
Asymptotically Fair and Truthful Allocation of Public Goods
POUYA KANANIAN, University of Waterloo, Canada

SEYED MAJID ZAHEDI, University of Waterloo, Canada

We study the fair and truthful allocation of 𝑚 divisible public items among 𝑛 agents, each with distinct

preferences for the items. To aggregate agents’ preferences fairly, we follow the literature on the fair allocation

of public goods and aim to find a core solution. For divisible items, a core solution always exists and can be

calculated efficiently by maximizing the Nash welfare objective. However, such a solution is easily manipulated;

agents might have incentives to misreport their preferences. To mitigate this, the current state-of-the-art finds

an approximate core solution with high probability while ensuring approximate truthfulness. However, this

approach has two main limitations. First, due to several approximations, the approximation error in the core

could grow with 𝑛, resulting in a non-asymptotic core solution. This limitation is particularly significant as

public-good allocation mechanisms are frequently applied in scenarios involving a large number of agents,

such as the allocation of public tax funds for municipal projects. Second, implementing the current approach for

practical applications proves to be a highly nontrivial task. To address these limitations, we introduce PPGA, a

(differentially) Private Public-Good Allocation algorithm, and show that it attains asymptotic truthfulness and

finds an asymptotic core solution with high probability. Additionally, to demonstrate the practical applicability

of our algorithm, we implement PPGA and empirically study its properties using municipal participatory

budgeting data.

1 INTRODUCTION
Unlike the allocation of private goods, where each item goes to a single agent, public goods allow

multiple agents to benefit from an allocated item. In this paper, we study the problem of fairly

allocating𝑚 divisible public goods among 𝑛 agents in a truthful manner. Different agents hold

distinct preferences for the items. Each item has a size, and the total size of allocated items should

not exceed the available capacity. The fair allocation of divisible public goods is a fundamental

problem in social choice theory with many real-world applications. Examples include: (1) budget

allocations between services such as healthcare, education, and defense at a state or national level;

(2) municipal budget allocations to improve utilities such as libraries, parks, gyms, and roads; (3)

shared memory allocations between files with different sizes; and (4) time allocations between

activities during an event.

An allocation mechanism produces outcomes based on reported preferences of all agents. Agents

need not reveal their true preferences but strategically report them to maximize their utility. For

instance, consider a setting where there are one or more commonly preferred items. Such items are

highly likely to be allocated regardless of the reported preferences of a single agent. Given this

and assuming that other agents report their preference truthfully, agents could be incentivized to

free-ride by falsely claiming disinterest in commonly preferred items and reporting preferences

only for their individually preferred items. By doing so, free riders increase the chances of their

individually preferred items being allocated under a fair allocation mechanism.

To aggregate agents’ preferences fairly, we focus on the classic game theoretic notion of the

core [5, 16]. The core generalizes well-studied notions of proportionality and Pareto efficiency

by ensuring group-wise fairness, providing fair outcomes to each agent subset relative to its size.

The notion of the core has been extensively studied in the context of public-good allocation [9, 10,

13, 31, 32]. For allocating divisible public goods, the core always exists, and it can be efficiently

calculated by maximizing Nash welfare (NW) objective (i.e., the product of agents’ utilities) [9].

Authors’ addresses: Pouya Kananian, University of Waterloo, Waterloo, Canada, pouya.kananian@uwaterloo.ca; Seyed

Majid Zahedi, University of Waterloo, Waterloo, Canada, smzahedi@uwaterloo.ca.

ar
X

iv
:2

40
4.

15
99

6v
1

 [
cs

.G
T

]
 2

4
A

pr
 2

02
4

However, the core outcome is easy to manipulate; agents might have incentives to misreport their

preferences.

To address this issue, Fain et al. [9] propose a method that aims to find an approximate core

solution with high probability while also achieving approximate truthfulness. This method relies

on the exponential mechanism derived from differential privacy [29]. The exponential mechanism

uses a scoring function to assign a score to each outcome. Subsequently, a sample is drawn from a

distribution that exponentially weights outcomes based on their scores. This guarantees that the

selected outcome’s score is approximately maximized with high probability.

Differentially private mechanisms are approximately dominant-strategy truthful, as the general

guarantee of differential privacy ensures that no agent can significantly alter the outcome of

the mechanism by unilaterally changing their reported input. In the context of the exponential

mechanism, the level of differential privacy–and consequently, truthfulness–is contingent on the

sensitivity
1
of the scoring function to the reported input of any individual agent. Higher sensitivity

corresponds to a lower quality of the guarantee.

The use of the exponential mechanism for public-good allocation faces two primary challenges.

Firstly, while the NW objective appears to be an ideal choice for the scoring function, its direct

use is hindered by its high sensitivity to each agent’s reported preferences. This limitation arises

because the NW objective is not separable
2
. To overcome this, Fain et al. [9] propose a novel proxy

function as a substitute for the NW objective in the scoring function.

The introduced proxy function strikes a balance between reducing the sensitivity of the scoring

function to enhance the approximation to truthfulness and retaining sufficient sensitivity to ensure

an acceptable approximation to the core. However, the adoption of the proxy function introduces an

approximation error in the core that could grow with an increasing number of agents, resulting in

a non-asymptotic core solution. This limitation is particularly significant as public-good allocation

mechanisms are frequently applied in scenarios involving a large number of agents, such as

participatory budgeting elections for distributing municipal budgets.

Secondly, sampling an𝑚-dimensional allocation from a distribution poses a significant practical

challenge. To tackle this, Fain et al. [9] propose employing the hit-and-run method [39] to sample

an allocation from an “approximately right distribution.” However, implementing the hit-and-run

method for practical applications proves to be a highly nontrivial task (as discussed in the conclusion

of Sec. 2.2 in [28]). Moreover, the implications of the extra approximation on the guarantees of

truthfulness and core remain unclear.

1.1 Our Contributions
In Sec. 4, we introduce PPGA, a novel differentially private algorithm for public-good allocation.

A key feature of PPGA is its approach to maximize the NW objective in a differentially private

way without requiring a proxy objective. As previously discussed, the non-separable nature of the

NW objective poses challenges in deploying differentially private mechanisms [9]. To tackle this

challenge, we employ a key technique called global variable consensus optimization [1]. Consensus

transforms the NW objective into a separable form that splits easily. Leveraging the alternating
direction method of multipliers (ADMM) [15, 17] enables us to maximize the NW objective in a

distributed manner. And this further allows us to employ the Gaussian mechanism [29] from

differential privacy to achieve truthfulness.

1
Informally, the sensitivity of a function is the maximum change in its output resulting from a change in its input.

2
A function 𝑓 is separable with respect to a partition of a variable 𝑥 into 𝑛 sub-vectors 𝑥 = (𝑥1, . . . , 𝑥𝑛) if 𝑓 (𝑥) =

∑
𝑓𝑖 (𝑥𝑖) .

In Sec. 5, we analytically study the properties of our proposed algorithm. Our primary technical

contribution lies in demonstrating that PPGA attains asymptotic truthfulness and finds an asymp-

totic core solution with high probability. To our knowledge, PPGA is the first polynomial-time

algorithm that provides such guarantees.

In Sec. 6, we demonstrate that PPGA can be deployed in practice to solve large-scale public-good

allocation problems. To this end, we implement PPGA and utilize our implementation to compare

the outcome of PPGA with a core solution using data obtained from real-world participatory

budgeting elections conducted in various cities in Poland [40]. The code for our implementation is

provided at https://github.com/uwaterloo-mast/PPGA.

2 RELATEDWORKS
Fair resource allocation. There is an extensive literature on designing mechanisms for allocation

of private goods without money, which is often referred to as cake cutting [35]. For public goods, the

fair allocation problem has been studied in the context of fair public decision-making [3], multi-agent

knapsack problems [12], multi-winner elections [32], and participatory budgeting [33]. Truthful

aggregation of agents’ preferences has also been studied for public decision-making [14, 18, 36].

However, the settings in these works are unrelated to ours as they focus on maximizing social

welfare (i.e., the sum of agents’ utilities), whereas our focus is on maximizing Nash welfare.

The work most closely related to this paper is that of Fain et al. [9]
3
, which finds an approximate

core solution with high probability while achieving approximate truthfulness. However, due to its

reliance on several approximations, their approach fails to produce an asymptotic core solution.

As the number of agents increases, their method’s approximation error for fairness (core) could

grow. In contrast, our approximation guarantee does not suffer from this issue. By combining the

Gaussian mechanism with ADMM to directly optimize the NW objective, our method provides

asymptotic truthfulness and finds an asymptotic core solution with high probability.

Differentially private convex optimization. In recent years, differentially private convex pro-

graming has been utilized to allocate private goods [4, 21, 22, 25, 26]. These methods often employ

the dual ascent technique as a key tool [1]. The dual ascent method involves a sequence of two

updates: the primal update optimizes the Lagrangian while fixing the dual variable, and the dual

update takes a gradient ascent step to update the dual variable given the optimized primal variable.

The dual ascent method cannot be used for maximizing the NW objective. This is because, as we

show in Sec. 4, the Lagrangian for the convex program is an affine function of some components of

the primal variable. This makes the primal update fail as the dual problem is unbounded below

for most values of the dual variable [1]. We avoid this by optimizing the augmented Lagrangian

instead of the Lagrangian.

Differentially private ADMM. It is well known that in ADMM, the objective function’s value

converges to the optimal solution at a rate of𝑂 (1/𝐾), where𝐾 denotes the number of iterations [19].

Recent years have witnessed significant research efforts aimed at merging differential privacy and

ADMM [23, 24, 27, 38, 42, 43]. Although related, our work differentiates itself from these works

in several aspects. Firstly, while previous studies focus on the convergence rate of the objective

function, we study the convergence of a primal variable to an approximate core solution. To the

best of our knowledge, our work is first to prove an asymptotic, game-theoretic property for a

primal variable within differentially private ADMM. Secondly, unlike prior work that introduces

noise to the local variables, PPGA adds noise to the global variable (as detailed in Sec. 4). Finally,

3
Their notion of core is based on capacity, wherein a blocking coalition receives a proportional share of the capacity instead

of a proportional share of utility (refer to Def. 2).

https://github.com/uwaterloo-mast/PPGA

many studies on differentially private ADMM rely on a restrictive assumption regarding the strong

convexity of the objective function. This assumption, however, does not hold for the NW objective.

3 PRELIMINARIES
In this section, we first formally define the public-good allocation problem and its desired properties.

We then overview differential privacy as a tool for mechanism design.

A detailed summary of our notations is presented in Appx. A

3.1 Problem Formulation
We consider a public-good allocation problem with 𝑛 agents and𝑚 divisible public items (𝑚 ≪ 𝑛).

The size of each item 𝑗 is denoted by 𝑠 𝑗 ∈ R>0, and the size vector is denoted by 𝑠 = (𝑠1, . . . , 𝑠𝑚).
The total available capacity is 𝑐 ∈ R>0. An allocation is a vector 𝑧 = (𝑧1, . . . , 𝑧𝑚) ∈ [0, 1]𝑚 , where
𝑧 𝑗 represents the fraction of the total capacity that is allocated to item 𝑗 . The set of all feasible

allocations is denoted by:

𝑍 = {𝑧 ∈ [0, 1]𝑚 | ∥𝑧∥1 ≤ 1, 𝑐𝑧 ≤ 𝑠}.
Agent 𝑖’s utility function for allocation 𝑧 ∈ 𝑍 is denoted by 𝑈𝑖 (𝑧) and is parameterized by the

utility vector 𝑢𝑖 = (𝑢𝑖1, . . . , 𝑢𝑖𝑚). In this paper, we consider a subclass of utility functions that are

differentiable, strictly increasing, concave, and 𝐿-Lipschitz continuous:

|𝑈𝑖 (𝑧) −𝑈𝑖 (𝑧′) | ≤ 𝐿∥𝑧 − 𝑧′∥2.
A notable example of such utility function is the linear utility function:𝑈𝑖 (𝑧) =

∑𝑚
𝑗=1
𝑢𝑖 𝑗𝑧 𝑗 . Sigmoid

and hyperbolic tangent are two other examples. Without loss of generality, we assume that𝑈𝑖 (𝑧) ∈
[0, 1] for all 𝑖 and 𝑧 ∈ 𝑍 , and that 𝑢𝑖 ∈ 𝑈 = [0, 1]𝑚 for every 𝑖 .

