
On the one hand, widespread changes of weather patterns
imply that historically established practices of land use need
to be adapted in many parts of the world. On the other
hand, land management techniques themselves are required
to become more sustainable to reduce their contribution to
environmental degradation (Zhou et al., 2019).
Depending on the spatio-temporal scale and accuracy re-
quirements for soil information, different measurement meth-
ods are in use today. At the local level, (networks of)
sensors deployed in the soil yield direct, quasi instanta-
neous measurements of soil parameters, including depth-
resolving measurements (Francia et al., 2022). At large
scales, satellite-based systems allow the estimation of soil
properties based on remote-sensing data, with typical revisit
times on the order of days (Liang et al., 2021; Dorigo et al.,
2017). In-between these two extremes, and as the focus
of this article, tractor-mounted instruments can provide
soil data in a resource efficient way that allows to directly
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determine process parameters in time for subsequent (agri-
and horticultural) equipment.
The two most established soil sensing techniques suitable
to tractor mounting are Electromagnetic Induction (EMI)
and Ground Penetrating Radar (GPR). For both geophysical
methods, an extensive body of literature has built up over
the last decades on how to relate instrument readouts to soil
parameters (Pathirana et al., 2023).
EMI instruments measure the apparent electrical conduc-
tivity (ECaR) in the surrounding soil using low-frequency
(VLF) electromagnetic waves. The probing frequency and
the specific configuration of coils (spacing, orientation and
height) determine the instrument sensitivity to subsurface
locations at different depth (van’t Veen et al., 2022; Schmäck
et al., 2022). The deduction of soil properties of interest such
as salinity water, volume fraction, bulk density, clay mass
fraction and organic matter mass fraction among others,
from a single measured quantity, namely the electrical con-
ductivity, has been the subject of intense study, but typically
relies on semi-empirical models (Visconti and de Paz, 2021).
GPR enables depth-resolving soil sensing by measuring
the propagation of pulsed or frequency-stepped/modulated
(VHF-UHF) radio frequency waves directed at the ground
(Akinsunmade et al., 2019; Lombardi and Lualdi, 2019). The
soil parameters determine the relative dielectric permittivity,
the conductivity and potentially the magnetic susceptibility
distribution in the ground, which in turn shape the radar
signal propagation. The target application determines the
choice of the TX and RX antenna configurations, including
the options: air-coupled vs. ground-coupled; with or without

Chunlei Xu et al.: Preprint submitted to Elsevier Page 1 of 7

ar
X

iv
:2

40
4.

15
96

1v
1 

 [
ee

ss
.S

P]
  2

4 
A

pr
 2

02
4

https://geoprospectors.com/


Soil analysis with machine-learning-based processing of stepped-frequency GPR field measurements: Preliminary study

