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We demonstrate theoretically that double angle resolved photoemission spectroscopy (2eARPES)
can directly probe the existence of Cooper pairs away from the Fermi surface, and can thus provide
insight into the characteristic energy scale around the Fermi surface, the Debye energy, in which
electrons are bound into Cooper pairs. To this end, we compute the photoelectron counting rate
P (2) in two different types of unconventional superconductors, a dx2−y2 -wave superconductor, and

a topological superconductor with a broken time-reversal symmetry. We show that P (2) provides
insight into the relative strength of intra- and inter-band pairing in multi-band systems, as well as
into the spin polarization of the bands.

Introduction The Debye energy, ωD, is a central concept
in the study of superconductors [1, 2] as it represents
the energy range around the Fermi energy in which elec-
trons are bound into Cooper pairs. However, gaining
experimental insight into this elusive quantity, and in
general, into the existence of Cooper pairs away from the
Fermi surface, has proven extremely difficult. For ex-
ample, while angle-resolved photo-emission experiments
can in general map out the momentum dependence of the
superconducting order parameter |∆k| by measuring the
induced shift in the electronic normal state dispersion
[3], the experimental resolution often confines this ap-
proach to the immediate vicinity of the Fermi surface. In
contrast, it was shown that the photo-electron counting
rate, P (2), in double-ARPES (2e-ARPES) experiments,
in which one photon leads to the emission of 2 electrons,
directly reflects the existence of Cooper pairs [4–9], and
provides insight into their spin and momentum structure.
The question thus naturally arises of whether it can also
probe the energy and momentum range away from the
Fermi surface in which superconducting pairing occurs.

In this Letter, we theoretically demonstrate that 2e-
ARPES [10–13] can directly probe the existence of
Cooper pairs away from the Fermi surface, and thus pro-
vide insight into the characteristic energy range around
the Fermi surface – the Debye energy – in which Cooper
pairs are formed. In particular, we show that the con-
tribution to the photo-electron counting rate, P (2), of
2eARPES experiments that directly measures the emis-
sion of two entangled photo-electrons from the same
Cooper pair, remains non-zero for all momenta where
Cooper pairs exist. To demonstrate this, we study an un-
conventional, single-band dx2−y2-wave superconductor,
as exemplified by the cuprate superconductors [14, 15],
as well as a multi-band topological superconductor with
a broken time-reversal symmetry [16–19]. We demon-

strate that P
(2)
SC for both systems does not only directly

probe the Debye energy, but can also provide insight
into the relative strength between superconducting inter-

and intra-band pairing, as well as the spin-polarization
of the involved electronic bands, as schematically shown
in Fig. 1. Our results thus demonstrate that 2e-ARPES
experiments open an unprecedented opportunity to gain
insight into one of the most fundamental aspects of su-
perconductivity.

FIG. 1. Schematic representation of the emission of two en-
tangled photo-electrons from a Cooper pair at the Fermi sur-
face (red circles), and from Cooper pairs located away from
the Fermi surface with yellow (orange) circles representing su-
perconducting intra-band (inter-band) pairing.

Theoretical Model In the following, we demonstrate that
the photo-electron counting rate P (2) measured in 2e-
ARPES provides direct insight into the elusive Debye
energy for two different types of superconductors: (i) an
unconventional dx2−y2-wave superconductor, representa-
tive of the cuprate superconductors, and (ii) a multi-
band topological superconductor with broken time rever-
sal symmetry – the 2DTSC model –which was proposed
as an explanation for the topological phase of FeSexTe1−x
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[16, 20, 21]. The former is described by the Hamiltonian

Hd =
∑

k,σ

ξkc
†
k,σck,σ −

∑

|ξk|<ωD

∆k

(
c†k,↑c

†
−k,↓ +H.c.

