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We present a concise pedagogic introduction to group representation theory motivated by the
historical developments surrounding the advent of the Eightfold Way. Abstract definitions of groups
and representations are avoided in favour of the physical intuition of symmetries of the nuclear
interaction. The concept of nuclear isospin is used as a physical motivation to introduce SU(2) and
discuss the main techniques of representation theory. The discovery of strange particles motivates
extending the symmetry group to SU(3), at first in the context of the Sakata model. We highlight
the successes in fitting mesons in the SU(3) octet, discuss the drawbacks of the Sakata model for
baryonic classifications, and how the Eightfold Way finally led to the quark model. This approach
has two major advantages: (i) the main concepts of the theory of Lie groups are introduced and
discussed without ever losing touch with its applications in particle physics; (ii) it allows the beginner
to study group theory while also becoming acquainted with the historical developments of particle
physics that led to the concept of quarks. In particular, in this pedagogical path the quarks appear
as yet another class of particles predicted from symmetry principles, rather than being introduced
ad hoc for postulating an SU(3) symmetry, as usually done in the literature.
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I. INTRODUCTION

Throughout the history of particle physics, sym-
metry principles have proven to be extremely pro-
ductive tools for model building. The recogni-
tion of an underlying symmetry of Nature allows
one to predict properties of fundamental parti-
cles, to obtain quantitative predictions on rela-
tions between observables, and even to anticipate
the precise forms of interaction terms in the La-
grangian. In fact, the entire edifice of the Stan-
dard Model and its attempted low-energy exten-
sions rests upon symmetry principles such as gauge
invariance, a statement about local symmetries of
the fundamental interactions. It is therefore essen-
tial that any novice in particle physics be fluent in
the mathematical description of symmetries and
their physical consequences. This is precisely the
scope of the discipline called group representation
theory.

Symmetries of physical laws are most easily il-
lustrated in the context of Lorentz covariance and
relativity. In this case the transformation between
inertial frames can be readily visualized, and rep-
resentation theory can be motivated as a tool for
building objects that transform in a well-defined
way under a change of frame, allowing different
observers to compare their experimental outputs.
But the Lorentz group is certainly not the simplest,
and the study of its representations relies on some
previous knowledge of SU(2). On the other hand,
more basic group structures could be introduced by
appealing to internal symmetries, but attempting
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to use the Standard Model gauge groups as mo-
tivation makes the situation significantly murkier.
To explain concepts such as weak isospin and the
SU(2)L symmetry of weak interactions, one must
invoke a notion of “similarity” between electrons
and neutrinos, between up- and down-type quarks.
But any such similarity is blatantly badly broken
by the sharp discrepancy in these particles’ masses.
And it’s not helpful to explain this as a manifes-
tation of symmetry breaking by the Higgs mech-
anism: the elegance of this solution is only ap-
preciated if one already grasped the importance of
enforcing these symmetries in the first place. One
can safely say that attempting to build an intuition
of internal symmetries by invoking a case where it
is badly broken is not a very pedagogic approach.
The situation is improved a little if one starts from
the SU(3)c case of chromodynamics, since this one
is indeed preserved. However, this also requires in-
troducing new concepts such as color charge, and
has the drawback of using the more complicated
SU(3) group as a starting point.

An alternative and more pedagogic path is to
discuss internal symmetries starting from their his-
torical origins, namely Heisenberg’s notion of nu-
clear isospin. For that, the only prerequisite are
the concepts of protons and neutrons familiar to
any undergraduate student. One can then use
representation theory to predict the properties of
the pions, and predict the ratio of nuclear re-
action cross sections from Clebsch-Gordan coeffi-
cients. Then, by extending the symmetry group
from SU(2) to SU(3), one can understand hadronic
classification schemes, discuss the successful pre-
diction of the Ω− particle, and introduce the con-
cept of quarks in their appropriate historical back-
ground.
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While this approach can be found in many ex-
cellent textbooks on the subject, each has its own
goals and emphasis, leaving out a good deal of
important material. Some discuss much of the
physics without going into detail on group theoret-
ical developments, e.g. refs. [1, 2]. Others empha-
size only the necessary group theory for the sub-
sequent application to the Standard Model, leav-
ing out important applications on nuclear physics,
e.g. [3]. Others, while providing a very thorough
discussion of the history behind these symmetry
principles, were written before the full develop-
ment and confirmation of the quark model and
hence would not discuss it fully [4]1.
There is also a plethora of pedagogic materi-

als aimed at introducing group theory for parti-
cle physicists [5–7]. Many of these also discuss the
use of internal symmetries at the dawn of nuclear
physics, but the physics is inevitably swamped in
the dense formalism of generic group theoretical
results.
Our purpose in this paper is to offer a concise yet

self-contained introduction to the main elements
of group representation theory through its applica-
tion to the hadronic classification schemes, starting
with Heisenberg’s idea of isospin and culminating
in the Eightfold Way and the quark model.
Although the content presented here is not new,

the novelty is in the presentation sequence. We
have aimed for a healthy balance between the for-
mal aspects of representation theory and the un-
derlying developments in hadronic physics. In do-
ing so we omitted formal definitions of group the-
ory (some of which we put in the appendix), but
without sacrificing the overall understanding of the
main concepts and techniques. In fact, these for-
mal definitions can even obscure rather than en-
lighten the topic to the very beginner. Though this
presentation does not exhaust the topic, it should
allow the reader to transition smoothly to other
standard texts on the subject, including (but not
restricted to) those cited above.
The paper is organized as follows. In section II

we motivate the concept of nuclear isospin, show
that it is associated to the SU(2) group, and build
its representations. Then in section III we discuss
rules for summing isospin, i.e. building representa-
tions related to composite states. This culminates
in the Clebsch-Gordan coefficients, which we use to
predict the ratio of certain nucleon + nucleon and
pion + nucleon scattering cross-sections. In sec-
tion IV we extend the symmetry group to SU(3)
to account for the “particle zoo” of the 1940s and

1 It is also worth noticing that ref. [4] uses this hadronic
classification approach to introduce the use of symmetries
in particle physics not by pure choice, but also because
the more fundamental internal symmetries of the weak
and strong interactions were still unknown at the time of
its writing.

FIG. 1. (Left) The covalent bond among the two pro-
tons in the H+

2 cation is mediated by the exchange of
an electron. This can only happen when the two elec-
tronic orbitals around the protons overlap, so the elec-
tron can be found in a superposition of both states.
As the two protons are brought apart, the superpo-
sition becomes untenable and the interaction ceases:
the associated force is short-ranged. (Right) Heisen-
berg intuited that the short-ranged nuclear force was
of a similar nature, mediated by the exchange of a new
type of charge.

50s and discuss its representations, culminating in
the Eightfold Way and the quark model. Our con-
clusions are reserved for section V.

II. NUCLEAR ISOSPIN

The discovery of the neutron in 1932, and the
recognition of its role as a constituent of the atomic
nucleus, immediately required a postulated new
interaction responsible for keeping neutrons and
protons bound together. The first concrete at-
tempt at a description of this force was put for-
ward by Heisenberg in his seminal 1932 series of
papers [8–10], merely a few months after the re-
ports on the discovery of the neutron2. Motivated
by the short-ranged nature of the nuclear force,
Heisenberg thought of this interaction as analo-
gous to the covalent bond in the dihydrogen cation
H+

2 [14], depicted in figure 1 (left). In this case,
two protons are held together by the exchange of
an electron, which takes place when the two or-
bitals overlap. As soon as the protons are sepa-
rated by a distance larger than the orbital size,
i.e. the Bohr radius ∼ 10−10 m, the exchange
ceases and the electron becomes attached to one
of protons only, turning it into a neutral H atom
which no longer interacts electromagnetically with
the remaining H+ ion. Heisenberg intuited that a
similar mechanism was responsible for the short-
ranged nuclear force, but involving the exchange
of another type of charge altogether.

Specifically, he postulated that the particles in
the nucleus — so-called nucleons — carry another
charge whose value characterizes them as a proton
or a neutron. The nucleon is thus a two-level sys-
tem, analogous to a spin-1/2 particle: the +1/2

2 See also [11–13] for examples and discussions on the early
history of the concept of isospin in nuclear physics.
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state corresponds to a proton, the −1/2 to a neu-
tron. Due to this similarity with spin, this charge
is called isospin3.

A. Charge independence of the nuclear force

Now, protons and neutrons have remarkably
near degenerate masses [15],

mp = 938.27208816± 0.00000029 MeV,

mn = 939.5654205± 0.0000005 MeV,

amounting to a relative mass difference

mn −mp(
mn+mp

2

) ≈ 0.14%.

This means that a “flip” in the isospin of a free
nucleon involves a comparably negligible amount
of energy, so that free protons and free neutrons
are approximately degenerate states.
As for when they are interacting inside the

nucleus, as soon as more information was gath-
ered on the phenomenology of this nuclear force,
it gradually became clear that this interaction
did not seem to distinguish protons from neu-
trons. This is known as the approximate “charge
independence” of the nuclear force. One evi-
dence for this comes from the similar proper-
ties of proton-proton, proton-neutron and neutron-
neutron scatterings (discounting for electromag-
netic effects, which affect each of these processes
differently) [16, 17]. Quantitatively, the nuclear
potentials describing these three processes differ
from one another by no more than ∼ 2.5% [17].
Another evidence comes from the strikingly simi-
lar energy levels of mirror nuclei, such as 31P and
31S, as shown in figure 2. These nuclei are re-
lated to one another by a proton ↔ neutron ex-
change4. Small differences in energy levels of these
nuclei are well accounted for by electromagnetic ef-
fects [18], which again shows that the nuclear inter-
action (which is dominant inside the nucleus) does
not sharply differentiate protons and neutrons.
Altogether, this means that a “rotation” in

isospin space is an approximate symmetry of na-
ture. By this we mean that there exist certain
transformations that can be performed over the
physical system while keeping its dynamics com-
pletely unaltered. The system before and after the
transformation are completely identical. The mere
recognition of this fact has deep physical implica-
tions, as we will see in the following.

3 In the beginning people called it isotopic spin. But in re-
ality the transformation protons ↔ neutrons relates iso-
bar nuclei, rather than isotopes, so other people called it
isobaric spin. Eventually the notation was simplified to
isospin.

4 The 31P nucleus has 15 protons and 16 neutrons, whereas
31S has 16 protons and 15 neutrons.

Ground state1/2+

3/2+
1.249 MeV

5/2+
2.236 MeV

5/2+ 3.285 MeV

7/2+ 3.351 MeV

7/2− 4.451 MeV

7/2+ 4.584 MeV

9/2+
5.301 MeV

9/2+
5.978 MeV

9/2− 6.377 MeV

11/2+ 6.393 MeV

11/2− 6.833 MeV

Ground state

1.266 MeV

2.234 MeV

3.295 MeV

3.414 MeV

4.431 MeV

4.634 MeV

5.343 MeV

6.079 MeV

9/2−6.502 MeV
11/2+6.454 MeV

6.825 MeV

31S 31P

FIG. 2. Energy levels of two mirror nuclei 31S and 31P.
The energy of each level relative to the ground state
is shown, together with its spin and parity. These two
nuclei are related to each other by an exchange of pro-
tons ↔ neutrons. Slight differences in the energy levels
of these nuclei are well explained by electromagnetic ef-
fects [18]. The fact that these levels nearly coincide for
these two nuclei indicates that exchanging protons and
neutrons has little impact on the nuclear force.

B. Isospin and SU(2)

Let us put the above discussion in more formal
terms. We have argued above that the nuclear
interaction does not seem to distinguish protons
from neutrons5. From the previous discussion, we
can postulate that, as far as the nuclear interaction
is concerned, the proton and the neutron behave
as the same kind of particle, which we call the nu-
cleon (i.e. a particle of the atomic nucleus). This
nucleon can be found in two different states in Na-
ture,

p =

(
1
0

)
, n =

(
0
1

)
,

corresponding to “isospin up” and “isospin down”
states, respectively.