buried reflector; monostatic, fixed-offset or variable-offset.
In GPR measurements, the radar center frequency consti-
tutes a compromise, as higher frequencies generally lead
to high spatial resolution, but implies lower signals from
interfaces buried deeper below the surface, as well as, higher
sensitivity to surface roughness. In the agricultural context
GPR radar techniques have been studied for extracting a
multitude of soil parameters, including soil layer thickness,
soil density and Soil Water Content (SWC) (Klotzsche et al.,
2018; Huisman et al., 2003), as well as, for root and seed
localization (Mapoka et al., 2020; Sun et al., 2023), among
many others.
For both instruments and their respective parameter esti-
mation methods, it is commonly required to perform site-
specific calibration since first principle approaches without
free parameters tend to yield precise results only for well-
defined laboratory settings. Taking the example of SWC,
which represents the most studied soil parameter (Pathirana
et al., 2023), analysis models have been developed based
on simulation and/or controlled laboratory measurements
with prepared soil compositions (Tran et al., 2012). In field
measurements, model-based estimations of soil parameters
from the aggregate EMI or GPR measurements encounter
challenges due to the complexity of soil composition and
structure, vegetation and surface morphology, as well as, the
presence of machinery adjacent to the instrument.
In recent years ML approaches have started to supplement
the traditional approaches in GPR analysis, exemplified by
the use of deep neural networks for direct velocity inversion
with GPRNet (Leong and Zhu, 2021) and its further devel-
opment in the agricultural context for depth resolved SWC
profiling (Li et al., 2023). Terry et al. (Terry et al., 2023)
conducted field measurement with multiple geophyiscal in-
struments (including GPR) over a substantial field size with
controlled moistening conditions and used machine learning
to find optimized combinations of classical signal processing
features for moisture estimation. The measurements were
conducted using low frequency radar and profited from a
clear layering in the soils structuring and probed soil over
depths of ten meters and beyond. On the more challenging
task of depth-resolved soil parameter estimation at the root
zone level (from the surface to several tens of centimeters
of depth) promising results were demonstrated by Filardi et
al. (Filardi et al., 2023) using higher frequency SFCW radar
and ML based processing based on data from a set of several
tens of field positions. The employed field sampling clearly
is the gold standard in soil parameter characterizations, but
is typically incompatible with the large datasets required
for thorough development and validation of data-driven
methods.
In this paper we thus follow the idea of Jonard et al. (Jonard
et al., 2013) to record a large field area with both EMI and
GPR instruments simultaneously. Rather than using the GPR
data to predict a specific soil property (e.g. such as soil
moisture) that might suffer from aforementioned calibration
effects or require substantial manual effort for measurement
acquisition (e.g. from gravimetric and chemical analysis),

we directly predict the co-measured EMI values that serve
as a proxy for relevant soil parameters. The primary aim
of this work is to investigate the capability of end-to-
end machine learning methods to extract soil properties
from high frequency GPR measurements in a large scale
field campaign setting. Our work is based on SFCW GPR
measurements in the comparatively high frequency range
from 1.3 to 2.9GHz, which suffer from a high sensitivity
to surface morphology and strong attenuation, but carry the
potential of further depth-resolved parameter extraction at
the root level. A secondary aim of this publication is to make
the obtained dataset available for further development of ML
based methods in the field of precision agriculture.

2. Materials and Methods
2.1. Sensor Specification

For the measurement campaign a Toro Reelmaster 5510
tractor was equipped with the EMI instrument Topsoil Map-
per by Geoprospectors in the front and a newly developed
SFCW GPR radar instrument in the back (see Fig. 1) and in-
cluded into a data acquisition solution with GPS information
(Stonex s10a) for geo-location and time stamping. The EMI
instrument operating at a frequency of 9 kHz and horizontal
coil alignment was mounted with a clearance of 20 cm above
ground and recorded raw apparent electrical conductivity
(ECaR) values with a sampling rate of 5 Hz. Raw in this
case refers to the fact that the mounting of the otherwise
self-calibrating EMI instrument on the mower introduced
a baseline offset due to the presence of high conductive
material. The GPS information was recorded at a rate of 1Hz.
2.1.1. SFCW GPR

The bistatic, air-coupled GPR radar setup features a
single channel SFCM radar prototype by Geoprospectors
with fixed-offset Vivaldi antennas for the transmitter and
the receiver side. The detailed design parameter of the setup
shown in Fig. 1 are listed in Table 1.

Figure 1: Experimental setup with the SFCW radar with air-
coupled, fixed offset, Vivaldi antennas mounted directly behind
the transversal EMI instrument bar on a Toro Reelmaster 5510
tractor.

2.2. Study Site and Data Source
The study sites for the field campaign were fairway 14

and fairway 16 of the Fontana Golf Club south of Vienna,
Austria, located at (47°58’29"N, 16°18’25"E, ) with ∼220m
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Figure 2: Site of the field campaign. (a) Overview satellite map of the Fontana Golf Club south of Vienna, Austria. Detailed
satellite imagery (b) and velocity map (c) of fairways FWY14 (left) and FWY16 (right) used in study. (d) Weather conditions in
the week leading up to the measurements taken on 25.5.2023.