)

(1)

Here, c†k,σ creates an electron with momentum k and
spin σ, ξk is the normal state tight binding dispersion,
∆k = ∆0

2 (cos kx − cos ky) is the dx2−y2-wave supercon-
ducting order parameter and ωD is the Debye energy
[for details, see Supplementary Material (SM) Sec. I].

The Hamiltonian of the 2DTSC model is given by [20–22]

HSC =
∑

k,σ

ξkc
†
k,σck,σ −

∑

k

∆0

(
c†k,↑c

†
−k,↓ +H.c.

)

+ 2α
∑

k,σ,σ′

(sin kxσ
y
σσ′ − sin kyσ

x
σσ′)c

†
k,σck,σ′

− JS
∑

k,σ,σ′

c†k,σσ
z
σσ′ck,σ′ , (2)

where ξk is the tight-binding dispersion, ∆0 is the s-wave
superconducting order parameter, α is the Rashba spin-
orbit (RSO) interaction, and J is the magnetic exchange
coupling between the ordered moments of magnitude S
and the conduction electrons (the implementation of the
Debye energy for this model is discussed in SM Sec. II).
The emission of two correlated photoelectrons in
2eARPES experiments is a two-step process: the absorp-
tion of a photon leads to the emission of a first photo-
electron that subsequently interacts via the Coulomb in-
teraction with a conduction electron, leading to the emis-
sion of a second photoelectron [6, 7, 11, 23–29]. These
two processes are described by the Hamiltonian [6, 7]

Hscat =
∑

k,q,σ,ν

γν(q)d
†
k+q,σck,σ

(
aq,ν + a†−q,ν

)

+
∑

k,p,q,α,β

V (q)d†k+q,αd
†
p−q,βdp,βck,α +H.c. (3)

Here, γν(q) is the effective electron-photon dipole in-

teraction, d†k,σ(ck,σ) creates (destroys) a photo-electron
(conduction electron) with momentum k and spin σ,
and V (q) = V0/

(
q2 + κ2

)
is the Fourier transform of

the (screened) Coulomb interaction, with κ−1 being
the screening length. Since the photon momentum
is much smaller than typical fermionic momenta, we
set it equal to zero, such that γν(q) = γ0 is simply a
momentum-independent constant. As previously shown
[6, 7], the photo-electron counting rate resulting from

this interaction can be written as P (2) = V 2P
(2)
SC +V P

(2)
2cp

with V being the volume of the system. The first term
arises from the emission of two correlated photoelectrons
from a single Cooper pair, and thus directly reflects the
existence of a superconducting condensate, while the

second term describes the emission of two photoelectrons
from two different Cooper pairs. We note that P (2) is a
function of both the momenta, k′

1,2 and the spins, σ1,2
of the two photo-electrons.

Results We begin by considering the photo-electron

FIG. 2. (a) P (2) in a dx2−y2 -wave superconductor for two
photo-electrons with opposite spin and opposite momenta
k′
2 = −k′

1 at (see filled blue circles in the inset) or below
the Fermi surface. Inset: Fermi surface in the normal state.
(b) P

(2)
SC as a function of the normal state energy, ξk, along

a line cut in the Brillouin zone indicated by a red line in the
inset of (a). Black line: ωD = ∞, red line: ωD = 3∆kF . Pa-
rameters used are (t, t′, µ,∆0) = (300,−120,−150, 25)meV.

counting rate P (2) in a dx2−y2-wave superconductor, for
which the Fermi surface in the normal state is shown
in Fig. 2(a). For two photo-electrons with opposite mo-
menta k′

