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Abstract—This paper presents a novel approach for minimizing
the number of teleportations in Distributed Quantum Computing
(DQC) using formal methods. Quantum teleportation plays a
major role in communicating quantum information. As such, it
is desirable to perform as few teleportations as possible when
distributing a quantum algorithm on a network of quantum ma-
chines. Contrary to most existing methods which rely on graph-
theoretic or heuristic search techniques, we propose a drastically
different approach for minimizing the number of teleportations
through utilizing formal methods. Specifically, the contributions
of this paper include: the formal specification of the teleportation
minimization problem in Alloy, the generalizability of the pro-
posed Alloy specifications to quantum circuits with n-ary gates,
the reusability of the Alloy specifications for different quantum
circuits and networks, the simplicity of specifying and solving
other problems such as load balancing and heterogeneity, and
the compositionality of the proposed approach. We also develop
a software tool, called qcAlloy, that takes as input the textual
description of a quantum circuit, generates the corresponding
Alloy model, and finally solves the minimization problem using
the Alloy analyzer. We have experimentally evaluated qcAlloy
for some of the circuits in the RevLib benchmark with more
than 100 qubits and 1200 layers, and have demonstrated that
qcAlloy outperforms one of the most efficient existing methods
for most benchmark circuits in terms of minimizing the number
of teleportations.

Index Terms—Distributed Quantum Computing, Teleportation,
Formal Methods, Alloy

I. INTRODUCTION

Minimizing the communication costs of distributed Quan-
tum Algorithms (QAs) is an important problem towards realiz-
ing large scale quantum computations in Noisy Intermediate-
Scale Quantum (NISQ) era where quantum machines are noisy
and have limited qubit capacities. One of the major approaches
for enabling Distributed Quantum Computing (DQC) on net-
works of quantum machines includes the mapping of quantum
algorithms/circuits to networks, where logical qubits and gates
are mapped to machines towards minimizing quantum commu-
nications. While cat-entanglement and quantum teleportation
can both enable communication in quantum networks, cat-
entanglement is mainly used for sharing read-only qubits in
binary gates, which should be disentangled after the communi-
cation. Moreover, the cat-entangled qubits suffer from higher
degrees of decoherence. As such, teleportation remains the
main mechanism for quantum communication, at the cost of

consuming some entangled pairs as resources. Thus, mapping
a quantum circuit to a network must be done while minimizing
the number of teleportations.

Most existing methods for minimizing the communication
costs of DQC utilize a variety of existing heuristics (e.g.,
genetic algorithms, simulated annealing) and optimization
techniques (e.g., graph partitioning) to tackle the Teleportation
Minimization Problem (TMP), which makes them less flexible
to change in circuit/network constraints, and less reusable
from one circuit/network to another. For example, Andres-
Martinez and Heunen [1] reduce the minimization problem
to the problem of hypergraph partitioning where the number
of cuts in the partitioned graph must be minimized. Davarzani
et al. [2] create a bipartitie graph out of a quantum circuit
where the two sets of vertices include the qubits and the
gates. Daei et al. [3] model a quantum circuit as a weighted
undirected graph, and apply the graph partitioning method
of Kernighan–Lin [4]. Nikahd et al. [5] present a window-
based partitioning method, and formulate the problem as an
instance of Integer Linear Programming (ILP). While the
aforementioned methods provide efficient ways for minimizing
the number of teleportations, they suffer from a few important
challenges. First, they mostly focus on circuits that have only
binary or ternary gates, assuming that circuits with gates of
larger arity can be transformed into circuits with binary gates
such as CNOT and CZ (controlled phase shift). In theory,
it is possible to perform such transformations [6], but it is
unclear how efficient they can be done in practice [7]. Second,
when the problem constraints change (e.g., network topology,
qubit capacity of nodes), the entire problem formulation should
be regenerated (e.g., recreate a new hypergrpah), and there
is little room for reusing the problem specification. Third,
most existing problem formulations (e.g., graph-theoretic, ILP)
are difficult to understand by mainstream designers, thereby
making it hard to fine-tune them when problem parameters
change or computational costs become prohibitive.

This paper presents a novel vision of using formal methods
for high-level and reusable specification of the TMP, where
part of the formal specifications of the problem constraints
remain unchanged and can be reused even if the circuit
or network characteristics change. Specifically, our vision
for mapping QAs to networks is heavily reliant on formal
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Fig. 1: A vision for the mapping of QAs to quantum networks.

specification languages and compositional problem solving
(see Figure 1). Such formal specifications are at a high
level of abstraction and easily understandable for mainstream
engineers (compared with ILP or hypergraph representations).
The generator of formal specifications in Figure 1 takes in
the reusable formal constraints of TMP, and then generates
a circuit and network-specific specification. Subsequently, the
generated specification is divided into a set of subproblems.
Each subproblem is then solved independently using state-of-
the-art verifiers/solvers, and their solutions are combined using
a synthesizer.

The proposed approach in this paper is an instantiation
of the framework in Figure 1 for the Alloy specification
language [8], where the Alloy specification of TMP includes
a circuit and network-independent part, which is reusable,
and a circuit and network-dependent section (a.k.a., problem-
specific section). The reusable part of the Alloy specifications
of TMP includes the relations that govern the movement of
qubits, their allocation on machines, and how these relations
change from one circuit layer to another, where a layer
includes a set of gates that can be executed concurrently on a
disjoint set of qubits. The problem-dependent part of the Alloy
specifications formally describe the circuit structure as well
as network constraints (e.g., topology, communication costs,
qubit capacity of machines). The basic units of abstraction
in Alloy specifications (a.k.a. models) include signatures and
relations, where a signature captures a type/set, and relations
establish ties between signatures. For example, in an Alloy
model, a qubit q can be declared as a signature, and then
associated with another signature of type ‘Machine’ where q is
located. Alloy enables the navigation of relations using the ‘dot
join’ operator borrowed from relational algebra. Constraints
in Alloy are specified as first-order logic statements, and
can either be enforced on an Alloy model, or queried. The
combination of the two parts provides us an Alloy model
that is ready for verification by the Alloy analyzer, which
contains state-of-the-art SAT solvers. The analyzer verifies
whether the number of teleportations performed is at most
equal to an upper bound. Selecting a sufficiently small upper
bound will force the analyzer to find a minimum solution.
Depending on the scale of the quantum circuit, we may divide
the problem into several subproblems, each focusing on a

subcircuit containing some number of layers.
We have implemented the proposed method as a software

tool, called qcAlloy, which is available at https://github.com/
KieranYoung/Alloy-DQC. The results of our experimental
evaluations on the RevLib benchmark [9], [10] indicate that
qcAlloy outperforms one of the most efficient methods [5]
in terms of the number of teleportations in most cases up to
50% while underperforming in a few cases (e.g., QFT circuit).
qcAlloy efficiently solves TMP for circuits with more than 100
qubits and 1200 layers.
Organization. Section II represents some basic concepts of
quantum circuits and Alloy. Section III states the TMP prob-
lem. Section IV specifies the constraints of TMP in Alloy.
Section V investigates the TMP problem in the context of
load balancing, and Section VI studies TMP in heterogeneous
networks. Subsequently, Section VII presents our experimental
results. Section VIII discusses related work. Finally, Section
IX makes concluding remarks and discusses future work.

II. PRELIMINARIES

This section presents some basic concepts of quantum
circuits and their abstract representation in Subsection II-A.
Subsection II-B provides an overview of the Alloy language
[8] and its analyzer.

