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ABSTRACT

Cluster analysis is a popular unsupervised learning tool used in many disciplines to identify heteroge-
neous sub-populations within a sample. However, validating cluster analysis results and determining
the number of clusters in a data set remains an outstanding problem. In this work, we present a global
criterion called the Distinguishability criterion to quantify the separability of identified clusters and
validate inferred cluster configurations. Our computational implementation of the Distinguishability
criterion corresponds to the Bayes risk of a randomized classifier under the 0-1 loss. We propose a
combined loss function-based computational framework that integrates the Distinguishability criterion
with many commonly used clustering procedures, such as hierarchical clustering, k-means, and finite
mixture models. We present these new algorithms as well as the results from comprehensive data
analysis based on simulation studies and real data applications.

Keywords Unsupervised learning · Cluster analysis · k-means · Hierarchical clustering ·Mixture models

1 Introduction

Cluster analysis is a ubiquitous unsupervised learning approach to uncover latent structures and patterns in observed
data. Clustering algorithms have been used in a wide variety of scientific applications, such as animal behavior studies
[1], weather anomaly detection [2], disease diagnosis [3, 4, 5], and novel cell type identification [6, 7, 8, 9]. Often, the
identified clusters are interpreted to represent distinct populations from which the corresponding samples originate.

Many challenges with cluster analysis, such as determining the number of clusters, arise from an inability to rigorously
quantify desired cluster characteristics. While the precise definition of a “meaningful” cluster is usually context-
dependent, it is generally accepted that the clusters should display “internal cohesion” (i.e., objects within a cluster are
similar to one another) and “external isolation” (i.e., the clusters are well-separated) [10, 11, 12]. Despite this almost
universally agreed-upon principle, quantifying the separability of the clusters, i.e., the level of external isolation with
respect to internal cohesion, remains an open problem in cluster analysis.

In this paper, we introduce the Distinguishability criterion to measure the separability of a set of assumed clusters. The
criterion is motivated by this simple intuition: if all clusters are well separated from each other, then the originating
clusters for all data points (whether observed or not) should be easily traceable. To implement the Distinguishability
criterion, we formulate labeling the generating cluster for an arbitrary data point as a probabilistic classification problem.
Naturally, the difficulty (or lack thereof) of this classification problem can be described by an overall misclassification
probability averaged over all possible data points.

We employ a statistical viewpoint to define the Distinguishability criterion for cluster analysis. The partitioned observed
data are taken to be realizations from cluster-specific data generative distributions, which are essential for computing the
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proposed misclassification probability. Although not all clustering algorithms make explicit distributional assumptions
for the presumed clusters, many commonly applied heuristics-based algorithms achieve optimal performance under
specific probabilistic generative models [13, 14]. Furthermore, the identified cluster structures from cluster analysis are
typically expected to be replicated in future datasets—an implicit assumption for consistent data generative distributions.
As a result, statistical inference procedures based on explicit distributional assumptions have become more popular for
their ability to not only enhance clustering performance but also to examine and interpret cluster structures identified by
both model and heuristics-based clustering methods [15, 16, 17, 18].

The remainder of this paper is organized as follows. We first provide the mathematical definition and properties of the
Distinguishability criterion. We then discuss its usage with existing clustering algorithms. Finally, we illustrate the
applications of the Distinguishability criterion using both synthetic and real data from various scientific applications.
Our implementation of the Distinguishability criterion and the analyses presented in this paper can be found at
https://github.com/aturfah/distinguishability-criterion.

2 Results

2.1 The Distinguishability Criterion

The proposed Distinguishability criterion measures the overall separability of a given cluster configuration and is
derived by quantifying the misclassification probability from a multi-class classification problem.

Given a cluster configuration where each of the K clusters corresponds to a distinct class, we denote the class label for
an observation x by θ ∈ {1, 2, ...,K}. We assume a pre-defined classifier, δ(x) : Rp → {1, ...,K}, and evaluate the
classification performance using the 0-1 loss function, i.e.,

L(δ(x), θ) = 1{δ(x) ̸= θ}.

The overall misclassification probability under the assumed cluster configuration, denoted by Pmc, is defined as the
Bayes risk of the classifier δ(x), i.e.,

Pmc = Ex

[
Eθ

(
L(δ(x), θ) | x

) ]
(1)

Using the 0-1 loss ensures that the resulting Bayes risk is a valid probability measurement, ranging from 0 to 1. It is
naturally interpreted as the probability of misclassifying a data point under the given cluster configuration, marginalizing
all potential x values and their respective true generating clusters. For instance, a Pmc value close to 0 signifies a high
degree of cluster separation, indicated by a minimal probability of erroneously assigning an arbitrary data point to an
incorrect generating cluster (Supplementary Figure 2).

As we are primarily interested in assessing different cluster configurations, the selection of the required classifier
is flexible. However, the choice of classifier can impact the computational efficiency of the Pmc evaluation. Our
implementation focuses on the set of classifiers working directly with the probabilities

πk(x) := Pr(θ = k | x), for k = 1, ...,K.

This set includes the optimal classifier under the 0-1 loss, δo, i.e.,

δo(x) = argmax
k

πk(x)

Our default classifier for computing Pmc is a randomized decision function, δr, which assigns a label to an observation
x by sampling from a categorical distribution based on the probability distribution π(x) = (π1(x), ..., πK(x)), i.e.,

δr(x) ∼ Categorical (π(x)).

In addition to yielding highly comparable Pmc values to the optimal classifier within the decision-critical ranges of
cluster separation (Supplementary Figure 1), the randomized classifier’s computational properties enable highly efficient
cluster analysis procedures.

The πk’s are the key quantities bridging the observed clustering data and Pmc. They are calculated using Bayes rule,

2

https://github.com/aturfah/distinguishability-criterion


Interpretable Clustering with the Distinguishability Criterion A PREPRINT

πk(x) ∝ αk(Xc) p(x | θ(Xc) = k).

The notation emphasizes that both the prior, αk(Xc), and the likelihood function, p(x | θ(Xc)), are directly informed by
and estimated from the clustering data. More specifically, the prior quantifies the relative frequency of the observations
arising from each assumed cluster, while the likelihood function encodes the characteristics of the corresponding cluster
population, such as its centroid and spread information. Computing πk values is straightforward for model-based
clustering algorithms such as Gaussian mixture models (GMMs) [14]. For non-model-based clustering algorithms,
explicit distributional assumptions specifying the parametric family of likelihood functions are required. We illustrate
these procedures for k-means and hierarchical clustering algorithms in subsequent sections.