In general, a nucleon state can be found as a
superposition described by

N =

(
ψp

ψn

)
= ψp p+ ψn n.

5 Obviously the electromagnetic interaction is able to dis-
tinguish them, but its effects are subdominant compared
to the nuclear force, which is typically much stronger.
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Isospin symmetry means that any redefinition of p
and n describes an equivalent physics. This trans-
formation can be described via the matrix

N ′ = UN, with U =

(
α β
γ δ

)
. (1)

Since the physics is unaltered by this transforma-
tion, all probabilities must be the same when cal-
culated with primed or unprimed states. In par-
ticular,

N†N = N ′ †N ′ = N†U†UN.

This implies that U must be unitary,

U†U = 12×2.

Consider now the matrix determinant

1 = det12×2 = det(U†U)

= (detU†) detU = |detU |2.

Since U is a complex matrix, it follows that the
determinant of U is an overall complex phase,
detU = exp(iθ) for some θ ∈ R. It is well known
that multiplying a quantum state by an overall
complex phase has no physical implications, so
we can restrict outselves to transformations with
detU = 1. Put another way, the only novelty in
eq. (1) lies in the invariance of physics under a 2×2
unitary transformation with detU = 1. The set of
matrices satisfying these conditions forms a group
called SU(2)6.
The transformation described in eq. (1) is anal-

ogous to a “rotation” in isospin space. In other
words, it is a redefinition of what we call “up”
and “down” or “proton” and “neutron” states (in
much the same way that a spacetime rotation is a
redefinition of what we call x, y and z axes). This
is an example of an internal symmetry of nature,
so-called because the transformation does not act
on spacetime coordinates (like usual spatial rota-
tions), but involves field redefinitions. The symme-
try statement, in this case, is that the nuclear inter-
action does not distinguish protons and neutrons,
so a redefinition of these fields (a re-orientation of
directions in this field space) has no impact on the
physical results.
The recognition that a “rotation” in isospin

space is a symmetry of the nuclear interaction has
profound consequences. For example, consider a
particle that carries some isospin, and therefore
interacts via the nuclear force. If we perform an
isospin redefinition, the nature of this particle, as
far as the nuclear force is concerned, must remain

6 This is an example of a “special unitary” group. The “S”
stands for “special”, meaning unitary determinant. The
“U” stands for “unitary matrices” and the “2” means the
matrices are 2× 2.

unchanged. The interaction treats it as the same
kind of particle, only in a different isospin state
(otherwise this transformation wouldn’t be a sym-
metry). Consequently, each type of particle be-
longs to a vector space where the state vectors can
be related to one another by some isospin transfor-
mation. In other words, the transformation does
not map a state to another belonging to a differ-
ent vector space, which would represent a different
kind of particle.

This statement is so important that it is worth
phrasing it another way. If we redefine isospin,
there must be a dictionary that allows us to find
the “new” state of this particle in terms of the
pre-transformed one. Only then would we be able
to relate the physics under this new definition to
the previous description and make sure that it re-
mains indeed unaltered7. The state space of a par-
ticle is the space of all objects that can be trans-
formed into one another by an isospin transforma-
tion. Technically, this means that physical states
must belong to representations of the SU(2) sym-
metry group.

We have already seen an instance of this, when
we said that “proton” and “neutron” are two dif-
ferent states of the nucleon, which means that the
space of nucleon states is two-dimensional. Other
particles may belong to higher-dimensional repre-
sentations.

How do we construct these representation
spaces? Starting from one reference state |ψ⟩,
we can apply an SU(2) transformation (an isospin
redefinition), mapping this state onto some |ψ′⟩.
This new state still describes the same particle,
only in a different isospin configuration. Then per-
form another isospin redefinition, taking us from
|ψ′⟩ to |ψ′′⟩, and so on. If the state space of such
particle is finite dimensional, eventually this pro-
cedure will cease to produce linearly independent
vectors. Thus, by performing all possible symme-
try transformations on a reference state, one can
obtain the whole state space of the system. By con-
struction all transformations will map this space
onto itself, and all states are relatable to one an-
other by one such transformation: then we will
have built a representation.

The remaining question is: what does an isospin
redefinition looks like when acting on higher-

7 Thinking about spacetime symmetries could make this
argument simpler to grasp. Suppose S is an inertial ob-
server at rest with respect to some electric charge, and S′

sees it moving with constant velocity. Clearly S sees only
a radial electric field emanating from the charge, while
S′ sees also a current and therefore a magnetic field as
well. They disagree as to the intensity of the electric and
magnetic fields, as well as to the charge and current dis-
tribution. But there must be a way to translate one’s
observations into the other’s, for only then can they mu-
tually communicate about their experiments and reach an
agreement as to the universality of Maxwell’s equations.
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dimensional spaces? Eq. (1) reveals only how it
affects the two-dimensional (isospin 1/2) represen-
tation. Before trying to generalize it, it is worth
looking into this representation in more detail.

C. Infinitesimal transformations and the
two-dimensional representation

The group SU(2) has a structure that simplifies
enormously our task of finding representations: it
is a group of continuous transformations, mean-
ing that we can “rotate” in isospin space by an
infinitesimal amount. Think about infinitesimal
parameters in equation (1), for instance. Such a
continuous group is called a Lie group. Because of
this, instead of having to perform all possible rota-
tions on our reference state |ψ⟩ to build the repre-
sentation space, we need only perform infinitesimal
rotations along independent “directions”.
What does the matrix U in eq. (1) looks like for

infinitesimal transformations? By definition this is
very close to “doing nothing” (we are rotating by
tiny, insignificant “angles”), so the transformation
matrix must be close to the identity. Indeed, we
could perform a Taylor expansion and, neglecting
terms of quadratic order or higher, one expects

U = 12×2 + iω, ω =

(
ω11 ω12

ω21 ω22

)
. (2)

Since detU = 1,

1 = det(12×2 + iω)

= 1 + i(ω11 + ω22)− (ω11ω22 + ω12ω21).

Neglecting terms O(ω2) (because ω is infinitesi-
mal) one finds ω11 + ω22 ≡ tr(ω) = 0. Moreover,
since U is unitary,

U†U = 12×2 = (12×2 + iω)(12×2 − iω†)

= 12×2 + i(ω − ω†) +O(ω2),

hence8

ω = ω†. (3)

Thus ω is a hermitean traceless matrix, and can
be put in the form

ω =
1

2

(
dθ3 dθ1 − idθ2

dθ1 + idθ2 −dθ3
)

= dθ⃗ · T⃗ ,

8 We have chosen to define U = 1+ iω, with this i factor in
front, precisely to enforce that ω be hermitean. Without
this factor it would be anti-hermitean, which wouldn’t
change much of the conclusions below, but would intro-
duce some inconvenient factors of (-1).

with T⃗ = (T1, T2, T3) are (half) the Pauli matrices,

T1 =
1

2

(
0 1
1 0

)
, T2 =

1

2

(
0 −i
i 0

)
,

T3 =
1

2

(
1 0
0 −1

)
.

(4)

We see that an isospin transformation is pa-
rameterized by 3 angles, just like a rotation in 3-
dimensional space9. The T1, T2 and T3 are called
generators of infinitesimal rotations, and corre-
spond to transformations along these three inde-
pendent directions.

Notice that T3 is an operator whose eigenvectors
are the p and n states. It tells us the isospin con-
figuration of the nucleon in a certain state. On the
other hand T1 and T2 can be combined into

T1+iT2 =

(
0 1
0 0

)
and T1−iT2 =

(
0 0
1 0

)
, (5)

which act on the nucleon states such that

(T1 + iT2)n = p,

(T1 − iT2) p = n,
(6)

i.e. they respectively raise and lower the value of
isospin by one unit. For this reason they are called
“raising” and “lowering” operators.

Thus the state space of nucleons can be con-
structed by starting from the p state and contin-
uously applying the lowering operator. Applying
it once yields n. Applying it again on n yields the
zero vector: no new state is obtained and the pro-
cedure stops. Thus the space of nucleon states is
two-dimensional.

D. The algebra of SU(2) and other finite
dimensional representations

The above procedure can be generalized for
higher-dimensional spaces in the following way.
Regardless of their specific shape in n dimensions,
the three generators of SU(2) are characterized by
the commutation relations they satisfy10, namely

[Ti, Tj ] = iϵijkTk. (7)

Any three matrices that satisfy these relations are
intimately related to SU(2) transformations, and
are said to belong to the su(2) algebra11.

9 This is an aspect of the famous results that SU(2) is
homomorphic to (i.e. has the same group structure as)
SO(3), the group of orthogonal 3 × 3 matrices that de-
scribe rotations in 3 dimensions.

10 The reader can easily show that the matrices in eq. (4)
do satisfy these relations.

11 The algebra is the vector space of generators of infinites-
imal transformations, together with a commutation rela-
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Since these generators do not commute, it is im-
possible to diagonalize all three of them simulta-
neously. But one can show from (7) that

T 2 ≡ T 2
1 + T 2

2 + T 2
3

commutes with all three T ’s. So we choose to work
with normalized states |I,m⟩ that diagonalize T3
and T 2 simultaneously,

T3|I,m⟩ = m|I,m⟩,
T 2|I,m⟩ = I(I + 1)|I,m⟩.

(8)

It will soon become clear why we chose to write
the eigenvalues of T 2 in this funny way.
Instead of working with T1 and T2 we will repeat

the argument of the previous section and define

T± = T1 ± iT2.

From eq. (7) it is easy to show that

[T3, T±] = ±T±, and [T+, T−] = 2T3. (9)

This then means that

T3(T±|I,m⟩) = ([T3, T±] + T±T3)|I,m⟩
= (m± 1)(T±|I,m⟩).

(10)

In other words, T± raises/lowers the eigenvalue of
T3 by one unit. But T± are related to rotations
in the T1 and T2 directions, so the above proce-
dure teaches us how to obtain other vectors by ro-
tating |I,m⟩. According to our argument in the
previous section, all these vectors are states of the
same particle. Notice that performing these rota-
tions/isospin transformations alters m but leaves I
invariant. Therefore I labels the representation we
are in (i.e. it labels the particle type), whereas m
labels a state of this particle. This makes sense be-
cause I is related to the total isospin T 2, whereas
rotations affect only the direction (thus altering
only the components, say the T3 eigenvalue) but
leave the vector length unchanged.
The idea is to find all states of the I repre-

sentation by starting from the state with high-
est m and applying T− many times in succession.
Each such application will give a different, lin-
early independent state12. But since we are in a
finite dimensional space, this process must eventu-
ally end, i.e. there is a state |I,mmin⟩ such that
T−|I,mmin⟩ = 0.

tion. The group structure is characterized by such com-
mutation relation of the generators. SU(2) is character-
ized by relations (7), with ϵijk as coefficients of the alge-
bra, called structure constants. Other commutation rela-
tions give rise to different groups, as we will see below.

12 Recall from eq. (3) that the Ti’s are hermitean. Thus
eigenvectors corresponding to different eigenvalues are or-
thogonal.

We can find the value ofmmin (and therefore the
dimension of the representation) in the following
manner. From (10) we know that

T±|I,m⟩ = cI,m± |I,m± 1⟩.

The proportionality constant cI,m± can be found by

taking the norm of both sides and noting that T †
+ =

T−,

⟨I,m|T∓T±|I,m⟩ = |cI,m± |2.

But from the definition of T± it follows that
T∓T± = T 2

1 +T 2
2 ∓T3 = T 2−T3(T3±1), so except

for a phase that can be absorbed into the definition
of |I,m⟩ one has

T± |j,m⟩ =
√
I(I + 1)−m(m± 1) |I,m± 1⟩ .