A. Quantum Circuits and Circuit Graphs

Quantum Algorithms (QAs) capture the logic and order
of quantum transformations that are performed on quantum
information bits (i.e., qubits) towards solving a problem. A
common approach for representing QAs includes quantum
circuits that contain a set of horizontal wires carrying quantum
information from left to right and quantum gates applied
on a subset of wires vertically [11]. There is a one-to-one
correspondence between the input qubits of a circuit and its
wires. For example, Figure 2-(a) illustrates a quantum circuit
processing four qubits through applying a set of gates. A
quantum machine runs a circuit by executing its gates from
left to right. Notice that, some gates have a single qubit as
their input and some take two qubits (a.k.a. binary gates)
in Figure 2-(a). In general, gates might have multiple input
qubits; however, it is known [6] that any quantum circuit can
be represented by another circuit formed of a universal set of
single-qubit and binary gates to some degree of accuracy. In
this paper, we consider an abstract representation of quantum
circuits, called the circuit graph (e.g., see Figure2-(b)), where
we consider a vertex as a point of intersection between a wire
and a gate, and an edge represents a binary gate. Multi-qubit
gates are captured as multiple connected edges (i.e., path).

Since the Noisy Intermediate Scale Quantum (NISQ) ma-
chines have a limited qubit capacity (due to sensitivity to en-
vironmental noise and quantum decoherence), large quantum
circuits cannot be executed locally on a single machine and
they have to be partitioned and distributed over a network of
quantum machines. Circuit partitioning is performed horizon-
tally where proper subsets of qubits are assigned to different
machines in the network. As a result, the inputs of some gates
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Fig. 2: Abstracting circuit (a) as the circuit graph (b).

may be located in different machines, called global gates. One
way to execute a global gate g is to move all its remote input
qubits to the machine that is supposed to execute g, thereby
turning g into a local gate.

Circuit partitioning requires a means for the transmission of
quantum information from one machine to another. However,
quantum information cannot be copied [12], nor can it be
communicated without error. A reliable way of communicating
quantum information includes teleportation [13], which is a
method for transferring quantum information from one place
to another. To teleport a qubit of information from a location
loc0 to another location loc1, we need two classic bits of
information as well as an Entangled Pair (EP) of qubits that
are already distributed over loc0 and loc1. The teleportation
of a qubit from loc0 to loc1 can then be achieved through
the execution of some local quantum gates in loc0 and loc1.
Thus, the communication cost of a Distributed Quantum
Circuit (DQC) boils down to the total number of teleportations
performed. As such, we would like to partition a circuit in such
a way that requires minimum number of teleportations.

B. Alloy and Scope-Based Model Checking

Alloy [8] is a declarative specification language, which com-
bines first-order logic with relational algebra towards provid-
ing a highly expressive specification language. Alloy has been
used for solving a variety of problems in different domains of
applications (https://alloytools.org/citations/case-studies.html),
which demonstrate its expressiveness and its practical use.
The basic unit of abstraction in Alloy is a relation, which
can be of an arbitrary arity (e.g., unary, binary, ternary). To
define relations over abstract entities, one needs to specify such
entities first. An abstract entity (i.e., a unary relation) in Alloy
is captured as a Signature, which can be considered as a set
of elements, called atoms. For example, to model a directed
graph, one can declare a signature for graph nodes as follows:
sig Node{}, where sig is a keyword for declaring signatures in
Alloy. To specify the arcs of a directed graph, we can define
a binary relation arc that starts at a node and ends at another
node: sig Node{ arc: one Node }. From an object-orientation
point of view, one can think of the signature Node as a class
and the relation arc as a field in that class. The domain of
the arc relation includes the atoms of Node and its range is
Node too. Alternatively, arc can be specified as ‘Node → one
Node’, where → denotes the cross product operation applied
on two signatures. The quantifier one in ‘one Node’ stipulates

that each atom of signature Node is mapped to exactly one
atom in signature Node under the relation arc.

In principle, the cardinality of Node could be infinite, how-
ever, to enable automated analysis, Alloy requires us to specify
an upper bound, called the scope of Node, on the size of Node
when it comes to verifying any sort of constraint about Node.
For example, if we were to check whether there are cycles in a
graph, then we would specify an assertion as follows: ‘assert
isCyclic{ some n:Node | n in n.ˆarc}’. Intuitively, the assertion
stipulates that there is some node n that is in its dot join
product with the transitive closure, denoted ˆ, of the relation
arc. In other words, we are asking whether n can be reached
from itself through one or more steps in the graph. This is
achieved through the dot join operator ‘.’, which is similar
to relational join in databases. To check the assertion using
the Alloy analyzer, we write the following command: ‘check
isCyclic for 5 Node’. In this case, an instance of our Alloy
model includes a graph with d nodes, where 1 ≤ d ≤ 5, and
some arcs inserted between the nodes in a non-deterministic
fashion. The Alloy analyzer creates all instances that adhere to
the constraints of the Alloy specification, and then checks the
isCyclic assertion on each instance. Each instance is a graph
with up to 5 nodes because we specified the scope as ‘for 5
Node’ in the ‘check isCyclic’ command. The default scope is
three in case no scope is explicitly given to the analyzer.

Alloy specifications may include constraints that must hold
across all instances of the specification, called facts (a.k.a
invariant constraints). For instance, in our graph example, if
we are interested in instances that have no self-loops, then
we add the following fact to our alloy specification: ‘fact
noSelfLoop { no n:Node | n in n.arc}’, where n.arc returns the
set of nodes to which the node n is connected, and ‘in’ is
the keywork for subset operator in Alloy. (noSelfLoop is an
optional user-defined identifier.) One can define functions in
Alloy, where the parameters of a function are relations and its
return value is some relation too. For example, to return the
nodes from where there is an arc to a specific node n, we write
the following function: ‘fun incomings[n: Node]:Node{ arc.n }’.
The dot join of arc and n returns a set of nodes whose every
member n′ is the first element of some ordered pair (n′, n) in
relation arc. A special kind of function includes a predicate,
which returns only Boolean values. For instance, the predicate
‘pred isArc[n1, n2:Node]{ (n1 → n2) in arc}’ returns true iff (if
and only if) the arc relation includes an ordered pair (n1, n2)
between two nodes n1 and n2; i.e., an arc from n1 to n2
exists in the graph. To check the validity of a isArc, we run it
as follows: ‘run isArc’. The Alloy analyzer searches through all
possible instances of the model, in this case directed graphs
each having up to 3 nodes (because we have not explicitly
specified a scope for the run command). Then, the analyzer
returns all those instances that adhere to the constraints of the
Alloy specification (e.g., facts) as well as the constraints of
the predicate/function.

https://alloytools.org/citations/case-studies.html


III. PROBLEM STATEMENT

This section states the Teleportation Minimization Problem
(TMP) as follows:

• Input: A circuit graph G with L layers on n > 1
qubits, a function f : Q 7→ M that captures the initial
allocation of a set Q = {q1, · · · , qn} of n qubits to a
set M = {m1, · · · ,mk} of k quantum machines, where
k < n, and a set C = {c1, · · · , ck}, where ci denotes the
capacity of mi, for 1 ≤ i ≤ k. A special case is when
all ci values are equal; i.e., a homogeneous network.

• Output: The minimum number of teleportations that must
be performed to ensure that all gates can be executed
locally. The output should also include L functions
f1, f2, · · · , fL : Q 7→ M representing how teleportations
are performed from one layer to another.

A restricted statement of the problem may require that there
is no machine that always remains vacant while solving the
problem. That is, the function f must be onto in almost
every layer of the circuit. This problem relates with load
balancing and has conflicting requirements with minimizing
teleportations, which we shall discuss in Section V.

IV. SPECIFYING THE TMP IN ALLOY

This section presents a novel approach for specifying the
teleportation minimization problem in Alloy. Section IV-A
specifies a special case of the problem for quantum circuits
with binary gates, and Section IV-B generalizes the proposed
approach to circuits with n-ary gates, for n > 2. We discuss
the reusability of Alloy specifications in Section IV-C.