In summary, Pmc is a probability measurement of global separability across inferred clusters. It can accommodate a
wide range of distributional assumptions, making it compatible with a diverse set of clustering procedures and data
modalities. Moreover, as a function of clustering data, Xc, the estimate of Pmc itself is a valid loss function suitable for
selecting optimal cluster configurations in cluster analysis.

2.2 Combined Loss Function for Cluster Analysis

In cluster analysis, the desired cluster characteristics are often defined by multiple criteria [19]. A single criterion on
its own, including the proposed Distinguishability criterion, is insufficient to define a practically optimal clustering
solution. Alternatively, combining multiple loss functions targeting different desired cluster properties can result in
more balanced and holistic clustering solutions. This observation leads to a principled way to incorporate Pmc with
other established clustering criteria and algorithms.

Specifically, let L1 denote a loss function associated with existing clustering algorithms. Formally, we consider a
compound loss, L, as a weighted linear combination of L1 and Pmc, i.e.,

L = L1 + λPmc, λ > 0. (2)

Because of the scale of Pmc, it is often convenient to solve the following equivalent constrained optimization problem,

Minimize L1, subject to Pmc ≤ τ, (3)

where τ is a pre-specified probability threshold. It is worth noting that the stringency of the τ value may depend on the
dimensionality of the clustering data.

The choice of clustering algorithm determines the functional form of L1. For example, the distortion function or Ward’s
linkage are natural choices for L1 when using k-means and hierarchical clustering methods, respectively. Alternatively,
the negative of the gap statistic [20] can also be an excellent choice in these application scenarios. For model-based
clustering algorithms, the L1 function can be derived from various model selection criteria, e.g., the negative of Bayesian
information criterion (BIC).

2.3 Connections to Related Approaches

The misclassification probability defined by Pmc falls into the category of internal clustering validity indices [21, 22, 23],
which assess the quality of a clustering solution without additional external information beyond the observed data. This
category includes many commonly applied statistical measures, such as the Silhouette index [24], Calinski-Harabaze
index [25], Dunn index [26], among others. A common behavior of internal clustering validity indices is that they
evaluate both the cohesion (or compactness) within a cluster as well as the separation between clusters. For Pmc, the
within-cluster cohesion is quantified through the estimated parameters in the likelihood function, p(x | θ(xc) = k).
The separation, relative to the cohesion, is quantified by the overall misclassification probability.

Henning [19] and Melnykov [27] also compute misclassification probabilities to assess the separation between clusters
in the context of mixture models for clustering. They introduce the metrics—named “directly estimated misclassification
probability" (DEMP) and DEMP+—specifically designed to compute misclassification probabilities between pairs
of clusters to inform decisions about the local merging of mixture components. In comparison, Pmc is a global
measure of the misclassification probability across all clusters. It, too, can be used to combine mixture components
to form interpretable clusters, as illustrated in Section 2.4. Additionally, the entropy criterion proposed by Celeux
and Soromenho [28, 29, 30] provides another alternative approach to quantify the separability of clusters using a
classification problem set-up.
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The Distinguishability criterion also agrees with the principle of stability measures commonly employed in clustering
analysis. Specifically, if the underlying cluster distributions are all well-separated, as indicated by low Pmc values,
data sampled repeatedly from these distributions are expected to produce consistent clustering outcomes [31, 32, 33].
Empirical evidence has shown that Pmc and various measures of clustering instability are highly correlated, which is
demonstrated in the subsequent sections.

2.4 Finite Mixture Models Incorporating Pmc

Finite mixture models (MM) are probabilistic models that can seamlessly incorporate the Distinguishability criterion.
MM-based clustering algorithms primarily infer the distributional characteristics underlying each latent cluster. As a
result, no additional assumptions are needed to compute Pmc in the MM setting — the required quantities, {αk, p(x |
θ = k), πk}, are all direct outputs or by-products from standard MM inference procedures [14], e.g., the EM algorithm.

We make an important distinction between a mixture component and an interpretable cluster, a point previously
discussed by [27, 29, 30, 34]. We view mixture models as flexible density estimation devices, where the number of
mixture components is chosen to adequately fit the observed data. On the other hand, the distribution of an underlying
cluster—characterized by the Distinguishability criterion—may itself be a mixture distribution comprising multiple
components. This distinction naturally leads to combining the loss functions represented by −BIC, which evaluates the
goodness-of-fit of a mixture density, and Pmc, which characterizes the separation between potential clusters.

To optimize the combined loss function, we first find P (x), the optimal mixture distribution with κ components, by
maximizing the BIC. Subsequently, we merge the mixture components into clusters until Pmc falls below a pre-specified
threshold τ . Since merging mixture components into clusters does not alter the mixture component distributions in
any way, the BIC is unchanged by the merging process. It can be shown that merging existing clusters in this manner
always decreases Pmc (Appendix B). Specifically, under the default randomized classifier δr, the reduction of Pmc by
combining clusters i and j is given by

∆P (i,j)
mc = 2

∫
πi(x)πj(x)P (dx). (4)

For clusters with little to no overlap, i.e., πi(x)πj(x)→ 0 for all x values, merging (i, j) results in minimal changes in
Pmc. On the other hand, for clusters with significant overlap, ∆P

(i,j)
mc can be substantial.

By further utilizing the cluster merging property of Pmc (Proposition 1, Methods Section), i.e.,

Pmc =
∑
i<j

∆P (i,j)
mc , (5)

we propose an efficient Pmc Hierarchical Merging (PHM) algorithm to sequentially amalgamate mixture components
into clusters (Algorithm 1). Briefly, starting by assigning each of the κ mixture components to individual clusters, the
PHM algorithm pre-computes ∆P

(i,j)
mc for all (i, j) cluster pairs. It then sequentially combines the pairs of clusters

with the largest ∆P
(i,j)
mc into a single cluster and updates the ∆Pmc values for the remaining clusters. The process is

repeated until the updated Pmc falls at or below a pre-defined τ value. Intuitively, this procedure prioritizes merging the
most similar or closely related clusters at each step, quantified by their ∆P

(i,j)
mc value.