2 = −k′
1 lying on the Fermi surface, as indicated

by filled blue circles in the Fig. 2(a), and opposite spins,
the resulting photo-electron counting rate P (2) exhibits

a peak at ∆ω = ωq − 2ϵk′
1
= 0 arising from P

(2)
SC , as

shown in Fig. 2(b). Here, ωq is the photon energy, and
ϵk′

1
is the sum of the kinetic energy of a photo-electron

and the work-function W ; thus ∆ω represents the excess
energy of the photon over the energies of the two photo-
electrons. In addition, P (2) exhibits a continuum with

onset at ∆ω ≈ 2∆k′
1
arising from P

(2)
2cp.
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It is generally assumed that electrons form Cooper pairs
not only at or close to the Fermi surface, but over an ex-
tended energy range around the Fermi energy, EF , gen-
erally known as the Debye energy. We thus expect that
the zero-energy peak persists even for photo-electron mo-
menta away from the Fermi surface, until the normal
state energy of the emitted conduction electrons crosses
the Debye energy. This is confirmed by the calculation
of P (2) for two photo-electrons with momenta away from
the Fermi surface for which the zero-energy peak persists,
though with reduced intensity, while the onset of the con-
tinuum shifts to higher energies, as shown in Fig. 2(a).

To further demonstrate this, we plot in Fig. 2(b) P
(2)
SC for

a linecut along the boundary of the Brillouin zone (BZ)
[see red lines in the inset of Fig. 2(a)] that crosses the

Fermi surface. We find that P
(2)
SC exhibits a maximum

for momenta at the Fermi surface, i.e. k′
1 = kF and thus

ξk′
1
= 0, and decreases with increasing distance from the

Fermi surface. This momentum dependence can be ap-
proximately described by (see SM Sec. III)

P
(2)
SC(k

′
1)

P
(2)
SC(kF )

≈
∆2

k′
1

∆2
k′
1
+ ξ2k′

1

. (4)

This ability of 2eARPES experiments to probe the exis-
tence of Cooper pairs away from the Fermi surface can be
employed to identify the Debye energy. To demonstrate

this, we compare in Fig.2(b) P
(2)
SC for the case of ωD = ∞

and ωD = 3∆kF
, where ∆kF

is the superconducting gap
at the Fermi surface. We find that for the latter case,

P
(2)
SC drops to zero for |ξk| > ωD as no Cooper pairs are

formed for larger energies. This establishes the proof of
concept that 2eARPES experiments can determine the
energy scale beyond which Cooper pairs cease to exist.
We next study the form of the photo-electron counting
rate in the 2DTSC system, which is of particular inter-
est for two reasons. First, it is a multi-band system,
thus allowing not only for superconducting intra-band,
but also for inter-band pairing. Second, the interplay
between the RSO interaction and the presence of ferro-
magnetism leads to the emergence of superconducting
spin-triplet correlations, as well as spin-polarized bands
[22]. The question thus naturally arises of whether both

of these features lead to characteristic signatures in P
(2)
SC .

To address this question, we begin by considering a pa-
rameter set for which the system is in the topologically
trivial phase, and possesses two nearly isotropic Fermi
surface closed around the Γ point, as shown in the inset
of Fig. 3(a). The resulting photo-electron counting rates
for two photo-electrons of opposite momenta k′

2 = −k′
1

on the outer Fermi surface [see filled blue circles in the in-
set of Fig. 3(a)] and opposite spins is shown in Fig. 3(a).
As for the case of the dx2−y2-wave superconductor, P (2)

exhibits a peak at ∆ω = 0 arising from P
(2)
SC which is

separated from the onset of the continuum, arising from

FIG. 3. (a) P (2) as a function of ∆ω for two photoelec-
trons with opposite spin and momentum and located at the
outer Fermi surface (see filled blue circles in the inset). In-

set: normal state Fermi surfaces. (b) P
(2)
SC as a function of

k′
1 along the diagonal of the BZ for two values of ωD. (c)

P
(2)
SC assuming intra-band (blue line) and inter-band (orange

line) pairing only. Parameters used are (t, µ, α,∆0, JS) =
(200,−760, 10, 7, 20)meV.

