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Abstract

We investigate Choquard equations in R
N driven by a weighted N -Laplace operator and with

polynomial kernel and zero mass. Since the setting is limiting for the Sobolev embedding, we work

with nonlinearities which may grow up to the critical exponential. We establish existence of a positive

solution by variational methods, completing the analysis in [R], where the case of a logarithmic

kernel was considered.

1 Introduction

Aim of this work is to study the weighted Choquard equation with zero mass and polynomial kernel

given by

−div
(
A(|x|)|∇u|N−2∇u

)
=

(
1

| · |µ
∗Q(| · |)F (u)

)
Q(|x|) f(u) in R

N . (Ch0)

with N ≥ 2. Here A and Q are positive radial weight functions, µ ∈ (0, N), and the nonlinearity is

positive. Since the operator is built on the N -Laplacian, one expects that the maximal integrability for

the nonlinearity f is exponential. This is indeed the framework we are considering, with the additional

difficulty of the absence of a mass term.

Choquard-type equations, namely Schrödinger equations with a nonlocal right-hand side, appear in

many physics contexts, since they originate from systems where a Schrödinger and a Poisson equation

are coupled: those systems, indeed, model, among others, the interaction of two identically charged

particles in electromagnetism, and the self-interaction of the wave function with its own gravitational

field in quantum mechanics. For the physics background we refer to [BF, LRZ] and to the references

therein. The mathematical interest lies on the fact that the equations of the form

−∆u+ V (x)u =

(
1

| · |µ
∗ F (u)

)
f(u) in R

N , (Ch)
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where f is a subcritical or critical nonlinearity, can be treated by variational methods. Indeed, if N ≥ 3
and in the case where the potential V > 0, one usually works in the natural Sobolev space H1(RN )
and takes advantage of the Hardy-Littlewood-Sobolev inequality (see Lemma 2.2 below) to prove that

the functional associated to (Ch) is well-defined, see [MV1, MV2, CZ, CVZ]. The planar case N = 2
is more delicate, since this setting is limiting for the Sobolev embedding, and specific techniques need

to be developed, see [ACTY, AFS]. Note, however, that in order to retrieve the connection with the

Schrödinger-Poisson system, the kernel | · |−µ should be replaced by − log | · |, which is sign-changing

and unbounded from above and below, and this makes the analysis even harder: we refer to [CW, CT,

LRTZ, CDL] and to the recent developments in [BCT, CLR, CLR2].

Some physics model prescribe however that the potential V appearing in the Schrödinger equation is

identically zero, e.g. in the study of the Yang-Mills equation in the nonabelian gauge theory of particle

physics, see [Gi]. Such "zero mass case" is mathematically intriguing, since the absence of the mass

implies a lack of control of the L2-part of the norm in H1(RN ). Therefore – even if the right-hand side is

just local – one is lead to study the equation in the homogeneous Sobolev space D1,2
0 (RN ), defined as the

completion of C∞
0 (RN ) with respect to the norm ‖∇·‖2. In the higher dimensional case N ≥ 3, one can

still work in this homogeneous space, thanks to the critical Sobolev embedding D1,2
0 (RN ) →֒ L2∗(RN ),

see e.g. [BL, AP, ASM] for Schrödinger equations and [AY] for Choquard equations. However, in

the Sobolev limiting case N = 2, where already the additional difficulty of being able to deal with

exponential nonlinearities appears, the space D1,2
0 (R2) is not a space of functions anymore: indeed,

one cannot distinguish between u and u + c for all c ∈ R, and no Sobolev embeddings can be proved

in this setting. The same problem of course occurs for D1,N
0 (RN ). We point out nevertheless that,

when dealing with Choquard equations with zero mass and logarithmic kernel, that is originating from

Schrödinger-Poisson systems, a sort of mass term may be anyway retrieved from the nonlocal term by

a careful splitting of the logarithm, and this enables one to work again in a (possibly inhomogeneous)

Sobolev space, see [WCR, ChSTW] for the linear case f(u) = u and [BRT] for the delicate extension

for a general class of subcritical or critical nonlinearities. This trick however does not work in the case

of a polynomial kernel.

In the context of Schrödinger equations with zero mass in R
N , in the recent paper [dAC] the authors

managed to retrieve a good functional framework by modifying the operator, namely introducing in

the standard N -Laplacian div
(
|∇u|N−2∇u

)
a positive radial coercive weight function A, i.e. which

satisfies

(A) A : R+ → R is continuous, lim infr→0+ A(r) > 0 and there exist A0, ℓ > 0 such that A(r) ≥
A0r

ℓ, for all r > 0 ,

and considering the weighted operator div
(
A(|x|)|∇u|N−2∇u

)
. In this case, the functional space which

naturally arises is

E :=
{
u ∈ LNloc(R

N )
∣∣∣
∫

RN

A(|x|)|∇u|N dx < +∞
}
, (1.1)

which is a reflexive1 Banach space when endowed with the norm

‖u‖ :=

(∫

RN

A(|x|)|∇u|N dx

) 1
N

, (1.2)

see [dAC, Lemma 2.1 and Corollary 1.5]. In particular, in its radial subspace, denoted by Erad, one may

recover the Sobolev embeddings, which are necessary not only to enable us to accomplish our estimates,

but also to show that Erad is in fact a space of functions. For p ≥ 1, let us define first the Q-weighted

1The reflexivity of E can be shown in the usual way thanks to the reflexivity of the weighted Lebesgue spaces

LN (RN, A(·) dx) for N ≥ 2 see e.g. [DS].
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Lebesgue space

LpQ(R
N ) :=

{
u ∈ M(RN )

∣∣∣
∫

RN

Q(|x|)|u|p dx < +∞
}
,

where M(RN ) stands for the set of all measurable functions on R
N .

