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Abstract

Recent studies have expanded the use of the stochastic Hamilton–Jacobi–Bellman
(HJB) equation to include complex variables for deriving quantum mechanical equa-
tions. However, these studies typically assume that it’s valid to apply the HJB
equation directly to complex numbers, an approach that overlooks the fundamental
problem of comparing complex numbers to find optimal controls. This paper ad-
dresses how to properly apply the HJB equation in the context of complex variables.
Our findings significantly reevaluate the stochastic movement of quantum particles,
directly influenced by the Cauchy-Riemann theorem. These insights not only deepen
our understanding of quantum dynamics but also enhance the mathematical rigor
of the framework for applying stochastic optimal control in quantum mechanics.

1 Introduction

Recently, a number of studies [1, 2, 3] have derived non-relativistic quantum me-
chanical equations from the stochastic Hamilton–Jacobi–Bellman (HJB) equation.
Although not explicitly stated in these works, the use of complex diffusion coef-
ficients necessitates that the stochastic equations of motion incorporate complex
coordinates and velocities of the particle, while the intermediate action is a complex
function of the complex coordinates.

In their work, Yang et al. [4] introduce the concept of complex quantum mechan-
ics, which also relies on the HJB equation. This study explicitly defines complex
stochastic equations of motion and incorporates complex functions and variables
within the stochastic HJB framework.

In my previous research [5], I extended these ideas by deriving the Dirac equation,
assuming a complex equation of motion and applying the HJB equation to complex
functions and variables.

Despite the innovative approaches in these papers, all assume that the four-
coordinates and the intermediate actions can be straightforwardly replaced with
their complex counterparts in the stochastic HJB equation.

This paper mathematically clarifies the correctness of using complex numbers in
the HJB equation, as suggested in previous studies. It demonstrates that the formal
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replacement of real numbers with complex ones in the HJB equation is indeed valid.
However, this formal replacement needs to be considered as a system of two HJB
equations: one for the real part and one for the imaginary part of the intermediate
action J .

We provide mathematical proof that the equations for finding the optimal control
policy are consistent with those in the real-valued framework. However, for the
complex-valued case, these equations require taking a complex derivative on the
intermediate action J . This proof depends on the crucial assumption that both
the Lagrangian L and the intermediate action J can be analytically continued into
the complex plane. Additionally, we establish that, due to the Cauchy-Riemann
equations, the diffusion coefficient is purely imaginary, indicating that stochastic
movements are confined to the imaginary components of particle coordinates.

The derivation of the complex HJB equation is based on methodologies outlined
in previous research [6, 7, 8, 9]. These works, which derive the HJB equation without
considering complex numbers, establish a starting point for extending the equation
to incorporate complex variables, as demonstrated in this paper.

2 Derivation of the complex stochastic HJB equation

According to the first postulate of the Stochastic Optimal Control Theory of Quan-
tum Mechanics [5], we assume that the particle moves as a Brownian particle in four-
dimensional spacetime, influenced by an external random spacetime force. However,
this motion occurs within the complex plane of each four-coordinate component. The
complex stochastic equation of motion governing this behavior is given by:

dzµ = wµds+ σµdWµ, µ = 0..3, (2.1)

where wµ represents the complex velocity and σµ denotes the complex-valued diffu-
sion coefficients, with dWµ being the increments of a Wiener process that encapsu-
lates the stochastic nature of the particle’s trajectory.

As assumed either implicitly or explicitly in referenced above works, it is consider
a particle moving within a complex plane. The four-coordinates of this particle
are defined as complex numbers, enabling the inclusion of both real and imaginary
components to fully describe its position in spacetime. We express these coordinates
as follows:

zµ = xµ + iyµ, µ = 0..3, (2.2)

where xµ and yµ represent the real and imaginary parts, respectively, and the index µ

spans the four dimensions of spacetime, aligning with the notation used in relativistic
mechanics.

The velocity of the particle is similarly complexified to account for motions in
both the real and imaginary dimensions of the spacetime:

wµ = uµ + ivµ, µ = 0..3, (2.3)

where uµ and vµ denote the real and imaginary components of the four-velocity,
respectively.

