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Abstract

The dark matter relic density has been increasingly accurately measured by succes-
sive generations of experiments. The Boltzmann equation determines the yields using
the dark matter annihilation cross section as one of the inputs; the accurate computa-
tion of the latter including thermal contributions thus assumes importance. We report
here the next-to-leading order (NLO) thermal corrections to the cross sections for (Ma-
jorana) dark matter annihilation to standard model fermions: χχ → ff , via charged
scalars. We use a novel approach, utilising the technique of Grammer and Yennie,
extended to thermal field theories, where the cancellation of soft infra-red divergences
occurs naturally. We present the NLO thermal cross sections in full detail for both the
relativistic case as well as in the non-relativistic limit. Our independent calculation
verifies earlier results where the leading contribution at order O(T 2) was shown to be
proportional to the square of the fermion mass in the non-relativistic limit, just as at
leading order. We find that the O(T 4) contributions have the same dependence on the
fermion mass as well.
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1 Introduction
Evidence for the presence of dark matter (DM) in our Universe arises from several
observations, primarily due to its interaction with standard model particles via the
gravitational channel [1]. Evidence for the existence of dark matter includes its effect
in gravitational lensing, structure formation and its presence is a necessity for stability of
rotating galaxies; various experiments have set limits or constrained various properties
of dark matter [2–7] via whole-sky or galactic observations.
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Cosmic microwave background radiation is sensitive to the baryonic, dark and the
total matter densities respectively, through the height of the peaks in its power spec-
trum. The relic abundance of dark matter (DM) is encoded in its relic density, currently
measured to be Ωch

2 = 0.1200 ± 0.0012 by the PLANCK collaboration [2], where h
is the reduced Hubble constant, h = H0/100. This is higher than the abundance of
baryonic matter and lower than the share of dark energy in the energy density of our
Universe.

Unfortunately, there is as yet no direct evidence for dark matter via, for exam-
ple, whole-sky searches of self-annihilation of dark matter to produce gamma rays [3],
galactic surveys [4], etc. Various non-baryonic and baryonic DM candidates have been
postulated [8–11] such as WIMPs, axion-like particles (ALP), neutralino dark matter,
sterile neutrinos, particles in extra dimensional theories, primordial black holes, etc.;
see Refs. [7, 12–16] for reviews. A large sub-set of theoretical proposals and experiments
to detect them from cosmology, colliders, etc., exist; a few recent ones can be found in
Refs. [17–23].

One of the popular theories of dark matter consists of a SUSY-inspired model of
bino-like cold dark matter produced thermally in the Universe post-inflation. The num-
ber density of the dark matter is then determined by Boltzmann equations dependent
on the interaction rate (annihilation/production of the dark matter) as well as the
expansion rate of the Universe. The dark matter is in thermal, chemical and kinetic
equilibrium with standard model (SM) particles until its interaction rate falls below
the Hubble expansion rate [24]. In such a freeze-out mechanism for thermal production
of dark matter [25–27], the DM starts decoupling from the background plasma, when
the Hubble rate of expansion of our Universe became comparable to the annihilation
rate of DM species via, for example, χχ → ff . The temperature where DM decouples
from SM particles (f), depends on the mass of DM as well as the thermally averaged
annihilation cross section ⟨σvMøl⟩, and we have a range of temperature where the mass
of DM can be comparable to decoupling temperature, i.e., x ≡ mχ/T ∼ O(1). In this
range of temperature, thermal corrections can play an important role in determining
the precise relic density of dark matter. In particular, the larger the dark matter anni-
hilation cross section, the later the DM goes out of equilibrium, leading to a lower relic
density, and vice versa.

A contrasting model is when the dark matter is never in equilibrium with the SM
particles; instead, the coupling of DM to SM particles is so small that the annihilation
of χχ → ff can be neglected. The amount of dark matter in the Universe then keeps
on increasing due to the reverse annihilation process ff → χχ until the dark matter
freezes-in to the present relic density [28].

In any case, present-day determination of dark matter relic densities are becoming
so precise that these cross sections must necessarily be calculated to next-to-leading
order (NLO). While NLO calculations of various relevant cross sections exist [29–36],
these mostly focussed on higher order quantum corrections to the leading cross sections
in various models. It was only recently that the higher order thermal corrections to
these cross sections have been calculated [37–39]. In particular, Beneke et al. [39]
computed the thermal NLO corrections to the dark matter annihilation cross section
in a bino-like model of dark matter using thermal field theory that we describe briefly
below. In this model, the dark matter candidate is an SU(2)× U(1) singlet Majorana
fermion χ which interacts with SM doublet fermions, f = (f0, f−)T , via scalar partners
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ϕ = (ϕ+, ϕ0)T through a Yukawa interaction,

L = −1

4
FµνF

µν + f
(
i /D −mf

)
f +

1

2
χ
(
i/∂ −mχ

)
χ

+ (Dµϕ)† (Dµϕ)−m2
ϕϕ

†ϕ+
(
λχPLf

−ϕ+ + h.c.
)
. (1)

The thermal corrections to the annihilation of dark matter via χχ → ff at NLO in this
model were studied in Ref. [39] where the cancellation of the infrared divergences was
explicitly demonstrated. Subsequently, an all-order proof of the cancellation of infra-red
divergences in such thermal field theories containing scalars and fermions interacting
with photons in a heat bath at finite temperature was given in Refs. [40, 41], using a
generalised Grammer and Yennie technique [42–44] although the finite remainder was
not calculated. The advantage of this approach is the automatic cancellation of the
soft infra-red (IR) divergences so that we can directly compute the finite remainder.
The calculations are simpler because they are explicitly IR finite. Here we compute
the IR-finite contributions to the annihilation cross section at NLO, using the same
technique. We calculate both the O(T 2) and O(T 4) corrections both in the relativistic
case and in the non-relativistic limit using this novel approach to obtain an independent
calculation of the NLO thermal contributions to the annihilation cross section, and
determine the contribution in the non-relativistic limit. The latter are important at
freeze-out when mχ/T ∼ 20. We show that the O(T 2) terms are proportional to the
square of the fermion masses, just as for the LO cross section, a result which arises
due to helicity suppression of the process due to the presence of Majorana fermions.
This result was first obtained in Ref. [39] who subsequently calculated [45] the cross
section for annihilation of Dirac-type dark matter particles using the Operator Product
Expansion approach.

We make a careful study of the dependence of both the O(T 2) and O(T 4) corrections;
the O(T 2) terms are indeed proportional to m2

f in the non-relativistic limit, while there
are terms proportional to the square of the dark matter momenta p2 in the general
case, which of course are small in the non-relativistic limit. We find in addition that
the leading O(T 4) terms are also proportional to the square of the fermion masses in
the non-relativistic limit; hence it appears that helicity conservation determines this
behaviour beyond the leading order as well. We discuss the general behaviour of the
cross section as well as the behaviour in the non-relativistic limit; detailed expressions
for the cross section are available online [46] as sets of Mathematica Notebooks.

In the next section, we highlight some key points of thermal field theory in the
real time formalism. In Section 3, we present the details of the Grammer and Yennie
approach which allows us to easily separate the IR-finite part of the cross section.
We also discuss some technical details about the various contributions which allow us
to simplify the calculation at NLO. In Section 4 we calculate the leading order cross
section, which is presented for completeness. In Sections 5 and 6, we calculate the NLO
cross section in two different scenarios. For both the LO and NLO calculations, we use
the FeynCalc [47–49] software with Mathematica 13 [50]. We end with Discussions in
Section 7.

2 Thermal field theory
We briefly review the real-time formulation of thermal field theories [51–54]. The ensem-
ble average of an operator can be written [53] as the expectation value of time-ordered
products in the thermal vacuum. The unique feature is that the integration in the
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complex time plane is defined over a special path shown in Fig. 1, from an initial time,
ti to a final time, ti− iβ, where β is the inverse temperature of the heat bath, β = 1/T ;.
As a result, the thermal fields satisfy the periodic boundary conditions,

φ(t0) = ±φ(t0 − iβ) ,

where the sign +1 (−1) corresponds to boson (fermion) fields. The real-time axis C1

allows for scattering to be defined while the remaining portions of the contour lead to
a doubling of the fields, which can be of type-1 (the physical fields), or type-2 (the
“ghost” fields), that live on C1 and C2 respectively.

C1

C3

C4 C2

Re t

Im t

ti −ti

ti − iσ

−ti − iσ

ti − iβ

Figure 1: The time path for real time formulation of thermal field theories in the complex t plane,
where the y axis corresponds to Im t = β, the inverse temperature.

Only type-1 fields can occur on external legs [54] while fields of both types can occur
on internal legs, with the off-diagonal elements of the propagator allowing for conversion
of one type into another. The Feynman rules (for the propagators and vertices) for the
Lagrangian density given in Eq.1 in a heat bath at finite temperature T are listed in
Appendix A. We merely note here that all propagators (which are of 2×2 matrix form),
can be written as the sum of two terms, one which is temperature-independent and the
other which contains the explicitly thermal dependence which we call the thermal part.

3 The Grammer and Yennie approach
The application of the generalised Grammer and Yennie approach for the case of the
bino-like Lagrangian described in Eq. 1 has been described in detail in Refs. [40, 41].
Here we summarise the main results for the sake of completeness, clarity and use of
notation.

We use a generalised version of the Grammer and Yennie technique [42, 43] which
was used for the zero temperature quantum field theory to separate the infrared (IR)
divergences in the theory. The technique was extended to the case of thermal field
theory, first for the case of the interaction of charged fermions with photons in ther-
mal QED [44], and later for both charged thermal scalars and a general theory of
charged scalars and fermions interacting with dark matter particles with thermal QED
corrections [40, 41]. In all these instances, the all-order cancellation of infra-red (IR)
divergences was shown by separating the virtual photon propagator into two parts, the
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so-called K and G photons, which we define below, such that the IR divergence was
completely contained in the K photon contribution and the G photon contribution was
IR finite. However, as mentioned earlier, the IR-finite part was not explicitly calculated
in Ref. [40] and is the goal of this work.

The Grammer and Yennie procedure is to insert a virtual photon with momentum
k into a lower order graph, for (say) the process A(p)B(q) → C(p′), such that the mo-
mentum q, flowing into a given vertex V , is not soft; this special vertex V is labelled as
a hard vertex with respect to which the graph can be separated into a notional (initial)
pi-leg and a (final) pf -leg. We will identify V , pi and pf for the dark matter annihilation
diagrams of interest in the next section. The K and G parts are subsequently identified
with respect to these definitions. The additional inserted photon can be soft, in which
case the points of insertion will be labelled as soft vertices, and will contribute to the IR
divergence of the corresponding cross section. The procedure starts with re-arranging,
in its propagator term,

−igµν → −i
{ [

gµν − bk(pf , pi) k
µkν
]
+
[
bk(pf , pi)k

µkν
]}

,

≡ −i
{[
Gµν

k

]
+
[
Kµν

k

]}
, (2)

where

bk(pf , pi) =
1

2

[
(2pf − k) · (2pi − k)

((pf − k)2 −m2)((pi − k)2 −m2)
+ (k ↔ −k)

]
, (3)

is defined symmetrically in k → −k for the thermal case (in contrast to the original
definition in Ref. [42]), and is a function of k as well as the momenta, pf , pi. It can
then be shown that the K photon insertions contain the IR divergent pieces while the
G photon contribution is IR finite.