Theorem A. ([dAC], Theorem 1.2) Assume (A) and

(Q) Q : R+ → R
+ is continuous and there exist b0, b > −N such that

lim sup
r→0+

Q(r)

rb0
< +∞ and lim sup

r→+∞

Q(r)

rb
< +∞ .

Then the embedding Erad →֒ LpQ(R
N ) is continuous for γ ≤ p < +∞, where

γ := max

{
N,

(b− ℓ+N)(N + 1)

ℓ
+N

}
=

{
N if b < ℓ−N,
(b−ℓ+N)(N+1)

ℓ +N if b ≥ ℓ−N.
(1.3)

Furthermore, the embedding is compact for γ ≤ p < +∞ when b < ℓ−N , and for γ < p < +∞ when

b ≥ ℓ−N .

Note that assumption (Q) allows for weight functions which can be singular at the origin and van-

ishing at infinity, and has been used also in the study of Choquard equation with vanishing potential, see

e.g. [AFS].

In [dAC] the authors were also able to prove that in this limiting setting a sort of Pohožaev-Trudinger-

Moser inequality holds. The critical exponential growth is the same as in the unweighted case, namely

t 7→ eα|t|
N

N−1
, while the influence of the weight functions lies in the Moser exponent. Since we are

considering the whole space, one need to subtract the first terms of the Taylor expansion from the expo-

nential, by introducing the functions

Φα,j0(t) := eα|t|
N

N−1
−

j0−1∑

j=0

αj

j!
|t|j

N
N−1 , (1.4)

for α > 0 and j0 ∈ N.

Theorem B. ([dAC], Theorem 1.6) Assume (A) and (Q) hold, and let j0 = inf
{
j ∈ N | j ≥ γ(N−1)

N

}
.

Then, for each u ∈ Erad and α > 0, the function Φα,j0(u) belongs to L1
Q(R

N ). Moreover, if

0 < α < α̃N (Q) := αN

(
1 +

b0
N

)(
inf

x∈B1(0)
A(|x|)

) 1
N−1

, (1.5)

where αN := Nω
1/(N−1)
N−1 , with ωN−1 denoting the measure of the unit sphere in R

N , then

sup
u∈Erad, ‖u‖≤1

∫

RN

Q(|x|)Φα,j0(u) dx < +∞ .

With these tools available in Erad, the existence for the Schrödinger equation with zero mass

−div
(
A(|x|)|∇u|N−2∇u

)
= Q(|x|)f(u) in R

N

was proved in [dAC], in case f is a positive critical exponential nonlinearity in the sense of Theorem B,

which undergoes a strong growth condition, which is effective in a neighbourhood of zero, namely

F (s) ≥ λsν with ν > γ and λ large enough, (1.6)

3



for all s ∈ R and γ defined in (1.3). In this functional framework, a Schrödinger-Poisson system with

zero mass, in gradient form and with critical exponential nonlinearities, was recently considered in [R].

After reducing the system to the Choquard equation with logarithmic kernel

−div
(
A(|x|)|∇u|N−2∇u

)
= CN

(
log

1

| · |
∗Q(| · |)F (u)

)
Q(|x|) f(u) in R

N , (1.7)

existence is proved using a variational approximating procedure in the spirit of [LRTZ, CLR, CLR2]:

in fact, the difficulties due to a sign-changing kernel which is unbounded from below and above, are

overcome by means of a uniform approximation which exploits suitable kernels having a polynomial

behaviour. The global condition (1.6) was also avoided by obtaining a fine upperbound on the mountain-

pass level by means of a careful analysis on Moser sequences.

In this paper, we study (Ch0), which is the counterpart of (1.7) where the logarithm is substituted by

the polynomial kernel | · |−µ, µ ∈ (0, N). On the one hand the analysis will be less involved than the

one in [R], since we do not have to face the problem of a sign-changing kernel, and thus we can work

directly with the equation; on the other hand, we would like not to rely on the global growth condition

(1.6), so a fine analysis on the mountain-pass level should still be performed.

Before stating our results, let us introduce some additional conditions on A and Q:

(Qµ) Q : R+ → R
+ is continuous and there exist b0, b >

µ
2 −N such that

lim sup
r→0+

Q(r)

rb0
< +∞ and lim sup

r→+∞

Q(r)

rb
< +∞ ;

(A’) there exist r0 > 0 and L > 0 such that A0(1 + |x|ℓ) ≤ A(|x|) ≤ A0(1 + |x|L) for all x ∈ Br0(0),
with A0, ℓ given by (A);

(Q’) lim infr→0+ Q(r)/rb0 = CQ > 0.

The last two conditions will be needed in estimating the mountain pass level, and can also be found in

[dAC, R], while (Qµ) is the adaptation of assumption (Q) to the Choquard case, and is used to prove that

the functional assocated to (Ch0) is well-defined, see Lemma 3.1 below.

Notation: With a little abuse, from now on A(x) := A(|x|) and similarly Q(x) := Q(|x|).

Concerning the nonlinearity f , aiming at modeling both the subcritical and the critical case, we

assume the following conditions:

(f 0) f ∈ C1(R), f(t) > 0 for t > 0, and f(t) = 0 for t ≤ 0 ;

(f s1 ) f is subcritical in the sense of Trudinger-Moser, namely

lim
t→+∞

f(t)

eαt
N

N−1

= 0 for all α > 0 ;

(f c1 ) f is critical in the sense of Trudinger-Moser, namely there exists α0 > 0 such that

lim
t→+∞

f(t)

eαt
N

N−1

=

{
0 for α > α0 ,

+∞ for α < α0 ;

(f 2) there exists p̃ >
(
1− µ

2N

)
γ such that f(t) = o(tp̃−1) as t→ 0+;
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(f 3) there exist τ ∈
(
1− 2

N , 1
)

and C > 0 such that

τ ≤
F (t)f ′(t)

(f(t))2
≤ C for any t > 0 ;

(f ξ) there exists ξ > 0 and ν > γ such that

F (t) ≥ ξtν for t ∈ (0, 1] ;

(f 4) there exist t0,M0 > 0 and θ ∈ (0, N − 1] such that

0 < tθF (t) ≤M0f(t) for t ≥ t0 ;

(f 5) there exists β0 > 0 such that

lim inf
t→+∞

F (t)

eα0t
N

N−1

≥ β0 > 0 .