3.2 Mechanism Design for Public Goods
A randomized allocation mechanism𝑀 produces a probability distribution over feasible allocations

given agents’ reported utilities 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ 𝑈 𝑛 . Agents need not report their true utilities.

They report their utilities strategically to optimize their total utility possibly taking into account

what (they think) other agents report. If agents are always incentivized to report their true utilities,

no matter what others do, then the mechanism is truthful:

Definition 1 ((Dominant-strategy) Truthfulness). Let𝑈𝑖 be agent 𝑖’s utility function
parameterized by 𝑖’s true utility vector 𝑢𝑖 . A randomized mechanism𝑀 is (𝜖, 𝛿)-truthful if for every 𝑖 ,
𝑢′𝑖 ∈ 𝑈 , and 𝑢−𝑖 ∈ 𝑈 𝑛−1, we have4:

E𝑧∼𝑀 (𝑢𝑖 ,𝑢−𝑖) [𝑈𝑖 (𝑧)] ≥ (1 − 𝜖) E𝑧∼𝑀 (𝑢′𝑖 ,𝑢−𝑖) [𝑈𝑖 (𝑧)] − 𝛿.

If 𝜖, 𝛿 = 0, then𝑀 is exactly truthful. Approximate truthfulness is desirable in settings in which the

approximation parameters 𝜖 and 𝛿 tend to 0 as the number of agents 𝑛 grows large. We call this

asymptotic truthful. We next define the classic notion of the core:

Definition 2 (Core). A set of agents𝐴 form a blocking coalition if there exists an allocation 𝑧′ ∈ 𝑍
such that (|𝐴|/𝑛)𝑈𝑖 (𝑧′) ≥ 𝑈𝑖 (𝑧) for every agent 𝑖 ∈ 𝐴 with at least one strict inequality. An allocation
is a core outcome if it admits no blocking coalitions.

In this definition, when a subset 𝐴 of agents deviates, they can choose any feasible allocation with

the full capacity 𝑐 . However, their utility is scaled down by a factor of |𝐴|/𝑛. An alternative way

of defining a core solution is where a deviating coalition 𝐴 could choose any allocation with a

capacity of 𝑐 |𝐴|/𝑛 instead of 𝑐 , but their utilities would not be scaled down [13, 37]. For |𝐴| = 𝑛,
4
Subscript −𝑖 is used to refer to all agents other than agent i.

both notions capture Pareto efficiency. However, for |𝐴| = 1, each notion provides a different

definition of proportionality: one based on utility and one based on capacity.

For divisible goods, a core solution is guaranteed to exist, and it coincides with the max Nash
welfare (MNW) solution5:

Lemma 3 (MNW & core). Suppose that 𝑈𝑖 is differentiable, strictly increasing, and concave for
all agents 𝑖 . The allocation that maximizes

∑
𝑖 log(𝑈𝑖 (𝑧)) subject to 𝑧 ∈ 𝑍 is a core solution of the

public-good allocation problem6.

This lemma shows that the exact MNW solution is a core solution. However, if the optimization

problem is solved approximately, then the solution is not guaranteed to be a core solution. For such

cases, we need an approximation to the core that can still provide a meaningful guarantee.

Definition 4 (Approximate core). For 𝜖, 𝛿 ≥ 0, an allocation 𝑧 ∈ 𝑍 is an (𝜖, 𝛿)-core outcome if
there exists no set of agents 𝐴 ⊆ 𝑁 and no allocation 𝑧′ ∈ 𝑍 such that:

(|𝐴|/𝑛)𝑈𝑖 (𝑧′) ≥ (1 + 𝜖)𝑈𝑖 (𝑧) + 𝛿

for all 𝑖 ∈ 𝐴 with at least one strict inequality.

When 𝜖 and 𝛿 converge asymptotically to 0 as 𝑛 grows large, we call this asymptotic core. We now

provide a lemma to show that approximate MNW implies approximate core.

Lemma 5 (Approximate MNW & core). Let 𝜖, 𝛿 ≥ 0 and 𝑧 ∈ 𝑍 be an allocation that satisfies:

1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧′)
𝑈𝑖 (𝑧) + 𝛿/(1 + 𝜖)

≤ 1 + 𝜖 (1)

for any 𝑧′ ∈ 𝑍 . Then 𝑧 is an (𝜖, 𝛿)-core outcome.

Proof. Suppose for contradiction that 𝑧 is not an (𝜖, 𝛿)-core outcome. Then there exist a set 𝐴

and an allocation 𝑧′ s.t. (|𝐴|/𝑛)𝑈𝑖 (𝑧′) ≥ (1 + 𝜖)𝑈𝑖 (𝑧) + 𝛿 ∀𝑖 ∈ 𝐴 with at least one strict inequality.

This implies: (1/𝑛)∑𝑖∈𝐴𝑈𝑖 (𝑧)/(𝑈𝑖 (𝑧) + 𝛿/(1 + 𝜖)) > 1 + 𝜖 , which contradicts (1). □

3.3 Mechanism Design via Differential Privacy
Our goal is to design a mechanism that attains both approximate truthfulness and core. This can be

accomplished by pursuing an approximate MNW solution in a differentially private (DP) manner, as

DP inherently implies approximate truthfulness (see Lemma 13). Informally, a mechanism satisfies

DP if its output is almost equally likely to be observed on every adjacent inputs. Inputs are deemed

adjacent if they vary in only one element. In the domain of mechanisms for public-good allocation,

inputs represent reported utilities from all agents. Therefore, 𝑢,𝑢′ ∈ 𝑈 𝑛 are regarded as adjacent if

they differ solely in the reported utility of a single agent. We now proceed to present the formal

definition of DP.

Definition 6 (DP [7]). A randomized mechanism 𝑀 is (𝜖, 𝛿)-DP if for any pair of adjacent inputs
𝑢,𝑢′ ∈ 𝑈 𝑛 and every subset of outputs 𝑂 ∈ 𝑍 , it satisfies:

P[𝑀 (𝑢) ∈ 𝑂] ≤ 𝑒𝜖 P[𝑀 (𝑢′) ∈ 𝑂] + 𝛿.

5
Fain et al. [9] present a version of this lemma for homogeneous functions of degree 1 (Corollary 2.3). For completeness, we

provide a proof for the lemma in Appx. C.1.

6
In this paper, all logarithms are natural.

Since the adjacency relation is symmetric, we further have:

P[𝑀 (𝑢) ∈ 𝑂] ≥ 𝑒−𝜖 P[𝑀 (𝑢′) ∈ 𝑂] − 𝑒−𝜖𝛿
≥ 𝑒−𝜖 P[𝑀 (𝑢′) ∈ 𝑂] − 𝛿.

Here, 𝜖 and 𝛿 control the desired level of privacy. In general, smaller values provide stronger privacy

guarantees but result in higher levels of noise being required to be injected, which can adversely

affect the quality of the output. When 𝛿 = 0,𝑀 satisfies the standard 𝜖-DP.

DP is preserved by post-processing, meaning the DP guarantee of a mechanism does not diminish

by manipulating its output. In essence, if𝑀 is (𝜖, 𝛿)-DP, then applying a randomized mapping 𝑓 to

𝑀 (𝑢) retains the (𝜖, 𝛿)-DP property as well ([8, Proposition 2.1]). Rényi differential privacy (RDP) is
a relaxation of DP:

Definition 7 (RDP [30]). A randomized mechanism𝑀 is (𝛼, 𝜖)-RDP with order 𝛼 > 1 if for any
two adjacent inputs 𝑢,𝑢′ ∈ 𝑈 𝑛 , it satisfies: 𝐷𝛼 (𝑀 (𝑢)∥𝑀 (𝑢′)) ≤ 𝜖 , where 𝐷𝛼 is the Rényi divergence
of order 𝛼 defined as:

𝐷𝛼 (𝑃 ∥𝑄) ≜
1

𝛼 − 1

log

(
E𝑥∼𝑄

[(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼])
.

RDP allows for tighter analysis of composition, a key property that enables themodular construction

of DP algorithms. If𝑀1 satisfies 𝜖1-DP and𝑀2 satisfies 𝜖2-DP, then simultaneously releasing the

outputs of𝑀1 and𝑀2 guarantees (𝜖1 + 𝜖2)-DP. Similar guarantee holds for RDP:

Lemma 8 (RDP additivity [30]). Let 𝑀1 and 𝑀2 be (𝛼, 𝜖1)-RDP and (𝛼, 𝜖2)-RDP, respectively.
Then𝑀1,2 defined as𝑀1,2 (𝑢) ≜ (𝑀1 (𝑢), 𝑀2 (𝑢)) is (𝛼, 𝜖1 + 𝜖2)-RDP.

This guarantee holds even when 𝑀2 is chosen adaptively based on the output of 𝑀1. Lemma 8

expresses the intuitive concept of a privacy budget. The cumulative privacy loss during the execution

of an iterative mechanism can be easily tracked using the RDP’s additivity property.

The Gaussian mechanism is a tool to achieve RDP. To provide a formal definition, we first define

the ℓ2 sensitivity.

Definition 9 (L2 sensitivity). Let 𝑓 : 𝑈 𝑛 ↦→ R𝑚 be an𝑚-dimensional function. The ℓ2 sensitivity
of 𝑓 is defined as:

Δ2 (𝑓) ≜ max

𝑢,𝑢′∈𝑈𝑛
∥ 𝑓 (𝑢) − 𝑓 (𝑢′)∥2,

where the max is taken over all adjacent inputs 𝑢 and 𝑢′.

The Gaussian mechanism computes a vector-valued function and perturbs each coordinate with

noise drawn from a Gaussian distribution. The magnitude of the noise is adjusted based on the ℓ2
sensitivity of the function.

Definition 10 (Gaussian mechanism). Let 𝑓 : 𝑈 𝑛 ↦→ R𝑚 be an𝑚-dimensional function with an
ℓ2 sensitivity of Δ2 (𝑓). Denoting a multivariate normal distribution with mean vector 𝜇 and covariance
matrix Σ as N(𝜇, Σ), the Gaussian mechanism𝑀𝐺

𝑓 ,𝛼,𝜖
is defined as follows for 𝛼 > 1 and 𝜖 > 0:

𝑀𝐺
𝑓 ,𝛼,𝜖
(𝑢) ≜ N(𝑓 (𝑢), 𝜎2𝐼𝑚),

where 𝐼𝑚 is the𝑚 ×𝑚 identity matrix, and 𝜎2 = 𝛼Δ2

2
(𝑓)/2𝜖 .

Lemma 11 (Gaussian mechanism & RDP [30]). Let 𝑓 : 𝑈 𝑛 ↦→ R𝑚 be a vector-valued function
with an ℓ2 sensitivity of Δ2 (𝑓). Then𝑀𝐺

𝑓 ,𝛼,𝜖
is (𝛼, 𝜖)-RDP.

Finally, RDP implies DP:

Lemma 12 (RDP to DP [30]). If𝑀 is (𝛼, 𝜖)-RDP,𝑀 is (𝜖+log(1/𝛿)/(𝛼−1), 𝛿)-DP for any 𝛿 ∈ (0, 1).

And DP implies approximate truthfulness.

Lemma 13 (DP to truthfulness). Let𝑀 be (𝜖, 𝛿)-DP for some 𝜖, 𝛿 < 1. Then𝑀 is (𝜖, 𝛿)-truthful.