A. Circuits With Binary Gates

This section investigates a special case of the problem for
quantum circuits that have only single-qubit and binary gates.
For example, the circuit graph in Figure 3 has 4 qubits and
10 layers. To formulate the problem in Alloy, we first design
abstractions that model a circuit graph. Each circuit graph has
some qubits and some binary gates, abstracted as edges in the
circuit graph. For this reason, we consider an abstract signature
Qubit and extend four singleton qubits from it (in Lines 5
and 6 of Listing 1). The semantics of an extension is similar
to a subtype. That is, the singleton signatures q1, q2, q3, q4
(denoted by ‘one sig’) are of type Qubit. The abstract modifier
indicates that Qubit is partitioned by its subtypes. We also
specify the notion of a quantum machine as an abstract
signature and extend two singleton signatures M1 and M2 to
represent a network of two machines. The number of machines
also represents the number of subgraphs to which the circuit
graph is partitioned in a graph-theoretic sense. As the circuit
executes, some qubits might be teleported from some machines
to other machines (depending on network topology) to ensure
that all binary gates in the next layer are local.
Modeling the circuit graph and its layers. To model the
circuit graph and its transitions from one layer to another, we
consider the signature circGraph (Lines 11 to 18 in Listing
1). Each atom of circGraph models a layer of the circuit
through the edges relation (Line 12), the location relation

Fig. 3: Circuit 1 with binary gates and depth 10.

(Line 14) and the numTele relation (Line 16). To capture the
total ordering of circuit layers from left to right, we impose a
total ordering on all atoms of circGraph by specifying ‘open
util/ordering[circGraph] as grph’ in Line 2 of Listing 1. For
example, if in an instance of our Alloy model, circGraph has
10 atoms, the Alloy analyzer searches through all possible
total orderings of these atoms for a solution. We formalize
such orderings as c0, c1, · · · , c9, where each ci is an atom of
circGraph. We refer to such orderings by the identifier ‘grph’ in
our Alloy specification. The edges relation captures the edges
of the circuit graph. These edges show which gates need to
be local, and where the corresponding input qubits should be.
The allocation of qubits to machines in each circuit layer is
captured by the location relation. Notice that, edges is a ternary
relation with the cross product circGrpah → Qubit → Qubit,
however, its domain is implicit and includes the signature
in which it is declared (i.e., the circGraph signature). Same
holds for the location relation, which represents the mapping
of qubits to machines; i.e., the ternary relation circGrpah →
Qubit → Machine. In other words, each atom of circGrpah is
associated with two binary relations Qubit → Qubit and Qubit
→ Machine, thereby creating ternary relations. The binary
relation numTele (specified as circGrpah → Int) associates an
integer to each atom ci of circGrpah capturing the total number
of teleportations performed up to ci in the total ordering grph.

1 module t e l e p o r t
2 open u t i l / o r d e r i n g [ c i r c G r a p h ] as grph
3 open u t i l / i n t e g e r
4

5 a b s t r a c t s i g Qubi t { }
6 one s i g q1 , q2 , q3 , q4 ex tends Qubi t {}
7

8 a b s t r a c t s i g Machine { }
9 one s i g M1,M2 ex tends Machine{}

10

11 s i g c i r c G r a p h {
12 edges : Qubi t −>Qubit ,
13 / / R e p r e s e n t s t h e non − l o c a l g a t e s
14 l o c a t i o n : Qubi t −>Machine ,
15 / / A l l o c a t e s q u b i t s t o machines
16 numTele : I n t
17 / / Keeps t h e number o f t e l e p o r t a t i o n s .
18 }
19 / / Each q u b i t must be on e x a c t l y one machine .
20 f a c t q u b i t A l l o c {
21 a l l q : Qubi t , c : c i r c G r a p h |# c . l o c a t i o n [ q ] =1}
22 / / C a p a c i t y o f each machine i s a t most 3

q u b i t s .



23 f a c t mCap {
24 a l l c : c i r c G r a p h ,m: Machine | #( c . l o c a t i o n ) .m <

4}
25

26 / / S t a r t w i th q u b i t s q1 , q2 on Machine 1 and
27 / / q3 , q4 on Machine 2 .
28 f a c t C i r c u i t G r a p h {
29 l e t c0= grph / f i r s t |
30 c0 . edges =( q1−>q2 ) +( q3−>q4 )&&(c0 . numTele =0)

&&
31 c0 . l o c a t i o n =( q1−>M1) +( q2−>M1) +
32 ( q3−>M2) +( q4−>M2) &&
33 l e t c1=c0 . next | c1 . edges =( q2−>q3 ) &&
34 l e t c2=c1 . next | c2 . edges =( q3−>q4 ) &&
35 l e t c3=c2 . next | c3 . edges =( q1−>q2 ) &&
36 l e t c4=c3 . next | c4 . edges =( q2−>q4 ) &&
37 l e t c5=c4 . next | c5 . edges =( q1−>q3 ) &&
38 l e t c6=c5 . next | c6 . edges =( q2−>q4 ) &&
39 l e t c7=c6 . next | c7 . edges =( q2−>q3 ) &&
40 l e t c8=c7 . next | c8 . edges =( q1−>q3 ) &&
41 l e t c9=c8 . next | c9 . edges =( q2−>q4 ) }
42

43 pred t e l e p o r t [ l o c : Qub i t −> Machine ,
44 r : Qubi t −>Qubit , u l o c : Qubi t −>Machine ,
45 t e l e : Int , u t e l e : I n t ] . {
46 / / P a i r s o f q u b i t s r e l a t e d unde r r must move
47 / / t o t h e same machine i n t h e next l a y e r .
48 a l l d i s j q0 , q1 : Qub i t |
49 ( ( q0−>q1 i n r ) ) i m p l i e s q0 . u l o c =q1 . u l o c
50 / / u t e l e c o n t a i n s t h e number o f q u b i t s moved .
51 u t e l e = plus [ t e l e , # ( u loc − l o c ) ]}
52

53 f a c t l a y e r T r a n s i t i o n {
54 / / These a r e t h e c o n s t r a i n t s t h a t r u l e e v e r y
55 / / two c o n s e c u t i v e atoms of c i r c G r a p h .
56 / / Think of t h i s as t h e t r a n s i t i o n s i n a
57 / / l i n e a r c o m p u t a t i o n .
58 a l l c : c i r c G r a p h , uc : grph / next [ c ] {
59 t e l e p o r t [ c . l o c a t i o n , uc . edges ,
60 uc . l o c a t i o n , c . numTele , uc . numTele ] }}
61

62 / / We would l i k e t o have a t most 6 q u b i t s
63 / / t e l e p o r t e d a t t h e f i n a l atom of
64 / / t h e o r d e r i n g grph .
65 pred f i n a l L a y e r { l t e [ g rph / l a s t . numTele , 6 ] }
66

67 / / Run t h i s model f o r a scope of 10 atoms of
68 / / t y p e c i r c G r a p h and i n t e g e r s i n t h e
69 / / r a n g e 0 t o 3 1 .
70 run f i n a l L a y e r f o r 10 c i r c G r a p h , 5 I n t