(11)
Now, since we cannot raise m to larger values

than its maximum, we must have T+|I,mmax⟩ =

0 =⇒ cI,mmax

+ = 0 =⇒ mmax = I 13. Like-
wise, we cannot decrease m below the minimum
mmin, and this then implies mmin = −I. There-
fore mmax −mmin = 2I. But this difference must
be a natural number (because we obtain mmin by
applying a number of T−’s to |I,mmax⟩). Thus
the representations of SU(2) are characterized by
half-integers

I = 0,
1

2
, 1,

3

2
, 2, . . . , (12)

and each has dimension 2I + 1 corresponding to
states

m = −I,−I + 1, . . . , I − 1, I. (13)

It is now worth pausing to summarize these
achievements. First, note that all of the above de-
velopments follow from the commutation relations
of the generators of infinitesimal transformations,
eq. (7). This is a general result that underlies the
theory of Lie groups: we can build representations
just be looking at how states transform under in-
finitesimal transformations. In other words, we can
focus almost exclusively on the Lie algebra.

Second, we see that the existence of a symme-
try allows us to partition the entire state space
of our theory into a number of independent sub-
spaces. The procedure of finding representations
of the symmetry group can then be seen as a way
of organizing the total Hilbert space of states of
a system. Indeed, we have defined the concept
of “representation space” such that, under a sym-
metry transformation, the states of each of these

13 That I = mmax follows from the choice of writing eigen-
values of T 2 as I(I +1), which thus justifies this (at first
sight weird) choice.
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subspaces transform only among themselves: there
is no isospin rotation that can take a state in the
I space to a different I ′. Thus the transformation
matrix acting on the total state space can be de-
composed in block diagonal form14,

U =



U I=0

U I=1/2

U I=1

. . .


. (14)

The entire Hilbert space is said to be reducible.
The subspaces I = 0, 1/2, 1, . . ., on the other
hand, are irreducible representations, because (by
construction) they cannot be reduced any further
(they have been built in such a way that every
state is relatable to another by a transformation).
Each of these irreducible subspaces correspond to
different particle types as seen by the nuclear in-
teraction.

E. Symmetries and conservation laws

There is more. The very definition of isospin
transformations being a symmetry of nature im-
plies that such transformations do not affect the
energy of the system. This means that, if H is the
hamiltonian of the system, with eigenstates |ψn⟩,
then U |ψn⟩ is still an eigenstate with same eigen-
value, so

H(U |ψn⟩) = EnU |ψn⟩ = UH |ψn⟩ .

Since the |ψn⟩ form a basis of the state space (be-
cause H is hermitian) is follows that [H,U ] = 0,
i.e. the hamiltonian commutes with the trans-
formation operations. This means we can diag-
onalize both operators simultaneously, i.e. the
|I,m⟩ states are also eigenstates of H, with def-
inite energy. Therefore, the existence of a symme-
try facilitates our task of finding solutions to the
Schrödinger equation, since we may restrict our-
selves to these subspaces to begin with15.

Moreover, if I ̸= I ′ then

⟨I ′,m′|H|I,m⟩ ∼ ⟨I ′,m′|I,m⟩ = 0,

14 The UI=1/2 submatrix is the one given in eq. (1).
15 This is what we do when solving the hydrogen atom (or

any problem with spherical symmetry) with separation
of variables: the angular equation will always result in
the spherical harmonics, which belong to (infinite dimen-
sional) representations of the rotation group, and the
problem reduces to solving the radial equation only.

since states belonging to different representations
are eigenstates of a hermitean operator T 2 with
different eigenvalues and are therefore orthogonal.
But the left-hand side of this equation is the tran-
sition amplitude between states with I and I ′. In
other words, it is the probability amplitude that
a system starts in a state in the I representation
and is later16 found with total isospin I ′. It follows
that, if isospin is a symmetry of the hamiltonian,
then the total isospin is conserved17.

F. Fitting particles into representations

Now let us look into some of these representa-
tions in detail and interpret them physically in the
context of isospin.

Let us first consider the I = 0 representation,
which is one-dimensional. Because of this dimen-
sionality, we call the state |I = 0,m = 0⟩ a sin-
glet. Under an isospin rotation it transforms as
|0, 0⟩ → U I=0 |0, 0⟩ , with UI=0 a one-dimensional
unitary matrix of unit determinant, which implies
U I=0 = 1. In other words, a I = 0 state is un-
affected by an isospin redefinition. This can only
mean that this particle carries no isospin at all, and
therefore does not interact via the nuclear force. So
any particle that is neuter under this force belongs
to this isospin representation.

The I = 1/2 representation is two-dimensional.
It is also called the fundamental representation18,
because all the others can be built from tensor
products of this space with itself, as we will see
in the next section. We have already met particles
that fit into this space: the proton and the neu-
tron, corresponding to states p = |1/2,+1/2⟩ and
n = |1/2,−1/2⟩.
Moving on to the I = 1 representation, we know

this is a 3-dimensional space, so the corresponding

16 The Schrödinger equation can be written as H|ψ(t)⟩ =

i ∂
∂t

|ψ(t)⟩ ≃ i
|ψ(t+δt)⟩−|ψ(t)⟩

δt
, or |ψ(t + δt)⟩ = (1 −

iδtH)|ψ(t)⟩. We then see that H is the generator of in-
finitesimal time translations, in much the same way as
the Ji are generators of infinitesimal isospin rotations, as
discussed above.

17 This is a particular example of a general theorem due to
Emmy Noether, which says that if a system has a contin-
uous symmetry (i.e. if the symmetry holds for infinitesi-
mal transformations) then there is some conserved charge
associated to this symmetry.

18 A fundamental representation is one that serves as build-
ing blocks for other higher-dimensional representations
via tensor product operations. But for unitary groups
SU(n) the fundamental representation coincides with the
so-called defining representation, which consists of the
n-dimensional vector space where the very definition of
these matrices act. For instance, SU(n) is defined as the
group of n× n unitary matrices, and these matrices can
be seen as operators acting on n-dimensional vectors, so
this n-dimensional representation is the defining repre-
sentation (and also a fundamental) of SU(n).
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states m = −1, 0, 1 are said to form a triplet. If
this representation is realized in nature, we would
expect to find three particles with near-degenerate
masses that take part in the nuclear interaction.
Such particles indeed exist: the pions π+, π0, and
π− have masses [15]

mπ± = 139.57039± 0.00018 MeV,

mπ0 = 134.9768± 0.0005 MeV,

with a relative mass difference

mπ± −mπ0

mπavg

∼ 3.3%.

Just like the I = 1/2 representation, the I = 1
representation has a special name. It is called the
adjoint representation. Recall that finding a rep-
resentation means finding a vector space of states
where the generators Ti act as transformations.
The I = 1/2 representation is a 2-dimensional
complex vector space where the generators act as
in eq. (4). But the generators T1, T2 and T3 also
form a vector space among themselves, being a ba-
sis of the space of traceless hermitean matrices! So
what if we use this space, i.e. the algebra itself,
as the representation space? We then have a state
space constituted of |T1⟩, |T2⟩ and |T3⟩, and we can
define the action of a generator over another via
the commutator, i.e.

Ti |Tj⟩ ≡ [Ti, Tj ]. (15)

So, in this representation, the generators will act
both as vectors and as operators acting on these
vectors. For example, we can use the explicit form
of the commutation relations (9) to define the ma-
trix of the T3 operator acting on {T−, T3, T+} as

T3 =

−1
0

+1

 . (16)

We can associate |T−⟩ , |T3⟩ and |T+⟩ with the
π−, π0 and π+, respectively.

Naturally, every Lie algebra (i.e. the algebra
of infinitesimal transformations related to an arbi-
trary continuous group) has the adjoint representa-
tion. We will see another example in section IVC
below.

G. Charges, isospin and baryon number

Looking at the matrix form of T3 in the adjoint
representation, eq. (16), one cannot help but notic-
ing that its eigenvalues are precisely the electric

charges of the pions (which are the particles be-
longing in this adjoint representation). We can
thus say that, in the adjoint representation, the
charge operator is

Qπ = T3.
If we try to apply this same rule to the fun-

damental representation, the outcome would be
Qp = + 1

2p and Qn = − 1
2n, meaning the proton

and neutron would be eigenstates of charge with
eigenvalues ±1/2. This is clearly wrong. However,
this problem can be remedied by defining a new
quantum number B, called baryon number, such
that

Q = T3 +
B

2
. (17)

Then the correct charges are found by attributing
B = 1 for protons and neutrons, and B = 0 for
pions. Thus we say that nucleons are baryons (i.e.
have baryonic number), whereas pions belong to
another class of particles called mesons.

It turns out that this baryon number B has a
deeper physical meaning than the above argument
make it seems. More than being a mere adjust-
ment factor to the charge formula, this number is
actually a conserved charge of all nuclear reactions.
The reader can check that this is indeed the case
for all the reactions discussed henceforth in this
paper.

III. SUM OF ISOSPIN AND
CLEBSCH-GORDAN COEFFICIENTS

Consider now a system composed of two parti-
cles, each carrying some total isospin I1 and I2.
The composite system must also belong to some
SU(2) representation, say, one with total isospin
T . The question of which values of T are allowed
for given I1 and I2 is known as the problem of how
to sum isospin (or any quantity that behaves as
angular momentum) in quantum mechanics.

A. General formalism

Let us then consider a system composed of two
particles, one at a state |I1,m1⟩ and the other at
a state |I2,m2⟩. The description of this composite
system is given by the tensor product

|I1,m1⟩ ⊗ |I2,m2⟩ ≡ |m1,m2⟩I1I2 .

Our aim is to determine how this state can be writ-
ten as a (superposition of) |I,M⟩.
First note that an isospin transformation acts

on the tensor product by acting on each state sep-
arately with the corresponding submatrices U I of
eq. (14), i.e.



9

U I1⊗I2 |I1,m1⟩ ⊗ |I2,m2⟩ = U I1 |I1,m1⟩ ⊗ U I2 |I2,m2⟩ . (18)

In other words, an isospin transformation on the
composite system is obtained by transforming the
isospin of the components separately, and then
composing (i.e. taking the tensor product) of the
transformed states. For infinitesimal transforma-
tions, U I = 1 + iθ⃗ · T⃗ I (and similarly for U I⊗I′

)
and we can show that

T⃗ I1⊗I2 |m1,m2⟩I1I2 = T⃗ I1 |I1,m1⟩ ⊗ |I2,m2⟩

+ |I1,m1⟩ ⊗ T⃗ I2 |I2,m2⟩ .
(19)

This means that the isospin components of the
composite system is the sum of the components
of each particle’s. In particular, taking only the T3
component, we see that

T I1⊗I2
3 |m1,m2⟩I1,I2 = (m1 +m2) |m1,m2⟩I1I2 ,

meaning M = m1 +m2.
What about the allowed values of I, the total

isospin of the composite system? First note that
the maximum value of M is I1 + I2, and this must
correspond to the maximum value of I (recall that
in the I representation M varies from −I to +I,
and if there is a I > I1 + I2 there would be a state
with M > I1 + I2). Moreover, in general I could
vary by half steps, as in eq. (12). But if I is integer
(resp. half-integer) then all allowed values of M
are integers (resp. half-integers). ButM is fixed as
m1+m2, so we know it to be integer or half-integer,
and then I must have the same characteristic. So
I must vary in integer steps. Knowing Imax =
I1 + I2, and that it varies in integer steps, we can
determine the minimum Imin by counting the total
number of states available. Of course, the counting
must match whether we do it in the |I1,m1⟩ ⊗
|I2,m2⟩ notation or in the |I,M⟩ notation. Since
one particle can occupy 2I1+1 states, and the other
has 2I2+1 states, we have in total (2I1+1)(2I2+1)
states for the composite system. But for each I the
total number of states is 2I + 1, so

Imax∑
I=Imin

(2I + 1) = (2I1 + 1)(2I2 + 1).

It follows that Imin = |I1 − I2|.
So the state space of a composite system of parti-

cles with isospin I1 and I2 can be written as states
|I,M⟩, with the total angular momentum I and
the component M satisfying the rules

(i) |I1 − I2| ≤ I ≤ I1 + I2,

(ii) M = −I, ..., I (varying in unit steps),

(iii) M = m1 +m2.

