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Supersolid is an exotic quantum state of matter that hosts spontaneously the features of both solid and su-
perfluidity, which breaks the lattice translational symmetry and U(1) gauge symmetry. Here we conduct inelas-
tic neutron scattering (INS) measurements and tensor-network calculations on the triangular-lattice cobaltate
Na2BaCo(PO4)2, which is proposed in [Xiang et al., Nature 625, 270-275 (2024)] as a quantum magnetic analog
of supersolid. We uncover characteristic dynamical signatures, which include distinct magnetic Bragg peaks
indicating out-of-plane spin solidity and gapless Goldstone modes corresponding to the in-plane spin superflu-
idity, offering comprehensive spectroscopic evidence for spin supersolid in Na2BaCo(PO4)2. We also compute
spin dynamics of the easy-axis triangular-lattice model, and reveal magnon-roton excitations containing U(1)
Goldstone and roton modes associated with the in-plane spin superfluidity, as well as pseudo-Goldstone and
roton modes related to the out-of-plane spin solidity, rendering double magnon-roton dispersions in the spin
supersolid. Akin to the role of phonon-roton dispersion in shaping the helium thermodynamics, the intriguing
magnetic excitations also strongly influence the low-temperature thermodynamics of spin supersolid down to
sub-Kelvin regime, explaining the recently observed giant magnetocaloric effect in Na2BaCo(PO4)2.

Introduction.— As a paradigmatic example of frus-
trated quantum magnet, the triangular-lattice antiferromagnets
(TLAF) have garnered significant attention in the past [1–3].
The perfect isosceles triangular-lattice compounds, including
the cobaltate Ba3CoSb2O9 [4–10], rare-earth triangular com-
pounds such as REMgGaO4 (with RE = rare earth) [11–18]
and structurally similar compounds ARECh2 with A = Na,
K, Cs, and Ch = O, S, Se [19–26], have been synthesized re-
cently. There are investigations into possible quantum spin
liquid (QSL) [27–30], fractional magnetization plateau [31–
33], anomalous low-temperature thermodynamics [34, 35],
topological phase transitions [16, 18], and exotic spin excita-
tions [13, 14, 25, 26, 36–40], etc, making the TLAF systems a
very intriguing, fertile ground for studying emergent quantum
phenomena.

Recently, an easy-axis Co-based triangular-lattice antifer-
romagnet Na2BaCo(PO4)2 (NBCP) has raised great research
interests [41–48]. The Co2+ ions form stacked triangular lat-
tices [c.f., Fig. 1(a)], which carry effective spin S = 1/2 un-
der the effects of spin-orbit coupling and crystal electric field.
The spin-spin couplings are highly two-dimensional, i.e., the
intra-layer spin exchanges are dominating over those between
the layers [41, 44–46]. The highly frustrated quantum mag-
net was first proposed to host a quantum spin liquid, where
magnetic ordering was absent down to 300 mK [41, 43]. A
later specific heat measurement finds an anomaly at about
TN ≃ 150 mK [42], which instead suggests the formation of
certain spin order at low temperature. The existence of resid-
ual thermal conductivity has also been reported in this com-
pound [42], although a different conclusion was drawn based

-1 0 1
0.2

0.4

0.6

0.8

0

0.5

1

0.33

0.66

0.16(a)

(c)

(b)

(d)
a

b

c

FIG. 1. (a) Layered triangular-lattice structure of Na2BaCo(PO4)2,
and (b) the elastic scattering results of the measurements. The dashed
lines indicate the magnetic propagation vector of k = (1/3, 1/3, 0.16).
(c) and (d) The angle φ represents the U(1) phase of in-plane spin
superfluidity, and θ is the U(1) phase of the complex order parameter
Ψ (i.e., pseudo-spin, see definition in the main text) for the out-of-
plane spin solidity. The angles φ and θ are related to the gapless
Goldstone and pseudo-Goldstone modes, respectively.
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on an independent measurement [47].
An easy-axis TLAF model has been put forward to eluci-

date the diverse experimental findings in NBCP. The model
Hamiltonian reads H =

∑
⟨i,j⟩ Jxy(S

x
i S

x
j + Sy

i S
y
j ) +

JzS
z
i S

z
j , where the nearest-neighbor interactions between i, j

are Jxy = 0.88K and Jz = 1.48 K [45, 46]. Based on tensor-
network calculations on this highly frustrated spin model, it
has been proposed theoretically [45] and observed experimen-
tally the long-sought spin supersolidity NBCP, through the
magnetocaloric and neutron diffraction measurements [48].
Nevertheless, dynamical features of the spin supersolid phase
remain to be unexplored, both in theory and experiment.