By setting τ = 0, the algorithm runs until all mixture components have been merged into a single cluster. The
complete merging process can be visualized using a dendrogram (Appendix C), characterizing the hierarchical merging
orders between individual mixture components and merged clusters. In many scientific applications, e.g., genetics and
single-cell data analysis, such a dendrogram can provide a snapshot of the underlying continuous differentiation process
that forms the identified clusters. We provide two examples in our real data applications (Section 2.7).

To illustrate the PHM algorithm with Gaussian mixture models (GMMs), we use the synthetic data from Section 4.1 in
Baudry et al. [30]. Specifically, 600 observations are drawn from six Gaussian distributions arranged along the corners
of a square in the following manner. Two overlapping Gaussian distributions are placed in the top left corner of the
square, each with 1/5 of the samples. The bottom left and top right corners each have a single Gaussian distribution,
each contributing 1/5 of the samples. Finally, two overlapping Gaussian distributions are placed in the bottom right
corner, each with 1/10 of the samples.

A GMM with six components is selected by BIC using the R package mclust [35]. The observed clustering data is
shown in the left panel of Figure 1, with colors corresponding to an observation’s assignment to one of the κ GMM
components. The initial cluster configuration labeling each mixture component as a single cluster has Pmc = 0.139.
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Figure 1: (Left) 600 simulated observations drawn from a mixture of six two-dimensional Gaussian distributions. Colors
indicate the cluster assignment labels to each of the six estimated mixture components. (Right) Heatmap visualizing
∆Pmc values for the estimated mixture components. The intensity of the color indicates the relative proportion of Pmc

contributed by the overlap between these components (i.e., ∆P
(i,j)
mc ).

The heatmap in the right panel of Figure 1 visualizes the ∆P
(i,j)
mc contributions from each pair of mixture components,

showing that the main sources of Pmc come from the overlapping components in the top left and bottom right corners.

With a threshold of τ = 0.01, the PHM algorithm sequentially combines the mixture components in the top left and
bottom right corners, reducing the values of Pmc to 0.049 and 0.004, respectively. In the end, the algorithm returns four
clusters: one corresponding to the components in each of the four corners.

2.5 Applications in k-means Clustering

Applying the Distinguishability criterion to heuristics-based clustering algorithms requires additional distributional
assumptions to compute Pmc. Although popular algorithms of this kind—such as k-means and hierarchical clustering—
rely on intuitive heuristics, their implicit connections to probability models have been well studied. These results
provide insights into the data types for which certain non-model-based clustering algorithms are expected to be optimal.
The k-means algorithm, in particular, has been shown as equivalent to approximately optimizing a multivariate Gaussian
classification likelihood function [13, 14]. Hence, when applying the Distinguishability criterion with the usual k-means
distortion function, it seems natural to assume that data within each inferred partition are normally distributed. It then

Algorithm 1: Pmc Hierarchical Merging (PHM) algorithm
Input: Input data X , Pmc threshold τ
Result: Groupings of mixture components into clusters

1 Procedure PHM
2 Fit a mixture model to X , determining the number of components by maximizing BIC
3 Initialize clusters to individual mixture components
4 Compute ∆P

(i,j)
mc for all pairs of clusters i, j

5 while Pmc > τ do
6 Group clusters i, j with maximal ∆P

(i,j)
mc into a single cluster k′

7 Update the distribution quantities for this new cluster:
8 αk′ ← αj + αi

9 p(x | θ = k′)← α−1
k′ · [αi · p(x | θ = i) + αj · p(x | θ = j) ]

10 πk′(x)← πi(x) + πj(x)

11 Update Pmc ← Pmc −∆P
(i,j)
mc

12 Compute ∆P
(k′,k)
mc for all uninvolved clusters k: ∆P

(k′,k)
mc = ∆P

(i,k)
mc +∆P

(j,k)
mc

13 return
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Figure 2: (Left) 450 simulated observations drawn from a mixture of three Gaussian distributions. Color indicates true
generating distribution while shape indicates the assigned k-means cluster. (Center and Right) Value of the gap statistic,
Pmc, and the Silhouette index for different numbers of clusters based on the k means clustering partition with Gaussian
cluster distributions.

becomes straightforward to estimate the necessary parameters and compute Pmc given the partitioned data from the
k-means output.

We illustrate a procedure to determine the number of clusters (K) in k-means clustering by optimizing the combined
loss of Pmc and the gap statistic [20]. For a given data partitioning from the k-means algorithm, the gap statistic
compares the observed within-cluster dispersion to the expected dispersion under a null reference distribution. It
subsequently estimates the optimal number of clusters corresponding to the largest gap statistic value from a range of
potential K values. We consider observations drawn from three Gaussian clusters in R2 centered at (0, 0), (1.75, 1.75),
and (-4, 4) with identity covariance matrices (nk = 150). The observed data are shown in Figure 2, with substantial
overlap between the data generated from two of the three distributions. The k-means algorithm is performed for K = 1
to 7 using the R package ClusterR [36] with kmeans++ initialization [37]. In addition to the Pmc values, we also
present the averaged Silhouette index [24] for each value of K = 2, . . . , 7.

The values of the gap statistic, Pmc, and the Silhouette index for different K are shown in Figure 2. When used alone,
the gap statistic selects K = 3, coinciding with the number of generating distributions. There is a noticeable difference
in the inferred clusters’ separability between K = 2 (Pmc = 0.002) and K = 3 (Pmc = 0.062). For a Pmc threshold
τ = 0.01, optimizing the combined loss function (3) leads to selecting K = 2, which seems most reasonable judging
by the data visualization. This decision is also consistent with the Silhouette index, which takes a maximal value of
0.632 at K = 2 compared to 0.522 at K = 3. Additionally we find that Pmc is highly negatively correlated with cluster
stability measures. We present the values of the stability measure proposed by Lange et al. [32] using the adjusted Rand
index to compute cluster similarities as well as the prediction strength [33] in Supplementary Table 1.

As noticed in the original paper [20], the gap statistic can struggle to determine K when the underlying generative
distributions have substantial overlapping support. The above numerical example illustrates that the Distinguishability
criterion can alleviate this challenge in k-means clustering.