Table 1
Stepped Frequency Radar Setup Parameters.

Frequency 1.3-2.9 GHz
Total sweep time 70ms
Number steps 400
Max. radar 10Hz
location sampling rate
Antenna separation 60 cm at feed points
Ground clearance 15 cm
Angle to vertical 23 ° for both antennas
Antenna Gain ∼7 dBI const. over bandwidth

of elevation. The data was recorded on 25.05.2023 following
several days of dry, warm and windy weather. As shown
in Fig. 2 the fairways were successively covered in parallel
lanes with a separation on the order of 1.5 meters and at driv-
ing speeds up to 14km/h. The EMI, GPR and GPS recordings
were co-registered and re-sampled at the temporal sampling
rate of the GPR instrument.
2.3. Machine Learning

To quantitatively assess the capability of ML-based pro-
cessing methods to estimate soil parameters from the high-
resolution SFCW GPR, we formulate the problem as a
regression task. In this supervised setting, the continuous
and scalar value of the raw apparent electrical conduc-
tivity ECaR as measured by a simultaneously recording
EMI instrument (dependent variable) is estimated from the
SFCW measurement vector that represents the independent
variables. The full code is released as open source and
available at https://opensource.silicon-austria.com/xuc/soil-
analysis-machine-learning-stepped-frequency-gpr.
2.3.1. Data Preprocessing

In the first step, the original data set (Fig. 2 (c)) is
spatially and temporally filtered to reduce the potential

impact on the instrument responses of tractor turns and
velocity changes. Specifically, data points associated with
turning paths and other non-parallel sampling paths at
the beginning and the end of the measurement sequence,
as well as those corresponding to extremely high or low
velocities, are removed from the dataset. For the supervised
regression task, a dataset with input and output pairs,
{(𝐱1, 𝑦1), ..., (𝐱𝑖, 𝑦𝑖)..., (𝐱𝑁 , 𝑦𝑁 )} is created with the predic-
tor variable vectors {𝐱𝑖} being the single channel radar
readings at the 400 frequency steps of the SFCW radar and
scalar EMI ECaR as the scalar target variables {𝑦𝑖} for each
location 𝑖. Further, the outliers corresponding to the upper
and lower 0.5% of EMI ECaR values are removed. The final
data set has 𝑁 = 3472 entries with single channel radar
values at each of the 400 frequency steps, the measured EMI
ECaR values, as well as geographic coordinates associated
with calculated tractor speed.
In the second step, the observed predictor variables are
normalized to obtain the independent features that serve
as input for our ML regression models. This is done by
subtracting for each frequency step of a measurement sample
the mean value over all samples (slow time), following a
similar approach as in (Filardi et al., 2023). The mean values
of the training dataset are hereby used to also normalize
the test dataset features. Furthermore, a transformation that
yields zero mean and standard deviation of one (for the
target variables on the training dataset) is applied to all target
variables with the purpose to improve learning during the
regression task.
2.3.2. Regression models and performance metrics

In this study, the classical ML based regression meth-
ods Linear Regression (Linear), Random Forest Regression
(RFR) and 𝑘-nearest-neighbor-based regression (KNR) are
employed to predict the ECaR value from the SFCW GPR.
The Mean Squared Error (MSE) is used as the loss function
for all models.
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Figure 3: Results of the prediction of EMI values based on GPR data for various ML models. A geo-randomized five-fold
cross-validation of the measurements of fairway 16 (a) is used for training and testing. Results of random forest regression, linear
regression and k-nearest neighbor regression are shown in (b)-(d), respectively. Prediction maps and the scatter plots (with linear
curve fit and sample Pearson correlation coefficient 𝑟) are shown in the top row; error maps and error histograms are shown in
the bottom row. The baseline results outlined in the histogram plot represent the error with respect to a trivial uniform prediction
with a value corresponding to the average of all training measurements. Note: The raw apparent electrical conductivity values
(ECaR) contain a baseline shifted due to the proximity of high-conductivity materials present in the mower.
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Figure 4: Results of the prediction of EMI values based on GPR data for various ML models. The models are trained on fairway
14 and tested on fairway 16 (a). The presentation of results for random forest regression (b), linear regression (c) and k-nearest
neighbor regression (d) follows the description in Fig. 3.