Here we conduct INS measurements on single-crystal sam-
ples of NBCP down to 55 mK. Complementing these investi-
gations, tensor-network computations are performed using the
TLAF model, yielding results that are in excellent agreement
with the INS data. This synergy between experimental and
theoretical modeling provides a comprehensive understand-
ing of the magnetic properties and dynamics of NBCP at low
temperatures. In particular, a substantial downward renormal-
ization is revealed in the magnon dispersion near the M point
of Brillouin zone (BZ), constituting the magnetic analog of
roton mode. Meanwhile, a pseudo-Goldstone gap is obtained
by computing the spin-resolved spectral function. Overall,
the peculiar double magnon-roton dispersions, one from in-
plane spin superfluidity and the other from out-of-plane spin
solidity, render strong spin fluctuations and large magnetic en-
tropies till low temperature and well explain the giant magne-
tocaloric effect (MCE) observed in NBCP.

Samples and neutron scattering measurements.— Single-
crystal samples of Na2BaCo(PO4)2 were grown using the flux
method as reported in Ref. 48. The INS experiments were per-
formed on the cold-neutron time-of-flight spectrometer PELI-
CAN [49], at Australian Nuclear Science and Technology Or-
ganisation (ANSTO). A total number of 28 pieces of NBCP
single crystals with a total mass of about 3 g were mounted
on the sample holder made of 6061 aluminum alloy using
CYTOP M-type glue. The base temperature of 55 mK was
achieved using a dilution insert inside a 7 T vertical cryomag-
net. The crystals were co-aligned with their [1, −1, 0] direc-
tion lying vertically, so that the [H , H , L] scattering plane
can be mapped out by rotating the sample and an in-plane
magnetic field can be applied along the [1, −1, 0] direction.

The instrument was configured with an incident neu-
tron wavelength of 5.96 Å, providing an incident energy of
2.3 meV with a high energy resolution of about 0.066 meV at
the elastic line. The dataset below 0.1 meV collected at 2.5 T
was used for background subtraction for the 0 T case, and a
standard vanadium sample was measured for detector normal-
ization and determination of the energy resolution function.
The data reductions were performed using the software HO-
RACE [50].

Spectroscopic evidence for spin supersolid.— In Fig. 1(b)
we present the elastic scattering (ω = 0±0.05 meV) results of
the INS measurements, which clearly reveal magnetic Bragg
peaks at K ≡ [1/3, 1/3] points with an incommensurate out-
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FIG. 2. The INS data along the high-symmetry momentum direction,
following the path [ξ, ξ] (red arrow) in the reciprocal space shown in
the inset of (d), measured under (a) B = 0 and (b) B = 2.5 T (in-
plane field), respectively. Scatterings are integrated along the [−η,
η, 0] direction perpendicular to the horizontal scattering plane for η
∈ [−0.4, 0.4] and along the out-of-plane [0, 0, ζ] direction for ζ ∈
[−0.2, 0.2]. (c) and (d) show the calculated dynamical spin struc-
ture factor S(k, ω) =

∑
α={x,y,z} S

αα(k, ω) under zero and 2.5 T
fields, respectively. To simulate the spin dynamics under 2.5 T in-
plane field, we include gabµBB

∑
i S

x
i , with µB the Bohr magneton

and the Lande factor gab ≃ 4.24, in the calculations. The white solid
lines in (a, c) are the linear spin wave results.

of-plane propagation vector of ζ = 0.16, due to sensitivity of
the spin supersolid state to weak interlayer couplings. Further
analysis shows that the magnetic Bragg peaks are contributed
mainly from the the out-of-plane moments [51], consistent
with prior neutron diffractions results [46, 48]. Besides the
magnetic Bragg peaks, the low-energy spin fluctuations ob-
served from the INS measurements exhibit a rod-like shape
[51], showing very good two dimensionality of the compound.

In Figs. 2(a,b) we present the low-energy magnetic excita-
tions observed at 55 mK with zero field and an in-plane field
of B = 2.5 T, respectively, and compare them to the model
calculations. At zero field, evidence of gapless Goldstone
modes are shown in Fig. 2(a), where the linear spin-wave dis-
persions emanating from the ordering vector K are also plot-
ted. The tensor-network calculations with realistic model pa-
rameters well reproduce the experimental results with similar
energy resolution. On the other hand, with a larger magnetic
field B = 2.5 T above the in-plane critical field [42, 45], a
clear magnon dispersion in the nearly polarized phase is ob-
served. The theoretical calculations demonstrate an excellent
match with the experimental results for both zero and 2.5 T
field cases, confirming once again the validity and accuracy
of the effective easy-axis TLAF model for NBCP.