Proof. Consider any agent 𝑖 , and let𝑈𝑖 : 𝑍 ↦→ [0, 1] be agent 𝑖’s utility parameterized according

to their true utility vector 𝑢𝑖 . Define the set 𝑆 (𝑡) = {𝑧 | 𝑈𝑖 (𝑧) > 𝑡}. Since 𝑀 is (𝜖, 𝛿)-DP, for any
𝑢 = (𝑢𝑖 , 𝑢−𝑖) ∈ 𝑈 𝑛 and 𝑢′𝑖 ∈ 𝑈 , the following inequality holds:

P[𝑀 (𝑢) ∈ 𝑆 (𝑡)] ≥ 𝑒−𝜖 P[𝑀 (𝑢′𝑖 , 𝑢−𝑖) ∈ 𝑆 (𝑡)] − 𝛿. (2)

Given the definition of 𝑆 (𝑡), we can rewrite (2) as:

P[𝑈𝑖 (𝑀 (𝑢)) > 𝑡] ≥ 𝑒−𝜖 P[𝑈𝑖 (𝑀 (𝑢′𝑖 , 𝑢−𝑖)) > 𝑡] − 𝛿. (3)

Now, considering any random variable𝑋 ∈ [0, 1], we know that E[𝑋] =
∫

1

0
P[𝑋 > 𝑡]𝑑𝑡 . Integrating

over both sides of (3) yields:

E𝑧∼𝑀 (𝑢) [𝑈𝑖 (𝑧)] ≥ 𝑒−𝜖 E𝑧∼𝑀 (𝑢′
𝑖
,𝑢−𝑖) [𝑈𝑖 (𝑧)] − 𝛿

≥ (1 − 𝜖) E𝑧∼𝑀 (𝑢′
𝑖
,𝑢−𝑖) [𝑈𝑖 (𝑧)] − 𝛿,

where the second inequality follows because 𝑒−𝜖 ≥ 1 − 𝜖 . □

4 ALGORITHM
In this section, we present the main artifact of our work, PPGA, an algorithm that directly maximizes

the NW objective in a DP manner. Our approach involves a transformation of the NW objective

into a separable form. Initially, we reframe the optimization problem of Lemma 3 into a consensus

problem. Next, we convert the consensus problem into a distributed optimization using ADMM.

Finally, to insure truthfulness, we deploy the Gaussian mechanism.

4.1 Distributed Maximization of Nash Welfare
Consider the NW objective function 𝜃 (𝑧) = ∑

𝑖 𝜃𝑖 (𝑧) =
∑
𝑖 log(𝑈𝑖 (𝑧)). This function does not split

as 𝑧 is shared across terms. To make the objective separable, we rewrite the program with local

variables 𝑥𝑖 and a global variable 𝑧:

Max.

∑︁
𝑖=1

𝜃𝑖 (𝑥𝑖),

s.t. 𝑧 = 𝑥𝑖 ∀𝑖 ∈ 1, . . . , 𝑛,

𝑥𝑖 ∈ 𝑍 ∀𝑖 ∈ 1, . . . , 𝑛.

(4)

This is referred to as the global variable consensus problem, as it requires all local variables to reach

agreement by being equal. Consensus transforms the additive objective, which does not split, into

a separable objective, which splits easily. Given the new separable objective, we next apply ADMM

to solve the optimization problem in a distributed way. To this end, we first construct the partial

augmented Lagrangian [20, 34] for (4):

𝐿𝜌 (𝑥, 𝑧,𝛾) =
∑︁
𝑖

𝐿
𝜌

𝑖
(𝑥𝑖 , 𝑧, 𝛾𝑖)

=
∑︁
𝑖

(
𝜃𝑖 (𝑥𝑖) − 𝛾𝑇𝑖 (𝑥𝑖 − 𝑧) −

𝜌

2

∥𝑥𝑖 − 𝑧∥22
)
,

where 𝛾𝑖 is a dual variable corresponding to the constraint 𝑧 = 𝑥𝑖 , and 𝜌 > 0 is a penalty parameter.

Note that 𝐿𝜌 is also separable in 𝑥 = (𝑥1, . . . , 𝑥𝑛) and splits into 𝑛 separate functions 𝐿
𝜌

𝑖
. Given this,

ADMM can be used to efficiently solve the convex program. ADMM is an iterative algorithm which

consists of the following iterations:

𝑥
(𝑘)
𝑖
B argmax𝑥∈𝑍 (𝐿

𝜌

𝑖
(𝑥, 𝑧 (𝑘−1) , 𝛾 (𝑘−1)

𝑖
)) ∀𝑖 ∈ 1, . . . , 𝑛, (5a)

𝑧 (𝑘) B argmax𝑧 (𝐿𝜌 (𝑥 (𝑘) , 𝑧, 𝛾 (𝑘−1))), (5b)

𝛾
(𝑘)
𝑖
B 𝛾

(𝑘−1)
𝑖

+ 𝜌 (𝑥 (𝑘)
𝑖
− 𝑧 (𝑘)) ∀𝑖 ∈ 1, . . . , 𝑛. (5c)

Since 𝐿
𝜌

𝑖
’s are separate functions in 𝑥 , we can solve (5a) for each 𝑥

(𝑘)
𝑖

separately in parallel. We

can also derive closed-form solution to (5b) by setting 𝜕𝐿𝜌/𝜕𝑧 = ∑
𝑖

(
𝛾
(𝑘−1)
𝑖

+ 𝜌 (𝑥 (𝑘)
𝑖
− 𝑧 (𝑘))

)
= 0,

which implies:

𝑧 (𝑘) =
1

𝑛

∑︁
𝑖

𝑥
(𝑘)
𝑖
+ 1

𝑛𝜌

∑︁
𝑖

𝛾
(𝑘−1)
𝑖

. (6)

ADMM is guaranteed to find the MNW solution [1]. This means that ADMM is guaranteed to

produce a core solution. However, ADMM is not truthful. To address this issue, we next modify

ADMM to design a mechanism that guarantees DP (and consequently truthful).

4.2 DP for Maximizing Nash Welfare
To illustrate our proposed mechanism, it might be beneficial to interpret ADMM as an interactive

process. At iteration 𝑘 , each agent 𝑖 calculates local variable 𝑥
(𝑘)
𝑖

autonomously. Given 𝑧 (𝑘−1)

and 𝛾
(𝑘−1)
𝑖

, the value of 𝑥
(𝑘)
𝑖

depends solely on agent 𝑖’s own utility. With 𝑥
(𝑘)
𝑖

and 𝑧 (𝑘) known,

each agent 𝑖 independently calculates 𝛾
(𝑘)
𝑖

. These local variables are then submitted by agents,

aggregated by the algorithm, and used to compute the global variable 𝑧 (𝑘) . This resultant global
variable is broadcast back to the agents for the next iteration.

Now, in ensuring DP, it is imperative that the global variable’s value remains insensitive to any

individual local variable. To achieve this, we employ the Gaussian mechanism, adding a normal

random vector 𝑞 (𝑘) to 𝑧 (𝑘) :

𝑧 (𝑘) =
1

𝑛

∑︁
𝑖

𝑥
(𝑘)
𝑖
+ 1

𝑛𝜌

∑︁
𝑖

𝛾
(𝑘−1)
𝑖

+ 𝑞 (𝑘) . (7)

According to (5c), we have: ∑︁
𝑖

𝛾
(𝑘)
𝑖

=
∑︁
𝑖

(
𝛾
(𝑘−1)
𝑖

+ 𝜌 (𝑥 (𝑘)
𝑖
− 𝑧 (𝑘))

)
. (8)

Replacing 𝑧 (𝑘) from (7) into (8), we get

∑
𝑖 𝛾
(𝑘)
𝑖

= −𝜌𝑛𝑞 (𝑘) . Using this, we can rewrite (7) as:

𝑧 (𝑘) =
1

𝑛

∑︁
𝑖

𝑥
(𝑘)
𝑖
− 𝑞 (𝑘−1) + 𝑞 (𝑘) . (9)

This update rule shows how 𝑧 (𝑘) can be calculated by adding Gaussian noise to the average of

𝑥
(𝑘)
𝑖

’s. The magnitude of the noise can be adjusted to achieve a desired DP guarantee.

Alg. 1 shows the pseudocode of our proposed (differentially) private public-good allocation

mechanism, PPGA. The algorithm takes as parameters 𝐾 , 𝜖 , 𝛿 , and 𝛼 . The value of 𝐾 dictates

the number of iterations that the algorithm performs. The remaining parameters–𝜖 , 𝛿 , and 𝛼–set

the desired level of privacy guarantee. Specifically, 𝜖 and 𝛿 directly control the level of DP (and

consequently the truthfulness) that the algorithm ensures (see Thm. 15). Lastly, 𝛼 governs the

variance of the noise according to the Gaussian mechanism.

Algorithm 1: Private public-good allocation (PPGA)

1 Parameters: 𝐾 ∈ Z, 𝜖, 𝛿 ∈ (0, 1), 𝛼 > 1

2 𝜖′ ← (1/𝐾) (𝜖 − log(1/𝛿)/(𝛼 − 1));
3 𝜎2 ← 𝛼/𝑛2𝜖′;

4 𝑞 (0) , 𝑧 (0) , 𝛾 (0)
𝑖
, 𝑥
(0)
𝑖

= 0𝒎 ∀𝑖 ∈ 1, . . . , 𝑛;

5 for 𝑘 = 1, . . . , 𝐾 do

6 𝑥
(𝑘)
𝑖
← argmax𝑥𝑖 ∈𝑍 (𝐿

𝜌

𝑖
(𝑥𝑖 , 𝑧 (𝑘−1) , 𝛾 (𝑘−1)

𝑖
)) ∀𝑖 ∈ 1, . . . , 𝑛;

7 𝑞 (𝑘) ∼ N(0, 𝜎2𝐼𝑚);
8 𝑧 (𝑘) ← (1/𝑛)∑𝑖 𝑥

(𝑘)
𝑖
+ 𝑞 (𝑘) − 𝑞 (𝑘−1)

;

9 𝛾
(𝑘)
𝑖
← 𝛾

(𝑘−1)
𝑖

+ 𝜌 (𝑥 (𝑘)
𝑖
− 𝑧 (𝑘)) ∀𝑖 ∈ 1, . . . , 𝑛;

10 end

11 𝑧 ← (1/𝐾)∑𝐾
𝑘=1

𝑧 (𝑘) ;

12 𝑧 ← Π𝑍 (𝑧);
13 Output: 𝑧

At each iteration 𝑘 , each agent 𝑖 privately calculates their optimal allocation 𝑥
(𝑘)
𝑖

given𝛾
(𝑘−1)
𝑖

and

𝑧 (𝑘−1)
. This step can be efficiently executed in parallel for all agents. The algorithm then publicly

releases 𝑧 (𝑘) as a noisy average of 𝑥
(𝑘)
𝑖

’s. Given 𝑧 (𝑘) and 𝑥 (𝑘)
𝑖

, each agent 𝑖 then privately calculates

𝛾
(𝑘)
𝑖

for the next iteration. After 𝐾 iterations, the algorithm calculates 𝑧, the time average of 𝑧 (𝑘) ’s
and returns 𝑧, the Euclidean projection of 𝑧 onto 𝑍 7

.

Remarks. The integration of DP into ADMM inherently presents a trade-off between accuracy

and privacy (truthfulness). Achieving a more accurate MNW solution requires a higher number of

iterations. Fixing the amount of privacy loss per iteration, a higher number of iterations means

a higher cumulative privacy loss, resulting in a weaker privacy guarantee. On the other hand,

achieving a stronger privacy guarantee requires a lower cumulative privacy loss. Fixing the number

of iterations, a lower cumulative privacy loss means a higher level of noise per iteration, resulting

in diminished accuracy. In PPGA, the expected value of the noise magnitude at each iteration is:

E
[
∥𝑞 (𝑘) ∥2

2

]
=𝑚𝜎2 =

𝐾𝑚𝛼

𝑛2 (𝜖 − log(1/𝛿)/(𝛼 − 1)) .