Listing 1: Alloy code for circuit graph of Figure 3

The ‘fact’ constraint in Lines 28-41 models the edges of the
circuit graph and initializes the location and numTele relations.
Notice that, in Layer 1 of Figure 3 qubits 1 and 2 form the
inputs to a binary gate and the qubits 3 and 4 are inputs to
another binary gates. Line 30 specifies c0.edges = (q1 → q2)
+ (q3 → q4) as the edges of the first circGraph atom (i.e., c0
= grph/first) in a total ordering. Initially, we set the number of
teleportations to 0 in the first circuit layer; i.e., c0.numTele = 0,
and the qubit mapping is specified as c0.location = (q1 → M1)
+ (q2 → M1) + (q3 → M2) +(q4 → M2); i.e., qubits 1 and 2 are
located in machine M1 and machine M2 holds qubits 3 and 4.
Lines 33 to 41 of Listing 1 specify the structure of subsequent

layers of the circuit in a total ordering. The ‘next’ keyword
is a binary relation defined in the ordering ‘grph’ that points
to the next atom of the current atom. Notice that, these lines
specify only the edges relation because the relations location
and numTele should be determined by the Alloy analyzer.
In other words, the solution of the minimization problem is
provided in terms of the location relation and numTele holds
the number of teleportations performed in the corresponding
solution.
Invariant constraints. There are some constraints that must
hold across all instances of our Alloy model specified as facts.
For example, the qubitAlloc fact in Lines 20-21 of Listing 1
specifies that each qubit must be associated with exactly one
machine in each circuit layer. That is, no qubit can remain
unallocated, nor can it be allocated to multiple machines. The
‘all’ keyword denotes the universal quantification, and ‘some’
represents the existential quantification. The ‘mCap’ fact in
Lines 23-24 stipulates that each machine has a qubit capacity
of three. The layerTransition fact (in Lines 53-60) imposes
some constraints on every consecutive pair of circGraph atoms,
formally specified as ‘all c: circGraph, uc: grph/next[c]’, where
c and uc denote two consecutive layers of the circuit under
the total ordering grph. The predicate teleport (in Lines 43-
51) specifies the nature of the constraint imposed on pairs of
circGraph atoms, indicating what should occur when moving
from one layer to the next layer of the circuit. Specifically,
given the current layer c, we require that (see Line 48)
all distinct qubits q0, q1 (captured by the ‘disj’ keyword)
connected by the edges relation of the next layer, denoted
by uc.edges, must be in the same machine when we move
to the next layer (specified as q0.uloc = q1.uloc). The Alloy
analyzer identifies the machine that is the best choice for
executing a global gate because the analyzer considers all
feasible orderings of the atoms of circGraph. In fact, the
Alloy specification of TMP looks at the problem in a global
way in contrast to some related work [5], [14] that solve the
problem in a greedy fashion. Moreover, the teleport predicate
keeps track of the number of moved qubits. Formally, Line 51
states that the number of teleported qubits in the next layer
(i.e., utele) equals to the summation of the current number
of teleported qubits (i.e., tele) and the number of qubits that
were moved in the last transition from the current layer to the
next one (i.e., #(uloc - loc)). The constraint #(uloc - loc) returns
the number of tuples that exist in the updated location relation
uloc) which do not exist in the location relation in the current
layer (i.e., loc). The plus function in Line 51 is imported from
the ‘integer.als’ file in Line 3, and returns the summation of
its two parameters.
Minimization predicate. In order to force the Alloy analyzer
to find a total ordering with minimum number of teleporta-
tions, we query it for orderings whose last circGraph atom has
the desired upper bound on the total number of teleportations.
Formally, we specify this as the predicate finalLayer in Line
65 where we state that ‘grph/last.numTele’ (i.e., the ‘numTele’
relation in the last atom of the ordering ‘grph’) must be less
than or equal to six. The lte predicate is taken from the



Circuit layer # of teleported qubits Machine 1 Machine 2

1 0 q1, q2 q3, q4
2 1 q1 q2, q3, q4
3 1 q1, q2 q3, q4
4 0 q1, q2 q3, q4
5 1 (swap) q2, q4 q1, q3
6 0 q2, q4 q1, q3
7 0 q2, q4 q1, q3
8 1 q4 q1, q2, q3
9 0 q4 q1, q2, q3
10 1 q2, q4 q1, q3

TABLE I: A solution for the circuit in Figure 3

Fig. 4: Three consecutive layers of a solution generated by
Alloy. Arrows represent the binary relations.

‘integer’ library imported in Line 3. To find a solution, we
ask the analyzer (in Line 70) to look for instances that have
up to ten atoms in the circGraph signature and for integers
specifiable in five bits. One can execute the model with a
very small upper bound (i.e., second parameter of predicate
lte in Line 65), and incrementally increase this parameter until
a solution is found. Such a solution will have the minimum
number of teleportations.
Solution visualization. Executing Line 70 of Listing 1 will
search for a total ordering on the atoms of circGraph where
the total number of teleportations is minimized globally. The
Alloy analyzer visualizes such an instance, and enables us to
go through the circuit layers and see how qubits are teleported
from one layer to another. Figure 4 illustrates the state of
three consecutive layers where q2 is teleported to machine
M2 in the c2 layer, and then moved back to machine M1
in layer c3. When we juxtapose this output with Figure 3,
we realize that moving q2 to M2 is done since in layer c2
there is a global binary gate whose inputs include q2 and
q3. Such a teleportation will transform this gate into a local
gate that can be execute on M2. Table I demonstrates the
teleportations performed in each layer of the circuit of Figure
3. The minimum number of teleportations for this circuit
is actually five, which matches with what reported in [14].
(Following related work [14], we consider a swap as one
teleportation.)

B. Circuits With n-ary Gates

This section extends the results of the previous section to
circuits with n-ary gates. To the best of our knowledge, this
is an open problem as most existing methods [15] assume
binary/ternary gates. We present a solution for the TMP
problem in a distributed quantum circuit made of arbitrary n-
ary gates, for a some fixed n > 2. Reusing the contributions of

Fig. 5: Circuit 2 with 4-ary gates and depth 22.

the previous section, we simply extend our Alloy specification
to cases where the circuit may contain gates with n > 2 input
qubits. First, we observe that, the use of n-ary gates increases
the chances of having global gates in a circuit. This potentially
exacerbates the minimization problem because more qubits
must be teleported to ensure that a global gate can be executed
locally. Second, the capacity of machines must be at least equal
to n because if a global n-ary gate is to be executed locally,
then the machines must be able to hold at least n qubits.

The core of the problem in n-ary global gates is that all
n input qubits must be present in a quantum machine. Such
a constraint can easily be captured in our Alloy specification
by looking at the input qubits in the circuit graph as a set of
edges between the vertices in the layer where the n-ary gate is
located. These edges obviously intersect at common vertices.
For example, the circuit graph in Figure 5 (taken from https:
//reversiblebenchmarks.github.io/hwb5d3.html) includes three
4-ary gates in layers 11 to 13, each one represented as three
connected edges. This circuit has binary, 3-ary and 4-ary gates
located in 22 layers over 5 qubits. Lines 26 to 55 of Listing 2
specify the structure of the circuit graph. For example, the 4-
ary gate in Layer 11 of Figure 5 takes qubits 2-5 as its inputs,
and we specify this requirement in Lines 39-40 of Listing 2
as three pairs (q2 → q3)+ (q3 → q4)+(q4 → q5). The common
qubits q3 and q4 enforce the constraint that all four qubits
must be on the same machine. We consider a fully connected
topology for a network of three machines. Line 70 of Listing
2 runs the Alloy analyzer for 22 instances of the circGraph as
the circuit has 22 layers. Table II illustrates a solution with
13 teleportations. If we consider each swap operation as one
teleportation, then the total number of teleportations will be
11.