P
(2)
2cp, by 2∆k′

1
. In Fig. 3(b), we present P

(2)
SC for a linecut

along the diagonal direction in the BZ [see dashed red
line in the inset of Fig. 3(a)] that crosses both Fermi sur-

faces at k
(1,2)
F . In contrast to the case for a dx2−y2 -wave

superconductor [cf. Fig. 2(b)], P
(2)
SC exhibits a strongly

anisotropic shape around the Fermi momenta k
(1,2)
F (de-

noted by vertical black dashed lines). To identify the ori-
gin of this asymmetry, we consider in Fig. 3(c) the form

of P
(2)
SC for two limiting cases: when inter-band pairing is

suppressed and superconductivity arises from intra-band
pairing only [see blue line in Fig. 3(c)], and vice versa
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(orange line). In the former case, P
(2)
SC is nearly sym-

metric around k
(1,2)
F , and hence similar to the case of the

single-band dx2−y2-wave superconductor. In contrast, for

intra-band pairing only, P
(2)
SC is highly asymmetric around

k
(1,2)
F , exhibiting a sharp momentum cut-off, and a finite

range of momenta where it vanishes, thus indicating the
absence of superconducting correlations. To understand

this form of P
(2)
SC , we recall that inter-band pairing can

only occur when the time-reversed states that are being

paired, E
(1)
k and E

(2)
−k, are either both occupied or both

unoccupied. The sharp cut-off in P
(2)
SC then occurs at

those momenta, where one of the bands crosses the Fermi
energy, as it is not possible to sustain superconducting
correlations when the time-reversed and hole-like partner
of a particle state at k does not exist (for a more detailed
discussion, see SM Sec. IV). A comparison of the results
in Figs. 3(b) and 3(c) then shows that the asymmetry in

P
(2)
SC shown in Fig. 3(b) arises from the inter-band pairing

term, which thus possesses a characteristic signature in

P
(2)
SC that can be used to identify it. We note that P

(2)
SC

for inter-band pairing decreases much more slowly with
distance from the Fermi momenta than that for intra-
band pairing due to the different form of the coherence

factors involved (for details, see SM Sec. IV). Thus, P
(2)
SC

exhibits considerable intensity even for momentum states
with energies much larger than the superconducting gap,
thus facilitating the detection of much larger Debye en-
ergies, as shown for the case of ωD = 30∆kF

in Fig. 3(b).

We next consider the form of P (2) for opposite momenta,
but equal spin of the photo-electrons, thus probing the
existence of superconducting spin-triplet correlations. In
Fig. 4, we present P (2) as a function of ∆ω for two mo-
menta on the Fermi surface [see filled blue circles in the
inset of Fig. 4(a)]. As previously discussed [22], the com-
bination of ferromagnetism, RSO interaction and an s-
wave gap leads to the emergence of superconducting spin-
triplet correlations, which are reflected in the presence of

a peak at ∆ω = 0 arising from P
(2)
SC . Plotting P

(2)
SC for the

↑↑ (Sz = +1) and ↓↓ (Sz = −1) spin configurations of
the two photoelectrons for k′

1 along the BZ diagonal [see
dashed red line in the inset of Fig. 4(a)], we observe two

interesting features. First, P
(2)
SC for either spin configu-

ration is nearly symmetric around k
(1,2)
F , suggesting the

absence of any appreciable inter-band pairing (see SM

Sec. V). Second, P
(2)
SC exhibits an appreciable intensity in

the ↓↓-channel (↑↑-channel) only at k
(1)
F (k

(2)
F ), i.e., at the

inner (outer) Fermi surface. Both features directly arise
from the strong and opposite spin-polarization of the two
bands shown in Fig. 4(c), which suppresses inter-band
pairing, and allows for the emergence of superconducting
spin-triplet correlations in the (Sz = −1)-channel only
in the inner band, and in the (Sz = +1)-channel only in
the outer band. Finally, we note that similar results for

FIG. 4. (a) P (2) as a function of ∆ω for two photoelectrons
with the same spins and opposite momenta, located at the
outer Fermi surface (see filled blue circles in the inset). Inset:

normal state Fermi surfaces. (b) P
(2)
SC as a function of k′

1 along
the diagonal of the BZ for photoelectrons with ↑↑ and ↓↓ spin
configurations. (c) Spin polarization of the electronic bands
in the normal state. Parameters used are (t, µ, α,∆0, JS) =
(200,−760, 10, 7, 20)meV.