Definition 1.1 (Solution of (Ch0)). We say that u ∈ E is a weak solution of (1.7) if

∫

RN

A(x)|∇u|N−2∇u∇ϕdx =

∫

RN

(∫

RN

Q(y)F (u(y))

|x− y|µ
dy

)
Q(x)f(u(x))ϕ(x) dx

for all ϕ ∈ E.

Theorem 1.1. Let µ ∈ (0, N), under conditions (A), (Qµ), (f0), (f2), (f3), assume either that

S) the problem is subcritical, namely (f s1 ) holds,

or that

C) the problem is critical, namely (f c1 ) holds, and

i) (fξ) holds with ξ > ξ0 (depending on ν) given in (3.11)

or, alternatively,

ii) (A’), (Q’), (f4)-(f5) are fulfilled.

Then (1.7) has a positive radially symmetric weak solution in Erad.

Remark 1. We stress the fact that our results are new even in the planar case N = 2. Moreover, they can

be seen as an extension of the corresponding results in [ACTY, AFS] to the zero mass case, of those in

[R] to the case of polynomial kernels, and of those in [dAC] to the Choquard framework.

Remark 2. Since the weight A is continuous and bounded below by (A), it is clear that for all Ω ⊂⊂ R
N

there exist constants a0, a0 > 0 such that a0 < A(x) < a0 for all x ∈ Ω. This implies that E ⊂
D1,N(RN ) ⊂ W 1,N

loc (RN ), where D1,N (RN ) is the homogeneous Sobolev space given by (1.1) with

A ≡ 1, see [Ga, Lemma II.6.1]. Therefore, it is sufficient to prove the existence of a nonnegative solution

of (1.7) in order to retrieve its positivity by the strong maximum principle for quasilinear equations, see

[PS, Theorem 11.1].
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Notation. For R > 0 and x0 ∈ R
N we denote by BR(x0) the ball of radius R and center x0. Given a

set Ω ⊂ R
N , its characteristic function is denoted by χΩ and Ωc := R

N \ Ω. The space of the infinitely

differentiable functions which are compactly supported is C∞
0 (RN ), while Lp(RN ) with p ∈ [1,+∞]

is the Lebesgue space of p-integrable functions. The norm of Lp(RN ) is denoted by ‖ · ‖p. For q > 0
we define ⌊q⌋ as the largest integer strictly less than q; if q > 1 its conjugate Hölder exponent is q′ :=
q
q−1 . The symbol . indicates that an inequality holds up to a multiplicative constant depending only on

structural constants. Finally, on(1) denotes a vanishing real sequence as n → +∞. Hereafter, the letter

C will be used to denote positive constants which are independent of relevant quantities and whose value

may change from line to line.

Overview After the short Section 2, in which we discuss some consequences of our assumptions and

state some useful results, we prove existence for the Choquard equation (1.7), splitting the proof in

Sections 3 and 4, according to the set of assumptions considered in the Theorem 1.1.

2 Preliminaries

From now on, we set Φα := Φj0,α with j0 defined in Theorem B. We start by collecting some comments

on our assumptions:

Remark 3. (i) From (f0)-(f c1 )-(f2), and (1.4), it is easy to infer that for fixed α > α0, p > 1 and for

any ε > 0 one has

|f(t)| ≤ ε|t|p̃−1 + C1(α, p, ε)|t|
p−1Φα(t), t ∈ R, (2.1)

for some C1(α, p, ε) > 0, and consequently,

|F (t)| ≤ ε|t|p̃ + C2(α, p, ε)|t|
pΦα(t), t ∈ R, (2.2)

for some C2(α, p, ε) > 0. In the case (f s1 ) holds in place of (f c1 ), the inequalities (2.1)-(2.2) are

valid with α > 0 arbitrary.

(ii) Assumption (f3) implies that f is monotone increasing and

F (t) ≤ (1− τ)tf(t) for any t ≥ 0 . (2.3)

(iii) Although frequent in the literature, see e.g. [AF, AFS, dAC], assumption (fξ) is very strong, not

because of the polynomial growth t 7→ tν with ν > γ, which is reasonable since it excludes just

exponential decays at 0, but mainly because of the fact that one should prescribe this behaviour in

the whole range [0, 1] and not just asymptotically. In fact, it is not of easy verification. For instance,

the easiest example F (t) = tκ with γ < κ < ν verifies this growth condition just in a small right

neighbourhood of 0 and not in the whole [0, 1]. This is the reason why we are considering also

an alternative proof of our main result which uses assumptions (f4)-(f5), although the argument

which exploits (fξ) is way easier.

(iv) (f5) is a condition at infinity, compatible with the critical growth (f c1 ) and related to the well-known

de Figueiredo-Miyagaki-Ruf condition [dFMR]. It is crucial in order to estimate the mountain pass

level and gain compactness, see Lemma 4.1. A similar condition appears also in [ACTY, CT, BCT,

R, BRT], however, as in [AFS, ChSTW], we do not prescribe β0 large.

(v) Examples of admissible nonlinearities are F (t) = tqet
α

with q >
(
1− µ

2N

)
γ and α ∈

[
0, N

N−1

]
.

The critical case corresponds to the choice of α = N
N−1 .
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The next lemma assures that the function Φα introduced in (1.4) has the same properties of the exponen-

tial.