C. Reusability of the Alloy Model

A significant advantage of our approach lies in the reusabil-
ity of a major portion of our Alloy specification which is
circuit and network-independent. Specifically, if we consider
the Alloy code in Listings 1 and 2, we observe that the only
problem-specific lines of code includes the parts where we
specify (1) the number of qubits (e.g., Line 6 in Listing 2);
(2) the number of quantum machines or circuit partitions (Line
9 in Listing 2); (3) the machine capacity on Line 20; (4) the
specification of the circuit graph and initial qubit allocation
(Lines 23-55 in Listing 2); (5) the optimization parameter
of the finalLayer predicate (i.e., second parameter of the lte
predicate in Line 67 of Listing 2), and (6) the command for

https://reversiblebenchmarks.github.io/hwb5d3.html
https://reversiblebenchmarks.github.io/hwb5d3.html


executing the Alloy model (e.g., Line 70 in Listing 2). For
any given quantum circuit/network, one has to specify the
aforementioned circuit/network-specific lines of code. In fact,
qcAlloy automates the compilation of a given quantum circuit
to these circuit-dependent part of the Alloy specification. The
circuit/network-independent part of our Alloy specification
includes the signatures, the qubitAlloc and layerTransition facts,
and the teleport and finalLayer predicates. These parts capture
the main characteristics/constraints of any solution of the
TMP problem and designers need not revise them when
circuit/network changes. Next, we shall show how formal
specifications and their reusability simplify the task of solving
other variants of the TMP under additional constraints.

1 module t e l e p o r t
2 open u t i l / o r d e r i n g [ c i r c G r a p h ] as grph
3 open u t i l / i n t e g e r
4

5 a b s t r a c t s i g Qubi t { }
6 one s i g q1 , q2 , q3 , q4 , q5 ex tends Qubi t {}
7

8 a b s t r a c t s i g Machine { }
9 one s i g M1, M2,M3 ex tends Machine{}

10

11 s i g c i r c G r a p h {
12 edges : Qubi t −>Qubit ,
13 l o c a t i o n : Qubi t −>Machine ,
14 numTele : I n t }
15 / / Each q u b i t must be on e x a c t l y one machine .
16 f a c t q u b i t A l l o c {
17 a l l q : Qubi t , c : c i r c G r a p h |# c . l o c a t i o n [ q ]=1}
18 / / The c a p a c i t y o f each machine i s 4 q u b i t s .
19 f a c t mCap {
20 a l l c : c i r c G r a p h ,m: Machine | # ( c . l o c a t i o n ) .m<5}
21 f a c t C i r c u i t G r a p h {
22 l e t c0 = grph / f i r s t |
23 c0 . edges =( q2−>q5 )&&(c0 . numTele =0) &&
24 c0 . l o c a t i o n =( q2−>M1) +( q5−>M1) +
25 ( q1−>M2) +( q3−>M2) + ( q4−>M3) &&
26 l e t c1=c0 . next | c1 . edges =( q4−>q5 ) &&
27 l e t c2=c1 . next | c2 . edges =( q3−>q5 ) &&
28 l e t c3=c2 . next | c3 . edges =( q1−>q2 +
29 ( q2−>q3 ) &&
30 l e t c4=c3 . next | c4 . edges =( q3−>q5 ) &&
31 l e t c5=c4 . next | c5 . edges =( q1−>q3 ) &&
32 l e t c6=c5 . next | c6 . edges =( q2−>q4 ) &&
33 l e t c7=c6 . next | c7 . edges =( q1−>q2 ) +
34 ( q2−>q4 ) +( q4−>q5 ) &&
35 l e t c8=c7 . next | c8 . edges =( q1−>q4 ) +
36 ( q4−>q5 ) &&
37 l e t c9=c8 . next | c9 . edges = ( q1−>q4 ) +
38 ( q4−>q5 ) &&
39 l e t c10=c9 . next | c10 . edges =( q2−>q3 ) +
40 ( q3−>q4 ) + ( q4−>q5 ) &&
41 l e t c11=c10 . next | c11 . edges =( q2 −> q3 ) +
42 ( q3−>q4 ) +( q4−>q5 ) &&
43 l e t c12=c11 . next | c12 . edges =( q2−>q3 ) +
44 ( q3−>q4 ) +( q4−>q5 ) &&
45 l e t c13=c12 . next | c13 . edges =( q−>q3 ) +
46 ( q3−>q4 ) &&
47 l e t c14=c13 . next | c14 . edges =( q1−>q2 ) +
48 ( q2−>q3 ) &&
49 l e t c15=c14 . next | c15 . edges =( q1−>q5 ) &&
50 l e t c16=c15 . next | c16 . edges =( q2−>q3 ) +
51 ( q3−>q4 ) +( q4−>q5 ) &&

Circuit # of teleported Machine 1 Machine 2 Machine 3
layer qubits

1 0 q2, q5 q1, q3 q4
2 1 q2 q1, q3 q4, q5
3 1 q2 q1, q3, q5 q4
4 1 q1, q2, q3, q5 q4
5 0 q1, q2, q3, q5 q4
6 0 q1, q2, q3, q5 q4
7 1 (swap) q1, q2, q4, q5 q3
8 0 q1, q2, q4, q5 q3
9 0 q1, q2, q4, q5 q3
10 0 q1, q2, q4, q5 q3
11 2 q1 q2, q3, q4, q5
12 0 q1 q2, q3, q4, q5
13 0 q1 q2, q3, q4, q5
14 1 (swap) q5 q1, q2, q3, q4
15 0 q5 q1, q2, q3, q4
16 1 q1, q5 q2, q3, q4
17 1 q1 q2, q3, q4, q5
18 1 q1, q4 q2, q3, q5
19 1 q1 q2, q3, q4, q5
20 0 q1 q2, q3, q4, q5
21 0 q1 q2, q3, q4, q5
22 0 q1 q2, q3, q4, q5

TABLE II: A solution for the circuit in Figure 5

52 l e t c17=c16 . next | c17 . edges =( q1−>q4 ) &&
53 l e t c18=c17 . next | c18 . edges =( q2−>q4 ) &&
54 l e t c19=c18 . next | c19 . edges =( q2−>q5 ) &&
55 l e t c20=c19 . next | c20 . edges =( q3−>q4 ) }
56

57 pred t e l e p o r t [ l o c : Qubi t −>Machine ,
58 r : Qubi t −>Qubit , u l o c : Qubi t −>Machine ,
59 t e l e : Int , u t e l e : I n t ]
60 { a l l d i s j q0 , q1 : Qub i t | ( ( q0−>q1 i n r ) ) i m p l i e s

q0 . u l o c =q1 . u l o c
61 u t e l e = plus [ t e l e , # ( u loc − l o c ) ] }
62 f a c t l a y e r T r a n s i t i o n {
63 a l l c : c i r c G r a p h , uc : grph / next [ c ] {
64 t e l e p o r t [ c . l o c a t i o n , uc . edges , uc . l o c a t i o n ,
65 c . numTele , uc . numTele ] } }
66 pred f i n a l L a y e r {
67 l t e [ g rph / l a s t . numTele , 1 3 ]
68 }
69

70 run f i n a l L a y e r f o r 22 c i r c G r a p h , 7 I n t

Listing 2: Alloy code for circuit graph of Figure 5

V. MINIMIZATION AND LOAD BALANCING

This section extends the solution proposed in Section IV
for the cases where teleportations in a DQC network should
be performed while ensuring that quantum machines have a
balanced load in terms of the number of qubits they hold.
Observe that in Table II there are rows where Machine 1
and 3 hold no qubits, whereas Machine 2 always holds some
number of qubits. What if we want to minimize the number
of teleportations while ensuring that the total number of
qubits are distributed in a balanced way? Note that, the
requirements of the minimization problem may conflict with
the load balancing requirements because distributing qubits
evenly may require additional teleportations. Thus, we should



optimize two objective functions. To this end, we first specify
the problem of load balancing in the context of our Alloy
model. A load balancing scheme should at least result in
minimum number of vacant machines in every layer of the
circuit as teleportations are minimized. As such, we minimize
two objective functions: the total number of teleportations,
and the total number of empty machines. To specify the
minimization of vacant machines in our Alloy specification,
we need to somehow keep track of such machines in the circuit
layers and then ask the Alloy analyzer to minimize the total
number of empty machines. Thus, we include an additional
relation in the circGraph signature, called emptyMachines (in
Line 5 of Listing 3). Next, we initialize this relation by
including an additional conjunct (c0.emptyMachines = 0) in
Line 23 of Listing 2.