2.6 Hypothesis Testing in Hierarchical Clustering

It has become increasingly common to perform formal statistical testing in post-clustering analysis to reduce cluster
over-identification. Recent works by Gao et al. [16], Chen et al. [17], and Grabski et al. [18] highlight the necessity
and importance of such analysis in scientific applications, where false positive findings of clusters are considered more
costly than false negative findings. In many application contexts, it is often of interest to assess whether the partitions
of the observed data output by heuristics-based clustering algorithms (e.g., hierarchical clustering) could arise from
a single homogeneous distribution (most commonly, a single Gaussian distribution) by chance. Pmc emerges as a
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natural test statistic in this parametric hypothesis testing framework because its values are expected to be quantitatively
different under the null and alternative scenarios.

Formally, we consider testing the null hypothesis,

H0 : the data are generated from a single Gaussian distribution

in the hierarchical clustering setting [15, 16, 18]. Following hierarchical clustering of observed data, we compute Pmc

for the pair of inferred clusters resulting from the first split of the dendrogram (i.e., K = 2). The null distribution of
Pmc can be estimated by a simple Monte Carlo procedure that repeatedly samples data from H0, performs hierarchical
clustering, and computes Pmc for the partitions defined by the first split. Alternatively, the p-value of the Pmc statistic
can be derived from the standard parametric bootstrap procedure [38].

We present the results of simulation studies examining the performance of Pmc in this hypothesis testing setting.

First, we illustrate Pmc’s ability to control for spurious cluster detection. For 5,000 simulation replicates, we draw 150
observations from a N(0, 1) distribution and perform hierarchical clustering based on the squared Euclidean distance
with the Ward linkage. We compute Pmc and derive the corresponding p-values based on the estimated null distribution
from 5,000 additional Monte Carlo simulations, each with a sample size of 150. We also compute the Pmc p-values
using a bootstrap procedure, using 500 bootstrap replicates to estimate the p-value for each simulation replicate. For
comparison, we also compute the p-values from the selective inference procedure proposed by Gao et al. [16] as well as
the standard two-sample t-test. The results are shown in the top panel of Figure 3. As expected, the p-values from the
two-sample t-test are all in the range of 10−20 to 10−40, providing no control for false positive findings. This is because
the naive t-test fails to take into account that the hierarchical clustering procedure always partitions data according to
their observed values even under H0, as noted by [16]. In contrast, p-values derived from Pmc and Gao et al.’s methods
are both roughly uniformly distributed under H0, suggesting well-controlled type I error rates. Specifically, we find that
Pmc = 0.094 corresponds to the cutoff at the 5% α level, and the realized type I error rate is 4.8%. The type I error rate
from the bootstrap procedure using Pmc at the same control level is 1%, which is more conservative.

Second, we examine the power of the Pmc-based hypothesis test to identify truly separated clusters. Specifically,
we draw samples from two distinct Gaussian distributions, N(µ1, σ

2) and N(µ2, σ
2), where a range of |µ1 − µ2|/σ

Figure 3: (Top) The distribution of p-values based on Pmc, Gao et al.’s selective inference procedure, and the two-sample
t-test for 5,000 simulation replicates. (Bottom) Power comparison between Pmc and Gao et al.’s method to detect the
presence of two Gaussian clusters controlling the type I error rate at level α = 0.05 as the cluster separability increases.
The power at each value |µ1 − µ2|/σ is calculated based on 500 simulation replicates.
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Figure 4: (Left) Bill and flipper lengths for the subset of female penguins with complete data from the un-scaled
palmerpenguins data. Color indicates species, while shape indicates the assigned k-means cluster at K = 3. (Right)
Value of the gap statistic and Pmc for different numbers of clusters based on the k-means clustering partition with
Gaussian cluster distributions.

values are selected from the set {1, 1.5, . . . , 7}. In each alternative scenario represented by a unique |µ1 − µ2|/σ
value, we draw 75 observations from each cluster distribution and compute the p-values using Pmc as well as Gao et
al.’s procedure. We calculate the power based on 500 replicates for each alternative scenario. As can be seen in the
bottom panel of Figure 3, Pmc exhibits higher power than Gao et al.’s procedure for moderate-to-large degrees of cluster
separation (defined by |µ1 − µ2|/σ ∈ [2, 6]).

2.7 Real Data Applications

2.7.1 Cluster Analysis of Palmer Penguin Data

We analyze the penguins data from the palmerpenguins package [39], which consists of bill, flipper, and mass
measurements from three species of penguins in the Palmer Archipelago between 2007 and 2009. Following the analysis
by [16], we consider the subset of female penguins with complete data for bill and flipper length (both measured in
millimeters), leaving us with 165 observations. Prior to performing the clustering, we center and scale the observations
so that the measurements have zero mean and unit variance. Following the procedure laid out in Section 2.5, we perform
k-means clustering of the scaled observations into K = 1, . . . , 8 clusters and compute the gap statistic as well as Pmc

for each grouping of the observations. Figure 4 shows the data used for clustering and the values of the gap statistic and
Pmc for different values of K.

For the Pmc threshold of 0.05, the combined loss defined by the gap statistic and Pmc is optimized at K = 3. Both the
visualization of the clustering data and the external species information suggest that the result is reasonable. We observe
that the values of Pmc in this example are strongly negatively correlated with other cluster validity indices [24, 32, 33] to
evaluate the k-means clustering partitions (Supplementary Table 2). We repeat this analysis using hierarchical clustering
based on the squared Euclidean distance with the Ward linkage and come to the same conclusions (Supplementary
Figure 3 and Supplementary Table 3).

2.7.2 Inferring Population Structure from HGDP data

In this illustration, we apply the PHM algorithm to perform cluster analysis on the genetic data from the Human Genome
Diversity Project (HGDP) [40, 41], aiming to identify population structures. The dataset comprises 927 unrelated
individuals sampled worldwide and genotyped at 2,543 autosomal SNPs. The geographic sampling locations are broadly
divided into 7 continental groups: Europe, Central/South Asia (C/S Asia), Africa, Middle East, the Americas, East Asia,
and Oceania.