As a final remark, we note that our proposed algorithms is not actually online or interactive. All

computations are performed by the algorithm itself rather than by the agents. The agents submit

their private utility vectors and at the end observe a final allocation vector. As we prove in Sec. 5,

our algorithm guarantees DP. As a result, agents are assured that their private information is not

revealed to other agents. Our mechanism also guarantees asymptotic truthfulness, which means

that as 𝑛 increases, agents do not have any incentives to misreport their private utilities.

5 ANALYSIS
In this section, we first show that PPGA guarantees asymptotic truthfulness. We then show that

our mechanism produces an asymptotic core solution with high probability. As discussed in Sec.

4, to establish asymptotic properties of PPGA, we set 𝐾 = Θ(𝑛), 𝜖 = Θ(1/log(𝑛)), 𝛿 = Θ(1/
√
𝑛),

𝛼 = Θ(log
2 (𝑛)), and𝑚 = 𝑜 (

√
𝑛). All omitted proofs are provided in Appx. C.

7Π𝑍 (𝑧) = argmin𝑧′∈𝑍 ∥𝑧 − 𝑧′ ∥22 .

5.1 Asymptotic truthfulness
To analyze the end-to-end privacy guarantee of Alg. 1, we separately analyze the DP guarantee of

each iteration. Leveraging the properties of the Gaussian mechanism, we show that each iteration of

the algorithm ensures (𝛼, 𝜖′)-RDP.With the additivity property of RDP (Lemma 8), after𝐾 iterations,

Alg. 1 achieves (𝛼, 𝐾𝜖′)-RDP. It then easily follows from Lemma 12 that PPGA is (𝜖, 𝛿)-DP.

Lemma 14. Alg. 1 is (𝜖, 𝛿)-DP.

Proof. Alg. 1 is a composition of 𝐾 iterations. At each iteration 𝑘 , the private data is 𝑥 (𝑘) , and

the publicly released data is 𝑧 (𝑘) . Note that 𝛾 (𝑘) is not publicly released as each 𝛾
(𝑘)
𝑖

is privately

calculated for each agent 𝑖 . The 𝑧-update step at Line 8 of Alg. 1 is a direct application of the

Gaussian mechanism with vector-valued function 𝑓 (𝑥) = 1

𝑛

∑
𝑖 𝑥𝑖 . Let 𝑥 and 𝑥 ′ be two adjacent

inputs that are identical except in their 𝑖th element, 𝑥𝑖 ≠ 𝑥
′
𝑖 . Then ∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥2 = 1

𝑛
∥𝑥𝑖 − 𝑥 ′𝑖 ∥2.

Since 𝑥𝑖 , 𝑥
′
𝑖 ∈ [0, 1]𝑚 and ∥𝑥𝑖 ∥1, ∥𝑥 ′𝑖 ∥1 ≤ 1, we have ∥𝑥𝑖 − 𝑥 ′𝑖 ∥2 ≤ (∥𝑥𝑖 ∥22 + ∥𝑥 ′𝑖 ∥22)1/2 ≤

√
2 . This

means Δ2 (𝑓) ≤
√

2/𝑛. Therefore, it follows from Lemma 11 that each iteration 𝑘 of the algorithm

is (𝛼, 𝜖′)-RDP. Consequently, according to Lemma 8, the composition of the 𝐾 iterations satisfies

(𝛼, 𝜖)-RDP, where 𝜖 = 𝐾𝜖′ = 𝜖 − log(1/𝛿)/(𝛼 − 1). The calculation of 𝑧 and projecting it into 𝑍 are

merely post-processing steps. Since DP is immune to post-processing, it follows from Lemma 12

that Alg. 1 is (𝜖, 𝛿)-DP □

We next establish our first technical result:

Theorem 15. Alg. 1 is asymptotically truthful.

Proof. Since Alg. 1 is (𝜖, 𝛿)-DP, it follows directly from Lemma 13 that it is (𝜖, 𝛿)-truthful. Given
that 𝛿 = Θ(1/

√
𝑛) and 𝜖 = Θ(1/log(𝑛)), Alg. 1 is asymptotically truthful. □

5.2 Asymptotic Core
Let 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝛾 = (𝛾1, . . . , 𝛾𝑛), 𝑤 = (𝑥, 𝑧,𝛾) ∈ 𝑊 ≜ (𝑍𝑛,R𝑚,R𝑚𝑛), and define 𝑤 (𝑘) =

(𝑥 (𝑘) , 𝑧 (𝑘) , 𝛾 (𝑘)). To show that 𝑧 is an approximate core solution, it is essential to derive an upper

bound on max

𝑧∈𝑍

∑
𝑖
𝑈𝑖 (𝑧)
𝑈𝑖 (𝑧) . To achieve this, we initially derive an upper bound on max

𝑧∈𝑍

∑
𝑖
𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥) , where

𝑥 = 1

𝐾

∑
𝑘 𝑥
(𝑘)

. Subsequently, we establish an upper bound on the distance between 𝑧 and any 𝑥𝑖 .

Leveraging the 𝐿-Lipschitz continuity of𝑈𝑖 (𝑥), we utilize Lemma 5 to establish 𝑧 as an approximate

core solution:

Lemma 16. Let {𝑤 (𝑘) } and {𝑞 (𝑘) } be sequences generated by Alg. 1. Then for any 𝑧 ∈ 𝑍 , we have:

1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥𝑖)

≤ 1 + 𝜌
𝐾

𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) + 𝜌

2𝐾
. (10)

Lemma 16 provides and upper bound on

∑
𝑖
𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥𝑖) . Yet, to show that Alg. 1 finds an approximate

core solution, we need an upper bound on

∑
𝑖
𝑈𝑖 (𝑧)
𝑈𝑖 (𝑧) . We achieve this by upper-bounding the distance

between 𝑧 and any 𝑥𝑖 :

Lemma 17. Let {𝑤 (𝑘) } and {𝑞 (𝑘) } be sequences generated by Alg. 1. Let 𝑤∗ = (𝑥∗, 𝑧∗, 𝛾∗) be the
solution to (4), with 𝑥∗𝑖 = 𝑧

∗ for all 𝑖 . Then we have:

∥𝑥 −𝐺𝑧∥2 ≤
1

𝜌𝐾
∥𝛾∗∥2 +

1

𝜌𝐾

(
2𝑛𝜌2

𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧∗)𝑇𝑞 (𝑘) + 𝑛𝜌2∥𝑧∗∥2
2
+ ∥𝛾∗∥2

2

) 1

2

. (11)

Finally, we establish PPGA’s asymptotic fairness.

Theorem 18. The outcome of Alg. 1 is an asymptotic core solution with probability 1 − 1

𝑛
− 1

𝑛𝑚
.

6 EXPERIMENTS
In this section, we aim to show that PPGA can be deployed in practice to solve large-scale

public-good allocation problems. To this end, we implement Alg. 1 in Python using CVXPY, an
open-source Python-embedded modeling language for convex optimization problems [6]. PPGA

is highly parallelizable, particularly in the concurrent computation of 𝑥 and 𝛾 for all agents.

We leverage this feature in our implementation by parallelizing the execution of the code that

computes 𝑥 and 𝛾 across agents, distributing the computational workload across multiple pro-

cesses using Python’s multiprocessing package. The code for our implementation is provided at

https://github.com/uwaterloo-mast/PPGA.

To conduct experiments, we leverage real-world data from Pabulib.org, an open participatory

budgeting library [40]. Our experiments focus on 12 election instances, selected primarily based

on the size of their voter population and the average number of votes per voter
8
. Each instance

involves a collection of projects with associated costs and a designated total budget. Voters express

their preferences for the projects by casting approval votes for one or more projects. We summarize

the key characteristics of these election instances in Appx. B, and full details of each instance, such

as project costs, are provided with our code (located in the final_data folder).
As just mentioned, all election instances involve approval votes and indivisible projects. We

utilized these instances to obtain new instances in which agents have cardinal utilities, and frac-

tional allocations are acceptable. To transform approval votes into cardinal utilities, we adopt the

(randomized) cost-utility approach [11] using the following procedure: For each voter 𝑖 and project

𝑗 , if 𝑖 does not approve 𝑗 , we set 𝑢𝑖 𝑗 = 0. However, if 𝑖 does approve 𝑗 , we sample 𝑢𝑖 𝑗 uniformly

from the interval [0.85, 1.15]. This method ensures that the utility of each voter is approximately

proportional to the budget allocated to the projects they support
9
.

In the concluding remarks of Sec. 4.2, we discuss the impact of parameter values on the added

noise. In the opening paragraph of Sec. 5, we establish guidelines for these parameters to guarantee

our asymptotic properties. There are also established practical norms for acceptable 𝜖 and 𝛿 values in

differential privacy. We follow these norms and instantiate the parameters accordingly. Specifically,

we set 𝜖 = 𝑐𝜖/log(𝑛), 𝛿 = 𝑐𝛿/
√
𝑛, and 𝐾 = 𝑐𝐾𝑛, where 𝑐𝜖 = 1.5, 𝑐𝛿 = 0.3, and 𝑐𝐾 = 0.001. We further

set 𝛼 such that log(1/𝛿)/(𝛼 − 1) = 𝜖/2. This way, values for 𝜖 and 𝛿 approximate 0.3 and 0.001,

respectively, keeping the noise magnitude (E
[
∥𝑞 (𝑘) ∥2

2

]
) under 3e-4 for the majority of instances.

To empirically study properties of PPGA, we utilize our implementation and compare the

outcome of PPGA with a core solution for each instance. To find a core solution, we solve the

convex optimization of Lemma 3 by running Alg. 1 without adding noise. We compare our results

using the following metrics:

• Social welfare (SW).We calculate the social welfare for an allocation 𝑧 as (1/𝑛)∑𝑖 𝑈𝑖 (𝑧). SW
serves as an indicator of the overall satisfaction achieved collectively by all agents from the

allocation.

• Proportionality score (PS). We define the proportionality score of voter 𝑖 for an allocation 𝑧 as

𝑈𝑖 (𝑧)/max𝑧′∈𝑍 𝑈𝑖 (𝑧′). PS evaluates whether each voter receives their fair share relative to what

8
At the time of our selection, there were about 60 instances with more than 10k votes, many of which with only a single

vote per voter.

9
Suppose that the set of projects supported by agent 𝑖 is denoted as 𝑃𝑖 . Then, 𝑖’s utility is modeled as𝑈𝑖 (𝑧) =

∑
𝑗 ∈𝑃𝑖 𝑢𝑖 𝑗𝑧 𝑗 ,

where 𝑢𝑖 𝑗 ∼ 𝑈 (0.85, 1.15) for 𝑗 ∈ 𝑃𝑖 . Here, for any 𝑧 ∈ 𝑍 , 𝑧 𝑗 (where 𝑧 𝑗 ≤ 𝑠 𝑗 /𝑐) represents the fraction of the total budget

allocated to project 𝑗 . Therefore, 𝑖’s utility is roughly proportional to the budget allocated to projects supported by 𝑖 .

https://github.com/uwaterloo-mast/PPGA
http://pabulib.org/

Inst.

Core’s PS PPGA’s PS SD

Min (×𝒏) Avg Min (×𝒏) Avg (÷𝒎)

1 91.06 0.27 88.10 0.27 0.00007

2 236.8 0.29 9.411 0.28 0.00016

3 235.1 0.18 157.7 0.17 0.00014

4 216.5 0.38 62.47 0.38 0.00022

5 15.01 0.32 15.10 0.32 0.00009

6 246.0 0.38 36.47 0.38 0.00030

7 11.05 0.28 10.49 0.28 0.00044

8 122.6 0.32 127.4 0.32 0.00007

9 163.4 0.33 163.2 0.33 0.00002

10 152.5 0.16 116.9 0.15 0.00033

11 519.8 0.44 503.4 0.44 0.00002

12 261.2 0.57 69.07 0.56 0.00003

Table 1. Proportionality score and statistical distance.