Notice, in passing, how the adjoint representa-
tion I = 1 can be obtained from a tensor product
of two fundamental (I = 1/2) representations. In
fact any semi-integer I can be obtained from ten-
sor products of multiple I = 1/2 spaces. It is in
this sense that we call the I = 1/2 the fundamental
representation, since it acts as a building block for
every other.

B. Clebsch-Gordan coefficients

We can do better than this: we can find the
coefficients of the expansion of |I,M⟩ in terms of
|I1,m1⟩⊗|I2,m2⟩ ≡ |m1,m2⟩I1I2 using a construc-
tive method. Let us exemplify it by treating a
composite system of I1 = 1/2 and I2 = 1 (say, a
two-particle state of a nucleon and a pion). We
will show a physical application of this situation in
the next section.

Condition (i) tells us that the total angular mo-
mentum is I = 3/2 or I = 1/2. From condition (ii)
the state | 12 ,

1
2 ⟩ ⊗ |1, 1⟩ (i.e. a proton and a π+)

corresponds to M = 3/2, and this state is only
accessible in the representation I = 3/2, so∣∣∣∣32 , 32

〉
I,M

=

∣∣∣∣12 , 1
〉

1
2 ,1

,

where the subscript I,M clarifies that this state
is written in terms of the total isospin and the
subscript on the right-hand side tells us the total
isospin of each particle.

Now apply the “lowering” operator T I1⊗I2
− to

the state on the left-hand side. Using eqs. (19)
and (11) we find∣∣∣∣32 , 12

〉
I,M

=

√
1

3

∣∣∣∣−1

2
, 1

〉
1
2 ,1

+

√
2

3

∣∣∣∣12 , 0
〉

1
2 ,1

.

Applying the “lowering” operator once again
gives∣∣∣∣32 ,−1

2

〉
I,M

=

√
2

3

∣∣∣∣−1

2
, 0

〉
1
2 ,1

+

√
1

3

∣∣∣∣12 ,−1

〉
1
2 ,1

.

Finally, lowering once again concludes the I = 3/2
representation with∣∣∣∣32 ,−3

2

〉
I,M

=

∣∣∣∣−1

2
,−1

〉
1
2 ,1

,

which was expected since only the state m1 =
−1/2 and m2 = −1 can yield M = −3/2.
What about the I = 1/2 states? We know

that they belong in a subspace with different T 2

eigenvalue. Since this operator is hermitian, its



10

eigenspaces are mutually orthogonal. The | 12 ,
1
2 ⟩

state must be a combination of m1 = 1/2 and
m2 = 0 or m1 = −1/2 and m2 = 1, and this
combination must be orthogonal to the state in
eq. (III B). It follows that∣∣∣∣12 , 12

〉
I,M

=

√
2

3

∣∣∣∣−1

2
, 1

〉
1
2 ,1

−
√

1

3

∣∣∣∣12 , 0
〉

1
2 ,1

.

Finally, the state | 12 ,−
1
2 ⟩I,M can be obtained either

by applying a lowering operator to the state above,
or by finding a state orthogonal to

∣∣ 3
2 ,−

1
2

〉
I,M

. Ei-

ther way, we find∣∣∣∣12 ,−1

2

〉
I,M

=

√
1

3

∣∣∣∣−1

2
, 0

〉
1
2 ,1

−
√

2

3

∣∣∣∣12 ,−1

〉
1
2 ,1

.

What we have done above is to express |I,M⟩
as linear combinations of the basis |I1,m1⟩ ⊗
|I2,m2. The coefficients of this expansion are
called Clebsch-Gordan coefficients, and we will see
in the next section one physical prediction that
can be derived from them. They can be obtained
from this laborious yet straightforward method. In
practice, one simply uses tabulated values as can
be found e.g. in [15].

C. Quantitative predictions from symmetry
arguments

Now let us put the above machinery to good use
in concrete physical applications.
Given a proton p = | 12 ,

1
2 ⟩ and a neutron n =

| 12 ,−
1
2 ⟩, one could think of building composite nu-

clei containing two such nucleons, which would be
described by isospin states

pp = |1, 1⟩
1√
2
(pn+ np) = |1, 0⟩
nn = |1,−1⟩

 triplet state
total isospin 1

and

1√
2
(pn− np) = |0, 0⟩ → singlet.

The factors ±1/
√
2 are the Clebsch-Gordan coef-

ficients for the isospin sum of I1 = I2 = 1/2, as
the reader can easily calculate using the method
developed in the previous section.
It turns out that only one such nucleus exists

as a stable configuration in nature: the deuteron,
composed of one proton and one neutron. A bound
state of two protons and two neutrons turns out to
be unstable. Now, in the list of states above there
are two of them composed of proton+neutron: the
|1, 0⟩ and the |0, 0⟩. Which corresponds to the
deuteron? Note that the states pp and nn are
obtainable from |1, 0⟩ via a isospin rotation, and
if this is a symmetry then the three states in the

isospin = 1 triplet would all be physically equiva-
lent. Since pp and nn are not found as stable states
in nature, |1, 0⟩ can’t be either. Thus isospin sym-
metry establishes the total isospin of the deuteron
to be 0.

Symmetry arguments can also be used to lead
to quantitative predictions regarding reaction cross
sections. Consider, for instance, the four re-
actions19 where scattering of nucleons yields a
deuteron d and a pion,

(a) p+ p→ d+ π+,

(b) p+ n→ d+ π0,

(c) n+ p→ d+ π0,

(d) n+ n→ d+ π−.

Let us call H the Hamiltonian operator describ-
ing the dynamics of these nuclear interactions. In
principle if we know H we can determine the am-
plitude of any such process via

M = ⟨final|H|initial⟩. (20)

However, we know that the nuclear interaction is
rather non-trivial (being a residual of the more fun-
damental interaction between quarks), so one can
expect H to have a complicated form. Moreover,
we might not know this form beforehand (which
was the case when physicists were still developing
the theory of the nuclear interaction in the early
1930s). But even without this knowledge we can
already make quantitative statements about the
cross sections of the reactions above, based only
on symmetry!

One way to proceed, in this case, would be to
use Shmushkevich’s principle [19, 20], which fol-
lows from isospin symmetry. It states that if the
population of reactants is uniformly distributed
among all its possible isospin states, then the pop-
ulation of products will also be uniform (according
to this same criterion) at all times. For instante,
consider a uniform beam of nucleons incident on
a uniform target of nucleons. Uniform distribu-
tion means that, for each 100 pairs of nucleons on
beam/target, half of them will be protons and half
neutrons. Each pair will react according to one
of the four reactions above, and in the end we will
have 100 deuterons and 100 pions. The deuteron is
a singlet, so its distribution will be uniform regard-
less. Now, Shmushkevich’s principle states that
the pions must be uniformly distributed among
π−, π0, π+. But there are two channels that can
lead to a π0, namely (b) and (c), while only (a) can
lead to π+ and only (d) can lead to π−. Thus a

19 Here the order of reactants is relevant, because it distin-
guishes the incoming beam from the target of the reaction
in the laboratory frame. Thus reactions (b) and (c) are
physically distinguishable.
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uniform distribution of the pions in the final prod-
ucts can only be achieved if (a) and (d) are twice
more efficient than (b) and (c). In other words,
the cross sections must be in the ratio

σa : σb : σc : σd = 2 : 1 : 1 : 2. (21)

This is in very good agreement with experimental
results [21].

These results can also be obtained by a more
systematic method involving the Clebsch-Gordan
coefficients. We will illustrate this for the case of
a scattering experiment of charged pions by pro-
tons20. There are possible reactions, namely

(a) π+ + p→ π+ + p,

(b) π− + p→ π− + p,

(c) π− + p→ π0 + n.

Each pair of reactants/products can be written
as a combination of states with total isospin 3/2
and 1/2 by inverting the relations found in sec-
tion III. Specifically, recalling that p = | 12 ,

1
2 ⟩

and n = | 12 ,−
1
2 ⟩ whereas π−, π0, π+ correspond

to |1,−1⟩, |1, 0⟩ and |1, 1⟩, we have

π+p =

∣∣∣∣32 , 32
〉

I,M

,

π0n =

√
2

3

∣∣∣∣32 ,−1

2

〉
I,M

+

√
1

3

∣∣∣∣12 ,−1

2

〉
I,M

,

π−p =

√
1

3

∣∣∣∣32 ,−1

2

〉
I,M

−
√

2

3

∣∣∣∣12 ,−1

2

〉
I,M

.

When applying eq. (20) we will find terms of
the form ⟨I ′,M ′|H |I,M⟩. We have seen in sec-
tion II E that if I ̸= I ′ these terms vanish due to
isospin conservation (which follows from the sym-
metry). The same reasoning leads to vanishing
amplitude if M ̸= M ′. Moreover, the amplitude
cannot depend on M , because an M ′ state can
be obtained from M via an isospin redefinition,
which is a symmetry of the nuclear dynamics and
thus cannot affect the physics21. This means that,
from symmetry alone, we can establish that

⟨I ′,M ′|H|I,M⟩ = MI δII′δMM ′ .

We therefore expect only two kinds of amplitudes:
M3/2 and M1/2. It is as if these processes could
proceed via two mediating channels, each corre-
sponding to a different total isospin, and each
with a different probability amplitude. Apply-
ing eq. (20) yields Ma = M3/2, Mb = (M3/2 +

2M1/2)/3 and Mc =
√
2(M3/2 −M1/2)/3. Since

the cross sections scale with σ ∼ |M|2, one finds

σa : σb : σc = 9
∣∣∣M 3

2

∣∣∣2 :
∣∣∣M 3

2
+ 2M 1

2

∣∣∣2 : 2
∣∣∣M 3

2
−M 1

2

∣∣∣2 .

When we perform these collision experiments
and measure the cross section, we find certain
bumps where the cross section is significantly in-
creased, as shown in figure 3. These are called res-
onances and can be interpreted as a consequence
of an intermediate unstable particle mediating the
reaction. In figure 3 we see a very pronounced peak
when the reaction occurs at center-of-mass energy
of ≈ 1232 MeV. This means that, at these ener-
gies, there is a new intermediate path contributing
to the reaction, namely

π + p→ ∆∗ → products,

20 We leave it as an exercise to the reader to show that
eq. (21) can also be reached using the method delineated
below.

21 Technically, |I,M ′⟩ = U |I,M⟩ for some transformation
matrix U . Then ⟨I,M ′|H|I,M ′⟩ = ⟨I,M |U†HU |I,M⟩ =
⟨I,M |H|I,M⟩, since [H,U ] = 0 and U is unitary.

i.e. the reactants first form a new particle, called
a ∆, which then decays to the observed products
(the ∗ over the name of the particle indicates it
is unstable). The existence of this particle thus
enhances the cross section, leading to the peaks
shown in figure 3.

The ∆(1232) is a particle with total isospin 3/2,
which means that, at these energy scales, the 3/2
channel is much more significant than the 1/2, i.e.
M3/2 ≫ M1/2. Then the total cross sections of

π+ + p and π− + p reactions satisfy

σtot(π
+ + p)

σtot(π− + p)
=

σa
σb + σc

≈ 9

1 + 2
= 3.

This is in excellent agreement with the behaviour
shown in fig. 3.

Incidentally, since the ∆ belongs in the I = 3/2
representation, we expect to find 2I + 1 = 4
such particles of approximately degenerate masses.
Moreover, noticing that these ∆’s are baryons
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FIG. 3. Total cross section for π+ +p (black triangles)
and π−+p (gray bullets) as function of the total centre-
of-mass energy of the reaction. Data from ref. [15].

(since they result from a collision of π + p, with
B∆ = Bπ +Bp = 1), we expect from eq. (17) that
these four particles would have electric charges
+2,+1, 0,−1 (in units of elementary charge). This
is indeed in agreement with the experiments, which
have observed a ∆++, ∆+, ∆0 and ∆−.

IV. EXTENDING THE SYMMETRY

A. Strange particles and the particle zoo

If the world was composed only of protons, neu-
trons and pions, it seems that an SU(2) isospin
symmetry would be an excellent explanation for
the classification and behaviour of these particles.