P
(2)
SC are also obtained for parameter sets where the sys-

tem is in the topological phase, with the most significant
effects arising from the much weaker spin polarization of
the electronic bands (for a detailed discussion, see SM
Sec. VI). Thus, 2eARPES can not only probe the exis-
tence of intra- and inter-band pairing, but also of spin-
polarized bands.

Conclusions We have demonstrated that 2eARPES ex-
periments can probe the existence of Cooper pairs away
from the Fermi surface, thus allowing for the first time
to explore the extent of the Debye energy. Moreover, we

have shown that P
(2)
SC exhibits a qualitatively different

form for superconducting intra-band and inter-band
pairing, providing an intriguing approach to identify and
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distinguish between these two pairing channels. Further-

more, the dependence of P
(2)
SC in 2eARPES on the spin

configuration of the photoelectrons also provides unique
insight into the spin polarization of the electronic bands.
Our results demonstrate that 2eARPES experiments
thus can explore some of the most fundamental aspects
of superconductivity.
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I. DEBYE ENERGY CUT-OFF IN A dx2−y2-WAVE SUPERCONDUCTOR

The Hamiltonian to describe a dx2−y2-wave superconductor is given by

Hd =
∑

k,σ

ξkc
†
k,σck,σ −

∑

k

(
∆kc

†
k,↑c

†
−k,↓ +H.c.

)
(S1)

Here, c†k,σ creates an electron with momentum k and spin σ, and ∆k = ∆0

2 (cos kx − cos ky) is the dx2−y2 -wave
superconducting order parameter. The normal state dispersion is given by

ξk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky − µ (S2)

with −t(−t′) being the nearest-neighbor (next-nearest-neighbour) hopping amplitude, µ is the chemical potential.
For the results shown in the main text, we have used t = 300meV, t′ = −120meV, µ = −150meV, and ∆0 = 25meV.

To implement the Debye cut-off, we replace the superconducting order parameter in Eq.(S1) by

∆k(ωD) = ∆kθ(ωD − |ξk|) (S3)

where θ(x) is the Heaviside step function.

II. DEBYE CUT-OFF IN THE 2DTSC MODEL

The Hamiltonian of the 2DTSC model is given by [1, 2]

HSC =
∑

k,σ

ξkc
†
k,σck,σ − JS

∑

k,σ,σ′

c†k,σσ
z
σσ′ck,σ′ + 2α

∑

k,σ,σ′

(sin kxσ
y
σσ′ − sin kyσ

x
σσ′)c

†
k,σck,σ′ −

∑

k

∆0

(
c†k,↑c

†
−k,↓ +H.c.

)
.

(S4)

where

ξk = −2t(cos kx + cos ky)− µ (S5)

is the tight-binding dispersion, α is the Rashba spin-orbit interaction, ∆0 is the s-wave superconducting order pa-
rameter, and J is the magnetic exchange coupling between the ordered moments of magnitude S and the conduction
electrons. As previously discussed [1, 2], we assume the spins to be static in nature due to the hard superconducting
gap which suppresses Kondo screening [3, 4].

To introduce a superconducting pairing term with proper Debye energy cut-off, we first diagonalize the Hamiltonian
in the normal state. Making use of the unitary transformation

dk,j =
∑

σ

uk,jσck,σ (S6)

we obtain from Eq.(S4)

HSC =
∑

k,j=1,2

EN
k,jd

†
k,jdk,j −

∑

k

∑

j,l=1,2

∆k,jl

(
d†k,jd

†
−k,l + dk,ld−k,j

)
(S7)
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where d†k,j creates an electron with momentum k in band j = 1, 2 in the normal state, EN
k,j is the normal state

dispersion of band j, and ∆k,jl = ∆0uk,j↑u−k,l↓ is the intra-band (inter-band) superconducting order parameter for
j = l (j ̸= l).