3.1 The K photon insertion and the IR divergent piece
We briefly describe, for the sake of completeness, the separation and cancellation of IR
divergences in the theory. Details are available in Refs. [40, 41]. Let us start with the
example of insertion of an additional virtual photon in the lowest-order diagrams shown
in Fig. 2. The key step is to specifically define a “hard vertex” V with respect to which
we can identify the momenta pf and pi. We (arbitrarily) define this special vertex V
to be the one where the momentum q′ (of χ) enters. Then, a higher order diagram
can be obtained by inserting a virtual photon anywhere in either of the LO diagrams
shown in Fig. 2. For every such insertion, pf (pi) will correspond to the momentum p′

or p depending on whether the final (initial) vertex of the virtual photon was inserted
on the p′ or p leg. Then for example, a virtual photon inserted with one vertex on the
final fermion leg and one on the scalar leg (as in Diagram (1) of Fig. 4), will have a
virtual photon propagator involving the term bk(p

′, p) since the pf line corresponds to
the p′ leg, while the pi line corresponds to the scalar leg from V to X together with the
anti-fermion leg with momentum p. Thus the corresponding K and G photon insertions
can be defined using Eq. 2. For the u-channel diagram, such an insertion will involve
bk(p

′, p′); see Ref. [40] for more details.
We now demonstrate the factorisation of the IR divergences in the K-photon inser-

tions. We take the example of the case when the inserted photon has both its vertices,
µ, ν, on the p′ fermion line. The relevant part of the matrix element can be expressed
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χ

χ

f

φ

f

q

q′

p

p′

X

V

χ

χ
f

φ

f

q

q′

p

p′

X

V

Figure 2: The t-channel and u-channel dark matter annihilation processes at leading order (LO).

as (note that there is an integration measure over the photon momentum, k)

Mp′p′,Kphoton
NLO ∝ bk(p

′, p′)kµ kν
[
u(p′,mf )γµ S

tµ,tν
fermion(p

′ + k,mf )γν Stν ,tV
fermion(p

′,mf )PR u(q′,mχ)
]
· · · ,

= bk(p
′, p′)

[
up′ /k Sµ,ν

p′+k
/k Sν,V

p′ PR uq′
]
· · · , (4)

where the ellipsis refer to terms independent of k and we have lightened the notation
for convenience in the second line, with the superscripts on S referring to the thermal
type. The term in the square brackets can be simplified, using the identities given in
Appendix A.1 as

[ ] =
[
up′ /k

{
Sµ,ν
p′+k

/kSν,V
p′

}
PR uq′

]
,

= (−1)tν+1
[
up′ /k

{
Sµ,V
p′ δtν ,tV − Sµ,V

p′+k δtν ,tµ

}
PR uq′

]
,

= (−1)tν+1
[
up′

{
0−

[
(−1)tµ+1 δtν ,tµ

]}
PR uq′

]
, (5)

where the first term vanishes since the integrand is odd in k → −k while both bk and
the measure are even under this exchange. The crucial step is seen in the second line
of Eq. 5, where the Feynman identities (see Eq. A.8) are used to reduce the portions
with /k insertions to a difference of two terms. Hence the matrix element factorises into
two terms, one that is proportional to the lower order matrix element, viz.,

Mp′p′,Kphoton
NLO ∝ bk(p

′, p′)MLO , (6)

and the other containing the IR divergence.

3.1.1 Insertion into a general nth order graph

Consider an nth order graph with n virtual/real photon vertices; for specificity, we
consider higher order corrections to the t-channel diagram. When an additional virtual
K-photon is inserted into this graph, there are several possible locations where the
additional photon vertices can be inserted. Adding all the contributions gives differences
of two terms as seen above, with, more importantly, sets of terms cancelling against
each other until only one term, that is proportional to the lower order matrix element,
is left.

A similar result is obtained when the photon vertices are inserted so that one vertex
µ is on the p′ leg and the other ν vertex is on the p leg; that is, either on the scalar
line or the anti-fermion line. Here again, it turns out that the K photon contribution
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is proportional1 to the lower order matrix element:

Mp′p,Kphoton
n+1 ∝ bk(p

′, p)Mn , (7)

In fact, such an insertion is the sum of contributions when the second ν vertex of the
virtual photon is inserted on the scalar, and when it is inserted on the anti-fermion line.
These contributions separately cancel among themselves, leaving one term in the former
and two in the latter. These cancel across the vertex V , leaving behind a contribution
that is again proportional to the lower order graph, as seen in Eq. 7 above. In short,
it is found [40] that the total matrix element due to insertion of the virtual K photon
into an nth order diagram is given by

MKphoton,tot
n+1 =

[
ie2

2

∫
d4k

(2π)4

{
δtµ,t1 δtν ,t1 D

tµ,tν (k)
[
bk(p

′, p′) + bk(p, p)
]

+ δtµ,tV δtν ,tV Dtµ,tν (k)
[
− 2bk(p

′, p)
] } ]

Mn ,

≡ [B]Mn , (8)

where the prefactor containing the IR divergence can be expressed as,

B =
ie2

2

∫
d4k

(2π)4
D11(k)

[
bk(p

′, p′)− 2bk(p
′, p) + bk(p, p)

]
,

≡ ie2

2

∫
d4k

(2π)4
D11(k)

[
J2(k)

]
, (9)

since the thermal types of the hard/external vertices must be type-1. We see that
each term is proportional to the (11) component of the photon contribution and this is
crucial for achieving the cancellation between virtual and real photon insertions. When
the contributions are summed over all orders in perturbation theory, the IR divergent
factor B exponentiates and cancels a similar IR divergent factor arising from real soft
photon insertions; for details please refer to Ref. [40].

3.1.2 Insertion of the photon into a thermal fermion line

We already know that the presence of the bosonic number operator, nB(|k0|), makes
the IR contribution to the cross section potentially IR divergent while the nature of
the fermionic number operator, nF (|p0|), results in a finite IR contribution to the cross
section. In particular, we shall see below that the K-photon contribution when the addi-
tional photon is inserted into a thermal fermion (that is, when the second, temperature-
dependent term in the fermionic propagator contributes; see Eq. A.3), is zero. We will
use this result later in the computation of the NLO cross section of interest. In order to
show this, we begin with the insertion of one of the vertices of the additional K photon
on any thermal fermion line at the vertex µ, lying between vertices µq+1 and µq; see
Fig. 3.

There are now two fermion propagators, one between vertices µq and µ and the
other between vertices µ and µq+1. The relevant part of the matrix element is given by

1Technically, a virtual photon insertion leads to the number of vertices increasing by 2; we have used the
index (n+ 1) to indicate that it is an nth order graph with an additional virtual photon.
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V p′s s−1 q+1 µ q 2 1

Figure 3: Sample insertion of vertex µ of virtual photon between vertices µq and µq+1 on the p′

fermion line. The labels have been simplified (µi → i) for the sake of clarity. Only a portion of the
diagram containing the p′ leg to the right of vertex V has been shown here.

(where we have chosen to insert into the p′ fermion line for specificity),

M thermal f,Kγ
NLO ∝ b(pf , pi)k

µkν
[
up′γµ1 · · · γµq S

q,µ
p′+

∑
q
γµ Sµ,q+1

p′+
∑

q +k γµq+1

]
· · · ,

= b(pf , pi)k
ν
[
up′γµ1 · · · γµq

{
Sq,µ
p′+

∑
q
/k Sµ,q+1

p′+
∑

q +k

}
γµq+1

]
· · · , (10)

where the momentum flowing in the fermion line between vertices q and (q + 1) into
which the additional photon was inserted is p′ + l1 + · · · + lq ≡ p′ + Σq. The term in
curly braces can be simplified using the property of the fermion propagator shown in
Eq. A.3 where S is also defined:

{· · · } =
[
(/p′ + /Σq +mf )/k(/p

′ + /Σq + /k +mf )
]
S
q,µ
p′+

∑
q
S
µ,q+1
p′+

∑
q +k ,

=
[
(2(p′ +Σq) · k + k2) (/p′ + /Σq +mf )− ((p′ +Σq)

2 −m2
f )/k
]
,

= 0 for thermal fermions. (11)

In particular, if both the fermion propagators on either side of the K-photon insertion
at the vertex µ are thermal, then both terms in Eq. 11 vanish due to the delta function
terms δ((p′+Σq)

2−m2
f ) and δ((p′+Σq+k)2−m2

f ) in the thermal part of the respective
propagators. We will use this result in the next section when we compute the NLO
cross section.

In order to show the IR divergence cancellation between virtual and real photon
contributions, a similar treatment of the real photon corrections to the process is done,
by separating the polarisation sums for the insertion of real photons into so-called K̃
and G̃ contributions:∑

pol

ϵ∗,µ(k) ϵν(k) = −gµν ,

= −
{[

gµν − b̃k(pf , pi)k
µkν
]
+
[
b̃k(pf , pi)k

µkν
]}

,

≡ −
{[

G̃µν
k

]
+
[
K̃µν

k

]}
.

(12)

Since k2 = 0 for real photons, we define,

b̃k(pf , pi) = bk(pf , pi)
∣∣∣
k2=0

=
pf ·pi

k ·pf k ·pi
, (13)

where pi (pf ) is the momentum p′ or p depending on whether the real photon insertion
was on the p′ or p leg in the nth order matrix element Mn+1 (or its conjugate M†

n+1).
Again, the insertion of a K̃ real photon into an nth order graph leads to a cross section
that is proportional to the lower order one, with the cancellation again occurring pair-
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wise, to give ∣∣∣MK̃γ,tot
n+1

∣∣∣2 ∝ −e2
[
b̃k(p, p)− 2b̃k(p

′, p) + b̃k(p
′, p′)

]
,

≡ −e2J̃2(k) . (14)

The contributions from the virtual K (Eq. 8) and real K̃ (Eq. 14) photon corrections
are IR divergent and cancel order by order in the theory. We are therefore left with
the IR-finite G photon contribution, that we will now evaluate in Sections 5 and 6.
However, first, for completeness, we present the LO results.