Lemma 2.1. For α > 0, r > 1, and ν ∈ R there holds

(Φα(t))
r ≤ Φαr(t) for all t > 0 (2.4)

and

Φα(νt) = Φ
αν

N
N−1

(t) for all t > 0 . (2.5)

Proof. For the first inequality see [Y, Lemma 2.1]; the second is just an easy calculation.

We end this section by recalling the well-known Hardy-Littlewood-Sobolev inequality, see [LL, The-

orem 4.3], which will be frequently used throughout the paper.

Lemma 2.2. (Hardy-Littlewood-Sobolev inequality) Let N ≥ 1, s, r > 1, and µ ∈ (0, N) with 1
s +

µ
N +

1
r = 2. There exists a constant C = C(N,µ, s, r) such that for all f ∈ Ls(RN ) and h ∈ Lr(RN ) one

has ∫

RN

(
1

| · |µ
∗ f

)
hdx ≤ C‖f‖s‖h‖r .

3 Proof of Theorem 1.1: the subcritical case and the critical case (i)

We start by proving that the functional J , formally associated to (Ch0),

J(u) :=
1

N

∫

RN

A(x)|∇u|Ndx−
1

2

∫

RN

(∫

RN

Q(y)F (u(y))

|x− y|µ
dy

)
Q(x)F (u(x)) dx

is well-defined in the space Erad, is C1 with derivative

J ′(u)[ϕ] =

∫

RN

A(x)|∇u|N−2∇u∇ϕdx−

∫

RN

(∫

RN

Q(y)F (u(y))

|x− y|µ
dy

)
Q(x)f(u(x))ϕ(x) dx ,

and possesses a mountain-pass geometry.

Lemma 3.1. Under assumptions (f0), (f2) and either (f c1 ) or (f s1 ), the functional J : Erad → R is

well-defined and C1. If f satisfies also (f3), there exist constants ρ, η > 0 and e ∈ Erad such that:

(i) J |Sρ ≥ η > 0, where Sρ =
{
u ∈ Erad | ‖u‖ = ρ

}
;

(ii) ‖e‖ > ρ and J(e) < 0 .

Proof. Although the proof is standard, the main tool being the Hardy-Littlewood-Sobolev inequality

(Lemma 2.2), we retrace it here, in particular to show the rôle of assumption (Qµ).

We focus on the second term of J , the first one being already ‖u‖N , see (1.2). By Lemma 2.2 with

r = t = 2N
2N−µ , the upperbound (2.2) and Hölder’s inequality, one infers

∫

RN

(∫

RN

Q(y)F (u(y))

|x− y|µ
dy

)
Q(x)F (u(x)) dx .

(∫

RN

|QF (u)|
2N

2N−µ

) 2N−µ
N

.

(∫

RN

Q
2N

2N−µ |u|
2Np̃

2N−µ

) 2N−µ
N

+

(∫

RN

Q
2N

2N−µ |u|
2Np̃q′

2N−µ

)2N−µ

Nq′
(∫

RN

Q
2N

2N−µ |Φα(u)|
2Nq

2N−µ

) 2N−µ
Nq

,

for α > α0 in case (f c1 ) holds (resp. α > 0 if (f s1 ) holds). In order to use now the Sobolev embedding

given by Theorem A, as well as to bound the exponential term by Theorem B, in both cases the weight

7



function Q̃ := Q
2N

2N−µ must verify assumption (Q), and the exponent of u, namely 2Np̃
2N−µ should be

greater than γ. However, it is not difficult to show that this is the case under our assumptions (Qµ) and

(f2). As a result, using also (2.4), one infers

∫

RN

(∫

RN

Q(y)F (u(y))

|x− y|µ
dy

)
Q(x)F (u(x)) dx

. ‖u‖2p̃ + ‖u‖2p
(∫

RN

Q̃Φ 2Nqα
2N−µ

(u)

) 2N−µ
Nq

< +∞ .

(3.1)

This shows the well-posedness of J in Erad, while the regularity of J follows by standard arguments. In

order to show (i), from (3.1) and (2.5) we deduce

J(u) & ‖u‖N − ‖u‖2p̃ − ‖u‖2p
(∫

RN

Q̃Φ
2Nqα
2N−µ

‖u‖
N

N−1

(
u

‖u‖

)) 2N−µ
Nq

.

Therefore, in order to apply the uniform estimate of Theorem (B), one needs 2Nqα
2N−µ‖u‖

N
N−1 < α̃N (Q̃)

defined in (1.5), namely to require that ρ <
(
2N−µ
2Nqα α̃N (Q̃)

)N−1
N

. If so,

J(u) & ‖u‖N − ‖u‖2p̃ − ‖u‖2p,

which implies that 0 is a local minimum by choosing p large enough, since 2p̃ > (2N − µ) γN > N . Let

us now take 0 ≤ ϕ ∈ Erad(R
N ) and define

ψ(t) :=
1

2

∫

RN

(
1

| · |µ
∗QF (tϕ)

)
Qf(tϕ) dx .

Using (2.3), it is then standard to show that
ψ′(t)
ψ(t) ≥ 2

(1−τ)t , which in turn implies ψ(t) ≥ ψ(1)t
2

1−τ .

Hence,

J(tϕ) =
tN

N
‖ϕ‖N − ψ(t) ≤

tN

N
‖ϕ‖N −Ct

2
1−τ → −∞,

since τ ∈
(
1− 2

N , 1
)

by (f3). It is then sufficient to take e := t0ϕ with t0 large enough, to conclude that

(ii) holds.