To introduce a Debye energy cut-off, we assume that only electrons in an energy range of ωD around the the Fermi
energy, i.e., for |EN

k,j | < ωD, participate in the pairing process. Thus we introduce the Debye energy as follows

∆k,jl(ωD) = ∆k,jlθ
(
ωD −

∣∣EN
k,j

∣∣)θ
(
ωD −

∣∣EN
k,l

∣∣) (S8)

III. DERIVATION OF P
(2)
SC FOR A dx2−y2-WAVE SUPERCONDUCTOR

As derived in Ref.[5], the two electron photoemission counting rate arising from the emission of a Cooper pair whose
electrons possess opposite momenta and spins, is given by

P
(2)
SC(ωq,k

′
1) = 2πδ

(
ωq − 2ϵk′

1

)
∣∣∣∣∣
∑

k

γ0V (k− k′
1)

ωq − Ek − ϵk

∆k

2Ek

∣∣∣∣∣

2

(S9)

where Ek =
√
ξ2k +∆2

k is the energy dispersion in the superconducting state and ϵk = h̄2k2

2me
+W is sum of the kinetic

energy of the photoelectron with momentum k and the work function W .

Since the Coulomb scattering occurs between a photoelectron and a conduction electron, we can assume that it is
weakly screened and we therefore confine the integration to a small region of radius κ (κ−1 being the screening length)
around k′

1 in which we assume that the integrand varies only weakly. We then obtain

P
(2)
SC(k

′
1) ≈ 2πδ

(
ωq − 2ϵk′

1

)∣∣∣∣γ0πκ2
V0
κ2

1

ωq − Ek′
1
− ϵk′

1

∆k′
1

2Ek′
1

∣∣∣∣
2

(S10)

Since ωq = 2ϵk′
1
in Eq.(S10), we also have

ωq − Ek′
1
− ϵk′

1
=
ωq

2
− Ek ≈ ωq

2
(S11)

where the last approximation is valid since the relevant energies of the conduction electrons are on the order of 10-100
meV, while those of the photons are of the order of tens of eV. Thus we can write Eq.(S10) as

P
(2)
SC(k

′
1) ≈2πδ

(
ωq − 2ϵk′

1

)π2γ20V
2
0

ω2
q

∆2
k′
1

ξ2k′
1
+∆2

k′
1

=P
(2)
SC(kF )

∆2
k′
1

ξ2k′
1
+∆2

k′
1

(S12)

which is Eq.(4) of the main text.

IV. EMERGENCE OF SUPERCONDUCTING CORRELATIONS FOR INTER-BAND PAIRING ONLY
IN THE 2DTSC MODEL

Introducing the Nambu spinor

ψ†
k =

(
d†k,1, d

†
k,2, d−k,2, d−k,1

)
(S13)

we can write the Hamiltonian in Eq.(S7) as

HSC =
∑

k

ψ†
kĤBdGψk (S14)
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where ĤBdG is the Bogoliubov-de Gennes (BdG) Hamiltonian matrix in the band basis given by

ĤBdG =




EN
k,1 0 −∆k,12 −∆k,11

0 EN
k,2 −∆k,22 −∆k,21

−∆∗
k,12 −∆∗

k,22 −EN
−k,2 0

−∆∗
k,11 −∆∗

k,21 0 −EN
−k,1


 (S15)

Considering first the case of intra-band pairing only (i.e., no inter-band pairing), we set ∆k,jl = 0 if j ̸= l. The
Hamiltonian matrix then becomes

ĤBdG =




EN
k,1 0 0 −∆k,11

0 EN
k,2 −∆k,22 0

0 −∆∗
k,22 −EN

−k,2 0

−∆∗
k,11 0 0 −EN

−k,1


 (S16)