4 The dark matter annihilation cross section at
LO
The leading order (LO) contribution to the annihilation process χχ → ff arises from
the t- and u-channel processes shown in Fig. 2. The momenta in the CM frame are
q′, q → p′, p, with the choices

q′µ = (H, 0, 0, P ) , qµ = (H, 0, 0,−P ) ,

p′µ = (H,P ′ sin θ, 0, P ′ cos θ) , pµ = (H,−P ′ sin θ, 0,−P ′ cos θ) , (15)

where the centre of momentum energy, s = 4H2, and θ is the angle between the initial
and final momenta (q⃗′, p⃗′). The cross section at leading order for this 2 → 2 process is
given as usual by,

σLO =
1

64π2s

|p⃗′|
|q⃗′|

∫
dΩ

∑
spins

|Mt
LO −Mu

LO|2
 ,

=
1

32πs

P ′

P

∫
dcos θ

∑
spins

|Mt
LO −Mu

LO|2
 , (16)

where the integration over the azimuth ϕ is trivial, and a summation over both final
state and initial state spins is to be performed since all helicity configurations contribute
to the total cross section.

The contribution from the matrix element can be expressed as∫
dcos θ

∑
spins

|Mt
LO −Mu

LO|2 ≡ InttLO + IntuLO − InttuLO ,

≡ IntLO , (17)

where the subscript LO denotes the LO contribution and the three terms on the right
hand side refer to the square of the t-channel matrix element, the square of the u-
channel matrix element, and the tu cross terms respectively. Note that the cross term
vanishes for Dirac-type dark matter particles. The t-, u-channel matrix elements at LO
are given by,

Mt
LO = iλ2 (v(q,mχ)PL v(p,mf )) ∆(l)

(
u(p′,mf )PR u(q′,mχ)

)
,

Mu
LO = iλ2

(
v(q′,mχ)PL v(p,mf )

)
∆(l′)

(
u(p′,mf )PR u(q,mχ)

)
, (18)

9



where we have lightened the notation for the scalar propagator so that ∆(l) = i/(l2 −
m2

ϕ), and similarly for l′, with l = q − p ≡ p′ − q′ and l′ = q′ − p ≡ p′ − q referring
to the momentum of the intermediate scalar for the t and u channels respectively, and
PR,L ≡ (1± γ5)/2. Adding all the contributions, we find,

IntLO =
2λ4

P P ′(2H2 −m2
Φ)

{
−
[
H2
(
m2

χ − 2m2
Φ

)
+m2

χP
′2 +m4

Φ

]
log

(
2H2 −m2

Φ + 2P P ′)(
2H2 −m2

Φ − 2P P ′
)

+
4P P ′ (2H2 −m2

Φ

) (
2H4 − 2H2m2

Φ +m4
Φ − 2P 2P ′2)

4H4 − 4H2m2
Φ +m4

Φ − 4P 2 P ′2

}
, (19)

where m2
Φ ≡ m2

χ + m2
f − m2

ϕ. The logarithmic terms arise when either of p, p′ are
collinear with one of q, q′; however, these are not divergent; they contribute at a single
phase space point and are well-behaved. Then the invariant cross section at LO can be
written as

σLO(s) =
1

32πs

P ′

P
IntLO , (20)

where P ′2 = H2 −m2
f , P

2 = H2 −m2
χ, and 4H2 = s, the usual Mandelstam variable.

LO cross section in the non-relativistic limit : In the non-relativistic limit,
when the velocity of the dark matter particles is small, we can write P = mχv and
H2 ≈ m2

χ(1 + v2). Since P ≪ H,mΦ, we can expand the log term as

log

(
2H2 −m2

Φ + 2P P ′)
2H2 −m2

Φ − 2P P ′
P small−→ 2

[
2PP ′

2H2 −m2
Φ

+
2

3

(
2PP ′

2H2 −m2
Φ

)3

+ · · ·

]
, (21)

to get

IntLO
v small−→

8λ4m2
χm

2
f

(m2
χ +m2

ϕ −m2
f )

2
+O(v2) , (22)

Notice that the cross section is proportional to the square of the fermion mass, which
is a well-known result [39]. Hence, the LO cross section can be written as

σLO(s) =
1

32πs

P ′

P
IntLO ,

v small−→ λ4

4πs

P ′

P

[
m2

χm
2
f

(m2
χ +m2

ϕ −m2
f )

2
+O(v2)

]
. (23)

This term is the usual velocity-independent “a” term in s σ(s)vrel = a+ bv2 for the an-
nihilation process [39]; with the relative velocity between the two dark matter particles
given by vrel = 2v, where v is the CM velocity of either of the particles. Terms of order
O(v2) can be calculated by retaining higher orders in the expansion of Eq. 19.

We can repeat the calculation in the limit when the scalar is much heavier than
the other particles, viz., m2

ϕ ≫ m2
χ ≳ m2

f . Then l2 ≡ (q − p)2 ≪ m2
ϕ (where we have

implicitly assumed that
√
s ≪ mϕ) and the scalar propagator can be approximated by

10



iDϕ = i/(l2 −m2
ϕ) → −i/m2

ϕ, so that we get

Intheavy scalar
LO =

8λ4

3m4
ϕ

[
6H4 − 3H2m2

χ + P ′2(2P 2 − 3m2
χ)
]
,

=
8λ4

3m4
ϕ

[
8H2(H2 −m2

χ) +m2
f (5m

2
χ − 2H2)

]
, (24)

where we have substituted for P, P ′ in the last line. This gives us a cross section,

σheavy scalar
LO =

1

12πs

P ′

P

λ4

m4
ϕ

[
8H2(H2 −m2

χ) +m2
f (5m

2
χ − 2H2)

]
. (25)

The first term in the square brackets is proportional to H2 = m2
χ ≡ P 2 and the

second is proportional to m2
f . In the non-relativistic limit, with H2 = m2

χ(1 + v2),
P = mχv, this matches the expression given in Eq. 23, with the further approximation,
(m2

χ + m2
ϕ − m2

f ) → m2
ϕ, which is valid in the heavy scalar limit. The important

features are instantly visible within this approximation: the 1/m4
ϕ dependence arising

from the scalar propagator, and the m2
f dependence of the cross section in the non-

relativistic limit, H → mχ. Therefore, we present the NLO calculation of the cross
section in the next sections in two parts: in the next section, we present the results
in the heavy-scalar limit, where the expressions are shorter and the features can be
easily understood. In the subsequent section, we then present the results with the
fully dynamical scalar propagator. While the detailed results are cumbersome and can
be found on-line [46], the results in the non-relativistic limit have been presented for
comparison and discussion here.

5 The dark matter annihilation cross section at
NLO—“heavy-scalar” approximation
We apply the Grammer and Yennie technique [42], generalised for the case of thermal
field theories as explained in Section 3. There are two sets of contributions at higher
order: insertions of a virtual photon in the LO diagrams shown in Fig. 2, as well as
insertions of real photons which can be both emitted into or absorbed from the heat
bath at temperature T . Each of these contributions can be factorised into K and G
(or K̃ and G̃) parts for virtual (or real) photon insertions respectively, by applying the
Grammer and Yennie technique. As a consequence, the IR divergences are contained
in the K (K̃) contributions respectively and furthermore, were shown earlier to cancel
not only at NLO [39], but at all orders [40] in perturbation theory. Note that only
soft photon emissions/absorptions of the process χχ → ff(γ) are contained in the K̃
contribution. The hard real-photon emissions/absorptions that contribute to G̃ photon
insertions do not contribute to the process of interest here. Hence, by applying the
Grammer and Yennie technique, the NLO corrections to χχ → ff can simply be
calculated by computing the G terms of the virtual photon contributions alone.

The various contributions2 at NLO are shown in Fig. 4. In order to compute the
G photon contribution, we will replce the photon propagator by its G photon part; see
Eq. 2. Furthermore, throughout this section, we will approximate the scalar propagator
by iDϕ = i/(l2 − m2

ϕ) → −i/m2
ϕ, and lift this approximation in the next section.

2Note that fermion self-energy corrections do not contribute to the G photon terms.
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Figure 4: The t-channel virtual photon corrections to the dark matter annihilation process at next to
leading order (NLO). Diagrams are labelled from 1–5. Analogous contributions from the u-channel
diagrams exist.

Analogous to the LO cross section, we can write the next-to-leading order (NLO) virtual
contribution as

σNLO ∝

∑
spins

(
Mt

LO −Mu
LO

)† (Mt
NLO −Mu

NLO

)
+ h.c.

 , (26)

where each of the higher order t-channel terms in Eq. 26 gets contributions from the
five t-channel diagrams shown in Fig. 4 (and similarly, their u-channel counterparts).

We will discuss the details of the calculation using Diagram 1 as an example, before
we list the contributions from all the remaining diagrams.

5.1 The NLO contribution from Diagram 1
We start by discussing the pure t-channel NLO contribution from the first diagram
in Fig. 4. Since the scalar is very heavy, the thermal contribution from the scalar
propagators, which contain a factor nϕ = 1/(exp[βEϕ] − 1), can be dropped since
Eϕ ≳ mϕ ≫ mχ and βmχ ≡ x ∼ 20 near freeze-out. Hence the scalar propagators can
only be of (11) or (22) type; see Appendix A for details on the thermal and temperature
independent parts of various propagators. Since all external lines can only be of type-1
[54], and scalar propagators of (12) or (21) type can be neglected, it can be seen that
all propagators are of type (11) and all vertices are of type-1 alone. In fact, we will find
that this holds for all the contributions at NLO, for all the diagrams.

Therefore, there are three possibilities for Diagram 1, viz.,

1. the photon propagator (with momentum k) is thermal,

2. the fermion propagator (with momentum p′ + k) is thermal,

3. or both are thermal,

where, by thermal, we refer to the explicitly T -dependent second term in the propagators
as defined in Appendix A. Since the thermal part of all propagators puts the particle on

12



mass-shell, the last option yields a term depending on the product δ(k2) δ((p′+k)2−m2
f ).

Since the external fermion is on-shell, p′2 = m2
f ; hence this product of delta functions

requires p′ · k = 0. But δ(k2) implies k0 = ±|⃗k| or the angle between k and p′ should
satisfy cos θkp′ = ±p′0/|p⃗′| or | cos θkp′ | > 1, which is impossible, so there is no phase
space available in the case that both propagators are on-shell. Hence we only need
to consider the contribution of the first diagram when either one of the photon or
the fermion propagator is thermal. In particular, as discussed in Section 3, we only
need to consider the IR-finite G-photon contribution with the gµν term in the photon
propagator being replaced by Gµν :

−igµν → −i
[
gµν − bk(pf , pi) k

µkν
]
,

≡ −i
[
Gµν

k (pf , pi)
]
. (27)

Since the virtual photon vertices in Diagram 1, Fig. 4 are on the final fermion leg and the
scalar, we have pf = p′, pi = p, with bk(pf , pi) defined in Eq. 3. We consider in turn, the
contribution from the thermal parts of the photon and fermion propagators respectively
to the cross section for the process shown in Diagram 1 of Fig. 4. We present the purely
t-channel contribution in detail in order to highlight some technicalities, and then go
on to the other contributions.