As a consequence of this mountain-pass geometry, one infers the existence of a Cerami sequence in

Erad at level

cmp := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ,

where

Γ := {γ ∈ C([0, 1], Erad) | γ(0) = 0, γ(1) = e} ,

namely, a sequence (uk)k ⊂ Erad such that

J(uk) → cmp and (1 + ‖uk‖)J
′(uk) → 0 in

(
Erad

)′
(3.2)

as k → +∞. In details,

J(uk) =
1

N

∫

RN

A(x)|∇uk|
N dx−

1

2

∫

RN

(
1

| · |µ
∗QF (uk)

)
QF (uk) = cmp + ok(1) , (3.3)

and for all ϕ ∈ Erad one has

J ′(uk)[ϕ] =

∫

RN

A(x)|∇uk|
N−2∇uk∇ϕ−

∫

RN

(
1

| · |µ
∗QF (uk)

)
Qf(uk)ϕ = ok(1)‖ϕ‖ , (3.4)

8



from which

J ′(uk)[uk] =

∫

RN

A(x)|∇uk|
N dx−

∫

RN

(
1

| · |µ
∗QF (uk)

)
Qf(uk)uk = ok(1)‖uk‖ . (3.5)

Lemma 3.2. Assume that (f0)-(f3) hold. Let (uk)k ⊂ Erad be a Cerami sequence of J at level cmp.

Then (uk)k is bounded in E with

‖uk‖
N ≤ cmp

(
1

N
−

1− τ

2

)−1

+ ok(1) , (3.6)

and there exists u ∈ Erad such that uk ⇀ u in Erad .

Proof. By (3.2) and (3.5) we obtain

cmp + ok(1) = J(uk)−
1− τ

2
J ′(uk)[uk]

=

(
1

N
−

1− τ

2

)
‖∇uk‖

N −
1

2

∫

RN

(
1

| · |µ
∗QF (uk)

)
Q (F (uk)− (1− τ)f(uk)uk)

≥

(
1

N
−

1− τ

2

)
‖∇uk‖

N

by (2.3). The weak convergence follows since Erad is a closed subspace of a reflexive Banach space.

To show that the limit function u is indeed a weak solution of (Ch0), we may prove that uk → u
in Erad. This is manageable in the subcritical case. On the other hand, in the critical case, we first

need a suitable uniform control on the mountain-pass level so that one can use the uniform estimate

given Theorem B in order to prove the convergence of the nonlocal term in the functional, see (3.8)

below. Under assumption (fξ), this is relatively easy, since by taking the constant ξ large enough, one

can decrease the value of the mountain pass level up to the desired threshold. This is the aim of the last

part of this section, which therefore contains the proof of Theorem 1.1 under the first set of assumptions,

while we defer its proof under the more verifiable assumptions (f4)-(f5) to Section 4.

In the spirit of [AFS] we then prove:

Lemma 3.3. Under (f0)-(f c1 )-(f2), there exists ξ0 > 0 explicit such that, if f satisfies (fξ) with ξ > ξ0,

then

cmp <

(
1

N
−

1− τ

2

)(
2N − µ

2N

α̃N (Q̃)

α0

)N−1

=: c∗ , (3.7)

from which

‖uk‖
N

N−1 <
2N − µ

2Nα0
α̃N (Q̃) . (3.8)

Proof. Fix a nonnegative radial function ϕ0 ∈ C∞
0 (B1(0)) with values in [0, 1] such that ϕ0 ≡ 1 in

B 1
2
(0) and |∇ϕ0| ≤ 2. Then

J(ϕ0) =
1

N

∫

B1(0)\B 1
2
(0)
A(x)|∇ϕ0|

N dx−
1

2

∫

B1(0)

(
1

| · |µ
∗QF (ϕ0)

)
QF (ϕ0)

≤
ωN
N

(
2N − 1

)
sup

B1(0)\B 1
2
(0)
A−

ξ2

2

∫

B1(0)

(
1

| · |µ
∗Qϕν0

)
Qϕν0 .
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Noting that the right-hand side tends to −∞ as ξ → +∞, one may take ξ > ξ1, where ξ1 is chosen such

that
ξ21
2

∫

B1(0)

(
1

| · |µ
∗Qϕν0

)
Qϕν0 =

ωN
N

(
2N − 1

)
sup

B1(0)\B 1
2
(0)
A ,

and get J(ϕ0) ≤ 0. As a result, by definition of cmp we can estimate as follows:

cmp ≤ max
t∈[0,1]

J(tϕ0) ≤ max
t∈[0,1]

(
tN
∫

B1(0)
A(x)

|∇ϕ0|
N

N
dx−

ξ2t2ν

2

∫

B1(0)

(
1

| · |µ
∗Qϕν0

)
Qϕν0

)

≤
ξ21
2

∫

B1(0)

(
1

| · |µ
∗Qϕν0

)
Qϕν0 max

t∈[0,1]

(
tN − χt2ν

)
,

(3.9)

where χ :=
(
ξ
ξ1

)2
> 1. It is standard to prove that the map h(t) := tN − χt2ν achieves its maximum in

t0 :=
(
N
2νχ

) 1
2ν−N

∈ (0, 1) since ν > γ > N . Hence, inserting h(t0) in (3.9), one gets

cmp ≤
ξ

4ν
2ν−N

1

ξ
2N

2ν−N

(
N

2ν

) N
2ν−N 2ν −N

4ν

∫

B1(0)

(
1

| · |µ
∗Qϕν0

)
Qϕν0 =: c0(ν.N, ξ1, Q, ϕ0)ξ

− 2N
2ν−N . (3.10)

To show (3.7) we then need to choose ξ so that the right-hand side is below the threshold c∗, namely

ξ > ξ0 := max{ξ1, ξ∗} , (3.11)

where ξ∗ satisfies the equality in (3.10). At this point, combining the uniform bounds in (3.6) and (3.7),

it is immediate to infer a nice uniform control on the norm of (uk)k given by (3.8).

We are now ready to prove Theorem 1.1 under assumptions (f0)-(f3) and (fξ) with ξ > ξ0 defined in

(3.11).