1 s i g c i r c G r a p h {
2 edges : Qubi t −>Qubit ,
3 l o c a t i o n : Qubi t −> Machine ,
4 numTele : Int ,
5 emptyMachines : I n t }

Listing 3: Relation emptyMachines captures the total number
of vacant machines

To specify the constraints of both problems, we revise the
teleport predicate as Listing 4 illustrates. We include two addi-
tional input parameters emptyMachines and uEmptyMachines
that respectively represent the number of free machines before
and after each circuit layer is executed. Line 8-9 of Listing 4 il-
lustrates how we compute uEmptyMachines. First, notice that,
Qubit.uloc returns all machines that have some qubits located
on them. As such, the relation Machine - Qubit.uloc would
return all unused machines after teleport is executed on some
layer. This value will be added to emptyMachines and assigned
to uEmptyMachines as the new number of vacant machines. To
globally minimize the number of unused machines, we include
lte[grph/last.emptyMachines, 19] in the finalLayer predicate, in
addition to already existing constraint lte[grph/last.numTele,
13]. The second parameters of these constraints can initially
be some small values and then increased gradually until the
Alloy analyzer finds a solution that meets both constraints.
Table II represents the solution generated under load balancing
constraints. Without these constraints, we get a solution in
which the machine M3 is never used!

1 pred t e l e p o r t [ l o c : Qubi t −>Machine ,
2 r : Qubi t −>Qubit , u l o c : Qubi t −>Machine ,
3 t e l e : Int , u t e l e : Int ,
4 emptyMachines : Int , uEmptyMachines : I n t ]
5 { a l l d i s j q0 , q1 : Qub i t |
6 ( q0−>q1 i n r ) i m p l i e s q0 . u l o c =q1 . u l o c
7 u t e l e = plus [ t e l e , # ( u loc − l o c ) ]
8 uEmptyMachines=
9 plus [ emptyMachines , # ( Machine − Qubi t . u l o c ) ]}

Listing 4: Revised teleport predicate models how vacant
machines are counted

VI. MINIMIZATION IN HETEROGENEOUS NETWORKS

This section investigates the problem of minimizing the
number of teleportations in heterogenous quantum networks
where the cost of teleportations are non-uniform from one
machine to another. Thus far, we have assumed that teleport-
ing a qubit from one machine to any other machine has a
unit cost. This is an unrealistic assumption in part because
the teleportation costs differ depending on the geographical
distance of quantum machines from each other. To capture
this reality, we include the new relation costTo in the Machine
signature in Line 2 of Listing 5. The ternary relation Machine
→ Machine → Int associates an integer weight to each network
link in order to represent the cost of teleporting from one
machine to another. The fact in Lines 3-8 in Listing 5 hard
codes the relation costTo by assigning weight to network links.
Lines 7 and 8 stipulate that teleporting from a machine to
itself costs nothing. Moreover, the circGraph signature includes
an additional relation teleCost in order to model the total
cost of teleportations. The logic behind specifying teleCost is
similar to our reasoning for the inclusion of emptyMachines
as described in the previous section.

1 a b s t r a c t s i g Machine {
2 co s t To : Machine−>I n t }
3 f a c t {
4 co s t To = (M1 −> M2 −>1) +(M1 −> M3 −>2)+
5 (M2 −> M1−>1) +(M2 −> M3 −>1)+
6 (M3 −> M1−>2) +(M3 −> M2 −>3)+
7 (M1 −> M1−>0) +(M2 −> M2 −>0)+
8 (M3 −> M3 −>0) }
9 s i g c i r c G r a p h {

10 edges : Qubi t −>Qubit ,
11 l o c a t i o n : Qubi t −> Machine ,
12 numTele : Int ,
13 emptyMachines : Int ,
14 / / Models t h e c o s t o f t e l e p o r t a t i o n s
15 t e l e C o s t : I n t }
16 pred t e l e p o r t [ l o c : Qubi t −>Machine ,
17 r : Qubi t −>Qubit , u l o c : Qubi t −>Machine ,
18 t e l e : Int , u t e l e : Int , emptyMachines : Int ,
19 uEmptyMachines : Int ,
20 t o t C o s t : Int , uTo tCos t : I n t ]
21 { a l l d i s j q0 , q : Qub i t |
22 ( q0−>q1 i n r ) i m p l i e s q0 . u l o c =q1 . u l o c
23 u t e l e = plus [ t e l e , # ( u loc − l o c ) ]
24 uEmptyMachines =
25 plus [ emptyMachines , # ( Machine − Qubi t . u l o c ) ]
26 uTotCos t =
27 plus [ t o t C o s t ,
28 sum q : Qub i t | ( ( q . l o c ) . co s t To ) [ q . u l o c ] ] }
29 f a c t l a y e r T r a n s i t i o n {
30 a l l s : c i r c G r a p h , us : grph / next [ s ] {
31 t e l e p o r t [ us . edges , s . l o c a t i o n , us . l o c a t i o n ,
32 s . numTele , us . numTele ,
33 s . emptyMachines , us . emptyMachines ,
34 s . t e l e C o s t , us . t e l e C o s t ] }}
35 pred f i n a l L a y e r {
36 l t e [ g rph / l a s t . numTele , 1 3 ]
37 l t e [ g rph / l a s t . emptyMachines , 1 9 ]
38 l t e [ g rph / l a s t . t e l e C o s t , 1 1 ] }

Listing 5: Modeling the heterogeneous cost of teleportation



Listing 5 presents the static part of the changes that we
make in our Alloy specification in order to generalize the
problem for heterogeneous networks. Nonetheless, we still
need to revise the predicates teleport and finalLayer towards
encoding the dynamic aspects of our model. To this end, we
first initialize the teleCost relation by including an additional
constraint (c0.teleCost = 0) to Line 23 of Listing 2. To add
up the heterogeneous cost of teleportations, we include the
constraint uTotCost in Lines 26-28 of Listing 5, where the
quantifier sum is used. This quantifier acts akin to a universal
quantifier except that the expression ‘((q.loc).costTo)[q.loc]’
is evaluated for each quantified qubit q, and the evalu-
ated values are summed up and returned. The constraint
‘((q.loc).costTo)[q.loc]’ simply returns the cost of teleporting
a qubit q from its current location to another machine in the
network. The layerTransition fact is revised accordingly (in
Line 34). Finally, the additional predicate lte[grph/last.teleCost
,11] is included inside the predicate finalLayer in Line 38
of Listing 5 whose logic is similar to those of Lines 36
and 37. In fact, finalLayer minimizes three objective functions
simultaneously: the TMP problem (Line 36), load balancing
(Line 37) and the communication costs of the heterogeneous
network (Line 38).

VII. QCALLOY ARCHITECTURE AND EXPERIMENTAL
EVALUATION

This section presents the details of qcAlloy, which is a re-
alization of the framework of Figure 1 in the context of Alloy.
We also present the results of our experimental evaluations
while comparing them with a state-of-the-art method. Section
VII-A describes the format of the input file to qcAlloy. Then,
Section VII-B presents the architecture of qcAlloy, and finally,
Section VII-C discusses our experimental results.