Following the standard procedures for genetic data analysis, we pre-process the genotype matrix using principal
component analysis (PCA) and select the first 5 PCs for our analysis based on the elbow point of the scree plot
(Supplementary Figure 4). To apply the PHM algorithm, we fit a GMM to the dimension-reduced PC score matrix and
select the model with 9 components based on the BIC. Each individual’s posterior component assignment probability
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Figure 5: (Top) Dendrogram visualizing the order of component merges in the PHM procedure. Numeric values indicate
the reduction of Pmc by the merge. Colors correspond to the mixture components from the distruct plot. (Bottom)
Distruct plot for posterior component assignment probability, with color indicating mixture components. Observations
are grouped by the geographic region of their sampling location.

πk is shown in the distruct plot [42] in Figure 5. Except for the Europe, Central/South Asia, and Middle East groups,
the remaining continental groups tend to correspond to unique mixture components.

Starting with assigning each mixture component to its own cluster and an initial Pmc = 0.1437, we proceed with
the steps of the PHM algorithm with τ = 0, i.e., merging until all observations belong to a single cluster and Pmc

is decreased to 0. Figure 5 visualizes the merging process as a dendrogram. The numbers in each node indicate the
reduction of Pmc, i.e., ∆Pmc, by combining the corresponding branches into a single cluster. A smaller value of
∆Pmc indicates that the clusters being combined are more distinct. Because the algorithm always prioritizes merging
the most overlapping clusters, the merging sequence reflects the relative genetic dissimilarities between different
clusters. This relationship can be straightforwardly interpreted from the dendrogram. For example, the first two merges
— reducing Pmc to 0.063 and 0.021, respectively — form a cluster representing samples from Europe, the Middle
East, and Central/South Asia, reflecting a close genetic relationship and noticeable genetic admixture among these
population groups. The general structure of the dendrogram can be roughly explained by the likely path of historical
human migrations: from Africa into the Middle East, from the Middle East to Europe and Central/South Asia, from
Central/South Asia to East Asia, and from East Asia to Oceania and the Americas. The overall pattern of human genetic
diversity among the continental groups identified from our analysis is also corroborated by more sophisticated genetic
analysis using additional information (e.g., haplotype analysis) [41] and high-coverage genome sequencing data [43].

2.7.3 Cluster Analysis of Single-cell RNA Sequence Data

In this illustration, we apply the PHM algorithm to single-cell RNA sequencing (scRNA-seq) data from a sample of
peripheral blood mononuclear cells to identify the different cell types. The data (sequenced on the Illumina NextSeq
500 and freely available from 10x Genomics) consist of gene expression counts for 2,700 single cells at 13,714 genes.

The raw sequence data are quality-controlled and pre-processed using standard procedures implemented in the Seurat
package [44], leaving us with 2,638 cells. Principal component analysis is subsequently performed on the normalized
and scaled expression counts for dimension reduction. The first 10 components are selected based on the elbow point
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Figure 6: (Top) Dendrogram visualizing the order of component merges in the PHM procedure. Numeric values indicate
the reduction of Pmc by the merge. Colors correspond to the mixture components from the distruct plot. (Bottom)
Distruct plot for posterior component assignment probability, with color indicating mixture components. Observations
are grouped by annotated cell type.

of the scree plot (Supplementary Figure 5). The resulting 2,638 × 10 data matrix is used for our cluster analysis.
Additionally, each cell is annotated as one of the following cell types: Naïve CD4+ T cells, Memory CD4+ T cells,
CD8+ T cells, Natural Killer (NK) cells, B cells, CD14+ monocytes, FCGR3A+ monocytes, Dendritic cells (DC), and
Platelets, using known biomarkers. The annotated cell type information is not used in our cluster analysis procedure.

We fit a GMM on the dimension-reduced PC matrix and select the model with 9 components based on the optimal BIC.
The posterior component assignment probability πk for each cell is visualized in Figure 6. With the exception of the
Naïve and Memory CD4+ T cells, each cell type corresponds to a unique mixture component.

Starting with each mixture component as its own cluster and an initial Pmc = 0.0703, we perform the merging
procedure until all components have been combined into a single cluster. The merging process is represented by the
dendrogram in Figure 6. We note that the pattern shown in the dendrogram has a striking similarity to the known
immune cell differentiation trajectories. For example, the first merge combines the two types of CD4+ T cells, reducing
Pmc from 0.070 to 0.042. Furthermore, CD8+ T cells, CD4+ T cells, NK cells, and B cells—all derived from Lymphoid
progenitor cells—are grouped together in the dendrogram and separated from the branch consisting of FCGR4A+,
CD14+ monocytes, and Dendritic cells—all of which are derived from Myeloid progenitor cells.

3 Conclusion and Discussion

In this work, we introduce the Distinguishability criterion, Pmc, to quantify the separability of clusters inferred from
cluster analysis procedures. We discuss the intuition behind the criterion, as well as the derivation and properties of Pmc.
We propose a combined loss function-based computational framework that integrates the Distinguishability criterion
with available model and heuristics-based clustering algorithms and demonstrate its use with synthetic and real data
applications.

The proposed Pmc is an internal clustering validity index to assess the separability of the clustering results, with unique
advantages over alternative validity indices. Since Pmc is measured on the probability scale, the threshold for our
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proposed constrained optimization problem is interpretable. Additionally, Pmc measurements are directly comparable
across different datasets and various types of clustering applications, enabling future work on assessing the replicability
of clustering analysis.

While our numerical illustrations primarily use Gaussian or mixtures of Gaussian distributions to evaluate Pmc, it is
important to highlight the proposed computational framework’s flexibility and compatibility with any valid parametric
likelihood function. As a result, the applications of Pmc can be extended to a more diverse class of latent variable
models, e.g., latent Dirichlet allocation (LDA) and generalized factor analysis models, in order to help address the
similar model selection problems that arise with their use. We will explore these extensions in our future work.

The properties of Pmc are best utilized in our proposed PHM algorithm, which is motivated by Baudry et al.’s entropy
criterion-based merging procedure [30]. By combining mixture components into clusters, both algorithms enjoy
excellent model fit and interpretability for the inferred clusters. However, the constrained optimization formulation
described above leads to a more interpretable stopping rule for the PHM algorithm compared to Baudry et al.’s procedure.
Furthermore, the PHM algorithm shows improved computational efficiency—due to the cluster merging property of
Pmc, the complexity of the PHM algorithm is invariant to the sample size of the observed clustering data, making it
more suitable for analyzing large-scale data. Finally, we note that the dendrogram visualizing the complete merging
procedure can be used to represent a coalescent process that has many applications across scientific disciplines, such as
developmental biology, human genetics, and evolutionary biology. One possible future research direction is shifting
the focus from cluster analysis to uncovering the underlying coalescent trees by incorporating more context-specific
information, with the PHM algorithm as a natural starting point.