Proof of Theorem 1.1 (S)-(C-i). We aim at proving that

T (uk) :=

∫

RN

(
1

| · |µ
∗QF (uk)

)
Qf(uk)(uk − u) → 0 (3.12)

as n→ +∞. Indeed, if so, by (3.4) with ϕ = u and (3.5), one would infer

∫

RN

A(x)|∇uk|
N−2∇uk∇(uk − u) dx→ 0,

which, combined with ∫

RN

A(x)|∇u|N−2∇u∇(uk − u) dx→ 0,

by weak convergence, would guarantee that uk → u strongly in E by means of the simple inequality

(see [Si, inequality (2.2)])

(|y1|
N−2y1 − |y2|

N−2y2)(y1 − y2) ≥ C(N)|y1 − y2|
N for all y1, y2 ∈ R

N .

Since the functional is C1, the fact that u is a weak solution of (Ch0) directly follows.

Hence, we are lead to show (3.12). Estimating by the Hardy-Littlewood-Sobolev inequality, we

obtain

|T (uk)| ≤ ‖QF (uk)‖ 2N
2N−µ

‖Qf(uk)(uk − u)‖ 2N
2N−µ

, (3.13)
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and we are proving that the first term is uniformly bounded, while the second converges to 0. Indeed,

similarly to (3.1), we have

‖QF (uk)‖ 2N
2N−µ

. ‖uk‖
p̃ + ‖uk‖

p

(∫

RN

Q
2N

2N−µ Φ
2Nqα
2N−µ

‖uk‖
N

N−1

(
uk

‖uk‖

)) 2N−µ
2N

. (3.14)

If (f s1 ) holds, since ‖uk‖ is uniformly bounded by Lemma 3.2, then

2Nqα

2N − µ
‖uk‖

N
N−1 < α̃N (Q̃) (3.15)

follows by taking a sufficiently small α > 0. On the other hand, in the critical case (f c1 ), by (3.8) one

may take q > 1 close to 1 and α > α0 close to α0, so that (3.15) holds. In both cases the last term in

(3.14) is then bounded uniformly in k. As a result,

‖QF (uk)‖ 2N
2N−µ

≤ C (3.16)

by Lemma 3.2. Similarly, recalling the notation Q̃ := Q
2N

2N−µ , by (2.1) and the Hölder inequality with

conjugate exponents p̃, p̃′ = p̃
p̃−1 for the first term, and r, r′ and ν, ν ′ for the second, we get

‖Qf(uk)(uk − u)‖
2N

2N−µ

2N
2N−µ

.

(∫

RN

Q̃|uk|
2Np̃

2N−µ

) p̃−1
p̃
(∫

RN

Q̃|uk − u|
2Np̃

2N−µ

) 1
p̃

+

(∫

RN

Q̃|uk|
(p−1) 2Nr′

2N−µ

) 1
r′
(∫

RN

Q̃|uk − u|
2Nrν′

2N−µ

) 1
rν′
(∫

RN

Q̃Φ
2Nrνα
2N−µ

‖uk‖
N

N−1

(
uk

‖uk‖

)) 1
rν

.

As before, in the subcritical case, again a choice of α small enough is sufficient to control the exponential

term, while in the critical case one needs to choose r, ν > 1 close to 1 and α > α0 close to α0, and

consider the upperbound (3.8); in both cases we may show the boundedness of the exponential term; up

to a smaller ν and a bigger p, one also has 2Nrν′

2N−µ > γ and (p− 1) 2Nr′

2N−µ > γ. Hence,

‖Qf(uk)(uk − u)‖ 2N
2N−µ

. ‖uk‖
p̃−1‖uk − u‖

L

2Np̃
2N−µ

Q̃

+ ‖uk‖
p−1‖uk − u‖

L
2Nrν′

2N−µ

Q̃

→ 0
(3.17)

by Lemma 3.2 and the compact embedding given by Theorem A. Combining (3.16) and (3.17) with

(3.13), (3.12) holds, and the strong convergence uk → u follows, which proves that u is a weak solution

of (Ch0).

4 Proof of Theorem 1.1: the critical case (ii)

As we mentioned in the introduction, the global growth assumption (fξ), introduced in the critical case,

is in fact not of easy verification. In this section we prove the existence of a weak solution of (Ch0) in

the critical case by using (f4)-(f5) instead of (fξ); however, we will need also some control from below

of the weight functions A and Q as in (A′)-(Q′). The argument, inspired by [ACTY, AFS] exploits the

concentration behaviour of the Moser sequences to infer a suitable uniform bound for ‖uk‖, which turns

out to depend on all coefficients and parameters in the equation. This will allow us to show the existence

of a nontrivial solution for (Ch0).

Let us introduce the Moser sequence as

w̃n(x) :=





(log n)1−
1
N if 0 ≤ |x| ≤ ρ

n ,
log

ρ
|x|

(log n)
1
N

if ρ
n < |x| < ρ ,

0 if |x| ≥ ρ ,
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where ρ ≤ r0 is given by (A’). Using (A’) we estimate from below its norm in E as

∫

RN

A(x)|∇w̃n|
N dx =

ωN−1

log n

∫ n

ρ
n

A(r)

r
dr ≥

ωN−1A0

log n

∫ n

ρ
n

1 + rℓ

r
dr

= ωN−1A0

(
1 +

ρℓ

ℓ log n
+ o

(
1

log n

))
,

and analogously from above, hence we can state that

‖w̃n‖
N = ωN−1A0(1 + δn), with

ρℓ/ℓ

log n
+ o

(
1

log n

)
≤ δn ≤

ρL/L

log n
+ o

(
1

log n

)
. (4.1)

Hence defining

wn :=
w̃n

(ωN−1A0(1 + δn))
1
N

,

one has ‖wn‖ = 1 for all n ∈ N.