5.1.1 NLO thermal photon contribution to Diagram 1

The matrix element at NLO from the (t-channel) Diagram 1 in Fig. 4 when the G-
photon propagator is thermal, is given by,

Mt
NLO(Diagram 1, γ) = −

∫
d4k

(2π)4
ie2λ2

2k · p′
(
2πδ(k2)nB(|k0|)

)
∆(l)∆(l + k)[(

u(p′,mf )γµ
(
/k + /p′ +mf

)
PR u(q′,mχ)

)
(k − 2p+ 2q)ν (v(q,mχ)PL v(p,mf )) ] Gµν

k (p′, p) ,

≡
∫

d4k

(2π)4
(
2πδ(k2)nB(|k0|)

)
F t,1γ
NLO(k) , (28)

where nB is the Bose distribution function given in Eq. A.5 and we have used the index
(Diagram 1, γ) to indicate that this is the contribution from Diagram 1 of Fig. 4 when
the photon is thermal. At this point, we are in a position to justify the simplification
of the scalar propagator in the heavy-scalar approximation. The scalar propagator for
the t-channel diagrams contains either the inverse of (l2−m2

ϕ), or ((l+k)2−m2
ϕ), with

l ≡ q − p ≡ p′ − q′. Since mχ ≪ mϕ, l2 < m2
ϕ. Since the photon propagator is thermal,

k2 = 0 and l · k ∝ |k0| is small since a large k0 = |⃗k| will suppress the contribution
due to the presence of the nB(|k0|) term. Hence either of the scalar propagators can
be approximated by just the (m2

ϕ)
−1 terms.

A similar reasoning will hold in the next Section 5.1.2 when we consider the fermion
propagator to be thermal. Then we can write (l + k)2 = ((p′ + k) − q′)2 ≡ (t − q′)2

(see Eq. 37). Now (p′ + k)2 ≡ t2 = m2
f since the fermion propagator is thermal and

t · q should be small, otherwise the contribution will be killed by the nF (|t0|) term; see
Eq. A.4. A similar argument holds for Diagrams 2 and 3 in Fig. 4 when the anti-fermion
is thermal, where we can write (l + k)2 = (q − p + k)2 ≡ (q − t)2. For the u-channel
matrix elements, the scalar momentum is l′ = q′ − p and the same reasoning applies.
Hence we will replace ∆(l) = i/(l2 − m2

ϕ) → i/(−m2
ϕ), etc., in this section. When

the scalar is heavy, but not much larger than the dark matter particle or the scale of

13



the interaction (
√
s), we will reinstate these terms and recompute the cross section in

Section 6.
The integration over the photon momentum k can be partly completed using the

delta function:∫
d4k

(
2πδ(k2)

)
F (k) = 2π

∫ ∞

−∞
dk0

∫ ∞

0
K2dK

∫
dΩk

[
δ((k0)2 −K2)

]
F (k0,K,Ωk) ,

= 2π

∫
dk0

∫
dΩk

∫
K2dK

[
δ(k0 −K) + δ(k0 +K)

]
|2k0|

F (k0,K,Ωk) ,

= π

∫
dΩk

[∫ ∞

0
|k0|dk0F (k0, k0,Ωk) +

∫ 0

−∞
|k0|dk0F (k0,−k0,Ωk)

]
,

≡ π

∫ ∞

0
ωdω

[∫
dΩkF+(ω, ω,Ωk) +

∫
dΩkF−(−ω, ω,Ωk)

]
,

(29)

where K ≡ |⃗k|. Hence there are two contributions to Mt
NLO(Diagram 1, γ) (and to each

such matrix element), one where K → k0 ≡ ω, and the other where K → −k0 ≡ −ω,
as can be seen from Eq. 29. Note that the lower limit (ω → 0) can be safely taken
precisely because the G photon contribution is guaranteed to be IR-finite. The purely
t-channel thermal photon contribution from Diagram 1 is therefore given according to
Eq. 26 as

σt
NLO(Diagram 1, γ) =

1

32πs(2π)4
|p⃗′|
|q⃗′|

∫
d cos θ

∑
spins

(
Mt

LO

)†Mt,1γ
NLO + h.c.

 ,

=
1

32s(2π)4
|p⃗′|
|q⃗′|

∫
ωdω nB(ω)

[∫
d cos θ

∫
dΩk

[
F t,1,γ
+ + F t,1,γ

−

]]
,

≡ 1

32s(2π)4
|p⃗′|
|q⃗′|

∫
ωdω nB(ω)Int

t
Diagram 1,γ

. (30)

On performing the angular integrations, the contribution of this term to the NLO cross
section is given by,

InttDiagram 1,γ
=

64πe2λ4

3mϕ
6P ′

(
4P ′

(
3H4 + P 2 P ′2

)
+ log

H − P ′

H + P ′ 3H
(
H2 + P 2

) (
H2 + P ′2

))
.

(31)

Note that the result in Eq. 31 is independent of ω; in fact, the individual F+ and F−
contributions to InttDiagram 1,γ

contain some apparent divergent terms of the order of
1/ω. When the two terms are added, these cancel, leaving behind IR finite terms that
are integrable in ω. This is a reflection of the fact that the G photon insertion was
tailored precisely to yield such an IR-finite result. The logarithmic terms arise when p′

or p are collinear with q′ or q. These will drop out of the final calculation3

Similarly, the u-channel and crossed tu-channel NLO contributions from Diagram 1
of Fig. 4 when the photon propagator is thermal can be calculated from the correspond-

3The collinear terms cancel between the G and G̃ contributions from the virtual and real corrections
respectively [39].
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ing u-channel NLO matrix element which is given by

Mu
NLO(Diagram 1, γ) = −

∫
d4k

(2π)4
ie2λ2

2k · p′
(
2πδ(k2)nB(|k0|)

)
∆(l′)∆(l′ + k)[(

u(p′,mf )γµ
(
/k + /p′ +mf

)
PR u(q,mχ)

) (
k − 2p+ 2q′

)
ν(

v(q′,mχ)PL v(p,mf )
)]

Gµν
k (p′, p) . (32)

Then the total NLO contribution from (the t-, u and cross tu channels of) Diagram 1,
Fig. 4, with thermal photon propagator is given by,

Inttt+uu−tu

Diagram 1,γ
=

64πe2λ4

3m6
ϕP

′
[
24H4P ′ − 6H2m2

χP
′ − 6m2

χP
′ (m2

f + 3P ′2)+ 8P 2P ′3

+ log
H − P ′

H + P ′
(
6H5 +H3

(
6
(
P 2 + P ′2)− 3m2

χ

)
+ 3HP ′2 (2P 2 − 3m2

χ

))]
,

=
64πe2λ4

3m6
ϕP

′
[
4P ′ (8H4 − 2 H2

(
4m2

χ +m2
f

)
+ 5m2

χm
2
f

)
+3 log

H − P ′

H + P ′
(
8H5 − 4H3

(
2m2

χ +m2
f

)
+ 5Hm2

χm
2
f

)]
,

non-coll−→ 256πe2λ4

3m6
ϕ

(
8H4 − 2 H2

(
4m2

χ +m2
f

)
+ 5m2

χm
2
f

)
, (33)

where we have substituted for P ′2 = H2−m2
f , P

2 = H2−m2
χ and dropped the collinear

logarithmic terms in the last line. It can be seen that Inttt+uu−tu

Diagram 1,γ
given in Eq. 33

is independent of ω; hence the final contribution from thermal photons to Diagram 1,
Fig. 4 is

σtt+uu−tu
NLO (Diagram 1, γ) =

1

32s(2π)4
P ′

P

∫
ωdω nB(ω)Int

tt+uu−tu

Diagram 1,γ
,

=
1

32s(2π)4
P ′

P

π2T 2

6
× Inttt+uu−tu

Diagram 1,γ
, (34)

where the T 2 temperature dependence of the cross section arises due to the ω-independence
of Inttt+uu−tu

Diagram 1,γ
, with

∫ ∞

0
ωdω nB(ω) =

π2T 2

6
. (35)

We now discuss the contribution at NLO from Diagram 1, Fig. 4, when the fermion
propagator is thermal.

5.1.2 NLO thermal fermion contribution to Diagram 1

As mentioned earlier, the thermal contributions from Diagram 1 only arise when either
the photon or fermion propagator is thermal, that is, the explicitly T -dependent second
term of the propagators in Eqs. A.2 and A.3 contribute; the contribution when both are
thermal vanishes. We now consider the contribution at NLO of the t-channel Diagram
1, Fig. 4, when the photon propagator is non-thermal, but the fermion propagator is
thermal. Recall that only the photon contributions give rise to IR divergences (both at
T = 0 and finite temperature). This is because of their differing thermal distributions;
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see Eqs. A.5 and A.4. In addition, we have shown in Section 3.1.2 that the K-photon
contribution when the photon is inserted into a thermal fermion vanishes; see Eq. 11.
Hence in the G photon insertion, which arises from Gµν = (gµν − bkk

µkν), the second
term, which is the K photon piece, vanishes and we therefore need consider just the gµν

contribution (or in other words, since the K contribution vanishes, the G term contains
the entire gµν contribution). The corresponding matrix element is then given by

Mt
NLO(Diagram 1, f) = −

∫
d4k

(2π)4
ie2λ2 gµν

k2
(
−2πδ((p′ + k)2 −m2

f )nF (|(p′ + k)0|)
)

∆(l)∆(l + k)
[(
u(p′,mf )γµ

(
/k + /p′ +mf

)
PR u(q′,mχ)

)(
k + 2p′ − 2q′

)
ν
(v(q,mχ)PL v(p,mf ))

]
, (36)

where nF is the fermion number operator defined in Eq. A.4, the 1/k2 term arises
from the temperature-independent part of the photon propagator, and the delta-function
from the thermal fermion propagator. As before, the index (Diagram 1, f) refers to the
contribution arising from Diagram 1, Fig. 4, when the thermal part of the fermion
propagator contributes. The sign difference between nF and nB is what dictates the IR
finite nature of the fermionic contributions. It is convenient to define p′ + k ≡ t, and
change the variable of integration to t, so that

Mt
NLO(Diagram 1, f) =

∫
d4t

(2π)4
ie2λ2

2

gµν

m2
f − t · p′

(
2πδ(t2 −m2

f )nF (|t0|)
)

∆(l)∆(l + k)
[(
u(p′,mf )γµ

(
/t +mf

)
PR u(q′,mχ)

)(
t+ p′ − 2q′

)
ν
(v(q,mχ)PL v(p,mf ))

]
, (37)

so that the same simplification can be done using the delta-function as discussed in
Eq. 29, to obtain∫

d4t
[
2πδ(t2−m2

f )
]
F (t) = 2π

∫
d4t δ(t20 − |⃗t|2 −m2

f )F (t) ≡ 2π

∫
d4t δ(t20 − ω2

t )F (t) ,

= π

∫ ∞

mf

Kt dωt

[∫
dΩtF+(ωt, ωt,Ωt) +

∫
dΩtF−(−ωt, ωt,Ωt)

]
,

(38)

where ω2
t = |⃗t|2 +m2

f ≡ K2
t +m2

f and we have expressions for F±(t) analogous to that
in Eq. 29. Then the thermal fermion contribution to the purely t-channel Diagram 1 is
given analogously to that for thermal photons in Eq. 30 by

σt
NLO(Diagram 1, f) =

1

32πs(2π)4
|p⃗′|
|q⃗′|

∫
dcos θ

∑
spins

(
Mt

LO

)†Mt,1f
NLO + h.c.