1 2 3 4 5 6 7 8 9 10 11 12

0.94

0.96

0.98

1.00

1.02

Election instances

N
o
r
m
a
l
i
z
e
d
S
W

Fig. 1. Social welfare of PPGA normalize to that of core.

they could achieve in the best-case scenario. This is captured in the notion of proportionality,

which is satisfied if there is no other allocation that improves the utility of at least one voter by a

factor greater than 𝑛 (|𝐴| = 1 in Def. 2). In other words, to satisfy proportionality, the PS value

should be ≥ 1/𝑛 for all voters, or equivalently, the minimum value of PS across voters multiplied

by 𝑛 should be ≥ 1. We report both the minimum (multiplied by 𝑛) and the average of PS values

across all voters.

• Statistical distance (SD).Wemeasure the distance between 𝑧 and a core solution 𝑧∗ by computing

their total variation distance, defined as (1/2)∥𝑧 − 𝑧∗∥1. This distance, which also serves as a

metric10, quantifies the statistical proximity between the allocation 𝑧 and a core solution 𝑧∗.
Two allocations over𝑚 items are considered statistically close if their total variation distance

is a negligible function in𝑚. To facilitate comparison, we report the normalized total variation

distance by dividing it by𝑚.

Since PPGA is a randomized algorithm, we report the average value of each metric over 50 runs of

PPGA for each instance.

Fig. 1 illustrates the social welfare under PPGA normalized to that under the core solution, while

Tab. 1 summarizes proportionality scores and statistical distances across all election instances.

10
A metric on a set satisfies: (1) non-negativity, (2) identity of indiscernibles, (3) symmetry, and (4) the triangle inequality.

These results uncover several crucial insights. Firstly, the statistical distance between the budget

allocation under PPGA and the core solution remains consistently close to zero in all instances,

hovering below 0.0004 for all cases. Secondly, the observed discrepancy in social welfare values

between PPGA and the core solution consistently falls below 3% across all election instances.

Lastly, the minimum PS value ×𝑛 exceeds 1 for all instance, indicating that PPGA satisfies the

proportionality criteria for all instances. The average PS values tend to be slightly higher under the

core solution for some instances, but the discrepancy between the average PS values under PPGA

and the core remains below 2% in all instances. Collectively, these findings strongly signify the

high level of fairness achieved by PPGA.

Remarks. We note that the primary objective of our experiments is not to empirically validate

the properties of PPGA. Rather, our goal is to demonstrate the practical applicability of PPGA to

large-scale public-good allocation problems. However, we anticipate our results to be robust for

any other linear utility models. This stems from our proof in Thm. 18, where we demonstrate that

the distance between 𝑥 and 𝑧 asymptotically approaches zero with high probability. For any linear

utility model, it can be shown that the distance between 𝑥 and 𝑧∗ also asymptotically approaches

zero with high probability. Consequently, we would expect the statistical distance between 𝑧 and

𝑧∗ to be negligible for any linear utility model. For other concave utility models, the statistical

distance between 𝑧 and 𝑧∗ might be slightly higher, depending on the curvature of the function.

Nevertheless, one can demonstrate that the difference in the value of the Nash-welfare objective

for 𝑧 and 𝑧∗ asymptotically approaches zero with high probability, implying similar results for PS.

7 CONCLUSION
In this paper, we introduce PPGA, a mechanism designed for the fair and truthful allocation of

divisible public goods. PPGA achieves fairness by directly maximizing the NW objective and

ensures truthfulness by deploying the Gaussian mechanism from differential privacy. We showed

that PPGA is asymptotically truthful and finds an asymptotic core solution with high probability.

By conducting experiments using real-world data from participatory budgeting elections, we

showcased the practical applicability of PPGA.

REFERENCES
[1] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011. Distributed optimization and

statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning 3,

1 (2011), 1–122.

[2] Stephen P Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge University Press.

[3] Vincent Conitzer, Rupert Freeman, and Nisarg Shah. 2017. Fair public decision making. In Proceedings of the 18th ACM
Conference on Economics and Computation (EC). 629–646.

[4] Rachel Cummings, Michael Kearns, Aaron Roth, and Zhiwei Steven Wu. 2015. Privacy and truthful equilibrium

selection for aggregative games. In Proceedings of the International Conference on Web and Internet Economics (WINE).
286–299.

[5] Gerard Debreu and Herbert Scarf. 1963. A limit theorem on the core of an economy. International Economic Review 4,

3 (1963), 235–246.

[6] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling language for convex optimization.

The Journal of Machine Learning Research 17, 1 (2016), 2909–2913.

[7] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrating noise to sensitivity in private data

analysis. In Proceedings of the 3rd Conference on Theory of Cryptography (TCC). 265–284.
[8] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differential Privacy. Theoretical Computer

Science 9, 3-4 (2014), 211–407.
[9] Brandon Fain, Ashish Goel, and Kamesh Munagala. 2016. The core of the participatory budgeting problem. In

Proceedings of the 12th International Conference on Web and Internet Economics (WINE). 384–399.
[10] Brandon Fain, Kamesh Munagala, and Nisarg Shah. 2018. Fair allocation of indivisible public goods. In Proceedings of

the 19th ACM Conference on Economics and Computation (EC). 575–592.

[11] Piotr Faliszewski, Jarosław Flis, Dominik Peters, Grzegorz Pierczyński, Piotr Skowron, Dariusz Stolicki, Stanisław

Szufa, and Nimrod Talmon. 2023. Participatory budgeting: Data, tools, and analysis. arXiv preprint arXiv:2305.11035
(2023).

[12] Till Fluschnik, Piotr Skowron, Mervin Triphaus, and Kai Wilker. 2019. Fair knapsack. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), Vol. 33. 1941–1948.

[13] Duncan K Foley. 1970. Lindahl’s Solution and the Core of an Economy with Public Goods. Econometrica: Journal of the
Econometric Society 38, 1 (1970), 66–72.

[14] Rupert Freeman, David M Pennock, Dominik Peters, and Jennifer Wortman Vaughan. 2019. Truthful aggregation of

budget proposals. In Proceedings of the 20th ACM Conference on Economics and Computation (EC). 751–752.
[15] Daniel Gabay and Bertrand Mercier. 1976. A dual algorithm for the solution of nonlinear variational problems via

finite element approximation. Computers & Mathematics with Applications 2, 1 (1976), 17–40.
[16] Donald Bruce Gillies. 1953. Some theorems on n-person games. Princeton University.

[17] Roland Glowinski and Americo Marroco. 1975. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par

pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Revue française d’automatique, informatique,
recherche opérationnelle. Analyse numérique 9, R2 (1975), 41–76.

[18] Ashish Goel, Anilesh K Krishnaswamy, Sukolsak Sakshuwong, and Tanja Aitamurto. 2019. Knapsack voting for

participatory budgeting. ACM Transactions on Economics and Computation (TEAC) 7, 2 (2019), 1–27.
[19] Bingsheng He and Xiaoming Yuan. 2012. On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating

Direction Method. SIAM J. Numer. Anal. 50, 2 (2012), 700–709.
[20] Magnus R Hestenes. 1969. Multiplier and gradient methods. Journal of Optimization Theory and Applications 4, 5

(1969), 303–320.

[21] Justin Hsu, Zhiyi Huang, Aaron Roth, Tim Roughgarden, and Zhiwei Steven Wu. 2014. Private matchings and

allocations. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC). 21–30.
[22] Justin Hsu, Zhiyi Huang, Aaron Roth, and Zhiwei StevenWu. 2016. Jointly private convex programming. In Proceedings

of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 580–599.
[23] ZonghaoHuang, Rui Hu, Yuanxiong Guo, Eric Chan-Tin, and Yanmin Gong. 2019. DP-ADMM: ADMM-based distributed

learning with differential privacy. IEEE Transactions on Information Forensics and Security 15 (2019), 1002–1012.

[24] Zhenqi Huang, Sayan Mitra, and Nitin Vaidya. 2015. Differentially private distributed optimization. In Proceedings of
the 16th International Conference on Distributed Computing and Networking. 1–10.

[25] Zhiyi Huang and Xue Zhu. 2018. Near optimal jointly private packing algorithms via dual multiplicative weight update.

In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 343–357.
[26] Zhiyi Huang and Xue Zhu. 2019. Scalable and Jointly Differentially Private Packing. (2019).

[27] Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar, Abhradeep Thakurta, and Lun Wang. 2019. Towards practical

differentially private convex optimization. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 299–316.
[28] László Lovász and Santosh Vempala. 2007. The geometry of logconcave functions and sampling algorithms. Random

Structures & Algorithms 30, 3 (2007), 307–358.
[29] Frank McSherry and Kunal Talwar. 2007. Mechanism design via differential privacy. In Proceedings of the 48th Annual

IEEE Symposium on Foundations of Computer Science (FOCS). 94–103.
[30] Ilya Mironov. 2017. Rényi differential privacy. In Proceedings of the 30th IEEE Computer Security Foundations Symposium

(CSF). 263–275.
[31] Thomas J Muench. 1972. The core and the Lindahl equilibrium of an economy with a public good: An example. Journal

of Economic Theory 4, 2 (1972), 241–255.

[32] Kamesh Munagala, Yiheng Shen, Kangning Wang, and Zhiyi Wang. 2022. Approximate Core for Committee Selection

via Multilinear Extension and Market Clearing. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2229–2252.

[33] Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. 2021. Proportional participatory budgeting with additive

utilities. Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS) (2021), 12726–12737.
[34] Michael JD Powell. 1969. A method for nonlinear constraints in minimization problems. Optimization (1969), 283–298.

[35] Ariel D Procaccia. 2013. Cake cutting: Not just child’s play. Commun. ACM 56, 7 (2013), 78–87.

[36] Ariel D Procaccia and Moshe Tennenholtz. 2009. Approximate mechanism design without money. In Proceedings of the
10th ACM Conference on Electronic Commerce (EC). 177–186.

[37] Herbert E Scarf. 1967. The core of an N person game. Econometrica: Journal of the Econometric Society (1967), 50–69.

[38] Wei Shi, Qing Ling, Kun Yuan, GangWu, andWotao Yin. 2014. On the linear convergence of the ADMM in decentralized

consensus optimization. IEEE Transactions on Signal Processing 62, 7 (2014), 1750–1761.

[39] Robert L Smith. 1984. Efficient Monte Carlo procedures for generating points uniformly distributed over bounded

regions. Operations Research 32, 6 (1984), 1296–1308.

[40] Dariusz Stolicki, Stanislaw Szufa, and Nimrod Talmon. 2020. Pabulib: A Participatory Budgeting Library. arXiv preprint
arXiv:2012.06539 (2020).

[41] Roman Vershynin. 2018. High-dimensional probability: An introduction with applications in data science. Vol. 47.
Cambridge University Press.

[42] Tao Zhang and Quanyan Zhu. 2016. Dynamic differential privacy for ADMM-based distributed classification learning.

IEEE Transactions on Information Forensics and Security 12, 1 (2016), 172–187.

[43] Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu. 2018. Improving the privacy and accuracy of ADMM-based

distributed algorithms. In Proceedings of the 35th International Conference on Machine Learning (ICML). 5796–5805.