Lemma 4.1. Under (A)-(A’), (Qµ)-(Q’), (f0)-(f3), and (f4)-(f5), one has

cmp <
ωN−1A0

N

(
2b̃0 + 2N − µ

2α0

)N−1

. (4.2)

Proof. We aim at showing that there exist a suitable Б > 0 (to be chosen later) and n0 ∈ N such that

max
t≥0

J(twn0) < Б . (4.3)

Suppose by contradiction that (4.3) does not hold. This means that for all n ∈ N there exists tn > 0 such

that

J(tnwn) = max
t≥0

J(twn) ≥ Б .

Since the convolution term is positive and ‖wn‖ = 1 for all n ∈ N, this implies

tNn ≥ NБ . (4.4)

On the other hand, one may suppose that tn is chosen such that J(tnwn) = max{J(twn) | t > 0} by the

geometry of the functional on radial functions with compact support given by in Lemma (3.1). Hence
d
dt

∣∣
t=tn

J(twn) = 0, from which

tNn =

∫

RN

(
1

| · |µ
∗QF (tnwn)

)
Qf(tnwn)tnwn . (4.5)

Using assumptions (f4)-(f5), for all ε > 0 fixed there exists tε > 0 such that for t > max{t0, tε} one

has

tf(t)F (t) ≥
tθ+1

M0
(F (t))2 ≥

β20 − ε

M0
tθ+1e2α0t

N
N−1

. (4.6)

Hence, recalling that wn is constant in B ρ
n
(0), we can estimate the right-hand side of (4.5) from below

by (4.6) as

tNn ≥

∫

B ρ
n
(0)

(∫

B ρ
n
(0)

Q(y)F (tnwn(y))

|x− y|µ
dy

)
Q(x)f(tnwn(x))tnwn(x) dx

≥
(β20 − ε)tθ+1

n (log n)(1−
1
N )(θ+1)

M0 ((1 + δn)A0ωN−1)
θ+1
N

e

2α0t

N
N−1
n logn

((1+δn)A0ωN−1)
1

N−1

∫

B ρ
n
(0)

∫

B ρ
n
(0)

Q(x)Q(y)

|x− y|µ
dxdy .

(4.7)

12



By (Q’) we can estimate from below Q(r) > crb0 in B ρ
n
(0) for n large enough; hence, using the simple

estimate 1
|x−y|µ ≥

(
n
2ρ

)µ
for all x, y ∈ B ρ

n
(0), we obtain

∫

B ρ
n
(0)

∫

B ρ
n
(0)

Q(x)Q(y)

|x− y|µ
dxdy ≥ c2

(
n

2ρ

)µ(∫

B ρ
n
(0)

|x|b0 dx

)2

= c2
(
n

2ρ

)µ
ω2
N−1

(∫ ρ
n

0
rb0+N−1 dr

)2

=
c2ω2

N−1

2µ(b0 +N)2

(ρ
n

)2b0+2N−µ
.

Hence, from (4.7) one infers

tN−θ−1
n ≥ K exp






 2α0 t

N
N−1
n

(A0ωN−1(1 + δn))
1

N−1

− (2b0 + 2N − µ)


log n+

N − 1

N
(θ + 1) log log n



 ,

(4.8)

where the constant K is defined as

K :=
(β20 − ε)c2ω2

N−1ρ
2b0+2N−µ

M02µ(b0 +N)2 (A0ωN−1(1 + δn))
θ+1
N

.

Applying the log on both sides of (4.8) yields

(N − 1− θ)
(N − 1)

N
t

N
N−1
n ≥ (N − 1− θ) log(tn) ≥ logK +

N − 1

N
(θ + 1) log log n

+


 2α0 t

N
N−1
n

(A0ωN−1(1 + δn))
1

N−1

− (2b0 + 2N − µ)


 log n .

(4.9)

Dividing by t
N

N−1
n , we obtain

(N − 1− θ)
(N − 1)

N
≥

(
2α0

(A0ωN−1(1 + δn))
1

N−1

−
2b0 + 2N − µ

t
N

N−1
n

)
log n .

If tn → +∞, then one would get a contradiction for large n, since θ ∈ (0, N − 1]. Same, if the factor in

front of log n is positive. Hence we infer that (tn)n is bounded with

tNn ≤ A0ωN−1(1 + δn)

(
2b0 + 2N − µ

2α0

)N−1

. (4.10)

Comparing (4.4) and (4.10), and since δn = on(1) as n→ +∞, we see that choosing

Б :=
A0ωN−1

N

(
2b0 + 2N − µ

2α0

)N−1

, (4.11)

one reaches the claimed contradiction, namely one gets

∃ lim
n→+∞

tn = A0ωN−1

(
2b0 + 2N − µ

2α0

)N−1

.
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Now, combining (4.4), (4.11), and (4.10), from (4.9) we deduce

C ≥


 2α0 t

N
N−1
n

(A0ωN−1(1 + δn))
1

N−1

− (2b0 + 2N − µ)


 log n+

N − 1

N
(θ + 1) log log n

≥ (2b0 + 2N − µ)

(
1

(1 + δn)
1

N−1

− 1

)
log n+

N − 1

N
(θ + 1) log log n

≥ (2b0 + 2N − µ)

(
−δn
N − 1

+ o(δn)

)
log n+

N − 1

N
(θ + 1) log log n

= on(1) +
N − 1

N
(θ + 1) log log n ,

recalling (4.1), which is again a contradiction. Therefore, (4.3) with (4.11) must hold true, which readily

implies (4.2).

With the fine upperbound of the mountain-pass level given by Lemma 4.1 we are in the position to

prove the existence of a nontrivial weak solution of (Ch0). The argument follows the line of [ACTY],

see also [AFS], and we only sketch it, but paying attention to the more delicate points.