 ,

=
1

32s(2π)4
|p⃗′|
|q⃗′|

∫
Ktdωt nF (ωt)

[∫
dcos θ

∫
dΩt

[
F t,1,f
+ + F t,1,f

−

]]
,

≡ 1

32s(2π)4
|p⃗′|
|q⃗′|

∫
Ktdωt nF (ωt)Int

t
Diagram 1,f

. (39)
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Again, on completing the angular integration, we find the t-channel thermal fermion
contribution to Diagram 1, Fig. 4, to be

InttDiagram 1,f
=

32πe2λ4

3Ktm6
ϕP

′
[
4KtP

′ (3H2m2
χ + P 2

(
4H2 −m2

f

))
−
(
6H5ωt − 3H4m2

f +H3ωt

(
4P 2 − 3m2

f

)
− 4H2m2

fP
2 −HωtP

2
(
m2

f − 2P ′2)
− m2

fP
2(P ′2 −m2

f )
)
log

Hωt +KtP
′ −m2

f

Hωt −KtP ′ −m2
f

+
(
6H5ωt + 3H4m2

f +H3ωt

(
4P 2 − 3m2

f

)
+ 4H2m2

fP
2 −HωtP

2
(
m2

f − 2P ′2)
+ m2

fP
2
(
P ′2 −m2

f

))
log

Hωt −KtP
′ +m2

f

Hωt +KtP ′ +m2
f

]
. (40)

While the non-logarithmic terms are (as in the case of thermal photons) independent
of ωt, the logarithmic terms have a complicated dependence on ωt through Kt and it
is not possible to analytically integrate these terms. A simplification is achieved in the
limit that the fermion masses can be neglected in comparison to ωt, so that Kt → ωt.
Then the contribution simplifies4 to

InttDiagram 1,f

Kt→ωt−→ 64πe2Hλ4

3mϕ
6P ′

[
2HP ′ (3mχ

2 + 4P 2
)

−2
(
3H4 + 2H2P 2 + P 2P ′2) log H + P ′

H − P ′

]
, (41)

with

log[Hωt +KtP
′ ±m2

f ]

log[Hωt −KtP ′ ±m2
f ]

Kt→ωt−→ log[H + P ′]

log[H − P ′]
, (42)

where we have dropped terms of order O(m2
f/(Hωt)), so that these logarithmic terms

are of the same form as before, independent of ωt, yielding again a T 2 temperature
dependence from this contribution, using5∫ ∞

mf

Ktdωt nF (ωt) ≈
∫ ∞

0
ωtdωt nF (ωt) =

π2T 2

12
. (43)

Similarly, the u-channel matrix element for thermal fermions is given by:

Mu
NLO(Diagram 1, f) = −

∫
d4t

(2π)4
ie2λ2 gµν

2(m2
f − t · p′)

(
−2πδ(t2 −m2

f )nF (|t0|)
)

∆(l′)∆(l′ + k)
[(
u(p′,mf )γµ

(
/t +mf

)
PR u(q,mχ)

)(
t+ p′ − 2q

)
ν

(
v(q′,mχ)PL v(p,mf )

)]
. (44)

Using the LO matrix elements given in Eq. 18, the NLO matrix element for the t-
channel contribution given in Eqs. 36 and 37 and that for the u-channel contribution
in Eq. 44, the total thermal fermion contribution from Diagram 1, Fig. 4, that is, from

4Note that no approximations have been made in the non-logarithmic term.
5Expanding Kt =

√
ω2
t −m2

f as Kt ≈ ωt −m2
f/(2ωt) + · · · is not a possible choice since

∫
(dωt/ωt)nF is

not convergent; it is of course possible to integrate this numerically if more precise results are required.
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the combined t-channel, u-channel, and the crossed tu-channel, is found to be

Inttt+uu−tu

Diagram 1,f
=

32πe2λ4

3m6
ϕKtP ′

[
4KtP

′ (3m2
χm

2
f + 2P 2(4H2 −m2

f )
)

+ 3m2
χ log

Hωt +KtP
′ −m2

f

Hωt −KtP ′ −m2
f

(
3H3ωt − 2H2m2

f +Hωt(P
′2 − 2m2

f ) +m4
f − P ′2m2

f

)
− 3m2

χ log
Hωt +KtP

′ +m2
f

Hωt −KtP ′ +m2
f

(
3H3ωt + 2H2m2

f +Hωt(P
′2 − 2m2

f )−m4
f + P ′2m2

f

)
− 2 log

Hωt +KtP
′ −m2

f

Hωt −KtP ′ −m2
f

(
6H5ωt − 3H4m2

f +H3ωt(4P
2 − 3m2

f )− 4H2P 2m2
f

−HωtP
2(m2

f − 2P ′2)− P 2m2
f (P

′2 −m2
f )
)

− 2 log
Hωt +KtP

′ +m2
f

Hωt −KtP ′ +m2
f

(
6H5ωt + 3H4m2

f +H3ωt(4P
2 − 3m2

f ) + 4H2P 2m2
f

−HωtP
2(m2

f − 2P ′2) + P 2m2
f (P

′2 −m2
f )
)]

. (45)

As in the case of the t-channel contribution alone, we can again use the approximation
given in Eq. 42, so that

Inttt+uu−tu

Diagram 1,f

Kt→ωt−→ 128πe2λ4

3m6
ϕ

[(
3m2

χm
2
f + 2P 2(4H2 −m2

f )
)
− 3H

2P ′ log
H + P ′

H − P ′
{
4H4+

2H2
(
8P 2 − 2m2

χ −m2
f

)
+m2

f

(
3m2

χ − 2P 2
)} ]

.

(46)

Again Int1,tt+uu−tu,f
NLO is independent of ωt; hence, the ωt integral (see Eq. 43) gives a

T 2 temperature dependence to the cross section (analogue of Eq. 39 for all channels)
from the thermal fermions in Diagram 1, Fig. 4, as well.

5.2 Total thermal contribution to the NLO cross section
Now that we have demonstrated details of the calculation of the cross section from
Diagram 1, Fig. 4, we present the detailed results from all Diagrams in Fig. 4. Diagram
3 is similar to Diagram 1; here also, it is clear from an analysis similar to that for
Diagram 1 in Section 5.1 that only one of the photon and fermion propagators can
be thermal at a time. Note that Diagrams 4 and 5 have no fermion propagators while
Diagram 2 has three propagators (excluding that of the scalar) and can in principle
have contributions from any one, any two, or all three propagators being thermal (where
we remind the reader that by thermal we mean the contribution from the explicitly T -
dependent second term in the expressions for the photon and fermion propagators given
in Eqs. A.2 and A.3). As argued for Diagrams 1 and 3, there is no consistent available
kinematic phase space when the photon propagator and either one of the fermion or
anti-fermion propagators are both thermal. Hence there is no contribution from the case
when all three propagators in Diagram 2 are thermal (all three propagators contribute
on-shell) as well as when the photon propagator and either the fermion or anti-fermion
propagator is thermal. Left is the case when the fermion and anti-fermion propagators
are thermal, but not the photon one. Here, we find that the delta function constraint
δ((p′ + k)2 −m2

f )δ((p− k)2 −m2
f ) is satisfied for the single phase space point, k0 = 0.
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Therefore, for all the diagrams, as long as we discard the negligible contribution from
scalar thermal propagators, we only have thermal contributions when exactly one of
the propagators in the diagram is thermal and the others contribute through their non-
thermal or temperature-independent parts.

We now go on to present the contributions from the remaining Diagrams 2–5 in
Fig. 4 as well as their u-channel counterparts. As can be observed from the diagrams
in Fig. 4 itself, Diagrams 1, 3 and 5 have two scalar propagators, Diagram 4 has three,
and Diagram 2 as well as the LO matrix element have one scalar propagator each.
Hence it is expected that the contributions of Diagram 4 will be suppressed compared
to the other contributions. As before, we have only one propagator whose thermal part
contributes, and we separately list the contributions from the terms when the photon
propagator is thermal and when the fermion/anti-fermion one is thermal. We begin with
the thermal photon contributions.

5.2.1 Total thermal photon contributions to the cross section

The NLO matrix elements for the remaining Diagrams 2–5, Fig. 4, when the thermal
part of the photon propagator is taken into account are analogous to the expression
given in Eq. 30 and are given in Appendix B. The corresponding contributions from
Diagrams 2–5 to the cross section (corresponding to Eqs. 30, 33, 34 from Diagram 1)
from both the t- and u-channels and crossed tu-channel (in the heavy scalar propagator
limit) are given by,

Inttt+uu−tu

Diagram 2,γ
=

64πe2λ4

3m4
ϕ

[(
6H2 − 6m2

χ + 2P 2
)
+

1

HP ′ log
H−P ′

H+P ′
(
3H2−P 2

)
(H2−P ′2)

]
,

(47)

Inttt+uu−tu

Diagram 3,γ
=

64πe2λ4

3m6
ϕP

′
[
2P ′ (6H4 +H2

(
8P 2 − 3m2

χ

)
+
(
3m2

χ − 2P 2
) (

m2
f − P ′2))

+H log
H − P ′

H + P ′
(
12H4 +H2

(
−9m2

χ − 6m2
f + 8P 2

)
+m2

χ

(
6m2

f − 3P ′2)− 2P 2
(
m2

f − 2P ′2))] , (48)

Inttt+uu−tu

Diagram 4,γ
=

512πe2λ4

15m8
ϕP

′(H2 − P ′2)

[
P ′ {60H8 − 30H6

(
2m2

χ −m2
f + 2P ′2)

+ 15H4
(
m4

χ −m2
χ

(
m2

f − 2P ′2)+ 2P 2
(
3m2

f + 2P ′2))
−H2

[
5m2

χ

(
m2

f

(
P 2 + 3P ′2)+ 2P ′2 (P 2 − 3P ′2))

+2P 2
(
m2

f

(
15P ′2 − 4P 2

)
+ 30P ′4)]

−P ′2 (15m4
χP

′2 + 5m2
χP

2
(
m2

f − 2P ′2)+ 2m2
fP

4
)}

+ log
H − P ′

H + P ′Hm2
f

(
H2 − P ′2) {30H4 − 5H2

(
3m2

χ − 8P 2
)

−15m2
χP

′2 + 4P 4 + 10P 2P ′2}] , (49)

Inttt+uu−tu

Diagram 5,γ
=

512πe2λ4

3m6
ϕ

(
−6H4 + 3H2m2

χ + P ′2 (3m2
χ − 2P 2

))
. (50)
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Simplifying, and substituting P ′2 → H2 − m2
f and P 2 → H2 − m2