But in the late 1940s and early 1950s physicists
were confronted with the discovery of a number of
other particles. First, cloud chamber photographs
of cosmic rays showed some unusually heavy par-
ticles decaying into pions [22, 23], evidencing yet
unknown mesons which later came to be known
as the kaons. In 1950 a neutral baryon decaying
into protons and pions was discovered in cosmic
ray events, which later came to be dubbed the Λ0

baryon [24]. It did not take long to notice that
there was something strange about these particles.
For instance, Λ0+2π’s could be produced copiously
when colliding proton + pions, from which one can
infer the transition amplitude ⟨Λ0ππ|H|pπ⟩. If one
then used this amplitude to estimate the decay life-
time of Λ0 → p + π−, one would find ∼ 10−23 s.
However, observations showed that the correct life-
time was ∼ 10−10 s: a discrepancy of 13 orders of
magnitude! Clearly, production and decay were
very different mechanisms for Λ0 (and the same
was true for the kaons).

The way out of the problem involved two steps.
At first, it was postulated that proton+pion colli-

sions produce Λ0 only in association with kaons,

π− + p→ Λ0 +K0

|→ π− + π+.

This is known as “associated production”, namely
that these “exotic” particles would always be pro-
duced in pairs. For some time this was enough
to explain all observations, but soon new reactions
were observed involving an odd number of exotic
particles, while other reactions involving pairs were
never observed despite being allowed by the con-
jecture22. Later it was recognized that there was
another (approximately valid) conservation law in-
volved: one can assign to these new particles a
new quantum charge, which was (appropriately
enough) called strangeness, such that SΛ0 = −1
and SK0 = +1. This way, the production channel
above conserves strangeness (Sbefore = Safter = 0),
whereas the decays Λ0 → p + π− and K0 →
π− + π+ do not. This explains why the decays
are much less favourable than the production.

Now, if we were to fit these strange particles
in isospin representations, we would be forced to
place the Λ0 in a singlet state, since no other parti-
cle looks like an SU(2) partner23 of Λ0. In this case
the expression (17) for the charge operator would
again fail to give the correct charge of Λ0, forcing
us to modify it as

Q = T3 +
B + S

2
. (22)

If we now try to assign quantum numbers to
the kaons to meet their correct charges, we would
be led to assign T3 = −1/2 to K0 (to match
QK0 = 0 since BK0 = 0 and SK0 = 1), so that
the T3 = +1/2 partner would be a K+. The an-
tiparticle of K+ would be a K−, with opposite
strangeness charge S = −1, so it cannot belong to
the same isospin multiplet as the latter (contrary
to charge, strangeness is independent from isospin,
and particles in the same isospin multiplet have the
same strangeness). It follows that there must be
another isospin 1/2 multiplet where we fit the K+

and another neutral kaon which we call K0, which

22 The hypothesis of associated production came into crisis
when the reaction π− + p → Ξ− + K0 + K+ was ob-
served (with Ξ− an exotic baryon heavier than the pro-
ton), while the reaction π− + p → Ξ− + K+, allowed
by the conjecture, was not. These can be explained by
assigning to Ξ− a strangeness value of S = −2 and as-
suming that strangeness is an approximately conserved
charge.

23 The discovery of other strange particles called Σ± could,
upon first sight, lead to a tentative classification of
(Σ−,Λ0,Σ+) as an isospin triplet. However, soon a new
strange particle Σ0 was discovered through the decay
Σ0 → Λ0 + γ, with a mass that was much closer to Σ±.
So the true isospin triplet is composed of (Σ−,Σ0,Σ+),
leaving Λ0 as a singlet.
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is the antiparticle of K0 and must therefore have
the same mass. This particle was predicted this
way, and later indeed observed [25], confirming the
success of this scheme based on strangeness.
By the late 1960s a number of additional heavy

strange particles were discovered, such as Σ and
Ξ baryons, as well as the (non-strange) ∆’s al-
ready mentioned above. Due to this proliferation
of particles, a classification based solely on SU(2)
representations became increasingly more cumber-
some, since additional representations (often with
the same isospin as others, yet fitting rather differ-
ent particles) had to be introduced ad hoc to make
the scheme work. This proliferation of particles
and the difficulty in classifying them neatly under
SU(2) representations is colloquially known as the
particle zoo.

B. Sakata model and SU(3) symmetry

A major step towards a more elegant and more
predictive classification of hadrons was made by
japanese physicist Shoichi Sakata in 1956. Sakata
proposed that the Λ0 would be yet another state
of a nucleon, which could then be found in three
different states,

p+ =

1
0
0

 , n0 =

0
1
0

 , Λ0 =

0
0
1

 , (23)

or rather in a general superposition of these states.
Sakata’s statement is that the nuclear interaction
has an approximate symmetry under a redefinition
of these states. So, similarly to what we discussed
in section II B, one could do a redefinition

N =

ψp

ψn

ψΛ

 → N ′ = UN,

with U a 3 × 3 unitary matrix with unit determi-
nant. The group of such matrices is called SU(3).
Notice that

mΛ0 = 1115.683± 0.006 MeV,

so that the relative mass difference between the Λ0

and the average mass of proton and neutron is

∆mΛ0,pn

mavg
Λ0,pn

≃ 17.2%.

This already illustrates that this new symmetry is
only approximately valid, but this shall not pre-
vent us from proceeding. After all, SU(2) isospin
was also only approximate but still gave us many
important and valid predictions.

C. Representations of SU(3)

Our task is again to build representations of this
SU(3) group, and then argue that each represen-
tation corresponds to a certain particle type. The
method is the same as above: we build represen-
tations by performing infinitesimal SU(3) transfor-
mations on a certain reference state. Following the
same arguments as in section IIC we find that the
generators of infinitesimal SU(3) transformations
must be hermitean traceless matrices.

We already know one representation of this
group: the fundamental representation, a 3-
dimensional space with basis given by eq. (23). In
this representation, the infinitesimal transforma-
tions are given by 3×3 complex traceless hermitian
matrices. How many generators are there? As a
real vector space, the space of all complex 3×3 ma-
trices has dimension24 2×32. Making it hermitian
decreases the dimension in half25, leaving 32. Fi-
nally the traceless condition lowers the dimension
once more by 1, leaving us with a dimension26 of
32 − 1. This means SU(3) has 8 linearly indepen-
dent generators. In SU(2), the usual generators
are given by the Pauli Matrices. We also have, for
3 dimensions, an usual choice of generators, called
the Gell-Mann matrices, given by

24 There are 32 entries in the matrix, and each is described
by two real numbers, namely the real and the imaginary
parts of each complex entry.

25 The 3 diagonal elements must be real. Once we fix the
2× 3 elements in the upper-triangular matrix (above the
diagonal), those below the diagonal are also fixed by the

hermiticity condition. So we only need 3+ 2× 3 = 9 real
numbers to describe the whole matrix.

26 In general, the Lie algebra of su(n) (i.e. the space of
n×n hermitean traceless matrices) has dimension n2−1.
Applying this to su(2) one finds a dimension 22 − 1 = 3,
as we saw in section IIC.
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λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(24)

Notice that λ1,2,3 are simply the Pauli matrices in-
serted into a larger 3 × 3 paradigm. This means
that the algebra su(2) is contained in su(3). Conse-
quently, representations of SU(3) contain represen-
tations of SU(2). In other words, the classification
scheme we will construct here will extend what we
discussed above: all the successes of classification
by SU(2) isospin will be maintained.

Actually, a glimpse at λ4 and λ5 shows that, if
we remove the second row and column, we are left
with two of the Pauli matrices. And the third Pauli
matrix would be obtained from (λ3 +

√
3λ8)/2.

Likewise, λ6 and λ7 also contain the Pauli ma-
trices as sub-blocks (try removing the first row
and first column of these matrices and see what
is left). The third Pauli matrix in this sub-block

is obtained from (−λ3 +
√
3λ8)/2. So we see that

the su(3) algebra is formed of three overlapping
su(2) [6]. They are overlapping because the third
Pauli matrix of these subalgebras are not mutually
independent.

We will apply the same argument as we did for
su(2) above, and the same construction method, to
obtain representations of su(3). First, notice that
T3 and Y ≡ 2√

3
T8 are commuting hermitian gen-

erators. This means they can be simultaneously
diagonalized, so the states of an SU(3) represen-
tation will be labeled as27 |t3, y⟩, with t3 and y
eigenvalues of T3 and Y , respectively.

Furthermore, since we have three overlapping
su(2) subalgebras, we can define three sets of rais-
ing and lowering operators, namely

T± = T1 ± iT2,

U± = T6 ± iT7,

V± = T4 ± iT5.

(25)

In terms of these operators, one can write the fol-

27 This is analogous to the states of an SU(2) representation
being labeled by m, the eigenvalue of T3. In that case I
labeled the representation itself. To avoid notation clut-
tering, for SU(3) we will not include the label inside the
kets denoting the representation.

T+

(t3 + 1, y)

V+

(
t3 +

1
2
, y + 1

)
U+

(
t3 − 1

2
, y + 1

)

T−

(t3 − 1, y)

V−(
t3 − 1

2
, y − 1

) U− (
t3 +

1
2
, y − 1

)

(t3, y)

FIG. 4. The ladder operators T±, U± and V± map a
point in the (t3, y) plane to other points as shown in
the diagram above. These vectors (and sometimes the
ladder operators themselves) are called the roots of the
su(3) algebra.

lowing important commutation relations:

[T3, T±] = ±T±, [Y, T±] = 0,

[T3, V±] = ±1

2
V±, [Y, V±] = ±V±,

[T3, U±] = ∓1

2
U±, [Y, U±] = ±U±,

[T+, T−] = 2T3,

[V+, V−] = T3 +
3

2
Y ≡ 2V3, (26)

[U+, U−] = −T3 +
3

2
Y ≡ 2U3,

[T+, V+] = 0, [T+, V−] = −U−,

[T+, U−] = 0, [T+, U+] = V+,

[U+, V+] = 0, [U+, V−] = T−,

[T3, Y ] = 0.

To understand these relations, consider for in-
stance the action of the V+ operator on a state
|t3, y⟩. From the above commutation relations we
find e.g. (T3V+ − V+T3) |t3, y⟩ = T3V+ |t3, y⟩ −
t3V+ |t3, y⟩ = 1

2 |t3, y⟩, so that T3V+ |t3, y⟩ =(
t3 +

1
2

)
V+ |t3, y⟩. In other words, V+ |t3, y⟩ is an

eigenvector of T3 with eigenvalue (t3 +1/2). Simi-
larly, from its other commutation relation, it is an
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eigenvector of Y with eigenvalue (y+1). Therefore
all ladder operators map eigenvectors of (T3, Y ) to
other such eigenvectors (unless they map |t3, y⟩ to
the zero vector).

But to act on a state with these ladders is equiva-
lent to performing arbitrary SU(3) transformations
on this state. Thus we will build irreducible rep-
resentations of SU(3) by repeatedly applying these
operators on a reference state of the representa-
tion, resulting in a number of linearly independent
states, until this iterative procedure exhausts itself
and no new independent vectors are produced. As
long as we are dealing with finite dimensional rep-
resentations, this iteration must always cease to
produce new independent vectors at some point.
When this happens, we have found our represen-
tation: all states are related to each other by SU(3)
transformations.

In the case of SU(2), only one generator T3 could
be simultaneously diagonalized28, whose eigen-
values m label the states of the representation,
and the other generators formed ladder operators,
which move the states along both directions of this
straight line (increasing and decreasing m). Thus
SU(2) representations could be visualized as a se-
ries of points on a straight line, corresponding to
the allowed values of m = −I, . . . , I. In the case
of SU(3) each state in a representation space is la-
beled by two parameters, and we can illustrate this
representation as points in a (t3, y) plane. Each
point is called a “weight” and the collection of
points belonging to a representation is called a
“weight diagram”. Figure 4 shows how each point
(i.e. each weight) is mapped onto another by the
ladder operators defined above.