For the assessment of the prediction performance and
the relative comparison, the Mean Squared Error (MSE),
the Mean Absolute Error (MAE) and the sample Pearson
correlation coefficient (𝑟) are computed for all models and
data evaluation scenarios. In each data evaluation scenario,
the RFR and KNR models were first optimized through
hyperparameter grid searches in (repeated) nested cross-
validation (CV) settings on the datasets (Bates et al., 2023;
Bradshaw et al., 2023; Varma and Simon, 2006; Krstajic
et al., 2014). The best model architectures for KNR and
RFR were selected according to the MSE metric. The Linear
model and the respective best-performing KNR and RFR
model architectures were then trained and evaluated in terms
of performance and error estimation by employing repeated
cross-validation (Jiang and Wang, 2017). In this way the
average values of performance metrics and their (one-sigma)
confidence intervals as shown in Table 2 are calculated based
on 50 evaluations that arise from the ten repetitions of the 5-
fold cross validation.

3. Results
Based on the data of the two fairways described in

Sect. 2.2, two different scenarios are studied.
In the first scenario, only data from fairway 16 is used.

The RFR and KNR models are optimized for hyperparame-
ters via repeated nested CV. The best architectures for each
ML model are then trained and tested using repeated 5-fold
CV, where the data splits of the fairway 16 are performed
randomly by completely disregarding the spatial location
information. In this way, train and test data points are
expected to be in close spatial proximity to each other (cf.
Fig. 3 a)).

In the second scenario, fairway 14 is used for traing and
fairway 16 is used for testing. The RFR and KNR model are
optimized for hyperparameters via repeated nested CV on
data from fairway 14. The ML models with best architectures
are selected for repeated 5-fold CV with 4-fold of data taken
from fairway 14 for training and the entire data of fairway
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5-fold cross-val. fwy 16 Train on fwy14, Test on fwy16
RFR Linear KNR Baseline RFR Linear KNR Baseline

MAE 2.11±0.10 2.61±0.12 2.22±0.10 2.31±0.11 2.72±0.06 3.57±0.11 2.60±0.03 2.70±0.02
MSE 8.10±0.86 12.15±1.92 8.93±0.88 9.94±1.07 11.99±0.33 21.66±1.38 10.85±0.18 11.23±0.09

r 0.43±0.06 0.33±0.04 0.32±0.05 n.a. 0.18±0.02 0.08 ± 0.02 0.11±0.02 n.a.

Table 2
Summary of prediction performance data based on random forest regression (RFR), linear regression (Linear) and k-nearest
neighbor regression (KNR) models for the two studied train/test scenarios.

Train and Test on Fwy 16 Train on Fwy14, Test on Fwy 16 Ground Truth Fwy 16
RFR Linear KNR RFR Linear KNR

Range 17.62±0.20 18.18±1.09 19.09±0.31 26.10±1.29 17.41±2.30 21.03± 1.42 15.82
Nugget 0.67±0.04 5.93±0.57 0.50±0.02 1.83±0.26 11.35±1.06 0.54±0.05 1.51

Sill 1.78±0.04 7.96±0.92 1.13±0.02 3.88±0.47 13.00±1.40 0.81±0.07 9.71
NSR 0.38±0.02 0.75±0.02 0.44±0.01 0.47±0.03 0.87±0.04 0.66±0.02 0.16

Table 3
Variogram parameters as extracted from spherical fits to the prediction and ground truth variograms in Fig. 5. The correlation
of the nugget-to-sill ratio (NSR) with the performance metrics in Table 2 shows that the NSR could be used as an indicator for
prediction performance, which does not require the availability of ground truth measurements for its evaluation.

16 evaluated for testing. As a consequence, there is a clear
spatial separation between the train and test data points (cf.
Fig. 4 a)).