χ, and dropping
the collinear terms, the total contribution from all terms where the virtual photon
propagator is thermal, is given by

Inttt+uu−tu
Total,γT =

{[
Inttt+uu−tu

Diagram 2,γ

]
+
[
Inttt+uu−tu

Diagram 1,γ
+ Inttt+uu−tu

Diagram 3,γ
+ Inttt+uu−tu

Diagram 5,γ

]
+[

Inttt+uu−tu

Diagram 4,γ

]}
,

=
128πe2λ4

3

{
1

m4
ϕ

[
4P 2

]
− 2

m6
ϕ

H2
[
H2 −m2

χ − P 2
]
+

4

5m8
ϕ

[
90H6 − 120H4(m2

χ − P 2)

+H2(30m4
χ + 5m2

χ(9m
2
f − 4P 2)− 6P 2(5m2

f − P 2))

+m2
f (−15m4

χ + 15m2
χP

2 + 2P 4)
] ,

=
512πe2λ4

15

{
5

m4
ϕ

(
H2 −m2

χ

)
+

H2

m8
ϕ

[
216H4 − 272H2m2

χ + 56m4
χ

]
−
m2

f

m8
ϕ

[
28H4 − 86H2m2

χ + 28m4
χ

]}
, (51)

where we have combined contributions having the same number of scalar propagators.
A few points can be noted. From the first line, we see that the total thermal photon
contribution from Diagrams 1, 3, and 5 vanishes, since P 2 = H2 − m2

χ. Hence terms
contributing as 1/m6

ϕ from thermal photon insertions vanish. Also, from the last line
in Eq. 51, we see that the contribution from Diagram 2 (contributing as 1/m4

ϕ) is
proportional to H2 − m2

χ = P 2 and is small in the non-relativistic limit. So also is
the contribution from Diagram 4 (1/m8

ϕ) term since the term proportional to H2 also
vanishes when H = mχ (exact non-relativistic limit), leaving only the m2

f dependent
term. The familiar independence on ω is seen for the total thermal photon contribution
at NLO, so that the total cross section from these terms again has a T 2 temperature
dependence. We now calculate the contribution from thermal fermions.

5.2.2 Total thermal fermion contributions to the cross section

Only Diagrams 1–3 in Fig. 4 contribute to the NLO cross section when the thermal
part of the fermion propagator is considered. The corresponding matrix elements for
Diagrams 2 and 3 are also given in Appendix B. The contributions to the NLO cross
section from each of these diagrams (in the heavy scalar limit, where we have substituted
for P ′ and dropped the logarithmic terms, which have the same form as for Diagram
1), are given by

Inttt+uu−tu

Diagram 2,f
= − 32πe2λ4

3m4
ϕ

(
H2 − ω2

t

) (12H2(H2 −m2
χ) + 4H2P 2 + 2ω2

t (3(H
2 −m2

χ) + P 2)
)
,

Inttt+uu−tu

Diagram 2,f
= Inttt+uu−tu

Diagram 2,f
,

Inttt+uu−tu

Diagram 3,f
=

128πe2λ4

3m6
ϕ

(
3m2

χm
2
f + 2P 2(4H2 −m2

f )
)
. (52)
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Notice that the contribution of the thermal fermion from Diagram 3 is the same as
that from Diagram 1, as can be seen6 from Eq. 46. Furthermore, the contribution of
the thermal fermion from Diagram 2, Fig. 4 has non-trivial ωt dependences both in the
numerator and denominator. Recognising that large values of ωt will lead to vanishing
of the corresponding distribution function, nF (|ωt|), we expand the denominator for
ωt < H (recall that H ≥ mχ and βmχ = x ∼ 20 at freeze-out) to obtain the total
thermal fermion contribution from Diagram 2 to be

Inttt+uu−tu

Diagram 2,f+f
= −64πe2λ4

3m4
ϕH

2

(
12H2(H2 −m2

χ) + 4H2P 2 + 6ω2
t (3(H

2 −m2
χ) + P 2)

)
.

(53)

The presence of the ω2
t terms in the numerator will lead to T 4 temperature dependence

in the cross section7. Then, the total contribution from all terms where the virtual
fermion (or anti-fermion) propagator is thermal, is given by

Inttt+uu−tu
Total,(f+f)T

=
[
Inttt+uu−tu

Diagram 1,f
+ Inttt+uu−tu

Diagram 3,f

]
+
[
Inttt+uu−tu

Diagram 2,f
+ Inttt+uu−tu

Diagram 2,f

]
,

=
64πe2λ4

3m6
ϕ

{[
12m2

χm
2
f + 8P 2(4H2 −m2

f )

]
−m2

ϕ

[
12(H2 −m2

χ) + 4P 2

+
6ω2

t

H2

(
3(H2 −m2

χ) + P 2
)]}

. (54)

The total invariant NLO cross section is then given by the sum of the thermal photon
and thermal fermion contributions,

σNLO(s) =
1

32s(2π)4
P ′

P

[∫
ωdω nBInt

tt+uu−tu
Total,γT +

∫
Ktdωt nF Int

tt+uu−tu
Total,(f+f)T

]
,

=
λ4

12πs

P ′

P

[
8αT 2

15

]
×

{
1

m4
ϕ

[
7π2T 2

4H2
(H2 −m2

χ)

]
+

1

m6
ϕ

[
5m2

χm
2
f + 2P 2(4H2 −m2

f )
]

+
1

m8
ϕ

[
8H2(27H4 − 34H2m2

χ + 7m4
χ)− 2m2

f (14H
4 − 43H2m2

χ + 14m4
χ)

]}
;

(55)

here s = 4H2 and the terms have been ordered in increasing powers of m2
ϕ in the

denominator. We have replaced Kt by ωt in the integrand of the second term in order
to obtain an analytical result and furthermore, presented the results, taking the lower
limit of the integration to be zero. Notice that the leading term (1/m4

ϕ) is of order
O(T 4) and is further suppressed by (H2 −m2

χ) = P 2 in the non-relativistic limit. The
terms suppressed by an additional propagator factor (∼ 1/m6

ϕ) contribute at T 2 order
and are either proportional to m2

f (∼ 5m2
χm

2
f ) or to P 2, which is small is the non-

relativistic limit. However, these terms, of order O(H2P 2T 2/m6
ϕ) or O(m2

χm
2
fT

2/m6
ϕ),

can have significant contribution in the relativistic regime when P is large.

The NLO cross section in the non-relativistic limit : Freeze-out occurs
around mχ/T ∼ 20 so that the dark matter particles can be considered to be non-
relativistic at this point, with P → mχv, and H2 → m2

χ(1 + v2), so that Eqs. 51 and

6Note the absence of odd powers of ωt due to the symmetry explicit in Eq. 8.
7Since H2 −m2

χ = p2, both the ω0
t and the ω2

t terms are small in the non-relativistic limit.
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54 reduce to

Inttt+uu−tu
Total,γT

v small−→ 512πe2λ4

15mϕ
8

{
30m4

χm
2
f (1 + v2) + 5m4

ϕm
2
χv

2
}

,

Inttt+uu−tu
Total,(f+f)T

v small−→ 64πe2λ4

3m6
ϕ

{[
6m2

χm
2
f + 4m2

χv
2(4m2

χ −m2
f )
]
+ 8m2

ϕm
2
χv

2

(
3
ω2
t

H2
− 2

)}
.

(56)

It can be seen that the NLO cross section (obtained from Eqs. 55 and 56) is proportional
to m2

f as v → 0, just as the LO cross section; see Eq. 22. This can be understood from
helicity conservation: just as in the LO case, the NLO diagrams (with an additional
virtual photon) that we have computed are planar 2 → 2 processes. The Majorana
coupling then forces the final states into the “wrong” chirality so that the cross section
is proportional to the fermion mass squared. At early times in the evolution of the
Universe, the dark matter particles are relativistic,

√
s can be large, and there is less

suppression in the annihilation into the lighter fermions. This also holds for freeze-in
scenarios where mχ/T ∼ O(1). Now that we have understood the structure of the
NLO contributions in the heavy-scalar limit, we will go on to include the entire scalar
propagator in the calculation of the NLO cross section.

6 The dark matter annihilation cross section at
NLO including the “dynamical” scalar propagator
We repeat the calculation of the previous section without making the heavy scalar
assumption, i.e., retaining the “dynamical” scalar propagator, iDϕ = i/(l2−m2

ϕ), where
l = q − p is the momentum of the scalar. As we had already argued in Section 5.1.1,
l · k, k2 ≪ m2

ϕ; hence, we expand the relevant propagator terms, for instance,

1

(l + k)2 −m2
ϕ

=
1

(l2 −m2
ϕ) + (2l · k + k2)

≈ 1

(l2 −m2
ϕ)

[
1− (2l · k + k2)

(l2 −m2
ϕ)

]
. (57)

Similar expansions can be obtained for the u-channel scalar propagators as well. This
enables us to get analytic expressions for the NLO cross section. However, the results
are rather cumbersome and opaque; they are available as Mathematica [50] Notebooks
in Ref. [46]. We simply make a few remarks on the calculation and specifically on the
non-relativistic limit which is of interest at freeze-out.

The main difference on including the momentum dependence of the scalar is the
increase in complexity of the cos θ angular integration due to the presence of the term
l2−m2

ϕ ≡ m2
χ+m2

f −m2
ϕ− 2q · p ≡ m2

Φ− 2(H2−PP ′ cos θ) in the denominator. It will
be seen that this gives rise to logarithms of the type log

(
2H2 −m2

Φ ± 2P P ′) which we
have already encountered when calculating the LO cross section.

Once again, the leading O(T 2) terms are ω- (ωt)-independent for the thermal photon
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(fermion) cases, while the ω2 (ω2
t ) terms contribute to the O(T 4) terms. We have,

σNLO(s) =
1

32s(2π)4
P ′

P

[∫
dωω nB Inttt+uu−tu

Total,γT +

∫
dωtωt nF Inttt+uu−tu

Total,(f+f)T

]
,

v small−→ λ4

4πs

P ′

P

παT 2

6

[
IntaNLO + v2 IntbNLO

]
, (58)

where the expression in the second line refers to the so-called a and b terms that
contribute in the non-relativistic limit.

It is interesting to note that the pattern is the same as with the heavy scalar com-
putation in the previous section. The leading behaviour from naive counting of the
scalar propagator is expected to have the form (from Diagram 2)

σNLO(s) ∝
m2

χT
2

(2H2 −m2
Φ + 2PP ′)(2H2 −m2

Φ − 2PP ′)
, (59)

where the denominator (proportional to m4
ϕ in the heavy scalar limit) is the analogous

term to the 1/m4
ϕ contribution in the heavy-scalar limit. However, as in the previ-

ous section with heavy-scalar assumption, we find this term vanishes and the leading
contribution is again

σNLO(s) ∝
m2

ϕM
2m2

fT
2

(4H4 − 4m2
ΦH

2 +m4
Φ − 4P 2P ′2)2

,

∝
M2m2

fT
2

m6
ϕ

, (60)

where M2 is any combination of H ≡
√
s/2,mχ or mf , of dimension 2.