It is also possible to extend the PHM algorithm to work with a general class of hard clustering algorithms that output
optimal partitions of observed data. One strategy is to treat each output partition as a distinct population sample and
estimate its distribution using a finite mixture model. We can then re-normalize the mixture proportions globally and
initilize the clusters at the level of the output partitions, at which point applying the PHM algorithm is straightforward.
This simple strategy extends the applications of the Distinguishability criterion to a more diverse class of clustering
algorithms, including density-based and graph clustering algorithms.

4 Methods

4.1 Overview of Clustering Methods

We briefly review existing clustering methods, focusing on the algorithms used in this paper. The available clustering
methods can be roughly classified into two categories: heuristics-based clustering methods, represented by the k-means
and hierarchical clustering algorithms, and model-based clustering methods, represented by finite-mixture models.
The heuristics-based clustering methods typically do not make explicit distributional assumptions and instead perform
hard clustering by outputting optimal partitions of the observed data based on their corresponding objective functions.
The model-based clustering methods perform formal statistical inference of the latent cluster structures underlying the
observed data.

4.1.1 k-means clustering

k-means clustering is a widely used heuristics-based clustering algorithm for partitioning a sample into clusters. As the
name suggests, this procedure identifies clusters by their centroids (defined as the mean of all points in the cluster) and
assigns observations to the cluster with the nearest centroid. More formally, for a specified number of clusters K, the
algorithm groups the observations into disjoint sets C1, . . . , CK to minimize the distortion function, i.e.,

min
C1,...,CK

K∑
k=1

∑
i∈Ck

∣∣∣∣∣∣∣∣xi −
∑
j∈Ck

xj/|Ck|
∣∣∣∣∣∣∣∣2
2

,

which corresponds to minimizing the within-cluster variances. The clustering is usually performed using Lloyd’s
algorithm [45], which alternates between assigning observations to the cluster with the nearest centroid and updating
the cluster centroid to eventually arrive at a locally optimal solution.

It has been shown that the k-means algorithm is equivalent to an approximate maximum likelihood procedure, where the
underlying probability model assumes a multivariate Gaussian distribution for each latent cluster [13, 14]. Hence, the
observation frequency of each cluster and the corresponding parameters for the Gaussian distribution can be estimated
straightforwardly using the partitioned output from the k-means algorithm.
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4.1.2 Hierarchical clustering

Hierarchical clustering produces a sequence of partitions for observations. In the commonly used agglomerative
hierarchical clustering procedure, each observation comprises its own cluster in the initial partition. Subsequent
clusterings in the sequence are formed by repeatedly combining the most similar pair of groups of observations into
a single group until all observations have been combined into a single cluster. The similarity between groups of
observations in hierarchical clustering is typically defined by a distance measure between pairs of observations, such
as the squared Euclidean distance, in addition to a function that generalizes this similarity to groups of observations
(referred to as a linkage function). Commonly used linkage functions between groups of observations are single linkage,
complete linkage, average linkage, and the Ward linkage.

The hierarchical clustering algorithm is also often connected to probability models assuming a Gaussian data distribution
underlying each cluster [46, 14], and explicit Gaussian assumptions are commonly used for model-selection or post-
selection inference in hierarchical clustering [15, 16, 18].

4.1.3 Model-based Clustering

Finite mixture models are the most representative approach for model-based clustering, where a mixture distribution with
finite components models the observed clustering data. Traditionally, each mixture component is taken to correspond
to a homogeneous subpopulation or cluster. The goal of inference in the mixture model setting is to estimate the
characteristics of each mixture component, i.e., p(x | θ = k), and the corresponding mixture proportion, i.e., αk. The
expectation-maximization (EM) algorithm is commonly used to find maximum likelihood estimates of the parameters
of interest. The Gaussian mixture model (GMM), which models each mixture component using a unique Gaussian
distribution, is probably the most commonly used mixture model in practice. This is because, among other reasons, the
GMM is considered to be a universal approximator [47] and is flexible enough to fit diverse data types.

Unlike most heuristics-based clustering approaches, model-based clustering algorithms perform soft (or fuzzy) cluster-
ing, as they do not directly partition the observed data. Instead, every data point has an associated (posterior) probability
distribution over all possible cluster assignments. A post-hoc classification procedure, with a pre-specified decision rule
using the cluster assignment probabilities, can be applied to partition the observed data.

For a more thorough review of model-based clustering, we refer the reader to [14, 48, 49]

4.2 Derivation and Estimation of Pmc

The Bayes risk for a general classifier δ(x) : Rp 7→ {1, . . . ,K} assigning a point x to one of the K clusters can be
derived as follows,

Pmc = Ex
[
Eθ

[
L(δ(x), θ) | x

]]
=

∫  K∑
j=1

∑
i ̸=j

πi(x) Pr(δ(x) = j | x)

P (dx)

=

∫  K∑
j=1

(1− πj(x)) Pr(δ(x) = j | x)

P (dx)

(6)

For a more detailed derivation, see Appendix A. The marginal data distribution P (x), with loose notation, is given by

P (x) =

K∑
k=1

Pr(θ = k) p(x | θ = k) =

K∑
k=1

αk p(x | θ = k).

For the default randomized decision rule, δr(x) ∼ Categorical (π(x)),

Pr(δ(x) = j | x) = πj(x). (7)

Thus,
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Pmc, δr =

∫  K∑
j=1

πj(x)(1− πj(x))

P (dx)

= 2
∑
i<j

∫
πi(x)πj(x)P (dx)

(8)

To compute Pmc using the optimal decision rule, δo(x) = argmaxk πk(x), we define a partition of the sample space,
∪Kk=1Rk, such thatRk := {x : δo(x) = k}. It follows that,

Pr(δ(x) = j | x) = 1{x ∈ Rj}, (9)

and

Pmc, δo =

∫  K∑
j=1

∑
i ̸=j

πi(x)1{x ∈ Rj}

P (dx)

=

∫ (
1−max

k
πk(x)

)
P (dx)

(10)

Note that,

K∑
j=1

πj(x)(1− πj(x)) ≥
k∑

j=1

πj(x)(1−max
k

πk(x)) = 1−max
k

πk(x), ∀x (11)

Hence,

Pmc, δr ≥ Pmc, δo

Unless otherwise specificied, we use the notation Pmc to refer to Pmc, δr by default. In this paper, we estimate Pmc by
plugging in the point estimates of the αk’s as well as the key distributional parameters in the corresponding likelihood
functions obtained from the observed data.