The results of the first scenario are graphically summa-
rized in Fig. 3 b), c) and d) for the RFR, the Linear and
the KNR models respectively. By comparing the heatmap
plots of predicted EMI values for all three models (upper
plots in Fig. 3 b), c) and d)), with the measured EMI value
map (Fig. 3 a)), it is evident that predictions contain features
with similar geographic sizes and some correlation in terms
of locations, but with significant lower dynamic range. The
scatter plots of predicted vs. true EMI values also highlight
the fact that high and low values are challenging to predict,
but also show the significant variances in the prediction
error. Whereas the fitted linear slope in the scatter plot data is
highest for the Linear model, the RFR exhibits a significantly
lower scattering of the prediction error. Overall the Pearson
correlation coefficient is highest for the RFR with a value
of 𝑟 = 0.425, which we thus consider the best performing
model. This is also reflected in the error histogram plot,
where the RFR leads to a slight narrowing with respect to
the baseline, which naively assumes the mean of the target
values of the training data as the prediction value for the test
data. The summarized error metrics in Table 2, show that,
while the RFR clearly performs best, the ranking of models
depends on the chosen error metric.
The results of the second scenario with geo-location sep-
arated training and test data are presented in Fig. 4. The
RFR regressor model features the highest sample Pearson
correlation coefficient for EMI value prediction based on the
GPR radar data, but ranks second in terms of MAE and MSE
performance to the KNR, which is the only model beating
the baseline (see Table 2). In the second scenario the overall
performance is degraded by the significantly reduced slope

of the predicted vs. the true EMI data for all models when
compared to the first performance.

As additional metric for characterizing the performance
of the regression models, variograms have been calculated
from the prediction values and fitted by spherical covari-
ance models for parameter extraction (Müller et al., 2022).
Variograms, which quantify the spatial variability of a soil
property under study, play an important role in geostatistical
estimation, in particular, for the optimal interpolation of
measured data points (Mzuku et al., 2005; Cressie, 1993).
In Fig. 5 and Table 3 the predicted nugget (describing the
(extrapolate) variance between samples at vanishing dis-
tances), sill (corresponding to the variance of samples at
(infinitely) large distances), range and Nugget-to-Sill Ratio
(NSR) are compared to those of the measured EMI data.
Motivated by the fact that the nugget value of a variogram,
which describes the (extrapolate) variance between samples
at vanishing distances, has a lower bound by the intrinsic
variance of the measurement/estimation method (Rossel and
McBratney, 1998), we test the hypothesis that the nugget-
to-sill (NSR) ratio could serve as a meaningful metric for
model performance evaluation (Karl and Maurer, 2010). A
low ratio of the nugget to the sill indicates a strong spatial
dependence of the predicted values and hence could indicate
better model performance. Importantly, and in contrast to
the other error metrics, the calculation of the NSR does not
require a ground truth. Indeed, the measured ground truth
data features the lowest NSRs, followed by the RFR models,
followed by the KNR and the Linear regressor. The ranking
according to NSR hence agrees with the one according to
the sample Pearson coefficient and correlates well with the
ones according to MAE and MSE (cf. Table 3 and Table 2).