A. Machine-Readable Circuit Format
qcAlloy supports the machine-readable .tfc file format,

which is used for the textual specification of a large quantity
of circuits described in [9]. An example 3-bit adder circuit
in the .tfc format is shown in Listing 6. The format begins
with a header containing metadata, including qubit variable
lists for all variables (.v), input variables (.i), output variables
(.o), and constant variables (.c). The body of the format
contains a sequence of gates between a BEGIN keyword and
a concluding END keyword. Each gate is described as a list of
the qubits involved prefaced with a ’t’ for Toffoli gate or an ’f’
for Fredkin gate along with the gate arity. For our purposes,
only the metadata list of all variables and the variable list for
each gate are required.

Listing 6: Example .tfc file describing a 3-bit adder from [9]

1 . v a , b , c , d
2 . i a , b , c
3 . o d , c
4 . c 0
5 BEGIN

6 t 3 a , b , d
7 t 2 a , b
8 t 3 b , c , d
9 t 2 b , c

10 END
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Fig. 6: The architecture of qcAlloy

B. The Architecture of qcAlloy

The qcAlloy tool takes a textual file (in .tfc format) and
generates the corresponding Alloy model. The Alloy model
is then run by the Alloy analyzer, which transforms the
Alloy model into a Boolean satisfiability instance (i.e., a CNF
formula) and invokes one of several integrated SAT solvers.
If the SAT instance is satisfiable, a solution is generated
that describes a scenario of how qubits should be teleported
towards solving the TMP (stated in Section III). Figure 6
illustrates the architecture and the workflow of qcAlloy.
Input Circuit Description. Starting with the .tfc file de-
scribing the circuit, qcAlloy parses the file into an internal
representation which is used to optimize the circuit. The first
optimization drops gates with an arity of one as such gates
do not require teleportation and cannot affect a solution. The
second optimization identifies and organizes the circuit layers.
Both of these optimizations decrease the number of layers
needed to describe the circuit.
Problem Parameters. After the circuit is analyzed, qcAlloy
takes some parameters to create a complete formal specifica-
tion of the problem in Alloy, called the Alloy model. These
parameters include the number of machines, the qubit capacity
of the machines, and the qubit allocation policy. In our current
experiments, we have considered a fully connected network
of quantum machines. The initial qubit allocation policies
explored in this work are ‘random’ and ‘in-order’. The random
policy distributes qubits to machines randomly while the in-
order policy assigns qubits by filling up the machines in-
order and moving onto the next machine once the capacity
of the current machine is reached. Based on the allocation
policy, the qubit variables of the circuit are assigned to the
quantum machines. This assignment will be the starting state
for the Alloy model. The reusable and extensible Alloy model
can then be completed by including the circuit structure and
the starting qubit-to-machine mapping. Any other additional
constraints can be manually included in the Alloy model at
this stage.
Subproblem Generation. The next step is the generation



of subproblems. As Alloy models can become prohibitively
expensive as the circuit size increase, qcAlloy has the option
of splitting up the input circuit. A subproblem size, in terms
of the maximum number of layers for each subproblem, is
given as input to qcAlloy. The circuit can then be split into
circuit layers/subproblem layers number of subproblems. The
final qubit-to-machine mapping from the execution of a given
subproblem becomes the starting state of the next.
Alloy Configuration. After subproblem generation, we con-
figure the SAT solver integrated in Alloy. Configuration op-
tions include which SAT solver to use, the RAM available
to Alloy, and the execution strategy. In this work, we use
the MiniSATJNI SAT solver with a modified binary search
execution strategy.
Model Execution Strategy. The execution strategy describes
how Alloy determines the solution to each subproblem. Since
Alloy gives a ‘satisfiable’ or ‘unsatisfiable’ response, we
specify the Alloy model as a decision problem by including
a threshold parameter, which captures an upper bound for
the number of allowable teleportations. Then, we start from
a small threshold where the Alloy model is ‘unsatisfiable’ and
gradually increase the threshold until we reach the first value
of the threshold parameter for which the model is ‘satisfiable’
(indicating the minimum number of teleportations for which
Alloy can find a solution). We denote this method as the linear
execution strategy. To improve the efficiency of this process
for circuits with a high number of teleportations, we devise
the binary search execution strategy as an alternative. The
binary search algorithm reduces the complexity of executing
a subproblem from O(n) to O(log(n)), where n denotes the
maximum number of teleportations as a multiple of the number
of layers. However, we found that this can be improved further
in practice. In this work, we use a modified binary search
algorithm that keeps a history of the previous results from the
last, say ten, subproblems. The minimum and maximum values
of this history are used as the starting range for subsequent
binary searches. If this range fails to find the minimum
number of teleporations, the range is expanded to n. We
found experimentally that solutions to previous subproblems
often accurately inform later subproblems. Thus, this modified
approach reduces execution time costs further, especially when
there are many subproblems from which a history can be
exploited.
Running the Model. The Alloy model executes starting with
the first subproblem and in accordance with the execution
strategy. The next subproblem is given the previous subprob-
lem’s solution to be used as the starting state. The current
subproblem is then executed in accordance with the execution
strategy until a solution is found. This process continues until
all subproblems have been executed.
Combining the solutions of subproblems. After having
executed all subproblems in sequence, the solution to each
subproblem is combined into a single solution. An analysis is
also performed to determine which teleportations were swap
operations.

C. Results and Comparative Analysis

We evaluate qcAlloy using circuits from the Reversible
Logic Synthesis Benchmarks Page (RLSB) [9] and the RevLib
benchmark database [10] which are in the .tfc machine-
readable format (see Section VII-A). We also evaluate qcAlloy
on the Quantum Fourier Transform (QFT) circuit from 16 to
256 qubits. The results are given in Figure 7. Any circuits
obtained from one of the libraries are prefixed with either
RLSB or RevLib respectively. All results were gathered from a
dedicated machine with an i7-12700 CPU and 32GB of RAM.
Benchmarks were run in parallel with no more than four at
any given time such that execution times remain independent.

The table in Figure 7 presents the results of the benchmarks
run using qcAlloy and the results from the Window-based
Quantum Circuit Partitioning (WQCP) approach [5] as the
baseline of this work. The number of teleportations reported
by each approach are given along with the circuit function
and the number of qubits and the number of layers after
optimization in the circuit. The WQCP approach runs each
benchmark multiple times across a range of configurations of
their algorithm. We show the result of the configuration with
the minimum number of teleportations for each benchmark.

The qcAlloy approach provides a lower number of required
teleportations than WQCP for 11 out of the 18 benchmarks
evaluated while remaining competitive in the remainder. As
smaller circuits do not need to be split into multiple subprob-
lems, the model can search across the entire circuit, leading
to more optimal solutions. The larger circuits, however, need
to be split into subproblems. Higher teleportations may be
reported because finding the solution of a subproblem is
currently done without considering the nature of the next sub-
problem. For example, the model may perform a teleportation
swap without considering the fact that such a teleportation will
make the solution to the next subproblem non-optimal. QFT
provides an exceptional challenge for qcAlloy. We believe that
QFT requires a different strategy for subproblem generation
as QFT’s structure follows a recursive pattern. However, the
hwb100ps and hwb50ps circuits provide a solution about half
that of WQCP. We conjecture this is the case due to the
seemingly random collection of gates and qubits. Such a
distribution does not punish short-term decisions by the Alloy
model which may also appear random holistically.