The fundamental representation

Let us consider first the fundamental or defining
representation of SU(3), which is the representa-
tion where the transformations act as 3×3 unitary
matrices (and infinitesimal SU(3) transformations
are represented by the Gell-Mann matrices them-
selves). Going along with the Sakata Model of
SU(3), we can label the three vectors belonging
to this representation space as p = (1, 0, 0), n =
(0, 1, 0),Λ = (0, 0, 1). We can easily see that they
are eigenvectors of T3 and Y with respective eigen-
values (−1/2,+1/3), (+1/2,+1/3) and (0,−2/3).

28 The operator T 2 is not one of the generators, although it
is built from them. It is called the Casimir operator of
the su(2) algebra.

t3

t8

pn

Λ

(+1
2
,+1

3
)(−1

2
,+1

3
)

(0,−2
3
)

FIG. 5. Weight diagram of the fundamental represen-
tation of SU(3).

We can write that as

n =

∣∣∣∣−1

2
,+

1

3

〉
, p =

∣∣∣∣+1

2
,+

1

3

〉
,

Λ =

∣∣∣∣0,−2

3

〉
and represent it in a (t3, y) plane as in figure 5.
Since it is three dimensional, we usually refer to it
as the 3 representation.

The antifundamental representation

It turns out that, in SU(3), there is another 3-
dimensional representation which is inequivalent to
the fundamental 3. Note that, if U is an SU(3)
matrix, then so is its complex conjugate U∗. The
U∗’s defines the complex-conjugate representation
of the U ’s. Moreover, for an infinitesimal SU(3)
transformation29

U = 1+ iαaTa =⇒ U∗ = 1+ iαa(−T ∗
a ).

Thus we see that, if the Gell-Mann matrices λa
represent infinitesimal transformations acting on
the fundamental representation p, n,Λ, then the
matrices −λ∗a represent transformations on the an-
tifundamental (i.e. the complex conjugate of the
fundamental).

The reader may now pause and wonder: why
was this not mentioned in the case of SU(2) above?
Where is the “antifundamental” of SU(2)? It turns
out that, for SU(2), any representation is equiva-
lent to its conjugate! This is not hard to see: the
generators of SU(2) are such that

−T ∗
1 = −T1,−T ∗

2 = T2 and − T ∗
3 = −T3.

So going from a I representation to its complex
conjugate in SU(2) amounts to mapping m→ −m

29 Recall that the parameters of our transformation
(i.e. the “angles” by which we perform the “rota-
tion”/transformation, dubbed αa below, are always real
numbers.
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y

t8

p n

Λ

(−1
2
,−1

3
) (+1

2
,−1

3
)

(0,+2
3
)

FIG. 6. Weight diagram for the antifundamental rep-
resentation of SU(3). Notice how this space is inequiv-
alent to the fundamental representation defined in fig-
ure 5. In that case the state with highest t3 value was
p, and we obtained a Λ by applying a ladder operator
V− to it. Here, the state with highest t3 is p∗, which
is annihilated by the action of V±.

and T± → −T∓. Graphically, all states of an SU(2)
representation lie along a line symmetric around
the origin. Thus the above transformations (going
from the fundamental to the antifundamental) cor-
respond to a mere renaming of the states of the I
representation, which keeps the vector space itself
unaltered.
But for SU(3) these two representations define

different spaces. If we define a basis p∗ = (1, 0, 0),
n∗ = (0, 1, 0) and Λ∗ = (0, 0, 1) in the complex
conjugate space of the fundamental representation,
then the infinitesimal transformations act on these
as T antifund.

a ≡ −T ∗
a . In particular, these states are

labeled by eigenvalues of −T ∗
3 and −Y ∗. Since T3

and Y are real matrices, the labels of p, n and Λ
are just those of p, n,Λ with opposite signs30,

Λ =

∣∣∣∣0, 23
〉
,

p =

∣∣∣∣−1

2
,−1

3

〉
, n =

∣∣∣∣+1

2
,−1

3

〉
.

The weight diagram in the (t3, y) plane is depicted
in figure 6. The antifundamental representation is
clearly also 3-dimensional, but different from the
fundamental: thus we denote it by 3.

The adjoint representation

We have mentioned before that every Lie algebra
has an adjoint representation, where the operators
are seen at the same time as transformations acting
on states, and as the very states being acted upon.
This action is defined via the commutation rela-
tions, as in eq. (15). This means that the adjoint

30 Just act with −T ∗
3 and −Y ∗ on p∗, n∗ and Λ∗ defined

above and see what you get.

y

t3

|U+⟩ |V+⟩

|T+⟩|T−⟩

|V−⟩ |U−⟩

|T3⟩
|Y⟩

FIG. 7. Weight diagram of the adjoint representation.

representation of SU(3) is an 8-dimensional vec-
tor space with basis {|T3⟩ , |Y ⟩ , |T±⟩ , |U±⟩ , |V±⟩}.
These are all eigenvalues of T3 and Y , as one can
see for instance from

T3 |T±⟩ = [T3, T±] = ± |T±⟩ ,
Y |T±⟩ = [Y, T±] = 0 |T±⟩ ,

or

(T3, Y ) |T±⟩ = (±1, 0) |T±⟩ .

Likewise the commutation relations of these ladder
operators with T3 and Y imply that

(T3, Y ) |U±⟩ =
(
∓1

2
,±1

)
|U±⟩

(T3, Y ) |V±⟩ =
(
±1

2
,±1

)
|V±⟩

(T3, Y ) |T3⟩ = (0, 0) |T3⟩
(T3, Y ) |Y ⟩ = (0, 0) |Y ⟩ .

We can then put these states in a weight diagram
(i.e. in a (t3, y) plane), which results in figure 7.
Note how this parallels figure 4 above. This is of
course no accident, since the states in the adjoint
representation are the ladder (and diagonal T3 and
Y ) operators themselves. One says that the roots
are the weights of the adjoint representation.

Notice also that both |T3⟩ and |Y ⟩ have the same
eigenvalues (t3 = 0, y = 0). This does not mean
that they are the same vector. Rather, it means
that certain weights in an SU(3) representation
may have multiplicity larger than one. In other
words, there may be more than one state sitting
on the same point of the weight diagram31. In the
case of the adjoint representation, the point (0, 0)

31 One may wonder why this happens in SU(3) and not in
SU(2) (since in that case two vectors with the same labels
j and m are necessarily linearly dependent). The reason
for this difference stems from the fact that, in SU(2),
there is essentially only one way to get from a state to
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y

t3

Q

K0 K+

π+π−

K−
K0

π0

η

FIG. 8. The meson octet. Note how the charge in-
creases in the direction of the Q axis. As we move in
the direction perpendicular to this axis the charge re-
mains unaltered.

has multiplicity 2. We represent this multiplicity
in the weight diagram of figure 7 by circling the
central dot at the origin.
Because T−, T3 and T+ form an su(2) subal-

gebra of su(3), the points along horizontal lines
in SU(3) weight diagrams form SU(2) representa-
tions. Looking at figure 7 we infer that:

• {|U+⟩ , |V+⟩} form an SU(2) doublet,

• {|T−⟩ , |T3⟩ , |T+⟩} form an SU(3) triplet,

• {|U+⟩ , |V+⟩} form an SU(2) doublet,

• |Y ⟩ forms an SU(2) singlet.

We know that the pions fit into an SU(2) triplet,
so we could naturally try to accommodate them as
the {|T−⟩ , |T3⟩ , |T+⟩} in the octet. Moreover, re-
calling the discussion at the end of section IVA, we
know that (K0,K+) and (K−,K0) fit into SU(2)
doublets, so we can associate them to (|U+⟩ , |V+⟩)
and (|V−⟩ , |U−⟩). There remains the isospin sin-
glet, which should correspond to another meson.
In 1958, theorists who worked on the Sakata model
predicted the existence of this new particle [26, 27],

another using the ladder operators: you can only ”climb
up or down” using J±. In SU(3), on the other hand, you
can reach one point from another by different paths in
weight space. In other words, we can use several different
combinations of T±, U± and V± to reach one state from
another, and these possibilities don’t always commute,
and will in general result in linearly independent states.
Indeed, notice for instance that there are at least three
possibilities to go from a state (t3, y) to (t3−1, y), namely
by applying T−, U+V− or V−U+. From the commutation
relations in eq. (26) one sees that

[U+, V−] = T− =⇒ U+V− = T− + V−U+,

so U+V− |t3, y⟩, T− |t3, y⟩ and V−U+ |t3, y⟩ are linearly
dependent, but any two of these are in general indepen-
dent.

a new meson later dubbed η, which was indeed
found with the properties anticipated from sym-
metry arguments [28]. In particular, note that its
mass

mη = 547.862± 0.017 MeV

is very much in line with those of the kaons,

mK± = 493.677± 0.016 MeV,

mK0 = m
K

0 = 497.611± 0.013 MeV,

in agreement with expectations from symmetry ar-
guments (concerning their belonging to the same
SU(3) multiplet).

Figure 8 illustrates this fitting of the mesons in
the octet representation. Note that the electric
charge of the particles do not change as we move
along the direction of the U± roots (or as we ap-
ply the U± ladders). Instead, charge increases or
decreases as we move in the orthogonal direction,
which is also shown in the figure as the Q axis,
corresponding to the operator32

Q ≡ T3 +
Y

2
. (27)

Comparing with eq. (22) we see that Y = B + S,
and since for mesons B = 0 we see that in this
case the hypercharge Y is just a quantification of
strangeness. This is again in line with our dis-
cussions of section IVA, where we concluded that
(K0,K+) doublet had strangeness S = +1 while

their antiparticles (K0,K−) have S = −1.

The decuplet

Finally, another important SU(3) representation
is the decuplet, thus named because it is a 10-
dimensional vector space. Its weight diagram is
shown in figure 9. It can be constructed by starting
at a state with largest value of t3 (this state must
exist, otherwise the representation space would be
infinite dimensional) and applying V− transforma-
tions 3 times consecutively. By the fourth applica-
tion of V− the result is the null vector. This is akin
to the case of SU(2), when a state with m = mmin

had to be annihilated by the lowering operator for

32 Note that this is perpendicular to the direction U3 ∼
λ3 +

√
3λ8, which is another Pauli matrix that can be

built out of the Gell-Mann matrices. We chose to work
with T3 and Y as the diagonal generators, but we could
with equal right have chosen U3 and Q. This is yet an-
other illustration of the fact that su(3) is formed of 3
overlapping su(2)’s. Note also that the states lying on
top of the U3 direction belong to su(2) representations,
which are symmetric around the origin. Thus the weight
diagram must be symmetric against reflections around Q,
as can be indeed seen from figure 8.
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y

t3

Q∆++∆+∆0∆−

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

Ω−

FIG. 9. The decuplet fits the spin 3/2 baryons nicely.
When this classification scheme was first proposed the
Ω− baryon was still not known. However, symme-
try arguments allowed theorists such as Gell-Mann,
Glashow and Sakurai to predict that this particle
should exist, with spin 3/2, charge −1 and mass ap-
proximately equal to that of the other baryons of the
decuplet. A few years later the particle was indeed
discovered, which is accounted as one of the greatest
triumphs of this classification scheme based on SU(3).

consistency. Moreover, the decuplet is such that,
after applying three times V−, one cannot do other
operations except go back up via V+ or via U+.
It can be shown that U+ can be applied only 3
times before annihilating the state, and then one
can only apply T+ to close the triangle, as shown
in figure 9 [4].
The decuplet is important in particle physics be-

cause, up until 1963, we had detected nine spin 3/2
baryons, namely: the four ∆’s that we met in sec-
tion III C, a triplet of baryons called Σ∗, and a
doublet of Ξ∗ [29]. Their properties fit nicely into
the decuplet representation.
From eq. (27) we see, for example, that the state

at the top-right corner of the triangle has Y = 1
and T3 = 3/2, resulting in Q = 2. We did know a
particle with this charge: the ∆++ baryon, with
isospin 3/2 under SU(2). As discussed in sec-
tion III C we expect four such baryons, which were
indeed found and fit nicely into the top-most row
of the triangle in figure 9.
As we move to the left in the diagram along a

horizontal line, the charge Q decreases by one unit.
Likewise, descending in the V− direction decreases
Y by 1 and T3 by 1/2, therefore decreasing Q by
unit as well. So the Σ∗’s fit naturally in the row
below the ∆’s, and the Ξ∗’s fit in the row below
the Σ∗’s.
Moreover, recalling that Y = B + S and that

these particles are baryons, one has S = Y − 1
in this case. This prediction is also in agreement
with the observations that S∆ = 0, SΣ∗ = −1 and
SΞ∗ = −2.