Using the spinor

ψ†
k =

(
d†k,1, d−k,1, d

†
k,2, d−k,2

)
(S17)

we can rewrite the Hamiltonian in a block-diagonal form as follows

ĤBdG =




EN
k,1 −∆k,11 0 0

−∆∗
k,11 −EN

−k,1 0 0

0 0 EN
k,2 −∆k,22

0 0 −∆∗
k,22 −EN

−k,2


 (S18)

This Hamiltonian matrix represents two independent single band superconductors, and its blocks thus possess the
same structure as the Hamiltonian matrix for the dx2−y2 -wave superconductor.

Conversely, the case of inter-band pairing only can be considered by setting ∆k,11 = ∆k,22 = 0, in which case we
obtain from the Hamiltonian matrix in Eq.(S15)

HBdG =




EN
k,1 0 −∆k,12 0

0 EN
k,2 0 −∆k,21

−∆∗
k,12 0 −EN

−k,2 0

0 −∆∗
k,21 0 −EN

−k,1


 (S19)

This Hamiltonian matrix can be written in block-diagonal form using the spinor

ψ†
k =

(
d†k,1, d−k,2, d

†
k,2, d−k,1

)
(S20)

which yields

HBdG =




EN
k,1 −∆k,12 0 0

−∆∗
k,12 −EN

−k,2 0 0

0 0 EN
k,2 −∆k,21

0 0 −∆∗
k,21 −EN

−k,1


 (S21)

Considering the block on the upper left, we obtain

β̂†
k

(
EN

k,1 −∆k,12

−∆∗
k,12 −EN

−k,2

)
β̂k =

(
Ek,1 0
0 −E−k,2

)
(S22)

where β̂k represents the Bogoliubov transformation

(
dk,1
d†−k,2

)
=

(
βk,11 βk,12
βk,21 βk,22

)(
γk,1
γ†−k,2

)
≡ β̂k

(
γk,1
γ†−k,2

)
(S23)
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where γ†k,j creates a quasiparticle state with energy Ek,j and βk,ij are the corresponding coherence factors. Analogous

results are obtained when diagonalizing the block on the lower right of Eq.(S21).

Next, we investigate the form of the superconducting correlation
〈
c†k,σ1

c†−k,σ2

〉
in the case of inter-band pairing only.

Using the unitary transformation of Eq.(S6), we obtain

〈
c†k,σ1

c†−k,σ2

〉
=

∑

j,l

uk,jσ1u−k,lσ2

〈
d†k,jd

†
−k,l

〉

= uk,1σ1
u−k,2σ2

〈
d†k,1d

†
−k,2

〉
+ uk,2σ1

u−k,1σ2

〈
d†k,2d

†
−k,1

〉
. (S24)

Using next the Bogoliubov tranformation in Eq.(S23), we obtain

C12(k) ≡
〈
d†k,1d

†
−k,2

〉
= β∗

k,11βk,21

〈
γ†k,1γk,1

〉
+ β∗

k,12βk,22

〈
γ−k,2γ

†
−k,2

〉

C21(k) ≡
〈
d†k,2d

†
−k,1

〉
= β−k,21β

∗
−k,11

〈
γ−k,1γ

†
−k,1

〉
+ β−k,22β

∗
−k,12

〈
γ†k,2γk,2

〉
(S25)

where

β∗
k,11βk,21 = −β∗

k,12βk,22 =
∆∗

k,12

2

√(
EN

k,1+EN
−k,2

2

)2

+ |∆k,12|2
(S26)

For momentum satisfying Ek,1 < 0 < E−k,2, the superconducting correlation functions at zero temperature are then
given by