4. Discussion
From a practical perspective, the first scenario with

spatially inter-dispersed training and test data, is relevant for
Chunlei Xu et al.: Preprint submitted to Elsevier Page 5 of 7
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soil parameter interpolation, where information from more
frequent readings of one sensor is used to improve the inter-
polation of less frequently available soil data from another
sensor (e.g. manual sampling). The second scenario is rep-
resentative of the requirements for standalone instrument for
soil analysis, which gets initially calibrated on specific data
and subsequently performs soil analysis measurements in the
field. For the study case of predicting EMI values from GPR
data, significantly better results were achieved in the first
scenario than in second scenario, as quantified by the metrics
in Table 2 and the NSR error metrics in Table 3. We attribute
the observed performance behaviour mainly to two aspects
of the multi-sensor regression setting of our study. The ma-
jor contribution limiting the regression performance is the
reduced dynamic range of the predicted values as compared
to the measured values. In the regression setting with least
square loss, truly absent (or severely limited) correlation
between variables will lead to an estimate at (or close to) the
mean of the distribution of the target variable. For the first
scenario, spatially inter-dispersed train/test scenario, a fun-
damental lack of correlation is expected due to the different
sensing depth of the two sensors. Whereas the EMI sensing
volume is estimated to extend to a depth of 90 cm, the high
frequency GPR signals are strongly attenuated at this depth.
The sensitivity analysis based on Lasso feature selection in
(Filardi et al., 2023), for instance, shows that for the soil
moisture parameter of that study, radar frequencies from
1.4 GHz to 2.0 GHz provide little to no information on soil
water content at 0.4 m depth compared to frequencies from
0.4 GHz 1.4 GHz. For the second scenario - the spatially
segregated case - we expect a further aspect of the difference
in sensor modalities to contribute in a significant way. As
outlined in the introduction, the EMI and GPR instruments
can be understood to effectively respond to different physi-
cal soil properties, apparent electrical conductivity and the
dielectric permitivity (profile), which in turn depend to a
different degree on soil parameters, including, among others,
SWC, salinity, and clay content. With insufficient training
data to cover relevant soil parameter distributions, the ma-
chine learning model will lack the generalisation capabilities
to overcome distribution shifts in training and test data.
For the substantial but still limited data set underlying this
study, the effect is expected to contribute to the degraded
performance for the second scenario with respect to the first
scenario. In addition, several potential technical contribu-
tions are worth mentioning. While certain considerations
have been taken to reduce the dependencies of our GPR and
EMI measurements on varying experimental conditions (cf.
Section 2.3.1), residual or unaccounted effect, in particular
due to the vehicle mounting, could still contribute to the
observed regression performance limitations. Furthermore,
imperfections in the instruments, including potential effects
that are due to saturation of the radar measurements in our
data set, could also play a role and will be the subject of
future work.
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Figure 5: Variograms of the first scenario with training
and testing on data from fairway 16 (LEFT), and the
geographically-split second scenario with training on fairway
14 and testing on fairway 16 (RIGHT).

5. Conclusion
This study has investigated the capabilities and the

limitations of the end-to-end machine learning techniques
to perform soil analysis from FMCW GPR measurements.
In contrast to previous studies, e.g. by Castrignan𝑜̀ et al.
(Castrignanò et al., 2017), which employed sensor fusion
and geostatistical methods to compare EMI and GPR radar
data and to delineate homogeneous zones in the field, our
data-driven ML approach does not rely on domain-specific
expert knowledge for calibration and enables quantitative
performance assessments. In this context, the nugget-to-sill
ratio, which strongly correlates with several standard ML
figures of merit, has been identified as a promising indicator
of performance that can be computed without ground truth
measurements.
To establish high-frequency FMCW GPR radar as a geo-
physical instrument for precision farming, e.g. enabling
depth-resolved soil analysis at root level, more application-
specific data sets for supervised machine learning are needed.
Multi-sensor field campaigns, such as the one reported
here, are important to collect the large-scale labelled mea-
surements of new instruments with manageable effort. The
integration of additional sensors such as height sensors and
optical cameras could enable the identification of undesired
instrument sensitivities, including to driving conditions,
surface morphology and vegetation. Further developments
towards small form factor devices with data up-link, will
enable future data collections to benefit from a roll-out into
routine land management activities. Instrument data under
a large variety of soil types and conditions can then, for
example, be assessed and labelled in an automatized fash-
ion by correlating with data from other sensor modalities.
Regarding soil water content (SWC) estimation at low soil
depth, low-resolution satellite surveying data can effectively
label uniform fields over extensive spatial areas (Gardin
et al., 2021), wheras UAV-based measurements have demon-
strated their capability to provide data for correlating SWC
measurements at smaller spatial scales (Bertalan et al.,
2022).
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