A NOTATIONS

Table . List of notations

Notation Description

𝑛 Number of agents

𝑚 Number of public items

𝑠 𝑗 Size of item 𝑗

𝑠 Size vector, i.e., (𝑠1, . . . , 𝑠𝑚)
𝑐 Total capacity

𝑧 𝑗 Fraction of item 𝑗 that is allocated

𝑧 Allocation variable, i.e., (𝑧1, . . . , 𝑧𝑚)
𝑍 Set of all feasible allocations, i.e., {𝑧 ∈ [0, 1]𝑚 | 𝑠𝑇𝑧 ≤ 𝑐}

𝑈𝑖 (𝑧) Agent 𝑖’s utility function for allocation 𝑧

𝑢𝑖 Agent 𝑖’s utility vector, i.e., parameters of𝑈𝑖 : (𝑢𝑖1, . . . , 𝑢𝑖𝑑)
𝑈 Set [0, 1]𝑑
𝑢 Utility vectors for all agents, i.e., (𝑢1, . . . , 𝑢𝑛)
𝑢−𝑖 Utility vector of all agents except agent 𝑖 , i.e., (𝑢1, . . . , 𝑢𝑖−1, 𝑢𝑖+1, . . . , 𝑢𝑛)
𝑀 (𝑢) Randomized mechanism that maps 𝑢 ∈ 𝑈 𝑛 to probability distribution over 𝑍

𝜃𝑖 (𝑧) Logarithm of agent 𝑖’s utility, i.e, log(𝑈𝑖 (𝑧))
𝜃 Summation of logarithm of all agents’ utilities, i.e.,

∑
𝑖 𝜃𝑖

𝐿 Lipschitz parameter of𝑈𝑖 (𝑧)’s
𝜖 Multiplicative approximation factor for truthfulness, core, and DP

𝛿 Additive approximation factor for truthfulness, core, and DP

𝛼 Rényi divergence parameter

N(𝜇, Σ) Multivariate normal distribution with mean vector 𝜇 and covariance matrix Σ
𝐾 Total number of iterations in Alg. 1

𝑧 (𝑘) Global allocation variable at iteration 𝑘 , i.e., (𝑧 (𝑘)
𝑖1
, . . . , 𝑧

(𝑘)
𝑖𝑚
)

𝑥
(𝑘)
𝑖

Agent 𝑖’s local allocation variable at iteration 𝑘 , i.e., (𝑥 (𝑘)
𝑖1
, . . . , 𝑥

(𝑘)
𝑖𝑚
)

𝑥 (𝑘) Vector of local allocations at iteration 𝑘 , i.e., (𝑥 (𝑘)
1
, . . . , 𝑥

(𝑘)
𝑛)

𝛾
(𝑘)
𝑖

Dual variable for 𝑧 = 𝑥𝑖 constraint at iteration 𝑘 , i.e., (𝛾 (𝑘)𝑖1
, . . . , 𝛾

(𝑘)
𝑖𝑚
)

𝛾 (𝑘) Vector of dual variables, i.e., (𝛾 (𝑘)
1
, . . . , 𝛾

(𝑘)
𝑛)

𝑞 (𝑘) Multivariate Gaussian noise added to 𝑧 (𝑘) at iteration 𝑘
𝜎2

Variance of added noise to each dimension of 𝑧

𝜌 Penalty parameter for the augmented Lagrangian

𝐿
𝜌

𝑖
Agent 𝑖’s partial augmented Lagrangian with parameter 𝜌

𝐿𝜌 Summation of partial augmented Lagrangian functions, i.e., 𝑠𝑢𝑚𝑖𝐿
𝜌

𝑖

Π𝑍 (𝑧) Euclidean projection of 𝑧 onto 𝑍 , i.e., argmin𝑧′∈𝑍 ∥𝑧 − 𝑧′∥22
𝑧 Time average of 𝑧 (𝑘) ’s, i.e., (1/𝐾)∑𝐾

𝑘=1
𝑧 (𝑘)

𝑧 Euclidean projection of 𝑧 onto 𝑍 , i.e., Π(𝑧)

B ELECTION INSTANCES
C OMITTED PROOFS
C.1 Proof of Lemma 3

Proof. By concavity of𝑈𝑖 , for all 𝑧, 𝑧
′ ∈ 𝑍 , we have:

𝑈𝑖 (𝑧′) −𝑈𝑖 (𝑧) ≤ ∇𝑈𝑖 (𝑧)𝑇 (𝑧′ − 𝑧). (12)

Table . Characteristics of election instances.

Inst. Election

Voters # Projects Budget Avg. # votes

(𝒏) (𝒎) (𝒄) per voter

1 Wroclaw’17 62,529 50 4,000,000 1.8

2 Warszawa’20 Praga Poludnie 14,897 134 5,900,907 9.1

3 Katowice’21 36,370 47 3,003,438 1.5

4 Warszawa’21 Mokotow 12,933 98 7,147,577 9.7

5 Wroclaw’16 Rejon NR 10-750 12,664 13 750,000 1

6 Warszawa’23 Mokotow 11,067 81 8,697,250 9

7 Wroclaw’16 Rejon NR 12-250 10,711 15 650,000 1

8 Wroclaw’16 67,103 52 4,500,000 1.8

9 Warszawa’22 81,234 129 28,072,528 7.9

10 Gdansk’20 30,237 28 3,600,000 1

11 Warszawa’21 95,899 106 24,933,409 8.3

12 Warszawa’20 86,721 101 24,933,409 7.2

Let 𝑧∗ be an MNW solution. The condition of optimality requires that for any 𝑧′ ∈ 𝑍 , we have:∑︁
𝑖

∇𝑈𝑖 (𝑧∗)𝑇
𝑈𝑖 (𝑧∗)

(𝑧′ − 𝑧∗) ≤ 0

by (12)
======⇒ 1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧′)
𝑈𝑖 (𝑧∗)

≤ 1. (13)

For contradiction, suppose that 𝑧∗ is not a core outcome. Then there exists a set of agents 𝐴 and

an allocation 𝑧′ such that (|𝐴|/𝑛)𝑈𝑖 (𝑧′) ≥ 𝑈𝑖 (𝑧∗), and at least one inequality is tight. This implies

(1/𝑛)∑𝑖∈𝐴𝑈𝑖 (𝑧′)/𝑈𝑖 (𝑧∗) > 1, which contradicts (13). □

C.2 Proof of Lemma 16
We start by establishing some key notations. We define 𝛾 (𝑘) as:

𝛾 (𝑘) = 𝛾 (𝑘−1) + 𝜌 (𝑥 (𝑘) −𝐺𝑧 (𝑘−1)),

where 𝐺 = (𝐼𝑚, . . . , 𝐼𝑚). Additionally, 𝑤̃ (𝑘) and 𝐹 (𝑤) as follows:

𝑤̃ (𝑘) =
©­«
𝑥 (𝑘)

𝑧 (𝑘)

𝛾 (𝑘)

ª®¬ , and 𝐹 (𝑤) = ©­«
−𝛾∑
𝑖 𝛾𝑖

𝑥 −𝐺𝑛,𝑚𝑧
ª®¬ . (14)

To prove Lemma 16, we first provide an important inequality that relates 𝑤̃ (𝑘) to any𝑤 ∈𝑊 :

Lemma 19. Let {𝑤̃ (𝑘) } and {𝑞 (𝑘) } be sequences produced by Alg. 1. For all𝑤 ∈𝑊 , we have:

(𝑥 − 𝑥 (𝑘))𝑇∇𝜃 (𝑥 (𝑘)) +𝑤𝑇 𝐹 (𝑤̃ (𝑘)) ≤ 𝑛𝜌 (𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) − 1

2𝜌
∥𝛾 (𝑘) − 𝛾 (𝑘−1) ∥2

2
(15)

+ 𝑛𝜌
2

(
∥𝑧 − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧 − 𝑧 (𝑘) ∥2

2

)
+ 1

2𝜌

(
∥𝛾 − 𝛾 (𝑘−1) ∥2

2
− ∥𝛾 − 𝛾 (𝑘) ∥2

2

)
.

Proof. For all 𝑖 , the condition of optimality for Line 6 of Alg. 1 requires:

(𝑥𝑖 − 𝑥 (𝑘)𝑖
)𝑇 (∇𝜃𝑖 (𝑥 (𝑘)𝑖

) − 𝛾 (𝑘−1)
𝑖

− 𝜌 (𝑥 (𝑘)
𝑖
− 𝑧 (𝑘−1))) ≤ 0 for all 𝑥𝑖 ∈ 𝑍 . (16)

Given the definition of 𝛾 (𝑘) , we can rewrite (16) for each 𝑖 and 𝑥𝑖 ∈ 𝑍 as:

(𝑥𝑖 − 𝑥 (𝑘)𝑖
)𝑇 (∇𝜃𝑖 (𝑥 (𝑘)𝑖

) − 𝛾 (𝑘)
𝑖
) ≤ 0.

Summing over all 𝑖 , for any 𝑥 ∈ 𝑍𝑛 , we have:
(𝑥 − 𝑥 (𝑘))𝑇∇𝜃 (𝑥 (𝑘)) − (𝑥 − 𝑥 (𝑘))𝑇𝛾 (𝑘) ≤ 0. (17)

Next, given (7), Line 8 of Alg. 1 implies that 𝑧 (𝑘) is the solution to:

maximize

𝑧

∑︁
𝑖

(
−(𝛾 (𝑘−1)

𝑖
)𝑇 (𝑥 (𝑘)

𝑖
− 𝑧 + 𝑞 (𝑘)) − 𝜌

2

∥𝑥 (𝑘)
𝑖
− 𝑧 + 𝑞 (𝑘) ∥2

2

)
.

The condition of optimality for this optimization requires that:

(𝑧 − 𝑧 (𝑘))𝑇
(∑︁
𝑖

(
𝛾
(𝑘−1)
𝑖

+ 𝜌 (𝑥 (𝑘)
𝑖
− 𝑧 (𝑘) + 𝑞 (𝑘))

))
≤ 0 for all 𝑧 ∈ R𝑚 . (18)

Given the definition of 𝛾 (𝑘) , we can rewrite (18) for all 𝑧 ∈ R𝑚 as:

(𝑧 − 𝑧 (𝑘))𝑇
(∑︁
𝑖

𝛾
(𝑘)
𝑖
− 𝑛𝜌 (𝑧 (𝑘) − 𝑧 (𝑘−1)) + 𝑛𝜌𝑞 (𝑘)

)
≤ 0 ⇒

(𝑧 − 𝑧 (𝑘))𝑇
∑︁
𝑖

𝛾
(𝑘)
𝑖
≤ 𝑛𝜌 (𝑧 − 𝑧 (𝑘))𝑇 (𝑧 (𝑘) − 𝑧 (𝑘−1)) − 𝑛𝜌 (𝑧 − 𝑧 (𝑘))𝑇𝑞 (𝑘) . (19)

Next, given Line 9 of Alg. 1, for all 𝛾 ∈ R𝑚𝑛 we have:
𝑥 (𝑘) −𝐺𝑧 (𝑘) = (𝛾 (𝑘) − 𝛾 (𝑘−1))/𝜌 ⇒
(𝛾 − 𝛾 (𝑘))𝑇 (𝑥 (𝑘) −𝐺𝑧 (𝑘)) = (𝛾 − 𝛾 (𝑘))𝑇 (𝛾 (𝑘) − 𝛾 (𝑘−1))/𝜌. (20)

Combining (17)–(20), for any𝑤 = (𝑥, 𝑧,𝛾) ∈𝑊 , we have:

(𝑥 − 𝑥 (𝑘))𝑇∇𝜃 (𝑥 (𝑘)) + (𝑤 − 𝑤̃ (𝑘))𝑇 𝐹 (𝑤̃ (𝑘)) ≤ 𝑛𝜌 (𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘)

+ 𝑛𝜌 (𝑧 − 𝑧 (𝑘))𝑇 (𝑧 (𝑘) − 𝑧 (𝑘−1)) + (𝛾 − 𝛾 (𝑘))𝑇 (𝛾 (𝑘) − 𝛾 (𝑘−1))/𝜌. (21)

Applying the following identity:

𝑤𝑇 𝐹 (𝑤) = −𝑥𝑇𝛾 + 𝑧𝑇
∑︁
𝑖

𝛾𝑖 + 𝛾𝑇 (𝑥 −𝐺𝑧) = 0, (22)

we can rewrite (21) as:

(𝑥 − 𝑥 (𝑘))𝑇∇𝜃 (𝑥 (𝑘)) +𝑤𝑇 𝐹 (𝑤̃ (𝑘)) ≤ 𝑛𝜌 (𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘)

+ 𝑛𝜌 (𝑧 − 𝑧 (𝑘))𝑇 (𝑧 (𝑘) − 𝑧 (𝑘−1)) + (𝛾 − 𝛾 (𝑘))𝑇 (𝛾 (𝑘) − 𝛾 (𝑘−1))/𝜌. (23)

Next, we focus on the right-hand side of (23). Given the following identity:

(𝑎 − 𝑏)𝑇 (𝑐 − 𝑑) = 1

2

(
∥𝑎 − 𝑑 ∥2

2
− ∥𝑎 − 𝑐 ∥2

2

)
+ 1

2

(
∥𝑏 − 𝑐 ∥2

2
− ∥𝑏 − 𝑑 ∥2

2

)
,

we have:

𝑛𝜌 (𝑧 − 𝑧 (𝑘))𝑇 (𝑧 (𝑘) − 𝑧 (𝑘−1)) = 𝑛𝜌

2

(
∥𝑧 − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧 − 𝑧 (𝑘) ∥2

2

)
− 𝑛𝜌

2

∥𝑧 (𝑘) − 𝑧 (𝑘−1) ∥2
2
, (24)

and:

1

𝜌
(𝛾 − 𝛾 (𝑘))𝑇 (𝛾 (𝑘) − 𝛾 (𝑘−1)) = 1

2𝜌

(
∥𝛾 − 𝛾 (𝑘−1) ∥2

2
− ∥𝛾 − 𝛾 (𝑘) ∥2

2

)
+ 1

2𝜌

(
∥𝛾 (𝑘) − 𝛾 (𝑘) ∥2

2
− ∥𝛾 (𝑘) − 𝛾 (𝑘−1) ∥2

2

)
. (25)

Given the definition of 𝛾 (𝑘) and Line 9 of Alg. 1, we have:

∥𝛾 (𝑘) − 𝛾 (𝑘) ∥2
2
= ∥𝜌 (𝑥 (𝑘) −𝐺𝑧 (𝑘−1)) − (𝛾 (𝑘) − 𝛾 (𝑘−1))∥2

2

= 𝜌2∥𝑥 (𝑘) −𝐺𝑧 (𝑘−1) − 𝑥 (𝑘) +𝐺𝑧 (𝑘) ∥2
2

= 𝑛𝜌2∥𝑧 (𝑘) − 𝑧 (𝑘−1) ∥2
2
. (26)

Combining (24)–(26), we obtain

𝑛𝜌 (𝑧 − 𝑧 (𝑘))𝑇 (𝑧 (𝑘) − 𝑧 (𝑘−1)) + (𝛾 − 𝛾 (𝑘))𝑇 (𝛾 (𝑘) − 𝛾 (𝑘−1))/𝜌 =

𝑛𝜌

2

(
∥𝑧 − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧 − 𝑧 (𝑘) ∥2

2

)
+ 1

2𝜌

(
∥𝛾 − 𝛾 (𝑘−1) ∥2

2
− ∥𝛾 − 𝛾 (𝑘) ∥2

2

)
− 1

2𝜌
∥𝛾 (𝑘) − 𝛾 (𝑘−1) ∥2

2
. (27)

Substituting (27) into (23) gives (15). □

We are now ready to prove Lemma 16:

Proof. We start by rewriting (𝑥 − 𝑥 (𝑘))𝑇∇𝜃 (𝑥 (𝑘)) as:

(𝑥 − 𝑥 (𝑘))𝑇∇𝜃 (𝑥 (𝑘)) =
∑︁
𝑖

(𝑥𝑖 − 𝑥 (𝑘)𝑖
)𝑇∇𝑈𝑖 (𝑥 (𝑘)𝑖

)/𝑈𝑖 (𝑥 (𝑘)𝑖
).

Since𝑈𝑖 (𝑥) is concave, for any 𝑖 and for any 𝑥, 𝑥 ′ ∈ 𝑍 , we have:
𝑈𝑖 (𝑥 ′) −𝑈𝑖 (𝑥) ≤ (𝑥 ′ − 𝑥)𝑇∇𝑈𝑖 (𝑥). (28)

Therefore, (15) implies:∑︁
𝑖

𝑈𝑖 (𝑥𝑖)
𝑈𝑖 (𝑥 (𝑘)𝑖

)
+𝑤𝑇 𝐹 (𝑤̃ (𝑘)) ≤ 𝑛 + 𝑛𝜌 (𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) + 𝑛𝜌

2

(
∥𝑧 − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧 − 𝑧 (𝑘) ∥2

2

)
+ 1

2𝜌

(
∥𝛾 − 𝛾 (𝑘−1) ∥2

2
− ∥𝛾 − 𝛾 (𝑘) ∥2

2

)
. (29)

Next, we define𝑊𝑍 = {(𝐺𝑧, 𝑧, 0𝒎𝒏) | 𝑧 ∈ 𝑍 }. For any𝑤 ∈𝑊𝑍 , we have:

𝑤𝑇 𝐹 (𝑤̃ (𝑘)) = −𝑧𝑇
∑︁
𝑖

𝛾
(𝑘)
𝑖
+ 𝑧𝑇

∑︁
𝑖

𝛾
(𝑘)
𝑖

= 0.

Given this identity, for any𝑤 ∈𝑊𝑍 ⊂𝑊 , (29) implies:

1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥 (𝑘)𝑖

)
≤ 1 + 𝜌 (𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) + 𝜌

2

(
∥𝑧 − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧 − 𝑧 (𝑘) ∥2

2

)
+ 1

2𝑛𝜌

(
∥𝛾 (𝑘−1) ∥2

2
− ∥𝛾 (𝑘) ∥2

2

)
.

Summing this inequality over 𝑘 = 1 to 𝐾 and dividing by 𝐾 , for any 𝑧 ∈ 𝑍 , we obtain:

1

𝑛

∑︁
𝑖

1

𝐾

𝐾∑︁
𝑘=1

𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥 (𝑘)𝑖

)
≤ 1 + 𝜌

𝐾

𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) + 𝜌

2𝐾
∥𝑧∥2

2
. (30)

Since 𝑈𝑖 (𝑥) is a strictly increasing concave function, 1/𝑈𝑖 (𝑥) is convex [2]. As a result, by Jensen’s

inequality, for any 𝑧 ∈ 𝑍 , we have:

1

𝐾

𝐾∑︁
𝑘=1

𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥 (𝑘)𝑖

)
≥ 𝑈𝑖 (𝑧)

𝑈𝑖

(
1

𝐾

∑𝐾
𝑘=1

𝑥
(𝑘)
𝑖

) =
𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥)

.

Given this inequality and the fact that for any 𝑧 ∈ 𝑍 , ∥𝑧∥2
2
≤ 1, (30) implies (10). □

C.3 Proof of Lemma 17
To prove Lemma 17, we first show that the sequence {𝑤̃ (𝑘) }, define in (14), is contractive (with
some noise):

Lemma 20. Let {𝑤 (𝑘) } and {𝑞 (𝑘) } be sequences generated by Alg. 1. Let 𝑤∗ = (𝑥∗, 𝑧∗, 𝛾∗) be the
solution to (4), with 𝑥∗𝑖 = 𝑧

∗ for all 𝑖 . Then we have:

𝑛𝜌2

(
∥𝑧 (𝑘) − 𝑧∗∥2

2
− ∥𝑧 (𝑘−1) − 𝑧∗∥2

2

)
+
(
∥𝛾 (𝑘) − 𝛾∗∥2

2
− ∥𝛾 (𝑘−1) − 𝛾∗∥2

2

)
≤ 2𝑛𝜌2 (𝑧 (𝑘)−𝑧∗)𝑇𝑞 (𝑘) . (31)

Proof. Setting𝑤 B 𝑤∗ in (15), we have:

(𝑥∗ − 𝑥 (𝑘))𝑇∇𝜃 (𝑥 (𝑘)) +𝑤∗𝑇 𝐹 (𝑤̃ (𝑘)) ≤ 𝑛𝜌 (𝑧 (𝑘) − 𝑧∗)𝑇𝑞 (𝑘) − 1

2𝜌
∥𝛾 (𝑘) − 𝛾 (𝑘−1) ∥2

2
(32)

+ 𝑛𝜌
2

(
∥𝑧∗ − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧∗ − 𝑧 (𝑘) ∥2

2

)
+ 1

2𝜌

(
∥𝛾∗ − 𝛾 (𝑘−1) ∥2

2
− ∥𝛾∗ − 𝛾 (𝑘) ∥2

2

)
.

Since𝑤∗ is the solution to (4), the conditions of optimality require:

(𝑥 (𝑘) − 𝑥∗)𝑇∇𝜃 (𝑥∗) + (𝑤̃ (𝑘) −𝑤∗)𝑇 𝐹 (𝑤∗) ≤ 0. (33)

It can be easily shown that (𝑤̃ (𝑘) −𝑤∗)𝑇 𝐹 (𝑤∗) +𝑤∗𝑇 𝐹 (𝑤̃ (𝑘)) = 0. Therefore, summing (32) and

(33), we have:

(𝑥∗ − 𝑥 (𝑘))𝑇 (∇𝜃 (𝑥 (𝑘)) − ∇𝜃 (𝑥∗)) ≤ 𝑛𝜌 (𝑧 (𝑘) − 𝑧∗)𝑇𝑞 (𝑘) − 1

2𝜌
∥𝛾 (𝑘) − 𝛾 (𝑘−1) ∥2

2
(34)

+ 𝑛𝜌
2

(
∥𝑧∗ − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧∗ − 𝑧 (𝑘) ∥2

2

)
+ 1

2𝜌

(
∥𝛾∗ − 𝛾 (𝑘−1) ∥2

2
− ∥𝛾∗ − 𝛾 (𝑘) ∥2

2

)
.

Since 𝜃 (𝑥) is concave, we have (𝑥∗ − 𝑥 (𝑘))𝑇 (∇𝜃 (𝑥∗) − ∇𝜃 (𝑥 (𝑘))) ≤ 0. Given this, (34) implies

(31). □

We are now ready to prove Lemma 17:

Proof. Summing (31) over 𝑘 = 1 to 𝐾 , we have:

𝑛𝜌2

(
∥𝑧 (𝐾) − 𝑧∗∥2

2
− ∥𝑧∗∥2

2

)
+

(
∥𝛾 (𝐾) − 𝛾∗∥2

2
− ∥𝛾∗∥2

2

)
≤ 2𝑛𝜌2

𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧∗)𝑇𝑞 (𝑘) .

This inequality implies:

∥𝛾 (𝐾) − 𝛾∗∥2
2
≤ 2𝑛𝜌2

𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧∗)𝑇𝑞 (𝑘) + 𝑛𝜌2∥𝑧∗∥2
2
+ ∥𝛾∗∥2

2
. (35)

Next, we have:

𝜌𝐾 ∥𝑥 −𝐺𝑧∥2 = ∥𝛾 (𝐾) ∥2 = ∥𝛾 (𝐾) − 𝛾∗ + 𝛾∗∥2
≤ ∥𝛾∗∥2 + ∥𝛾 (𝐾) − 𝛾∗∥2

≤ ∥𝛾∗∥2 +
(
2𝑛𝜌2

𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧∗)𝑇𝑞 (𝑘) + 𝑛𝜌2∥𝑧∗∥2
2
+ ∥𝛾∗∥2

2

) 1

2

. (36)

The Euclidean projection onto the convex set 𝑍 is contractive. Therefore, since 𝑥, 𝑧 ∈ 𝑍 , we have:
∥𝑥 −𝐺𝑧∥2 = ∥𝑥 −𝐺Π𝑍 (𝑧)∥2 ≤ ∥𝑥 −𝐺𝑧∥2 .