〈
c†k,σ1

c†−k,σ2

〉
= uk,1σ1u−k,2σ2

(
β∗
k,11βk,21 + β∗

k,12βk,22
)
= uk,1σ1u−k,2σ2

[
βkβ

†
k

]
21

= 0 (S27)

where the last equation holds due to the unitarity of β̂k. This implies that superconducting correlations are absent,
and hence Cooper pairs do not form, for those momenta where one of the bands is occupied (Ek,j < 0), while the
other one is unoccupied (Ek,l > 0). The momentum dependence of C12(k) together with that of β∗

k,11βk,21 is shown
in Supplementary Fig. 1. The vertical black dotted lines indicate the momenta, when one of the bands crosses zero

Supplementary Figure 1. Momentum dependence of the superconducting interand correlations C12(k) (red solid line), and of the
product β∗

k,11βk,21 (red dotted line), and of the ratio (EN
k,1+EN

−k,2)/(2∆k,12) (solid black line). Parameters are (t, µ, α,∆, J) =
(200, 0, 10, 7, 20)meV.

energy, and C12(k) vanishes since β
∗
k,12βk,22 = −β∗

k,11βk,21. We also find that β∗
k,11βk,21 (see red dashed line) exhibits

a maximum when EN
k,1 + EN

−k,2 (see black line) vanishes, as expected from the analytical form of the β∗
k,11βk,21 in

Eq.(S26).
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The fact that P
(2)
SC reflects the form of the superconducting correlations (for details, see Ref.[6]) also explains the

qualitatively different form of P
(2)
SC for inter-band and inter-band pairing, as shown in Fig.3(c) of the main paper.

While P
(2)
SC for intra-band pairing essentially follows the same form as shown in Eq.(4) of the main text, and thus

rapidly decays away from the Fermi momentum, P
(2)
SC for inter-band pairing involves the coherence factors shown

in Eq.(S24)-(S26), thus decreasing much slower away from the Fermi momentum due to the weaker increase in
EN

k,1 + EN
−k,2, as shown in Supplementary Fig. 1.

V. P
(2)
SC IN THE SPIN TRIPLET CHANNEL FOR THE 2DTSC MODEL

We found in the main text, that the form of P
(2)
SC in the spin triplet channel is much more symmetric around the Fermi

momenta k
(1,2)
F than in the spin-singlet channel. The reason for this difference lies in the significantly suppressed inter-

band pairing in the spin triplet case, as shown in Supplementary Fig. 2. Here, we present the momentum dependence

Supplementary Figure 2. P
(2)
SC in the ↑↑ triplet channel assuming full (black line), intra-band (blue line) and inter-band (orange

line) pairing only. Parameters used are (t, µ, α,∆, JS) = (200,−760, 10, 7, 20)meV.

of P
(2)
SC computed using the full pairing, intra-band pairing, or inter-band pairing only. The greatly suppressed inter-

band pairing in the triplet channel arises from the strong and opposite spin-polarization of the bands, shown in

Fig.4(c) of the main text, thus leading to a more symmetric form of P
(2)
SC in the triplet channel. As previously pointed

out [6], the correlations in the triplet Sz = 0 channel vanish identically.

VI. P
(2)
SC IN THE TOPOLOGICAL C = 2 PHASE OF THE 2DTSC MODEL

Finally, we briefly discuss the form of P
(2)
SC for a set of parameters, when the system in the topological C = 2 phase

[1]. As previously discussed, P
(2)
SC cannot be employed to distinguish between the topological and the trivial phases of

the system, though it can detect the topological phase transition [6]. For this parameter set, the Fermi surfaces shown

in Supplementary Fig. 3(a), and the resulting P
(2)
SC as a function of momentum along kx = ky [see red dotted line in

Supplementary Fig. 3(a)] is shown in Supplementary Fig. 3(b). In contrast to the results shown in Fig.3(b) of the main

text, the form of P
(2)
SC is much more symmetric around k

(1,2)
F , which is due to the much weaker spin-polarization of the

bands around the Fermi energy [see Supplementary Fig. 3(c)], and thus a much stronger intra-band than inter-band
pairing.
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