4.3 Lower and Upper Bounds of Pmc

When all clusters are well-separated, Pmc approaches its lower bound at 0. More specifically, assuming well-separated
clusters, both of the following conditions should hold:

πi(x)πj(x)→ 0, ∀x and (i, j) pairs,

and

max
k

πk(x)→ 1, ∀x.

Hence, both decision rules (δr and δo) approach perfect classification accuracy.

Pmc is maximized when all clusters are completely overlapping, i.e.,

p(x | θ = i) = p(x | θ = j) ∀x and (i, j) pairs. (12)

Thus, πk(x) = αk, ∀x. It follows that

maxPmc, δr =

K∑
k=1

αk (1− αk),
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and

maxPmc, δo = 1−max
k

αk.

In the special case that αk = 1/K for all k values,

maxPmc, δr = maxPmc, δo =
K − 1

K
. (13)

4.4 The Cluster Merging Property of Pmc

The merging property is specific to the default Pmc, evaluated using the randomized decision rule δr. For a given
cluster configuration with K ≥ 2, consider merging two arbitrary clusters to form a new combined cluster. Let Pmc and
P †
mc denote the misclassification probabilities before and after the merging, respectively. The following proposition

summarizes the merging property.
Proposition 1. Merging two existing clusters indexed by i and j leads to

∆P (i,j)
mc := Pmc − P †

mc = 2

∫
πi(x)πj(x)P (dx) ≥ 0.

Furthermore,
Pmc =

∑
i<j

∆P (i,j)
mc

Proof. Appendix B.

The cluster merging property forms the basis of the PHM algorithm. As ∆P
(i,j)
mc can be pre-computed for all pairs of

clusters from the initial configuration, the subsequent updates for Pmc—merging one pair of clusters at a time—become
straightforward to compute.

4.5 Numerical Evaluation of Pmc

Evaluating Pmc numerically can be challenging, especially when clustering data are high-dimensional. For low-
dimensional data, it is possible to evaluate Eqn (6) by numerical integration using various quadrature methods. However,
they generally do not scale well when the clustering data dimensionality becomes larger than 5. When the marginal data
distribution, P (x), can be directly sampled from (as in the case in all examples presented in this paper), Monte Carlo
(MC) integration becomes an efficient solution. Specifically, we sample M data points from P (x) and approximate
Pmc by

P̂mc =
1

M

M∑
i=1

 K∑
j=1

(
1− πj(xi)

)
Pr(δ(xi) = j | x)

 (14)

The unique advantage of the Monte Carlo integration method is that its error bound is always O(1/
√
M) regardless of

the dimensionality of x. We provide comparisons between the Monte Carlo method and the numerical integration for
evaluating Pmc in some low-dimensional settings (Supplementary Method 1 and Supplementary Table 4), indicating
that the MC integration method is accurate and efficient.
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Appendix A Derivation of Pmc

To compute the Bayes risk for a general classifier δ(x) under the 0-1 loss, we first evaluate its posterior expected loss
Eθ

[
L(δ(x), θ) | x

]
as follows:

Eθ

[
L(δ(x), θ) | x

]
= Pr(θ ̸= δ(x) | x)

=

K∑
j=1

Pr(δ(x) = j, θ ̸= j | x)

=

K∑
j=1

Pr(θ ̸= j | x) Pr(δ(x) = j | x)

=

K∑
j=1

∑
i ̸=j

Pr(θ = i | x) Pr(δ(x) = j | x)

=

k∑
j=1

∑
i ̸=j

πi(x) Pr(δ(x) = j | x)

=

k∑
j=1

(1− πj(x)) Pr(δ(x) = j | x)

Note that Pr(θ ̸= j | x, δ(x)) = Pr(θ ̸= j | x). Subsequently,

Pmc = Ex
[
Eθ

[
L(δ(x), θ) | x

]]
=

∫  K∑
j=1

∑
i ̸=j

πi(x) Pr(δ(x) = j | x)

P (dx)

=

∫  K∑
j=1

(1− πj(x)) Pr(δ(x) = j | x)

P (dx)

Appendix B Proof of Proposition 1

Proof. Consider merging two existing clusters i, j to a new combined cluster k′. It follows that

αk′ = αi + αj

and

p(x | θ = k) =
αi p(x | θ = i) + αj p(x | θ = j)

αk′

Consequently, by applying Bayes rule,

πk′(x) = πi(x) + πj(x) (15)

Let S denote the set of indices of the existing clusters not impacted by the merge, where |S| = K − 2. By Eqn (8), Pmc

can be written as

17



Interpretable Clustering with the Distinguishability Criterion A PREPRINT

Pmc = 2
∑

m,n∈S,m<n

∫
πm(x)πn(x)P (dx)

+ 2
∑
l∈S

∫
πl(x)πi(x)P (dx) + 2

∑
l∈S

∫
πl(x)πj(x)P (dx)

+ 2

∫
πi(x)πj(x)P (dx)

By Eqn (15),

2
∑
l∈S

∫
πl(x)πi(x)P (dx) + 2

∑
l∈S

∫
πl(x)πj(x)P (dx) = 2

∑
l∈S

∫
πl(x)πk′(x)P (dx)

and note that,

P †
mc = 2

∑
m,n∈S,m<n

∫
πm(x)πn(x)P (dx) + 2

∑
l∈S

∫
πl(x)πk′(x)P (dx)

It becomes evident that
∆P (i,j)

mc = Pmc − P †
mc = 2

∫
πi(x)πj(x)P (dx) ≥ 0 (16)

Plugging in the expression of ∆P
(i,j)
mc into Eqn (8) yields

Pmc =
∑
i<j

∆P (i,j)
mc (17)

Remark The merging property is specific to the randomized decision rule δr under the 0-1 loss. For the optimal
decision rule, δo, it can be shown that P †

mc ≤ Pmc after merging a pair of existing clusters. However, the quantitive
expression for ∆P

(i,j)
mc is analytically intractable.