Figure 2(a) reveals the presence of an extra intensity that
overlays the standard linear spin-wave dispersion, notably
concentrated around the M ≡ [1/2, 1/2] high symmetry
point of the Brillouin zone. A downward renormalization



3

(a) (b)

10
-1

10
-0.5

10
0

10
0.5

K M K
0

0.1

0.2

0.3

10
-1

10
-0.5

10
0

10
0.5

10
1

K M K
0

0.1

0.2

0.3

(f)

0 0.5 1
0

0.1

0.2

0.3

0.4

(c)

K M
0

0.05

0.1

Go
ld

sto
ne

ps
eu

do
-G

ol
ds

to
ne

Roton

double magnon-roton

(d) (e)

10-1 100
0

20

40

60

80

0 0.1 0.2 0.3
0

0.1

0.2

10-1 100
0

20

40

60

0 0.1 0.2 0.3
0

0.1

0.2

Calc. Calc.

Roton
G+PG

FIG. 3. The calculated spin-resolved spectral functions (a) Azz(k, ω) and (b) A+−(k, ω) under zero field, with a high energy resolution
ε ≃ 0.036meV. (c) illustrates the double magnon-roton excitations obtained from Azz(k, ω) and A+−(k, ω). The former corresponds to
a dispersion with gapless Goldstone mode and roton minimum with gap ∆R1 ≃ 0.064 meV, while the latter has a pseudo-Goldstone mode
with gap ∆PG and roton mode with gap ∆R2 ≃ 0.07 meV. The solid blue circles and red squares are determined from spectral lines in
Azz(k, ω) and A+−(k, ω), respectively. (d) shows the spectral function Azz at K ≡ [1/3, 1/3] with different energy resolution ε ranging
from 0.28Jz (i.e., about 0.036 meV) to 0.08Jz , and the inset shows that the peak position ∆G(ε) extrapolates to zero as ε → 0. (e) depicts the
spectral function A+−(k, ω) at K point with different energy resolution ε, where inset shows the peak location converges to a finite value of
∆PG(0) ≃ 0.063Jz . (f) shows the local spectral function AX(ω) ≡

∑
k A

X(k, ω), with X = zz,+− for the in- and out-plane components,
and A(ω) sum of the two.

of magnon dispersion can be discerned in experimental data
in Fig. 2(a) and simulated results in Fig. 2(c), which be-
come more evident by improving the energy resolution (see
in Fig. 3). Below, we show such soft mode represents mag-
netic analog of roton excitation in superfluid helium [52–56].

Dynamical calculations of easy-axis TLAF model.— Here
we consider the easy-axis TLAF model with realistic param-
eters of the spin supersolid compound Na2BaCo(PO4)2 and
compute the dynamical spin structure factor S(k, ω) and
spectral function A(k, ω). These two quantities can be
obtained from real-time correlation function gαβ(k, t) =
1
N e

iE0t
∑

i,j e
−ik·(ri−rj) ⟨ψ0|Sα

i e
−iHtSβ

j |ψ0⟩, where |ψ0⟩
(E0) is the ground-state wavefunction (energy), and N is
the total site number. The ground state |ψ0⟩ can be ob-
tained with density matrix renormalization group [57] and
the real-time evolution e−iHtSβ

j |ψ0⟩ is computed with time-
dependent variational principle approach [58, 59].

Given the correlation function gαβ(k, t), the spin-resolved
dynamical structure factor can be computed as Sαβ(k, ω) =∫ tmax

0
Re[gαβ(k, t)eiωt] W (t/tmax) dt and spectral function

Aαβ(k, ω) = −
∫ tmax

0
Im[gαβ(k, t)] sin(ωt) W (t/tmax) dt,

where the energy resolution ε is controlled by the maximal
evolution time tmax, as ε ≃ 8/tmax with the Parzen window
function W (t/tmax) [51]. In practice, the dynamical calcual-
tions are performed on a YC6× 15 lattice with the simulated
time up to tmax = 100/Jz . For zero-field case, the retained

bond dimension is D = 2000 for all the contour plot with
momentum scan, and D = 3000 for the lines with a fixed
momentum [e.g., Fig. 3(d,e)]. For the B = 2.5 T case, we
perform real-time evolutions on a YC6× 30 lattice with bond
dimension D = 600.