The real and imaginary parts of the stochastic equation of motion of the particle
are represented as follows:
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dxµ = uµds+ σx
µdWµ, µ = 0..3, (2.4)

dyµ = vµds+ σy
µdWµ, µ = 0..3, (2.5)

where σx
µ and σy

µ denote the diffusion coefficients associated respectively with
the stochastic dynamics of the real and imaginary components of the coordinates.

According to the third postulate of the Stochastic Optimal Control Theory of
Quantum Mechanics [5], Nature tries to minimize the expected value for the action,
in which the particle’s velocity is consider to be a control parameter of the optimiza-
tion. Formally the complex action is defined as the minimum of the expected value
of stochastic action:

S(zi,w(τi → τf )) = min
w(τi→τf )

〈
∫ τf

τi

dsL(z(s),w(s), s)

〉

zi

, (2.6)

However, this formal definition encounters difficulties as it is not possible to
directly find a minimum of a complex-valued function. To address this, we redefine
the complex action to separate its real and imaginary components, each optimized
independently:

S(zi,w) =SR(xi,yi,u,v) + iSI(xi,yi,u,v) (2.7)

where the real and imaginary parts of the action are defined respectively as follows:

SR,I(xi,yi,u(τi → τf ),v(τi → τf )) = min
u(τi→τf )
v(τi→τf )

〈
∫ τf

τi

dsLR,I(x(s),y(s),u(s),v(s), s)

〉

xi,yi

(2.8)
where LR(x,y,u,v, s) and LI(x,y,u,v, s) are the real and imaginary parts of

the Lagrangian of the test particle. These functions depend on the real and imagi-
nary components of the control policies u and v, the and four-coordinates x and y

at proper time s. The subscripts xi and yi on the expectation value indicate that
the expectation is calculated over all stochastic trajectories that originate at the
complex coordinate zi = xi + iyi.

We define the complex Lagrangian of the particle as:

L(z,w, s) = LR(x,y,u,v, s) + iLI(x,y,u,v, s) (2.9)

such that L(z,w, s) is the analytic continuation of the real Lagrangian of the particle.
The task of optimal control theory [10] is to find the controls u(s) and v(s),

τi < s < τf , denoted as u(τi → τf ) and v(τi → τf ), that minimizes the expected
value of the action SR,I(xi,yi,u(τi → τf ),v(τi → τf )).

We introduce the optimal cost-to-go function for any intermediate proper time
τ , where τi < τ < τf :

JR,I(τ,xτ ,yτ ) = min
u(τi→τf )
v(τi→τf )

〈
∫ τf

τ

dsLR,I(x(s),y(s),u(s), s)

〉

xi,yi

(2.10)

We define the complex cost-to-go function as:

J(τ, z) = JR(τ,x,y) + iJI(τ,x,y), (2.11)
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assuming that it is also an analytic function in the complex plane.
By definition, the action SR,I(xi,u(τi → τf ),v(τi → τf )) is equal to the cost-to-

go function JR,I(τi,xτi ,yτi) at the initial proper time and spacetime coordinate:

SR,I(xi,yi,u(τi → τf ),v(τi → τf )) = JR,I(τi,xτi ,yτi) (2.12)

We can rewrite recursive formula for JR,I(τ,xτ ,yτ ) for any intermediate time
τ ′, where τ < τ ′ < τf :

JR,I(τ,xτ ,yτ ) =

= min
u(τi→τf )
v(τi→τf )

〈

∫ τ ′

τ

dsLR,I(s,xs,ys,us,vs) +

∫ τf

τ ′

dsLR,I(s,xs,ys,us,vs)

〉

xτ ,yτ

= min
u(τi→τf )
v(τi→τf )

〈

∫ τ ′

τ

dsLR,I(s,xs,ys,us,vs) + min
u(τ ′

→τf )

〈
∫ τf

τ ′

dsLR,I(s,xs,ys,us,vs)

〉

xτ′ ,yτ′

〉

xτ ,yτ

= min
u(τi→τf )
v(τi→τf )

〈

∫ τ ′

τ

dsLR,I(s,xs,ys,us,vs) + J(τ ′,xτ ′ ,yτ ′)

〉

xτ ,yτ

.