Appendix C Pmc Dendrogram Construction

We use a dendrogram to visualize the PHM procedure described in Algorithm 1. The leaf nodes in the tree correspond
to the individual components of the mixture model (MM) used to fit the data. The edges between parent and child
nodes correspond to a cluster merge step; we present the ∆Pmc reduction from the merge on the parent node for the
merged clusters. In this way, it is possible to determine the value of Pmc after each successive merge by subtracting the
cumulative ∆Pmc values from the leaf nodes of the tree up to the height of a specific merge from the Pmc of the initial
cluster configuration.

The height of a merge in the tree is determined as follows. Let P 0
mc denote the Pmc value at the initial cluster

configuration and, for a given merge, let P ‡
mc be the value of the criterion prior to that merge taking place. We place the

merge in the dendrogram at a height corresponding to the log10 scaled ratio of these values, i.e., log10 P
0
mc/P

‡
mc. The

log10 transformation prevents the merges from early on in the procedure from being “squashed" to the bottom of the
tree. We opt to use the Pmc value before the merge occurs rather than after to avoid dividing by zero when calculating
the height of the final merge (which would result in Pmc = 0).
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Supplementary Figures
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Supplementary Figure 1: Values of Pmc based on the randomized and optimal decision rules δr and δo. The value
Pmc is shown in the y-axis and is calculated for two univariate Gaussian distributions N(µ1, σ) and N(µ2, σ) where
π1 = π2 = 0.5. The x-axis indicates the degree of cluster separation in terms of the distribution parameters.
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Supplementary Figure 2: Distribution plots for two univariate Gaussian distributions N(0, 1) (solid line) and N(µ, 1)
(dashed line) at decreasing values of Pmc, where π1 = π2 = 0.5. The distance between the two centroids, |µ|,
determines the specific Pmc value.
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Supplementary Figure 3: (Left) Bill and flipper lengths for the subset of palmerpenguins data. Color indicates species
while shape indicates the assigned hierarchical clustering partition. (Right) Value of the gap statistic and Pmc based on
hierarchical clustering for different numbers of clusters with Gaussian cluster distributions.
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Supplementary Figure 4: Scree plot visualizing standard deviation captured by each of of the principal component
vectors from the HGDP data.
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Supplementary Figure 5: Scree plot visualizing standard deviation captured by each of of the principal component
vectors from the scRNA-seq data.
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Supplementary Tables
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K Gap Pmc Silhouette Stability (ARI) Prediction Strength

1 0.403 0.000 — — —
2 0.824 0.002 0.632 0.995 1.000
3 1.058 0.062 0.522 0.961 0.842
4 0.901 0.101 0.417 0.758 0.618
5 0.808 0.126 0.353 0.723 0.519
6 0.722 0.137 0.353 0.630 0.679
7 0.740 0.158 0.348 0.619 0.399

Supplementary Table 1: Values of Pmc and other cluster validity indices for the simulated k-means example data.
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K Gap Pmc Silhouette Stability (ARI) Prediction Strength

1 0.562 0.000 — — —
2 1.115 0.014 0.583 0.957 0.902
3 1.208 0.025 0.595 0.947 0.897
4 0.964 0.076 0.468 0.757 0.458
5 0.890 0.124 0.372 0.679 0.470
6 0.886 0.147 0.385 0.646 0.362
7 0.884 0.138 0.390 0.641 0.333
8 0.804 0.148 0.369 0.627 0.383

Supplementary Table 2: Values of Pmc and other cluster validity indices for the Palmer penguins data based on the
k-means clusterings of the observations.
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K Gap Pmc Silhouette Stability (ARI) Prediction Strength

1 0.545 0.000 — — —
2 1.133 0.012 0.581 0.909 0.942
3 1.325 0.024 0.595 0.943 0.899
4 1.124 0.063 0.483 0.757 0.544
5 1.051 0.099 0.470 0.702 0.464
6 1.024 0.141 0.382 0.652 0.413
7 1.013 0.132 0.387 0.656 0.366
8 0.994 0.128 0.381 0.645 0.345

Supplementary Table 3: Values of Pmc and other cluster validity indices for the Palmer penguins data based on the
hierarchical clusterings of the observations.
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p Pmc Elapsed (s) P̂mc σ(P̂mc) Elapsed (s)

1 0.13144 0.011 0.13143 0.00056 1.010
2 0.13144 0.164 0.13141 0.00041 0.885
3 0.13144 3.163 0.13133 0.00042 0.994
4 0.13144 23.061 0.13132 0.00058 0.854
5 0.13145 23.689 0.13140 0.00051 0.954

Supplementary Table 4: Pmc values computed using cubature methods and Monte Carlo integration based on 50
replicates. The Pmc and P̂mc values are averages across all replicates. Elapsed time (in seconds) is the average time for
a single replicate.
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Supplementary Methods
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1 Monte Carlo Pmc Comparison

Here we compare Pmc computed using standard cubature methods to P̂mc estimated using a Monte Carlo (MC) integral
(as described in Section 4.5). We use 50 replicates to obtain the timing measurements and quantify the uncertainty in the
MC integral. All values presented are means over these replicates unless otherwise specified. For the MC integration
procedure we use M = 105 sample points, and parallelize the computation over 8 cores.

The distribution in question consists of three Gaussian clusters with πk = 1/3 in Rp with Ip variance. The cluster are
centered at 0p and ±dp, where dp is the p-dimensional vector whose elements are all d. d is set so that the Euclidean
distance between dp and the origin is fixed to be 3; i.e. d =

√
32/p. This is so that the value of Pmc remains fixed

across dimensions and we do not need to worry about the dimensionality affecting the true value of Pmc. The results for
dimension p = 1, . . . , 5 are presented in Supplementary Table 4.

Both approaches produce highly similar values of Pmc across dimensions. The standard deviation of the MC estimates
is quite low, indicating stability in the estimation procedure. However, while the cubature method evaluation time
rapidly increases in p, the time for the MC procedure is roughly constant. These together highlight the MC estimation
procedure as a viable and accurate approach to estimate Pmc, especially in moderate dimensional data (i.e., p ≥ 3)
where cubature methods may struggle to reach a solution in a reasonable time.
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