As mentioned earlier, the results for the general relativistic case are available as sets
of Mathematica Notebooks at the web-page Ref. [46]. Here we will discuss some aspects
of the results in the non-relativistic limit, which are of relevance near freeze-out, when
mχ/T ∼ 20.

NLO cross section in the non-relativistic limit :
In the limit when p → mχv, and the expressions are expanded for small velocities,

the cross section can be expressed as σ v = a+ bv2. The contributions to the “a” term
from all the diagrams (see Eq. 58 for the definition) are listed in Table 1. Both O(T 2)
and O(T 4) terms contribute. (The O(v2) terms can be found from the expressions given
online in Ref. [46].) In the non-relativistic limit, the denominator in the full expressions
reduces to the form visible in Table 1:

1

(4H4 − 4H2m2
Φ +m4

Φ − 4P 2P ′2)n
≈ 1

(m2
χ −m2

f +m2
ϕ)

n

[
1−

4nP 2m2
ϕ

(m2
χ −m2

f +m2
ϕ)

]
,

v→0−→ 1

(m2
χ −m2

f +m2
ϕ)

n
≡ 1

Dn
, (61)

as was encountered in the LO expression for the cross section in Eq. 23. It can be
seen from Table 1 that, in the non-relativistic limit, the “a” terms in the cross section
are proportional to the square of the fermion mass, both at order O(T 2) and O(T 4),
just as in the LO case. Again, as with the NLO calculation in the heavy-scalar limit,
the potential leading contribution at order 1/m4

ϕ is suppressed by a factor of P 2 and
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contributes8 at the order O(P 2T 4m6
ϕ/(m

2
χD

5)) ∼ O(P 2T 4/(m2
χm

4
ϕ)), as before. Hence,

the leading contribution is again at order O(1/m6
ϕ), as mentioned earlier. Note that only

Diagrams 2 and 4 have O(T 4) contributions; that from Diagram 4 is highly suppressed
due to the 1/D5 ∼ 1/m10

ϕ denominator factor. In general, it can be seen that the
leading contributions are of order O(m2

fm
2
χT

2/m6
ϕ) in the non-relativistic limit.

Diagram γ/f IntaNLO (T 2 contribution) IntaNLO (T 4 contribution)

1 γ −8m2
χm

2
f (m

2
f −m2

ϕ)/D
4 0

f 4m2
χm

2
f (5m

2
χ − 5m2

f +m2
ϕ)/D

4 0

Totalγ+f 2m2
χm

2
f (5m

2
χ − 9m2

f + 5m2
ϕ)/D

4 0

2 γ −8m2
χm

2
f/D

3 0

f −6m2
f (2m

2
χ −m2

f )/D
3 − 21π2T 2

10m2
χD

3m
2
f (2m

2
χ −m2

f )

Totalγ+f −m2
f (14m

2
χ − 3m2

f )/D
3 − 21π2T 2

10m2
χD

3m
2
f (2m

2
χ −m2

f )

3 γ −8m2
χm

2
f (m

2
f −m2

ϕ)/D
4 0

f 4m2
χm

2
f (3m

2
χ − 2m2

f +m2
ϕ)/D

4 0

Totalγ+f 2m2
χm

2
f (3m

2
χ − 6m2

f + 5m2
ϕ)/D

4 0

4 γ 32m4
χm

2
f/D

4 −56π2T 2

15D5 m2
χm

2
f (m

2
χ −m2

f )

5 γ −16m2
χm

2
f/D

3 0

All Totalγ+f
1
D3m

2
f (2m

2
χ + 3m2

f )+ − 21π2T 2

10m2
χD

3m
2
f (2m

2
χ −m2

f ) +

2
D4m

2
fm

2
χ(10m

2
ϕ + 24m2

χ − 15m2
f ) −56π2T 2

15D5 m2
χm

2
f (m

2
χ −m2

f )

Table 1: The v → 0 contributions from various diagrams to the NLO cross section (the so-called “a”
terms in the non-relativistic cross section); see Eqs. 58 and 61 for definitions. The second column
lists the O(T 2) contributions while the third one lists the O(T 4) contributions; note that an overall
factor of T 2 has been removed from the terms. Here D is defined as D = (m2

χ −m2
f +m2

ϕ).

Considering only the corresponding “a” (v0) terms in the non-relativistic limit, the

8Expressions for the “b” term in the cross section are given online in Ref. [46]; note that these are not
necessarily proportional to m2

f .
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relative size of the NLO contribution for each flavour of fermion pair is given by,

σa
NLO

σa
LO

=
παT 2

6m2
ϕ

m2
f (22m

2
χ + 3m2

f )

m2
fm

2
χ

,

≈ 11πα

3

T 2

m2
ϕ

, (62)

where we have used D ∼ m2
ϕ and dropped terms in σNLO

a having higher powers of
D = m2

ϕ in the denominator.

7 Discussions and Conclusion
We have computed the next-to-leading order thermal contributions to the cross section
for dark matter annihilation into fermion pairs. We have used a Lagrangian which
couples the dark matter Majorana fermions to standard model fermions via charged
scalar doublets. We use the real time formulation of thermal field theory to compute
the higher order contributions to the cross section for the annihilation of dark matter
particles9 via χχ → ff in a heat bath of fermions, scalars and photons at temperature
T . Note that the regime of interest is during the evolution of the Universe when
electroweak symmetry breaking is complete so that we consider higher order corrections
only from photons, since the W and Z are by now massive. We assume in addition
that the scalars are heavy, mϕ ≳ mχ.

We have used the generalised Grammer and Yennie [42–44] technique where the can-
cellation of infra-red soft divergences is straightforward. This is achieved by separating
the photon propagator into the sum of K and G parts. This can be realised in the
thermal case as well, where the propagators are now sums of temperature-independent
and temperature-dependent 2×2 matrices; we label the latter as the thermal part of the
propagator since it carries an explicit temperature dependence. It was shown earlier
[40, 41] that the infrared (IR) divergences (which are much more acute than at zero
temperature, being linear rather than logarithmically divergent in the soft limit) are
completely contained in the K photon contribution and the G photon term is finite.
The infrared divergences cancel against similar terms from real soft photon contribu-
tions; note that both absorption from, and emission into the heat bath is required to
be included for these cancellations to occur.

While the use of the Grammer and Yennie technique (and its modification for ther-
mal field theories) is well-known for demonstration of the cancellations of IR divergences
in various contexts, it has been rarely used, so far as the authors are aware, to actually
compute the IR-finite remainder. In the present work, we have computed the NLO
finite G photon contributions to the dark matter annihilation cross section using this
technique and found its application to be straightforward. A further simplification oc-
curred since kinematically it turns out that the total contribution to the NLO cross
section is actually a sum of terms where any one of the (photon, fermion, anti-fermion)
propagators can be thermal at a time. Hence the Grammer and Yennie approach allows
a great simplification of the problem and consequent ease of computation.

The calculation was first done by replacing the full scalar propagator 1/(l2 −m2
ϕ)

by just the mass term, 1/(−m2
ϕ), valid when the scalar is very heavy. This enabled

9Since the dark matter particles are taken to be Majorana fermions, the annihilation occurs via the t-,
u- and cross tu-channel processes; Dirac dark matter particles will have the same interaction where the tu
cross terms vanish.
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us to have simpler expressions so that the pattern of dependence of the NLO cross
section on both the temperature T as well as the energy scales, H =

√
s/2 and mf , was

visible. The five diagrams that contribute at NLO are shown in Fig. 4 for the t-channel
processes with analogous diagrams for the u-channel ones.

The potential leading contribution10 at order 1/m4
ϕ in the scalar mass (from Di-

agram 2) is of order O(p2T 4/(H2m4
ϕ)), which is small in the non-relativistic limit

when p2 is small. Hence the leading contribution is at order 1/m6
ϕ. It was found

that the O(T 2) contribution to the NLO cross section at this order is proportional
to either (m2

fM
2T 2/m6

ϕ) or to (p2M2T 2/m6
ϕ) where M2 ∼ H2 or m2

χ. Hence in the
non-relativistic regime (at around mχ/T ∼ 20) where freeze-out occurs, the momentum-
dependent term can be ignored and the NLO cross section is proportional to the square
of the fermion mass; this dependence is also seen in the LO cross section and occurs
due to the Majorana nature of the dark matter particles and consequent helicity sup-
pression. It is likely that the NLO terms retain this feature due to the 2 → 2 planar
nature of the contributing diagrams.

The calculation was repeated, retaining the full dynamical scalar propagator. The
essential features of the calculation remain the same. Since the expressions are very
long, we present here only the leading “a” term of the cross section in the non-relativistic
limit (contribution to σv when v → 0) in Table 1; the entire solution in the relativistic
case as well as their non-relativistic approximations are listed in the Mathematica Note-
books available online [46]. We find that both the O(T 2) and the O(T 4) contributions
to the “a” term are proportional to m2

f , as can be seen from Table 1. As with the heavy-
scalar approximation, the potential leading contribution at order 1/m4

ϕ is suppressed
by a factor of p2 and contributes at the order O(p2T 4m6

ϕ/(m
2
χD

5)) which reduces, in
the limit mϕ > mχ, to the order O(p2T 4/(m2

χm
4
ϕ)), as before. Hence, the leading con-

tribution is again at order 1/m6
ϕ, leading to a relative NLO thermal contribution which

is ∼ 10 (αT 2/m2
ϕ) times the LO cross section.

In summary, the NLO thermal correction terms have a T 2 dependence, but are
suppressed by additional powers of the (heavy scalar) propagator as well as by the
square of the fermion masses. This was discussed in Ref. [39] where the NLO thermal
cross section was initially computed to be of order O(T 2), and later it was shown that
the T 2 contributions vanish and the leading contribution is in fact of order O(T 4).
This result was strengthened in Ref. [45] where an operator product expansion (OPE)
approach was used to show the same result (for Dirac-type dark matter particles); here,
the scalar propagator was again reduced to just the mass term (1/(−m2

ϕ)), and it was
argued that O(m2

fT
2/m4

χ) are small compared to O(T 4/m4
χ) and were thus ignored.

In this work, we have retained the fermion masses and found that, in the non-
relativistic limit, the leading terms as v → 0 at both order O(T 2) and O(T 4) are
suppressed by m2

f , just as the LO cross section. The general results when T may be
large, so x = mχ/T ∼ O(1), are given without making the non-relativistic approxima-
tion, in Mathematica notebooks [46]. These corrections may be significant in a freeze-in
scenario in the early Universe when T is larger for light dark matter candidates where
mχ/T ≳ 1.