(2.13)
In above equation we split the minimization over two intervals. These are not

independent, because the second minimization is conditioned on the starting value
xτ ′ , yτ ′, which depends on the outcome of the first minimization.

If τ ′ is a small increment of τ , τ ′ = τ + dτ then:

JR,I(τ, xτ , yτ ) = min
u(τi→τf )
v(τi→τf )

〈LR,I(τ,xτ ,yτ ,uτ ,vτ )dτ + JR,I(τ + dτ,xτ+dτ ,yτ+dτ )〉xτ ,yτ

(2.14)
We must take a Taylor expansion of JR and JI in dx, dy and dτ . However, since

〈

dx2
〉

= σ2
xdτ and

〈

dy2
〉

= σ2
ydτ is of order dτ , we must expand up to order dx2

and dy2:

〈JR,I(τ + dτ,xτ+dτ ,yτ+dτ )〉xτ
=

=

∫

dxτ+dτdyτ+dτN ((xτ+dτ ,yτ+dτ )|(xτ ,xτ ), σdτ)JR,I (τ + dτ,xτ+dτ ,yτ+dτ) =

=

∫

dxτ+dτdyτ+dτN ((xτ+dτ ,yτ+dτ )|(xτ ,yτ ), σdτ)×

× (JR,I(τ,x,y) + dτ∂τJR,I(τ,xτ ,yτ ) + dxµ∂xµJR,I(τ,xτ ,yτ ) + dyµ∂yµJR,I(τ,xτ ,yτ )+

+ dxµdxν 1

2
∂xµxνJR,I(τ,xτ ,yτ ) + dyµdyν

1

2
∂yµyνJR,I(τ,xτ ,yτ ) + dxµdyν∂xµyνJ(τ,xτ ,yτ )) =

= JR,I(τ,x,y) + dτ∂τJR,I(τ,xτ ,yτ ) + 〈dxµ〉 ∂xµJR,I(τ,xτ ,yτ ) + 〈dyµ〉 ∂yµJR,I(τ,xτ ,yτ )+

+
1

2
〈dxνdxµ〉 ∂xνxµJR,I(τ,xτ ,yτ ) +

1

2
〈dyνdyµ〉 ∂yνyµJR,I(τ,xτ ,yτ )

(2.15)
HereN ((xτ+dτ ,yτ+dτ)|(xτ ,yτ ), σdτ) is the conditional probability starting from

state (xτ ,yτ ) to end up in state (xτ+dτ ,yτ+dτ ). The integration is over the entire
spacetime for x and y.
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We can calculate the expected values of dxµ using Equation (2.4):

〈dxµ〉 =

∫

dxτ+dτdyτ+dτN ((xτ+dτ ,yτ+dτ )|(xτ ,yτ ), σ
µdτ)dxµ

=

∫

dxτ+dτdyτ+dτN ((xτ+dτ ,yτ+dτ)|(xτ ,yτ ), σ
µdτ)(uµdτ + σµdWµ)

= uµdτ

∫

dxτ+dτdyτ+dτN ((xτ+dτ ,yτ+dτ )|(xτ ,yτ ), σ
µdτ)+

+

∫

dxτ+dτdyτ+dτN ((xτ+dτ ,yτ+dτ )|(xτ ,yτ ), σ
µdτ)σµdWµ

(2.16)

From this, we derive that:
〈dxµ〉 = uµdτ (2.17)

Similarly, we can find the expected value for dyµ as follows:

〈dyµ〉 = vµdτ (2.18)

Similarly, the calculation of 〈dxνdxµ〉 is performed using:

〈dxνdxµ〉 =

∫

dxτ+dτdyτ+dτN ((xτ+dτ ,yτ+dτ )|(xτ ,yτ ), σ
µdτ)dxµdxν

=

∫

dxτ+dτdyτ+dτN ((xτ+dτ ,yτ+dτ )|(xτ ,yτ ), σ
µdτ)(uµdτ + σµdWµ)(uνdτ + σνdW ν)

=

∫

dxτ+dτdyτ+dτN ((xτ+dτ ,yτ+dτ )|(xτ ,yτ ), σ
µdτ)×

× (uµuνd2τ + uµσνdτdW ν + σµdWµuνdτ + σµdWµσνdW ν)
(2.19)

From which we derive:

〈dxνdxµ〉 = 0, µ 6= ν,
〈

(dxµ)2
〉

= σµ
xσ

µ
xdτ (2.20)

Respectively, for the imaginary components:

〈dyνdyµ〉 = 0, µ 6= ν,
〈

(dyµ)2
〉

= σµ
y σ

µ
y dτ (2.21)

After substituting the above equations into equation (2.15) , we derive the
stochastic HJB equation for the real part of our system:

− ∂τJR(τ,x) = min
u,v

(LR(τ,x,y,u,v) + uµ∂xµJR(τ,x,y) + vµ∂yµJR(τ,x,y)) +

+
1

2

3
∑

µ=0

σµ
xσ

µ
x∂xµxµJR(τ,xτ ,yτ ) +

1

2

3
∑

µ=0

σµ
y σ

µ
y ∂yµyµJR(τ,xτ ,yτ )

(2.22)
In a similar manner, the equation for the imaginary part is derived:

− ∂τJI(τ,x) = min
u,v

(LI(τ,x,y,u,v) + uµ∂xµJI(τ,x,y) + vµ∂yµJI(τ,x,y)) +

+
1

2

3
∑

µ=0

σµ
xσ

µ
x∂xµxµJI(τ,xτ ,yτ ) +

1

2

3
∑

µ=0

σµ
y σ

µ
y ∂yµyµJI(τ,xτ ,yτ )

(2.23)
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The optimal control policies u and v, which minimize the expected cost, can be
determined from the following conditions:

∂uµ
Re(Lz(wµ, z)) + ∂xµJR(τ,x,y) = 0

∂vµRe(Lz(wµ, z)) + ∂yµJR(τ,x,y) = 0
(2.24)

For the imaginary part of the action, the minimization conditions are obtained
from:

∂uµ
Im(Lz(wµ, z)) + ∂xµJI(τ,x,y) = 0

∂vµIm(Lz(wµ, z)) + ∂yµJI(τ,x,y) = 0
(2.25)

These conditions ensure that the stochastic Hamilton-Jacobi-Bellman (HJB)
equations for both the real and imaginary actions are satisfied, leading to the min-
imum expected value of the action across all possible trajectories of the system.
Later, we will prove that the equations derived for the optimal control policies,
specifically equations (2.24) and (2.25), are equivalent.

By multiplying equation (2.23) by the imaginary unit i and adding it to equa-
tion (2.22), we obtain the combined formal form of the stochastic Hamilton-Jacobi-
Bellman (HJB) equation for the complex action.

− ∂τJ(τ,x) = min
u,v

(L(τ,x,y,u,v) + uµ∂xµJR(τ,x,y) + vµ∂yµJR(τ,x,y)+

+ iuµ∂xµJI(τ,x,y) + ivµ∂yµJI(τ,x,y))+

+
1

2

3
∑

µ=0

σµ
xσ

µ
x∂xµxµJR(τ,xτ ,yτ ) +

1

2

3
∑

µ=0

σµ
y σ

µ
y ∂yµyµJR(τ,xτ ,yτ )+

+ i
1

2

3
∑

µ=0

σµ
xσ

µ
x∂xµxµJI(τ,xτ ,yτ ) + i

1

2

3
∑

µ=0

σµ
y σ

µ
y ∂yµyµJI(τ,xτ ,yτ )

(2.26)

Since the complex intermediate action J(τ, z) is analytic, the following equations
are satisfied:

∂zµJ(τ, z) = ∂xµJR(τ,x,y) + i∂xµJI(τ,x,y) = ∂yµJI(τ,x,x) − i∂yµJR(τ,x,y)
(2.27)

The Cauchy-Riemann equations are:

∂xµJR(τ,x) = ∂yµJI(τ,y), ∂xµJI(τ,y) = −∂yµJR(τ,x) (2.28)

The second derivative of the intermediate action is:

∂zµzµJ(τ, z) =∂xµxµJR(τ,x,y) + i∂xµxµJI(τ,x,y) =

=− ∂yµyµJR(τ,x,y) − i∂yµyµJI(τ,x,y)
(2.29)

Using the above equations, we can simplify the HJB equation:

− ∂τJ(τ, z) = min
w

(L(τ, z,w) + wµ∂xµJR(τ,x,y) + iwµ∂xµJI(τ,x,y))+

+
1

2

3
∑

µ=0

σµ
xσ

µ
x∂zµzµJ(τ, zτ )− i

1

2

3
∑

µ=0

σµ
y σ

µ
y ∂zµzµJ(τ, zτ ) =

= min
w

(L(τ, z,w) + wµ∂zµJ(τ, z)) +
1

2

3
∑

µ=0

σµσµ∂zµzµJ(τ, zτ )

(2.30)
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Finally, we can formally write the complex HJB equation:

−i∂τJz(τ, z) = min
w

(

Lz(τ, z,w) + wµ∂zµJ(τ,x) +
1

2

3
∑

µ=0

σµσµ∂zµzµJz(τ, zτ )

)

,

(2.31)
where the complex diffusion coefficient satisfies

σµσµ = σµ
xσ

µ
x − iσµ

y σ
µ
y (2.32)

It is crucial to emphasize again that this formal form of the HJB equation is
conceptually meaningful only when considering the distinct equations for its real
(2.23) and imaginary (2.22) parts.

It is clear from its definition that the boundary condition for Jz(τ, zτ ) is:

Jz(τf , zτf ) = 0 (2.33)

Sinces Lz(wµ, z) is an analytic function, the derivative operator and the operator
for taking the real part commute. Consequently, equation (2.24) can be expressed
as:

Re(∂uµ
Lz(wµ, z)) + ∂xµJR(τ,x,y) = 0

Re(∂vµLz(wµ, z)) + ∂yµJR(τ,x,y) = 0
(2.34)

Similarly, from equation (2.25), we can derive the equations for the optimal
control that result from minimizing the imaginary part of the intermediate action:

Im(∂uµ
Lz(wµ, z)) + ∂xµJI(τ,x,y) = 0

Im(∂vµLz(wµ, z)) + ∂yµJI(τ,x,y) = 0
(2.35)

We will prove that Equations (2.39) and (2.35) are equivalent. To do this, we
find the derivatives:

∂uµ
Lz(wµ, z) = ∂wµ

Lz(w, z)
∂wµ

∂uµ

= ∂wµ
Lz(w, z)

∂vµLz(wµ, z) = ∂wµ
Lz(w, z)

∂wµ

∂vµ
= i∂wµ

Lz(w, z)

(2.36)

If we substitute the above derivatives into Equation (2.39), multiply the second
equation by the imaginary unit, and add it to the first equation, we obtain:

Re(∂wµ
Lz(wµ, z)) + iRe(i∂wµ

Lz(wµ, z)) + ∂xµJR(τ,x,y) + i∂yµJR(τ,x,y) = 0
(2.37)

Similarly, if we substitute the above derivatives into Equation (2.35), multiply
the second equation by the imaginary unit, and subtract it from the first equation,
we obtain

Im(∂wµ
Lz(wµ, z)) − iIm(i∂wµ

Lz(wµ, z)) + ∂xµJI(τ,x,y) − i∂yµJI(τ,x,y) = 0
(2.38)

From the Cauchy-Riemann equation (2.28), the definition of the complex deriva-
tive (2.27), and the identities Re(Z) + iRe(iZ) = Z and −Im(iZ) + iIm(Z) = Z,
where Z is any complex number, we prove that both equations can be written as:

∂wµ
Lz(wµ, z) + ∂zµJR(τ,x,y) = 0 (2.39)
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The equation for the optimal control policy, w = u + iv, maintains the same
form as that of the real-valued HJB equation. However, it requires taking a complex
derivative of the intermediate action, as can be observed.