VIII. RELATED WORK

This section discusses the most important work related to
the proposed approach. In general, we observe three fam-
ilies of methods in the literature, namely graph-theoretic
approaches, custom-designed heuristics and DQC compilers.
As an example of graph-theoretic techniques, Andres-Martinez
and Heunen [1] reduce the minimization problem to the
problem of hypergraph partitioning where the number of
cuts in the partitioned graph must be minimized. First, they
transform the quantum circuit to a hypergraph whose vertices
include qubits and gates and each hyperedge connects a subset
of vertices. Then, they conduct a multi-step preprocessing
phase where they transform the circuit into a binary circuit,



Fig. 7: Number of teleportation in qcAlloy vs. the Window-
based Quantum Circuit Partitioning (WQCP) approach in [5].

reorder CZ gates and move them ahead so they can be
grouped (may introduce some single-qubit gates), and then
split the circuit into multiple segments. While this approach
is efficient for some circuits, the hypergraph partitioning is a
bottleneck because it is in general NP-hard. Davarzani et al.
[2] create a bipartitie graph out of a quantum circuit where
the two sets of vertices include the qubits and the gates.
Then, they present a dynamic programming algorithm for
partitioning the set of qubits and calculating the minimum
number of teleportations for each way of partitioning. Their
algorithm uses memoization to avoid recalculating repeated
sub-problems. Daei et al. [3] model a quantum circuit as a
weighted undirected graph where vertices represent the qubits,
edges capture the input qubits of binary and ternary gates, and
edge weights represent the number of gates that use each pair
of qubits. Then, they apply the graph partitioning method of
Kernighan–Lin [4] to find the partition that has the minimum-
weight cut.

Heuristic-based approaches develop special heuristics to im-
prove the efficiency of minimization in terms of both execution
time and the number of teleportations. For example, Nikahd
et al. [5] present a window-based partitioning method where
they combine gate and qubit partitioning. First, they identify
the layers of a circuit as sub-circuits that contain concurrent
gates. Second, starting from the first layer (i.e., the leftmost
layer), they consider a window of length w that slides from
left to right and creates sub-circuits. Third, they formulate
the qubit partitioning of the sub-circuits as an Integer Linear
Program (ILP), which they solve using the CPLEX ILP solver.
Ranjani and Gupta [14] present two algorithms: a local-best
algorithms and a zero-stitching algorithm. Their local-best
algorithm uses Tabu search to initially map qubits to machines
in such a way that the number of global gates is initially
minimized. Then, they scan the circuit from left to right,
and for each global gate g they determine a machine p in
which g should be executed. Based on this, they teleport the
qubits to p. To select a machine p, they define a benefit

function for p based on the number of global gates that
become local in the next r levels of the circuit if p is used
for executing g. In the zero-stitching method, they use a
dynamic programming approach to partition the circuit into
sub-circuits that can be executed without any teleportations,
and then stitch them together. Nonetheless, teleportations may
be performed at the stitching points. Zomorodi-Moghadam et
al. [15] consider quantum circuits for a distributed quantum
network of only two machines. Their algorithm explores all
possible configurations of executing every global gate in either
one of the machines, and finds the number of teleportations
for each configuration. Then, they take the minimum of all
possible teleportation scenarios.

Most recent DQC compilers focus on identifying commu-
nication patterns in quantum circuit as well as implement-
ing minimized teleportation plans on quantum networks. For
example, Wu et al. [16] observe that many remote two-
qubit gates can be executed using one or two quantum
communications. To this end, they define the notion of burst
communication that captures a group of continuous global two-
qubit gates between one qubit and one node. Their objective is
to maximize the number of global gates that can be executed
using each entangled pair. They develop a compiler centered
around the concept of burst communication, where a quantum
circuit is initially processed to identify burst communication
blocks. In another work, Wu et al. [17] present a compiler
for mapping a circuit to a DQC network while minimizing
the communication costs. Their approach includes three major
phases: (1) identify collective communication blocks, where
each block is a set of global gates whose pattern of qubit com-
munication forms a connected graph over multiple network
nodes; (2) perform optimal data routing in each communica-
tion block under the topological constraints of the network,
and (3) use data qubits as a buffer for communication qubits
(i.e., qubits used in entangled pairs). They find data qubits
that incur the minimum communication overhead. Ferrari et al.
[18] discuss the challenges of developing compilers for DQC,
and then present an upper bound complexity/overhead for the
compilation process. They point to the remote operations as the
main challenge, and state that two types of constraints govern
the costs of remote operations: the topological constraints of
the underlying network, and the limitations in having and
regenerating entangled pairs.

While the aforementioned approaches solve the minimiza-
tion problem in many cases, most of them can process only
circuits with binary or ternary gates, and provide little reuse
of problem specifications (e.g., [1]). By contrast, the proposed
approach in this paper can solve the problem for general
quantum circuits with n-ary gates. Moreover, the Alloy specifi-
cation of the problem is reusable and can easily be instantiated
for different circuits/networks. The Alloy specifications can
also be easily extended to address other problems such as
load balancing and minimization in heterogeneous quantum
networks (as demonstrated in Sections V and VI).



IX. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach for solving the
Teleportation Minimization Problem (TMP) using the formal
specification language Alloy [8] and its analyzer. The proposed
framework (in Figure 1) enables a transformative method for
enabling reuse and flexibility in tackling the TMP problem
in particular, and solving the distribution of quantum algo-
rithms, in general. The reusable Alloy specifications remain
unchanged when moving from one circuit/network to another,
thereby providing tremendous simplicity and transparency for
mainstream engineers when it comes to specifying the general
constraints of mapping quantum algorithms to networks. The
circuit/network-dependent part of the formal specifications are
automatically generated, and combined with the reusable part.
The Alloy analyzer then searches for a scenario of qubit
routing that incurs minimum number of teleportations. The
implementation of the proposed approach as a software tool,
called qcAlloy, is available at https://github.com/KieranYoung/
Alloy-DQC. Our experimental results in the context of the
RevLib benchmark [9], [10] indicate that qcAlloy can solve
the TMP problem for circuits with more than 100 qubits and
1200 layers. qcAlloy outperforms one of the most efficient
methods [5] in terms of the number of teleportations in most
cases up to 50% while underperforming in a few cases (e.g.,
QFT circuit).

There are some limitations that lay the ground for our ongo-
ing and future work. First, the Alloy execution time in some
cases becomes prohibitive in part due to the inefficiency of
the selected SAT solver for that particular circuit/network. As
such, determining which SAT solvers perform better remains
an open problem. Second, in the execution strategies, subprob-
lems are run multiple times, which incurs a high execution
time. We plan to address this by developing alternative strate-
gies. For instance, estimations of the minimum teleportation
solution may be sufficient and drastically save on execution
time. We also look to pair this with increasing accuracy by
supplying subproblems with a lookahead mechanism so that
unnecessary teleportations are prevented. Third, identifying
recurring architectural patterns in the input quantum circuit
can help in the reuse of solutions. Such recurring patterns
can also help in devising more intelligent divide and conquer
methods for circuit partitioning. Fourth, in large circuits, the
gate arity is often well below the qubit count. However, in
our current Alloy specifications we still include the unused
qubits in a layer despite the fact that many of these qubits
may not appear in the current subproblem. As a result, the
scope of integers during Alloy verification is increased, which
has a direct negative impact on execution time of the Alloy
analyzer. Thus, an optimization is to strip the circuit of qubits
that are seldom used globally or for the current subproblem.
This could also be done for some number of machines that
are deemed unnecessary to be considered for the current
subproblem. Fifth, we plan to develop a repository of formal
specifications of the problems that should be solved in the
compilation of quantum circuits for DQC. Such problems

include the TMP for logical qubits under a variety of network
constraints (e.g., topology, communication costs), the routing
of logical qubits under network constraints, qubit buffering,
etc. Such a repository will be a valuable asset for researchers as
everyone can reuse them, and new specifications can be added
for new problem variants. The entire collection will form a
public library of formal specifications for DQC compilers.
Moreover, the correctness of different compiler designs can
be verified against formal specifications, thereby providing
high assurances regarding the compilation process. Finally, we
would also like to investigate the effectiveness of our approach
in the transpilation of quantum circuits on noisy quantum
machines.
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