Proof of Theorem 1.1(C-ii). First, we prove that

(
1

| · |µ
∗QF (uk)

)
Qf(uk)ϕ→

(
1

| · |µ
∗QF (u)

)
Qf(u)ϕ in L1(RN ) (4.12)

for all test functions ϕ, where u is the limit point of the Cerami sequence (uk)k . For such ϕ, it is easy to

prove that wk :=
ϕ

1+uk
∈ Erad. Indeed,

‖wn‖
N ≤

∫

RN

A(x)

(
|∇ϕ|N

(1 + uk)N
+

|ϕ|N |∇uk|
N

(1 + uk)2N

)
dx

≤

∫

RN

A(x)|∇ϕ|N dx+ C(ϕ)

∫

RN

A(x)|∇uk|
N dx . ‖ϕ‖N + ‖uk‖

N ≤ C .

by Lemma 3.2. This implies that one may test (3.4) with wk and find

∫

Ω

(
1

| · |µ
∗QF (uk)

)
Qf(uk)

ϕ

1 + uk
dx =

∫

RN

A(x)|∇uk|
N−2∇uk∇wk dx+ ok(1)‖wk‖

≤

∫

RN

A(x)|∇uk|
N |ϕ|dx+

∫

RN

A(x)|∇uk|
N−1 |∇ϕ|

1 + uk
dx+ ok(1) (‖ϕ‖+ ‖uk‖)

≤ 2‖uk‖
N + ‖ϕ‖N + ok(1) ≤ C ,

(4.13)

since uk ≥ 0 in the second integral, and having used the Hölder inequality there. Let Ω ⊂⊂ R
N and

ϕ ≥ 0 be a test function such that ϕ ≡ 1 on Ω. Then

∫

Ω

(
1

| · |µ
∗QF (uk)

)
Qf(uk) dx

≤ 2

∫

{uk≤1}∩Ω

(
1

| · |µ
∗QF (uk)

)
Qf(uk)

1 + uk
+

∫

{uk≥1}∩Ω

(
1

| · |µ
∗QF (uk)

)
Qf(uk)uk

≤

∫

Ω

(
1

| · |µ
∗QF (uk)

)
Qf(uk)

ϕ

1 + uk
+

∫

RN

(
1

| · |µ
∗QF (uk)

)
Qf(uk)uk ≤ C ,
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thanks to (4.13) and (3.5)-(3.6). As a result, the measure νn defined by

νn(Ω) :=

∫

Ω

(
1

| · |µ
∗QF (uk)

)
Qf(uk) dx

has uniformly bounded total variation, hence there exists a measure ν such that, up to a subsequence,

νn
∗
⇀ ν, namely ∫

Ω

(
1

| · |µ
∗QF (uk)

)
Qf(uk)ϕdx→

∫

Ω
ϕdν

for all ϕ ∈ C∞
0 (Ω). As in [ACTY, Lemma 2.4] we may then conclude that ν is absolutely continuous

with respect to the Lebesgue measure and it can be identified as ν =
(

1
|·|µ ∗QF (u)

)
Qf(u) dx, which

proves (4.12).

Combining (4.12) with the weak convergence uk ⇀ u in E, we infer that u is a weak solution of

(Ch0). We need now to prove that u 6≡ 0. To this aim, we first show that

∫

RN

(
1

| · |µ
∗QF (uk)

)
QF (uk) →

∫

RN

(
1

| · |µ
∗QF (u)

)
QF (u) . (4.14)

Reasoning as in [ACTY, Lemma 2.4], thanks to (f4) it is possible to reduce the proof of (4.14) to

∫

{uk≤M}

(∫

{uk≤K}

Q(y)F (uk(y))

|x− y|µ
dy

)
Q(x)F (uk(x)) dx

→

∫

{u≤M}

(∫

{u≤K}

Q(y)F (u(y))

|x− y|µ
dy

)
Q(x)F (u(x)) dx , (4.15)

for all M,K > 0 large enough. However, if uk is pointwisely bounded, by (f2) one deduces F (uk) ≤
CM,K|uk|

p̃, therefore,

∫

{uk≤M}

(∫

{uk≤K}

Q(y)F (uk(y))

|x− y|µ
dy

)
Q(x)F (uk(x)) dx . ‖Q|uk|

p̃‖2 2N
2N−µ

→ ‖Q|u|p̃‖2 2N
2N−µ

(4.16)

by the strong convergence given by Theorem A. Hence, by the inverse of the dominated convergence

theorem [BS, Theorem 1.2.7], the left-hand side of (4.16) is uniformly bounded and we can use the

dominated convergence theorem to prove (4.15), and in turn (4.14).

Assuming by contradiction u ≡ 0, then combining (4.14), F (0) = 0, and (3.3) one infers

cmp = J(uk) + ok(1)

=
‖uk‖

N

N
+

1

2

∫

RN

(
1

| · |µ
∗QF (uk)

)
QF (uk) + ok(1) =

‖uk‖
N

N
+ ok(1) ,

(4.17)

from which, by Lemma 4.1,

2Nα0

2N − µ
‖uk‖

N
N−1 =

2Nα0

2N − µ
(Ncmp)

1
N−1 + ok(1)

<
2Nα0

2N − µ
(ωN−1A0)

1
N−1

2b0 + 2N − µ

2α0

= N(ωN−1A0)
1

N−1

(
1 +

2b0
2N − µ

)
.

(4.18)

By (3.5) and the Hardy-Littlewood inequality we have

‖uk‖
N + ok(1) ≤ ‖QF (uk)‖ 2N

2N−µ
‖Qf(uk)uk‖ 2N

2N−µ
(4.19)
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and we estimate the two terms as in (3.14) thanks to (2.2) and (2.1), respectively. The exponential term

is then uniformly bounded by Theorem B by (4.18), since

α̃N (Q̃) = N(ωN−1A0)
1

N−1

(
1 +

1

N
b0

2N

2N − µ

)
.

Since uk → 0 in Lt
Q̃
(RN ) for t > γ, from (4.19) we conclude that ‖uk‖ → 0, which lead us to a

contradiction with (4.17). We can thus conclude that the weak solution u is nontrivial.
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