Given this inequality, (36) implies (11). □

C.4 Proof of Thm. 18
Proof. Let {𝑤 (𝑘) } and {𝑞 (𝑘) } be sequences generated by Alg. 1, and let𝑤∗ = (𝑥∗, 𝑧∗, 𝛾∗) be the

solution to (4). Define 𝛾∗
max

and 𝑧 as:

𝛾∗
max

= max

𝑖, 𝑗
|𝛾∗𝑖, 𝑗 | and 𝑧 = argmax

𝑧∈𝑍

∑︁
𝑖

𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥𝑖)

.

Further, define 𝜀1 and 𝜀2 as:

𝜀1 =
𝜌

𝐾

𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) + 𝜌

2𝐾
,

and

𝜀2 =
𝐿

𝜌𝐾

√
𝑛𝑚𝛾∗

max
+ 𝐿

𝜌𝐾

(
2𝑛𝜌2

𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧∗)𝑇𝑞 (𝑘) + 𝑛𝜌2 + 𝑛𝑚𝛾∗
max

2

)
1/2

.

By Lemma 16 and the definition of 𝑧, we have:

1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥𝑖)

≤ 1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥𝑖)

≤ 1 + 𝜀1 . (37)

Due to the Lipschitz continuity of𝑈𝑖 (𝑥) and the fact that ∥𝑥𝑖 − 𝑧∥2 ≤ ∥𝑥 −𝐺𝑧∥2 for any 𝑖 , Lemma

17 implies:

𝑈𝑖 (𝑥) ≤ 𝑈𝑖 (𝑧) + 𝜀2 ∀𝑖 . (38)

Combining (37) and (38), we obtain:

1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧)
𝑈𝑖 (𝑧) + 𝜀2

≤ 1 + 𝜀1. (39)

Given (39), Lemma 5 implies that 𝑧 is an (𝜀1, 𝜀2 + 𝜀1𝜀2)-core outcome. However, 𝜀1 and 𝜀2 are

random variables. We next study the tail behavior of these random variables by establishing a

concentration bound on

∑𝐾
𝑘=1
(𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) for any 𝑧 ∈ 𝑍 .

| (𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) | = | (1
𝑛

∑︁
𝑖

𝑥
(𝑘)
𝑖
+ 𝑞 (𝑘) − 𝑞 (𝑘−1) − 𝑧)𝑇𝑞 (𝑘) |

≤ |(1
𝑛

∑︁
𝑖

𝑥
(𝑘)
𝑖
)𝑇𝑞 (𝑘) | + ∥𝑞 (𝑘) ∥2

2
+ |𝑞 (𝑘−1)𝑇𝑞 (𝑘) | + |𝑧𝑇𝑞 (𝑘) |

≤ ∥ 1

𝑛

∑︁
𝑖

𝑥
(𝑘)
𝑖
∥1∥𝑞 (𝑘) ∥2 + ∥𝑞 (𝑘) ∥22 + |𝑞 (𝑘−1)𝑇𝑞 (𝑘) | + ∥𝑧∥1∥𝑞 (𝑘) ∥2

≤ 2∥𝑞 (𝑘) ∥2 + ∥𝑞 (𝑘) ∥22 + |𝑞 (𝑘−1)𝑇𝑞 (𝑘) |, (40)

where the first inequality follows from the triangle inequality, the second inequality follows from

Cauchy–Schwarz inequality and the fact that ∥ · ∥2 ≤ ∥ · ∥1 (i.e., |𝑎𝑇𝑏 | ≤ ∥𝑎∥2∥𝑏∥2 ≤ ∥𝑎∥1∥𝑏∥2
for all vectors 𝑎 and 𝑏 of an inner product space), the third inequality follows from the fact that

1

𝑛

∑
𝑖 𝑥
(𝑘)
𝑖
∈ 𝑍 , and for any 𝑧 ∈ 𝑍 , we have ∥𝑧∥2 ≤ ∥𝑧∥1 ≤ 1. For the last term in (40), we have:

|𝑞 (𝑘−1)𝑇𝑞 (𝑘) | = |
𝑚∑︁
𝑗=1

𝑞
(𝑘−1)
𝑗

𝑞
(𝑘)
𝑗
| ≤

𝑚∑︁
𝑗=1

|𝑞 (𝑘−1)
𝑗

𝑞
(𝑘)
𝑗
|

=

𝑚∑︁
𝑗=1

|𝑞 (𝑘−1)
𝑗
| |𝑞 (𝑘)

𝑗
|

≤ 1

2

𝑚∑︁
𝑗=1

(
(𝑞 (𝑘−1)
𝑗
)2 + (𝑞 (𝑘)

𝑗
)2

)
=

1

2

∥𝑞 (𝑘−1) ∥2
2
+ 1

2

∥𝑞 (𝑘) ∥2
2
,

where the first inequality follows from the triangle inequality, and the second inequality follows

from the Young’s inequality. Substituting the last inequality into (40) and summing over 𝑘 , we have:

|
𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) | ≤
𝐾∑︁
𝑘=1

| (𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) |

≤ 2

𝐾∑︁
𝑘=1

(
∥𝑞 (𝑘) ∥2

2
+ ∥𝑞 (𝑘) ∥2

)
. (41)

Since𝑞
(𝑘)
𝑗
∼ N(0, 𝜎2) is a sub-Gaussian randomvariable, we have that (𝑞 (𝑘)

𝑗
)2 is a sub-exponential

random variable ([41], Lemma 2.7.6) with E[(𝑞 (𝑘)
𝑗
)2] = 𝜎2

and

∥(𝑞 (𝑘)
𝑗
)2 − 𝜎2∥𝜓1

≤ 𝐶1𝜎
2,

where𝐶1 is a constant, and ∥𝑋 ∥𝜓1
= inf{𝑡 > 0 | E[exp(|𝑋 |/𝑡)] ≤ 2} is the sub-exponential norm of a

real-valued random variable 𝑋 . Since 𝑞
(𝑘)
𝑗

’s are i.i.d. for all 𝑘’s and 𝑗 ’s, by the Bernstein’s inequality

([41], Theorem 2.8.1), for any 𝑡 ≥ 0, we have:

P

[
𝐾∑︁
𝑘=1

∥𝑞 (𝑘) ∥2
2
− 𝐾𝑚𝜎2 ≥ 𝑡

]
≤ exp

(
−𝑐1 min

(
𝑡2

𝐾𝑚𝜎4
,
𝑡

𝜎2

))
, (42)

where 𝑐1 is a constant.

Next, ∥𝑞 (𝑘) ∥2 is a sub-Gaussian random variable ([41], Theorem 3.1.1 and Lemma 2.6.8) with

∥𝑞 (𝑘) ∥2 − E [
∥𝑞 (𝑘) ∥2

]

𝜓2

≤ 𝐶2𝜎
2,

where 𝐶2 is a constant, and ∥𝑋 ∥𝜓2
= inf{𝑡 > 0 | E[exp(𝑋 2/𝑡2)] ≤ 2} is the sub-Gaussian norm of a

real-valued random variable 𝑋 . Since 𝑞 (𝑘) ’s are independent, by the general Hoeffding’s inequality

([41], Theorem 2.6.2), for any 𝑡 ≥ 0, we have:

P

[
𝐾∑︁
𝑘=1

(
∥𝑞 (𝑘) ∥2 − E

[
∥𝑞 (𝑘) ∥2

])
≥ 𝑡

]
≤ exp(− 𝑐2𝑡

2

𝐾𝜎4
),

where 𝑐2 is a constant. We next provide an upper bound on E
[
∥𝑞 (𝑘) ∥2

]
. Consider the following

inequality which holds for any 𝑢 ≥ 0:

√
𝑢 ≤ 1 + 𝑢

2

.

By setting 𝑢 = 1

𝑚𝜎2
∥𝑞 (𝑘) ∥2

2
, we get:

∥𝑞 (𝑘) ∥2√
𝑚𝜎

≤
1 + (1/𝑚𝜎2)∥𝑞 (𝑘) ∥2

2

2

.

Taking the expectation of both sides of the last inequality gives:

E
[
∥𝑞 (𝑘) ∥2

]
≤
√
𝑚𝜎

1 + 1

2

=
√
𝑚𝜎.

Therefore, we have:

P

[
𝐾∑︁
𝑘=1

∥𝑞 (𝑘) ∥2 − 𝐾
√
𝑚𝜎 ≥ 𝑡

]
≤ P

[
𝐾∑︁
𝑘=1

(
∥𝑞 (𝑘) ∥2 − E

[
∥𝑞 (𝑘) ∥2

])
≥ 𝑡

]
≤ exp(− 𝑐2𝑡

2

𝐾𝜎4
). (43)

Given (41)–(43) and the union bound, for 𝑡 ′ = 4𝑡 + 2𝐾𝑚𝜎2 + 2𝐾
√
𝑚𝜎 , we have:

P

[
|
𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) | ≥ 𝑡 ′
]
≤ P

[
2

𝐾∑︁
𝑘=1

(
∥𝑞 (𝑘) ∥2

2
+ ∥𝑞 (𝑘) ∥2

)
≥ 𝑡 ′

]
≤ P

[
𝐾∑︁
𝑘=1

∥𝑞 (𝑘) ∥2
2
− 𝐾𝑚𝜎2 ≥ 𝑡

]
+ P

[
𝐾∑︁
𝑘=1

∥𝑞 (𝑘) ∥2 − 𝐾
√
𝑚𝜎 ≥ 𝑡

]
≤ exp

(
−𝑐1 min

(
𝑡2

𝐾𝑚𝜎4
,
𝑡

𝜎2

))
+ exp(− 𝑐2𝑡

2

𝐾𝜎4
).

For some constant 𝑐 , setting 𝑡 = 𝑐
√
𝐾𝑚𝜎2

log
1/2 (𝑛) in the last inequality implies that with probability

more than 1 − 1

𝑛
− 1

𝑛𝑚
, the following inequality holds for any 𝑧 ∈ 𝑍 :

𝐾∑︁
𝑘=1

(𝑧 (𝑘) − 𝑧)𝑇𝑞 (𝑘) ≤ 4𝑐
√
𝐾𝑚𝜎2

log
1/2 (𝑛) + 2𝐾𝑚𝜎2 + 2𝐾

√
𝑚𝜎. (44)

Given that 𝐾 = Θ(𝑛), 𝜖 = Θ(1/log(𝑛)), 𝛿 = Θ(1/
√
𝑛), 𝛼 = Θ(log

2 (𝑛)), and𝑚 = 𝑜 (
√
𝑛), substituting

(44) into 𝜀1 and 𝜀2 implies that 𝜀1 and 𝜀2 asymptotically go to zero as 𝑛 grows. Therefore, given

(39), by Lemma 5, the output of Alg. 1 is an asymptotic core solution with probability more than

1 − 1

𝑛
− 1

𝑛𝑚
.

□

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Related Works
	3 Preliminaries
	3.1 Problem Formulation
	3.2 Mechanism Design for Public Goods
	3.3 Mechanism Design via Differential Privacy

	4 Algorithm
	4.1 Distributed Maximization of Nash Welfare
	4.2 DP for Maximizing Nash Welfare

	5 Analysis
	5.1 Asymptotic truthfulness
	5.2 Asymptotic Core

	6 Experiments
	7 Conclusion
	References
	A Notations
	B Election Instances
	C Omitted Proofs
	C.1 Proof of Lemma 3
	C.2 Proof of Lemma 16
	C.3 Proof of Lemma 17
	C.4 Proof of Thm. 18