In the next section, we will illustrate this concept with a specific example, ap-
plying a concrete Lagrangian for a relativistic particle in an electromagnetic field.

3 Analytic continuation of the Covariant Relativistic Lagrangian

The relativistic Lagrangian for a particle in an electromagnetic field is given by:

Λ = σ̃mc
√

σ̃uµuµ + qAµu
µ, (3.1)

where q represents the charge of the particle and Aµ denotes the 4-vector potential.
The symbol σ̃ indicates the sign convention for the metric tensor: it takes the value
of +1 for the metric with diagonal elements (1,−1,−1,−1) and −1 for the metric
(−1, 1, 1, 1), as elaborated in [11].

The components of the four-velocity of the particle are related to the speed of
light by the equation:

uµu
µ = σ̃c2. (3.2)

This relation, referred to as the “weak equation” by Dirac, allows us to treat uµ

as unconstrained quantities until all differentiation operations have been carried out,
at which point we impose the condition of equation (3.2) (see [12] Chapter 7.10).
This will be the approach we employ as we seek to minimize the expected value of
the stochastic action.

The Lagrangian in equation (3.1) is a real-valued function of real arguments –
the coordinates and velocity of the particle. In complex stochastic optimal con-
trol, we assume that this Lagrangian is the analytic continuation of the real-valued
Lagrangian referenced in equation (3.1).

Lz(z, wµ) = σ̃mc
√

σ̃wµwµ + qAµ(τ, z)w
µ, (3.3)

The “weak equation” should be also analytically continued:

wµw
µ = σ̃c2. (3.4)

The derivative of the complex Lagrangian can be calculated using the “weak
equation” (3.4):

∂wµ
Lz(wµ, z) = ∂wµ

(σ̃mc
√

σ̃wµwµ + qAµ(τ, z)w
µ) =

1

2
√

σ̃wµwµ
2wµ + qAµ(τ, z),

(3.5)
Finally the complex velocity is:

wµ = −
1

m
(∂zµJ(τ, z) + qAµ(τ, z)) (3.6)
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4 Stochastic equation of motion

In my previous work [5], I demonstrated that to linearize the HJB equation, the
diffusion coefficient must be purely imaginary:

gµµσ
µσµ = −

2iǫrh̄

m
(4.1)

From equation (2.32), it is evident that the real stochastic coefficient is equal to
zero:

gµµσ
µ
xσ

µ
x = 0 (4.2)

Conversely, the imaginary stochastic coefficient is represented by:

gµµσ
µ
y σ

µ
y =

2ǫrh̄

m
(4.3)

This leads us to the stochastic equations of motion:

dxµ = uµds (4.4)

dyµ = vµds+ ǫrgµµ

√

2h̄

m
dWµ, µ = 0..3 (4.5)

This result is particularly interesting because it reveals that only the imaginary
part of the particle’s motion is governed by a random process, while the real part of
the coordinate remains deterministic.

5 Conclusion

In this paper, we demonstrate that it is possible to formally substitute real vari-
ables such as the four-coordinates, control policy, and cost-to-go function in the
HJB equation with complex-valued ones. However, such substitution can only be
performed if we define the complex-valued Lagrangian as an analytical continuation
of the real-valued Lagrangian of the system.

In consequence of Cochy-Rieman theorem we prove that the diffusion coefficient
in the complex stochastic HJB equation is: σµσµ = σµ

xσ
µ
x − iσµ

y σ
µ
y .

The last result is quite interesting because in all previous works [1, 2, 3, 4, 5] that
derive quantum mechanical equations it is proved that in order to linerize the HJB
equation it is required the square of the diffusion coefficient to be a pure imaginary
number. This result tell us that the equation only for the imaginary coordinates in
the quantum mechnical equations is stochastic.
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