Thermal corrections to such cross sections can become important in the early Uni-
verse where the thermally averaged cross section, ⟨σv⟩, appears as the collision term in
the Boltzmann equation for the evolution of the dark matter phase space densities, or

10This is the order at which the LO cross section contributes; see Eqs. 19, 20 and 23.
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equivalently, their yields. We have

⟨σ · vMøl⟩ ≡
∫
σ · vMøl exp[−E1/T ] exp[−E2/T ]d

3p1d
3p2∫

exp[−E1/T ] exp[−E2/T ]d3p1d3p2
. (63)

Here p1, p2 are the momenta of the annihilating dark matter particles, and vMøl =√
(p1 · p2)2 −m2

χ. The Boltzmann approximation for the dark matter number densities

has been used. For cross sections of the form σv = a+ bv2, we have

⟨σv⟩ = a+
3

2
bT . (64)

Hence, the thermal corrections that we have computed at NLO will yield a correction,

⟨σNLOv⟩ = ⟨(a1T 2 + a2T
4) + v2(b1T

2 + b2T
4)⟩ ,

= (a1T
2 + a2T

4) +
3

2
(b1T

3 + b2T
5) . (65)

The corrections from the NLO thermal contribution to “b” (the terms proportional to v2

and higher powers) can therefore be neglected. These thermal corrections to the cross
section σ(s) can alter the yield equation and hence the final relic density, especially in
freeze-in scenarios. This is acquiring importance [55] in view of the increasingly precise
measurements of the relic density [2, 6]. It will be interesting to pursue this further,
within the frame-work of the Grammer and Yennie formulation where the calculation
is simpler; this is beyond the scope of the present work.

A Feynman rules in thermal field theory
The scalar propagator is given by

iSta,tb
scalar(p,m) =

(
∆(p) 0
0 ∆∗(p)

)
+ 2πδ(p2 −m2)nB(|p0|)

(
1 e|p

0|/(2T )

e|p
0|/(2T ) 1

)
,

(A.1)
where ∆(p) = i/(p2 −m2 + iϵ), and ta, tb (= 1, 2) refer to the field’s thermal type. We
shall refer to the first term as the temperature-independent part and the second as the
thermal part in the main text since it carries explicit temperature dependence; note that
the latter contributes only on mass-shell. Only the thermal parts can convert type-1 to
type-2 fields, and vice versa; type-1 fields are the physical fields.

In the Feynman gauge, the photon propagator corresponding to a momentum k is
given by

iDta,tb
µν (k) = −gµνiD

ta,tb(k) = −gµν iS
ta,tb
scalar(k, 0) , (A.2)

and the fermion propagator at zero chemical potential is given by

iSta,tb
fermion(p,m) =

(
S 0
0 S∗

)
− 2πS′δ(p2 −m2)nF(|p0|)

(
1 ϵ(p0)e

|p0|/(2T )

−ϵ(p0)e
|p0|/(2T ) 1

)
,

≡ (/p+m)

(
F−1
p G−1

p

−G−1
p F ∗−1

p

)
,

≡ (/p+m)S
ta,tb(p,m) , (A.3)
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where S = i/(/p − m + iϵ), and S′ = (/p + m); hence the entire fermion propagator is
proportional to (/p+m), just as at T = 0. It can be seen that all propagators are a sum
of temperature-independent and thermal parts. The fermionic number operator,

nF(|p0|) ≡
1

exp{|p0|/T}+ 1

p0→ 0−→ 1

2
, (A.4)

is well-defined in the soft limit; however, the bosonic number operator contributes an
additional power of k0 in the denominator to the photon propagator in the soft limit:

nB(|k0|) ≡
1

exp{|k0|/T} − 1

k0→ 0−→ T

|k0|
, (A.5)

so that the leading IR divergence in the finite temperature part is linear rather than
logarithmic as was the case at zero temperature. (The cancellation of IR divergence
thus involves cancellation of the leading linear divergence as well as the logarithmic
sub-divergence.)

The fermion–photon vertex factor is given by (−ieγµ)(−1)tµ+1, where tµ = 1, 2
for the type-1 and type-2 vertices. The scalar–photon vertex factor is [−ie(pµ +
p′µ)](−1)tµ+1 where pµ (p′µ) is the 4-momentum of the scalar entering (leaving) the ver-
tex, while the 2-scalar–2-photon seagull vertex factor (see Fig. 5) is [+2ie2gµν ](−1)tµ+1

(the factor ‘2’ is dropped for a tadpole vertex). At a given vertex, all fields are of the
same type.

p p′

µ

p p′

µ

p p′

µ ν

a. Fermion-Photon Vertex b. Scalar-Photon Vertex c. Seagull Vertex

Figure 5: Allowed vertices for fermion–photon and scalar–photon interactions.

The bino-scalar-fermion vertex factor is iλPL; for details on Feynman rules for
Majorana particles at zero temperature, see Ref. [56]. An overall negative sign applies
as usual to the type-2 bino vertex; again all fields at a vertex are of the same type.

A.1 Some identities at finite temperature
Various identities useful for fermions are given in Ref. [40] and are reproduced here for
completeness. Note that Eqs. A.1, A.2 and A.3 lead to

(/p−m) iSta,tb
p = i(−1)ta+1δta,tb , (A.6)

where we have used the compressed notation, iSta,tb(p,m) ≡ iSta,tb
p .

Consider the insertion of the µ vertex of the additional virtual photon with momen-
tum k between vertices µq+1 and µq on the p′ fermion leg; see Fig. 3. The momentum
of the photon at the vertex µq is lq, with Lorentz index µq, and thermal type-index
tq. Hence the momentum of the fermion leg to the left of the vertex µq is p′ +

∑q
i=1 li
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which we denote as p′ +
∑

q. Using Eq. A.6, we have,

S
tq ,tµ
p′+

∑
q

/k S
tµ,tq+1

p′+
∑
q
+k

= (−1)tµ+1

[
S
tq ,tq+1

p′+
∑
q

δtµ,tq+1 − S
tq ,tq+1

p′+
∑
q
+k

δtµ,tq

]
. (A.7)

If the photon vertex is inserted to the right of the vertex labelled ‘1’ on the fermion leg
with momentum p′, we have,

u(p′)/kS
tµ,t1
p′+k

= u(p′)(−1)tµ+1δtµ,t1 , (A.8)

since /p′u(p′) = mu(p′). Similar relations hold for the insertion of of the virtual K
photon at a vertex ν on the (anti-)fermion p leg since /p u(p) = mu(p) as well.

B Matrix elements for χχ → ff at NLO
As described in the text, the matrix elements are sums of the contributions when any
one of the photon, fermion or anti-fermion propagators is thermal, that is, contributes
via its explicitly temperature-dependent part. The t- and u- channel matrix elements
for Diagram 1 when either the photon or fermion propagator is thermal is given in the
text, in Eqs. 28, 32, 36, and 44. The remaining matrix elements are listed below. In the
equations that follow, the indices (Diagram i, γ), (Diagram i, f) and (Diagram i, f) refer
to the contribution from Diagram i (i = 1–5), when the photon, fermion, or anti-fermion
respectively contribute via the explicitly thermal parts of their propagators.

The thermal photon contributions from the last four diagrams in Fig. 4 are given by

Mt
NLO(Diagram 2, γ) =

∫
d4k

(2π)4
ie2λ2

4k · p′k · p
(
2πδ(k2)nB(|k0|)

)
(i∆(l + k))[(

u(p′,mf )γµ
(
/k + /p′ +mf

)
PR u(q′,mχ)

)(
v(q,mχ)PL

(
/k − /p+mf

)
γν v(p,mf )

)]
Gµν

k (p′, p) ,

Mt
NLO(Diagram 3, γ) =

∫
d4k

(2π)4
ie2λ2

2k · p
(
2πδ(k2)nB(|k0|)

)
∆(l)∆(l + k)[(

u(p′,mf )PR u(q′,mχ)
)
(k − 2p+ 2q)µ(

v(q,mχ)PL

(
/k − /p+mf

)
γν v(p,mf )

)]
Gµν

k (p, p) ,

Mt
NLO(Diagram 4, γ) =

∫
d4k

(2π)4
(ie2λ2)

(
2πδ(k2)nB(|k0|)

)
∆(l)i∆(l + k)∆(l)[(

u(p′,mf )PR u(q′,mχ)
)
(k − 2p+ 2q)µ (k − 2p+ 2q)ν

(v(q,mχ)PL v(p,mf ))]G
µν
k (p, p) ,

Mt
NLO(Diagram 5, γ) =

∫
d4k

(2π)4
(ie2λ2)

(
2πδ(k2)nB(|k0|)

)
∆(l)∆(l)[(

u(p′,mf )PR u(q′,mχ)
)
(v(q,mχ)PL v(p,mf ))

]
Gµν

k (p, p) ,
(B.9)

for the t-channel, and appropriately crossed ones for the u-channel, for example, as
shown in Eq. 32 for the contribution from the first diagram. The matrix elements for
the case when the fermion or anti-fermion is thermal arise only from Diagrams 1, 2, and
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3. They are given by

Mt
NLO(Diagram 2, f) =

∫
d4t

(2π)4
ie2λ2 gµν

4(m2
f − p′ · t) (p · p′ +m2

f − t · (p+ p′))(
−2πδ(t2 −m2

f )nF (|t0|)
)
i∆(l + k)

[(
u(p′,mf )γµ

(
/t +mf

)
PR u(q′,mχ)

) (
v(q,mχ)PL

(
/t − /p′ − /p

)
γνv(p,mf )

)]
,

(B.10)

Mt
NLO(Diagram 2, f) =

∫
d4t

(2π)4
ie2λ2 gµν

4(m2
f − p · t) (p · p′ +m2

f − t · (p+ p′))(
−2πδ(t2 −m2

f )nF (|t0|)
)
i∆(l + k)

[(
u(p′,mf )γµ

(
−/t + /p′ + /p+mf

)
PR u(q′,mχ)

) (
v(q,mχ)PL

(
−/t +mf

)
γνv(p,mf )

)]
,
(B.11)

Mt
NLO(Diagram 3, f) =

∫
d4t

(2π)4
ie2λ2 gµν

2(m2
f − t · p)

(
−2πδ(t2 −m2

f )nF (|t0|)
)
∆(l)∆(l + k)[(

u(p′,mf )PR u(q′,mχ)
)
(−t− p+ 2q)µ(

v(q,mχ)PL

(
−/t +mf

)
v(p,mf )

)]
. (B.12)

Here f corresponds to the fermion being thermal in Diagram 2 and f corresponds to
the anti-fermion being thermal in Diagrams 2 and 3 respectively. We use the same
replacement technique here as explained in Eqs. 37 and 38 for the thermal fermion
contribution to Diagram 1. For the matrix element of Diagram 2, we have substituted
t = p′ + k as for Diagram 1; and we have substituted t = p− k when the anti-fermion
is thermal. Analogous expressions hold for the u-channel matrix elements.
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