However, symmetry arguments tell us that we

should have 10 of these particles, and not just nine.
This led many theorists in 1962 to conjecture that
a tenth particle should exist [30, 31], dubbed the
Ω baryon (since Ω is the last letter of the greek
alphabet, and this would be the last missing mem-
ber of the decuplet). Moreover, the properties of
this particle can be predicted from symmetry ar-
guments: it should have spin 3/2, charge −1 and
strangeness −3. Not only that, the mass splitting
between the consecutive rows of the diagram is ap-
proximately constant, since

m∆ ≃ 1232 MeV,

mΣ∗ ≃ 1385 MeV,

mΞ∗ ≃ 1532 MeV,

allowing us to also predict

mpred.
Ω− ≃ 1680 MeV.

In February 1964 the discovery of a particle with
exactly these properties was announced [29], with
mass mexp.

Ω− = 1672.45 MeV (within ∼ 0.5% of the
predicted mass!). To this day the prediction and
subsequent detection of the Ω− baryon is one of
the greatest success stories in particle physics.

D. Tensor products of SU(3) representations

We can also consider the analogous problem to
what we studied in section III: what happens when
one deals with a composite system of two (or more)
particles belonging to SU(3) representations? The
resulting composite system must also belong to
SU(3) representations. But which ones? Mathe-
matically, this amounts to determining how tensor
products of SU(3) representations decompose as
direct sums of SU(3) representations.

For this purpose, note that the developments
that led to eqs. (18) and (19) are valid for any
group. So also in SU(3) the eigenvalues t3 and y

of a composite system |t(1)3 , y(1)⟩ ⊗ |t(2)3 , y(2)⟩ are

t
(1)
3 + t

(2)
3 and y(1) + y(2).

In the (t3, y) weight diagram, this means that
when we take the tensor product of two represen-
tations, the resulting figure is achieved by superim-
posing copies of one of these representations over
each point belonging to the other representation
(i.e. taking the weights of one representation as the
origin of the other’s weight diagram). Figure 10
illustrates this for the tensor product of the funda-
mental and the antifundamental representations.
We see that the outer points form a hexagon, and
there are three weights at the origin. The octuplet
is an hexagon with multiplicity two at the origin,
so we see that the 9-dimensional space obtained
from this tensor product naturally decomposes as

3⊗ 3 = 8⊕ 1.
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3⊗ 3 =

y

t3

= ⊕

y

t3

FIG. 10. Diagramatic illustration of tensor product of
the fundamental and the antifundamental representa-
tion, resulting in the octet and the singlet.

With the same construction we can perform the
product of 3 ⊗ 3 and identify a 3 as well as a tri-
angle corresponding to a 6-dimensional represen-
tation which we call the 6. Likewise we can see
that 3 ⊗ 6 results in an octet and a decuplet [7].
So we can write

3⊗ 3⊗ 3 = (6⊕ 3)⊗ 3

= (6⊗ 3)⊕ (3⊗ 3)

= 10⊕ 8⊕ 8⊕ 1.

E. Sakatons vs quarks: triumphs of the
quark model

These results indicate that all SU(3) representa-
tions can be recovered from tensor products of the
fundamental and antifundamental. It is precisely
because they act as building blocks of all represen-
tations that they are called “fundamental”.
From figure 10 we see that, in Sakata’s model,

the octet + singlet could then be seen as composite
states of protons/neutrons/Λ’s with their antipar-
ticles p/n/Λ. These fundamental constituents of
the Sakata model are often denoted as sakatons.
This perspective fits nicely with the meson octet in
figure 8, since all quantum numbers would match
if we identify π+ = np, K+ = pΛ, K0 = nΛ,
π0 = (nn+ pp)/

√
2 (the m = 0 state of the SU(2)

triplet), and η = (nn − pp − 2ΛΛ)/
√
6. The re-

maining mesons of the octed are antiparticles of
these. Note, for instance, how in this scheme the
S = +1 kaons K0 and K+ would be composed of a
Λ, which is the antiparticle of an S = −1 particle.

One sees that the mesons fit in octets which we
can interpret as stemming from 3⊗ 3. This prod-
uct also contain a singlet (now called η′), predicted
since 1957 [26, 32] and observed in 1964 [33–35] –
yet another success for this mesonic classification

y

t3

Q

n p

Σ+Σ−

Ξ− Ξ0

Σ0

Λ

FIG. 11. The spin-1/2 baryon octet of the “Eightfold
Way”.

scheme.
However, this model is a lot less successful for

a classification of baryons. When Sakata proposed
this model in 1956, eight spin-1/2 baryons were
known: p, n, Λ, 3 Σ’s and 2 Ξ’s33 [36, 37]. Since the
Σ’s have strangeness SΣ = −1, they would have to
contain one Λ. Clearly a Σ− would have to also in-
clude an antiproton p (since this is the only sakaton
with negative charge), so we would need at least a
3⊗ 3 = 8 ⊕ 1. But there is no way to fit the Σ
triplet in the octet: the only t3-triplet in this rep-
resentation lies on the t3 axis, and not all states in
this axis would contain a Λ (meaning not all states
would have the correct strangeness for the Σ’s), see
fig. 10. We could then try to accommodate the Σ’s
and Ξ’s using larger representations, for instance
3⊗ 3⊗ 3, which is 3 × 3 × 3 = 27-dimensional.
However, the other 22 baryonic partners of the Σ’s
and Ξ’s, which would be expected to belong to this
large representation space, were never found.

It was Gell-Mann [38] and Ne’emann [39], work-
ing independently, who first proposed a different
baryonic classification scheme. Instead of taking
p, n and Λ as belonging to the fundamental, they
instead proposed that these should be classified to-
gether with the Σ’s and Ξ’s in the 8 representa-
tion. This is the famous “Eightfold Way” of parti-
cle physics, depicted in fig. 11.

In this scenario, the spin-1/2 baryons fit in an
octet while the spin-3/2 ones fit the decuplet.
Looking at the developments of the last section,
we can identify this 10⊕ 8 as a result34 of the
product 3⊗ 3⊗ 3.

33 Note that these are different particles from the spin-3/2
Σ∗’s and Ξ∗’s appearing in the decuplet. The similar
names come from similarities they share, e.g. the fact
that both Σ and Σ∗ exist as isospin triplets under SU(2),
i.e. there are three isospin partners (Σ−,Σ0,Σ+) and also
three isospin partners (Σ∗−,Σ∗0,Σ∗+). Similarly, both
Ξ and Ξ∗ form SU(2) doublets.

34 The reader may now look at the expression written at the
end of section IVD, namely 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1,
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The remaining question is: what is the funda-
mental representation in this case? Which are
the fundamental constituent particles of mesons
and baryons? Gell-Mann dubbed these particles
“quarks”[40]35. The three states of the fundamen-
tal representation are called up, down and strange
quarks, or, in terms of t3 and y eigenvalues,

u =

∣∣∣∣12 , 13
〉
, d =

∣∣∣∣−1

2
,
1

3

〉
, s =

∣∣∣∣0,−2

3

〉
.

A few important conclusions follow straightfor-
wardly, namely:

• applying eq. (27) to the fundamental rep-
resentation one sees that these quarks have
charges Qu = 2/3, Qd = −1/3 and Qs =
−1/3. Their charges are thus fractions of the
elementary charge.

• Since baryons are constituted of 3 quarks,
these constituents must have fractional bary-
onic number B = 1/3. Mesons are formed
of quarks and anti-quarks and thus have
B = 1/3 + (−1/3) = 0.

• Looking at the meson octet in fig. 8 and how
it stems from the product 3⊗ 3 as in fig. 10,
one concludes that the strangeness charge of
the mesons is nothing but a count of the
number of strange quarks (or rather strange
antiquarks, since s has strangeness −1) that
constitute them. Likewise for the baryons in
the octet and in the decuplet.

• The fact that strangeness is only approxi-
mately conserved can now be interpreted in
the following manner: the strong interac-
tion is not able to change the nature of a
quark, but the weak interaction is. So, in
a strangeness-violating decay such as Λ0 →

and conclude that we should find one baryonic decuplet,
two baryonic octets and one baryonic singlet. But only
one decuplet and one octet are actually found! A detailed
explanation of why the 8⊕ 1 baryons do not exist is be-
yond the scope of this paper. It is related to the confine-
ment mechanism of quarks. It turns out that quarks carry
not only flavour (i.e. their characteristic of being an u, d
or s) but also spin 1/2 and a colour charge. Quark con-
finement means that only fully anti-symmetrized wave-
functions in the colour degree of freedom are allowed.
By Pauli’s exclusion principle this means that the wave-
function must be fully symmetric in flavour and spin. It
turns out that only the 10⊕ 8 satisfy these requirements,
and are therefore the only SU(3) baryonic representations
that can be found in Nature [1].

35 George Zweig also had a similar idea, and dubbed
these fundamental constituents “aces” [41]. Clearly it
was Gell-Mann’s nomenclature that stuck. Incidentally,
Gell-Mann took the idea of the name from a passage
of James Joyce’s Finnegans Wake: “Three quarks for
Muster Mark!”, inspired by the 3⊗ 3⊗ 3 construction of
baryons.

p + π−, what happens is that the strange
quark in Λ0 = uds is decaying as

s→ u+W−
|→ d+ u

withW− a mediator of the weak interaction.
Then

Λ0 = uds→ uud+ du = p+ π−.

Despite these predictive successes, for some time
there was some skepticism as to whether quarks in-
deed exist, or whether they would just be mathe-
matical artifacts of this symmetry construction [4].
For one, it is relatively easy to detect charged
particles, but despite decades of successful exper-
iments in particle physics no particles with frac-
tional charges had ever been seen. It was then
clear that quarks, if they existed, could never be
seen in isolation, but only confined within hadrons
– and this confinement mechanism was largely un-
known at the time (and still is to a great extent!).

By 1968, high-energy collisions of electrons and
nuclei were finally able to probe the inner structure
of hadrons, showing that they indeed behave as if
constituted of point-like substructures. Through-
out the early 1970s a series of other theoretical
and experimental discoveries helped explain some
aspects of quark confinement, and strengthened
the conviction of the community on the existence
of these fundamental hadronic constituents [42].
Overall, this ultimate triumph of the quark model
was another chapter in the long history of theoret-
ical prediction of new particles followed by subse-
quent experimental confirmation.

V. CONCLUSIONS

Symmetry arguments and related techniques
from group representation theory have always
played a pivotal role in the development of parti-
cle physics. These techniques appear in the study
of the Lorentz group, in classification schemes pro-
posed since the earliest days of particle physics,
and in the gauge principle that now lies at the
heart of the Standard Model of elementary parti-
cles and their fundamental interactions. It is there-
fore essential that any beginner in this field be fa-
miliar with this language.

In this paper we paved a pedagogic path that
serves as an introduction to group representation
theory for beginner particle physicists. Our ap-
proach focuses in the history of hadronic clas-
sification schemes that culminated in the quark
model in the mid- to late 1960s. We argued that
this is the most natural starting point to intro-
duce group theory to this audience, since it allows
one to start from the most basic SU(2) group and
progress naturally to the more challenging SU(3)
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structure. Moreover, this allows students to get
acquainted with some aspects of the early history
of this field and some of its most successful pre-
dictions. Through the study of symmetries and
groups we can tell the story of many particles that
were predicted and later detected, a constant pat-
tern that is still ongoing in the field of particle
physics.

This approach is also particularly interesting be-
cause it allows beginners to have a first contact
with the history of the quark model. Most stu-
dents are already familiar with the fact that pro-
tons and neutrons are composed of quarks. But as
scientists it is important to not only know some-
thing as a fact, but also to know the details of how
and why we came to know that as a fact. And for
the quark model this inevitably means discussing
SU(3) representations and/or deep inelastic scat-
tering experiments.

In this sense, this work differs from most of the
current literature that choose to present the SU(3)
paradigm already from an ad hoc postulate of the
existence of 3 quark flavours. Here we instead cul-
minate in the prediction of quarks as belonging
to the fundamental representation of a (previously
recognized) SU(3) symmetry group. In this ped-
agogic path, quarks are yet another paradigmatic
example of particles predicted from symmetry ar-
guments and later confirmed by experiments.

Finally, an important novelty in this presenta-
tion is a middle path we have found between a full
presentation of mathematical tools and an empha-
sis on physical applications. The reader will find
here an explanation of the concept of group repre-
sentation, including the fundamental and the ad-
joint, as well as the main techniques underlying the
highest weight construction which can be used to
build general representations of Lie algebras. This
allows for a reasonable understanding of the ideas
being discussed, and provides the reader with tools
to later explore more technical texts. On the other
hand, we purposefully avoid any general results,
sticking to the groups we are actually interested
in. Abstract mathematical definitions of groups
and representations are reserved for the appendix.
Theorems on the geometry of SU(3) weight dia-
grams are not stated nor proven. We have focused
only on the results that are necessary for the reader
to understand the “Eightfold Way” and the quark
model.

After studying the subject as presented here, the
reader will hopefully be more prepared to tackle
more thorough textbooks on group theory, with
the benefit of knowing where some of these arid
concepts will appear and how they can be applied.
Should this text help in providing students with
the toolkit to face this journey more lightly, it will
have fulfilled its purpose.

ACKNOWLEDGEMENTS

G.F.V would like to thank FAPEMIG and Uni-
versidade Federal de Minas Gerais (UFMG) for
financial support during the preparation of this
work.

Appendix A: Formal definition of
representations

In the presentation above we have mentioned the
concept of “groups”, but have purposefully avoided
defining it rigorously, since one can understand the
underlying physical concepts without going into
all the mathematical details. The aim of this ap-
pendix is to partially fill this gap to the interested
reader.

Definition of group

As discussed above, we are interested in study-
ing how certain transformations act on physical
systems. These transformations are such that we
can perform a number of them one after the other,
and the net outcome is still a transformation of
this same type. Mathematically we say that, in
the set of all such transformations, we can define
a binary operation that takes two transformations
and composes them into a third. More formally,
the transformations form a set G where we can de-
fine an operation G×G→ G. This composition is
such that: (i) there is an “identity” transformation
e ∈ G, which is the operation of “do nothing to the
system”, such that if we compose any transforma-
tion g with the identity e the result is g itself (i.e.
if we do one transformation g, and then do noth-
ing else, the overall transformation is just g itself);
(ii) after we perform a transformation g, we can al-
ways perform an inverse transformation g−1 that
takes us back to the initial state, i.e. such that
composing g with g−1 is the “do nothing” trans-
formation; (iii) the composition is associative, i.e.
composing g1 with g2 and then composing this out-
come with g3 is the same as composing g1 with the
outcome of g2 and g3. Note that, in principle, we
only know how to compose pairs of transforma-
tions. But property (iii) tells us that we can com-
pose multiple transformations by separating them
in pairs, and the outcome doesn’t depend on how
we do this splitting. Any set with a binary opera-
tion that satisfies these properties is called a group.

Group representations

We are not so much interested in the transfor-
mations themselves, but rather on how they act on
physical systems. These are typically described by
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vectors in a linear space (such as the Hilbert space
of the system in quantum mechanics). Therefore
we want to understand how to describe these trans-
formations as matrices (i.e. linear operators) act-
ing on vector spaces. In other words, we want a
map

D : G→ Aut(V )

of the abstract transformation group G to the set
of invertible36 operators acting on the state space
V of the system. Not only that, but this map D
must preserve the multiplication structure of the
group, i.e.

D(g1)D(g2) = D(g1 · g2). (A1)

What this tells us is that the matrix multiplica-
tion of D(g1) and D(g2) coincides with the matrix
representing the composite transformation g1 · g2.
We say that D preserves the group multiplication
structure. Any map D : G → Aut(V ) preserving
this group multiplication is called e representation
of the group acting on the space V . A good anal-
ogy is to understand this concept of representation
as photographs or maps of the group in question: a
photo or a map illustrates the place to which they
refer, its buildings and geographical structures, but
are not the place itself [6].
How is this definition related to our use of the

word representation in the main text? To find
a representation of the group is to find a map
D : G→ Aut(V ) as defined above, for some vector
space V . But this then means that all transforma-
tions map V into itself, i.e. the space V contain
all possible states that can be obtained one from
the other via such transformations. This is exactly
what we have done in sections IID and IVC: we
have constructed spaces V of states that are re-
lated among themselves by transformations.

(Ir)reducibility

It may happen that the space V is actually too
large, in the sense that it has subspaces that re-
main invariant under the transformations in ques-
tion. Suppose W ⊂ V is such an invariant sub-
space. This means that the elemenets of W trans-
form among themselves, and there is no transfor-
mation that can take an element of W outside of
W . Think, for example, of the total state space of
nucleons and pions. Isospin transformations can
take a π− to π+, or a π0 to a π−, but there is
no way to transform a pions into a nucleon by an
isospin transformation: they actually belong to dif-
ferent (totally unrelated) representation spaces. So

36 They must be invertible because every transformation has
an inverse, as per the definition of groups.

a space of states of pions and nucleons can actu-
ally be reduced to two separate spaces: that of the
nucleon isospin states, and that of the pion states.

When this happens, it means we can write this
reducible state space as a direct sum of the inde-
pendent pieces, i.e. V1 ⊕ V2. If D

1 is a representa-
tion on V1 and D2 acts on V2, then

DV1⊕V2(g)

(
|v1⟩
|v2⟩

)
≡

(
D1(g)(|v1⟩)
D2(g)(|v2⟩)

)
.

This means that in matrix form DV1⊕V2 takes a
block diagonal shape

DV1⊕V2(g) =



D1(g) 0

0 D2(g)


.

This is exactly what happened in eq. (1). We
can treat V1 and V2 as separate spaces, and ask
again if the same reducibility can be performed,
i.e. if they have invariant subspaces other than
themselves. If not, then the representation on V1
(resp. V2) is said to be irreducible.

When a representation is irreducible, it means
that every state is related to any other via some
transformation. This is exactly what we have
constructed in sections IID and IVC: we have
thus built irreducible representations of SU(2) and
SU(3).

Tensor product representation

Given two vector spaces V and W , with basis
{|vi⟩} and {|wj⟩} respectively, we can build an-
other space with a basis {|vi⟩ ⊗ |wj⟩, where ⊗
can be seen as just a symbol for composing states
of V and W into a single vector. The resulting
dim(V )×dim(W )-dimensional space is denoted the
tensor product V ⊗W .

If DV (resp. DW ) is a representation over V
(resp. W ), it is not difficult to show that the map
DV⊗W defined by

DV⊗W (g)(|vi⟩⊗|wj⟩) ≡ DV (g)(|vi⟩)⊗DW (g)(|wj⟩)

is also a representation (i.e. it satisfies prop-
erty (A1) above). This is called the tensor prod-
uct representation. It just means that a compos-
ite state belonging to a tensor product transforms
in the following way: the transformed state from
|v⟩⊗|w⟩ is obtained by separately transforming the
states in their natural subspaces V and W , and
then taking their tensor product. This is exactly
what we did in eq. (18) above.
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Appendix B: From the algebra to the group

In section IIC we have explicitly said that, be-
cause we are dealing with a set of continuous
groups (both in the case of SU(2) isospin as well
as in extended isospin of SU(3)), we could con-
struct representations by investigating how states
transform under on infinitesimal transformations
– which is what we did throughout the rest of the
paper. Let us briefly discuss this in slightly more
formal terms.
A continuous transformation, such as SU(2) or

SU(3) “rotations” in isospin space, is described by
some parameters θa (for SU(2) a = 1, 2, 3 whereas
for SU(3) a = 1, . . . , 8). We define these parame-
ters such that, when they vanish, the correspond-
ing transformation is simply the identity transfor-
mation (think about a rotation of zero degrees,
which means simply “do no rotation at all”). The
element g(dθa) parametrized by infinitesimal “an-
gles” dθa corresponds to a transformation infinites-
imally close to the identity. If D(g) is a representa-
tion of this transformation over some vector space,
then D(g) will be infinitesimally close to the iden-
tity matrix, and can be Taylor expanded as

D(g) = 1+ idθa
(
−i∂D(g)

∂θa

∣∣∣∣
θ⃗=0

)
+O(dθ2).

We call

Ta = −i∂D(g)

∂θa

∣∣∣∣
θ⃗=0

the generators of infinitesimal transformations
along the θa-direction. The factors of i have
been introduced so that, for unitary representa-
tions, the generators are hermitian matrices, as
we saw in sections II C and IVC above. Since
1 = D(g(θ⃗ = 0)), we can write

Ta = −i lim
dθa→0

D(g(dθa))−D(g(0))

dθa

and we see that Ta can be interpreted as a tangent
vector along the dθa direction. This is illustrated
in figure 12.
We argued above that the space of the genera-

tors is called the algebra. Now we see that this is
also the tangent space at the identity. For this rea-
son we denote it as TeG in figure 12: the tangent
space to the identity e in group G.
It turns out that, for groups of the form of

SU(n), if we are given a generator Ta (i.e. a tan-
gent vector at the identity), we can integrate the
entire curve that has Ta as tangent vector at the
identity. In other words, for (compact and con-
nected) Lie groups knowing a tangent vector at
the identity is enough to know the entire curve37.

37 For general manifolds, i.e. general continuous spaces, to

FIG. 12. Illustration of a Lie group, a group of con-
tinuous transformations. The element g is connected
to the identity via a continuous path of points (every
point on this path corresponds to some transformation
that can be performed over the system). The tangent
vector along this curve is Ta and the coordinate of this
point g is θa.

To see this, take an element sufficiently close to the
identity, which can be written as

D(g) = 1+ idθ T

for some generator T in the algebra. Since we
know how to compose multiple transformations, cf.
eq. (A1), we can keep walking along this curve by
multiplying D(g) with itself many times, i.e.

D(g)N = (1+ idθ T )
N
.

But this must be equal to some transformation
parametrized by θ ≡ N · dθ along the T direction,

D(g(θ)) =

(
1+ i

θ

N
T

)N

≃ exp(iθ T ).

This means that any element of the group38 ly-
ing on the curve with tangent T at the identity
can be obtained by performing a matrix exponen-
tiation of this generator T . It is in this sense that
one says that the algebra is related to the group
by the exp map.

Once we find representations of the algebra (i.e.
once we know how states are mapped under in-
finitesimal transformations), as we did in the main

reconstruct a curve we need to know all tangent vectors
along the curve, and not just the tangent at one point. Lie
groups are special because, apart from being a continuous
space, it is also a group.

38 We reinforce that this holds for compact and path-
connected groups, such as SU(n). A non-path-connected
group would have elements that cannot be continuously
connected to the identity, and of course these points could
not be recovered by the exponential map, which is a con-
tinuous curve passing through this identity element. Non-
compact groups, such as the Lorentz group, also have
elements that cannot be written as exponentials. Still,
many of the group structures, and especially their repre-
sentations (which is what interests us in physics) can be
recovered by looking at the algebra rather than the whole
group.
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text above, we automatically know how this trans- formation will take place for any (finite) transfor-
mation, since both are related by the exp map.
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