In Figs. 3(a,b) we show the results of spin-resolved spectral
functions Azz(k, ω) and A+−(k, ω), which exhibit distinct
behaviors. The spectral functions, rather than the dynamic
spin structure factors, are shown in Fig. 3, which do not in-
clude the elastic-scattering peaks at K and allow us to concen-
trate on the low-energy fluctuations. From Fig. 3(a) we find
that the spectral intensities ofAzz(k, ω) that mainly reflect the
in-plane excitations are significant only for ω ≲ 0.15 meV,
i.e., below about 2Jxy . On the other hand, the out-of-plane
excitations reflected in A+−(k, ω) can extend to higher ener-
gies of about 0.25 meV ∼ 2Jz . In addition, in Figs. 3(a,b) we
find clear single-particle excitations for 0 < ω < Jxy,z that
we dub as magnon-roton dispersions (see discussions below),
while for higher energies Jxy,z < ω < 2Jxy,z both spectra
show excitation continuum [51].

Goldstone and pseudo-Goldstone magnons.— To examine
the low-energy excitations, we gradually improve the energy
resolution to about 0.08Jz (tmax = 100/Jz) in the calcula-
tion, and show the results of Azz,+−(k, ω) in Figs. 3(a,b).
where the spectral functions become more coherent as ε de-
creases. The spectral function Azz(k, ω) reflects the in-plane
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excitations. As the spectral function is parity odd in ω, its
peak value ∆G has been artificially shifted to higher frequen-
cies upon convolution with window functions. As shown in
Fig. 3(d), ∆G becomes lowered as the resolution ε improves,
which extrapolates eventually to approximately zero energy in
the ε = 0 limit, indicating the existence of gapless Goldstone
modes [c.f., Fig. 1(c)].

On the other hand, in Fig. 3(b) we show the low-energy
out-of-plane excitations modes by computing the spectral
function A+−(K, ω). As shown in Fig. 3(d), a small but
nonzero gap ∆PG exists, which converge to ∆PG ≃ 0.063Jz .
This is the pseudo-Goldstone mode that originates from
the modified “Mexican-hat” energy landscape with six-fold
anisotropy as illustrated in Fig. 1(d). A complex order pa-
rameter Ψ = eiθ|Ψ| ≡ 1

N (
∑

i∈A⟨Sz
i ⟩ +

∑
j∈B⟨Sz

j ⟩eiπ2/3 +∑
k∈C⟨Sz

k⟩eiπ4/3) can be introduced, whereA,B,C label the
three sublattices and the U(1) phase θ reveals the “hidden”
XY degree of freedom. In Fig. 1(d), the spin configurations
like ↑↑↓ and ↑↓↑, etc., correspond to the six-fold degenerate
ground state with θ = nπ/3 (0 ≤ n ≤ 5). The spin exci-
tations in the vicinities of 6-fold minima cost a finite amount
of energy, and this small pseudo-Goldstone gap is generated
by quantum fluctuations via the order-by-quantum-disorder
mechanism [60].

Double magnon-roton excitations in the spin supersolid
phase.— Besides the conventional phonon dispersion, in su-
perfluid helium-4 there exist an anomalous dip — the roton
mode — in the excitation spectrum of superfluid helium-4.
The distinctive phonon-roton dispersion curve was first hy-
pothesized by Landau through his seminal work [52, 53], and
subsequently substantiated and refined by Feynman [54, 55]
by developing a microscopic theory to elucidate this feature.
The Landau elementary phonon-roton excitations [56, 61–63]
play an essential role in forming the thermodynamic and hy-
drodynamic characteristics of this quantum fluid [64, 65].

In isotropic TLAF systems, there have also been theoret-
ical investigations on the roton-like minima in spin excita-
tions [36, 37], There are theoretical work shedding light on
the roton excitations in isotropic Heisenberg TLAF [35, 36,
38, 66], and experimental evidence of such magnetic rotons
also reported [8–10]. This constitutes a reminiscent of the
phonon-roton spectral characteristics observed in superfluid
helium-4 [54, 64, 65]. The relationship between roton excita-
tions and superfluidity remains a subject of intense research,
with much still to be understood. It is a compelling question
to investigate whether a magnetic counterpart to roton excita-
tions exists within the spin supersolid state.

In Figs. 3(a,b), we find in both cases there are magnon-
roton dispersions consisting of linear dispersion and soft
quadratic exciations near M ≡ [1/2, 1/2] points. As summa-
rized in Fig. 3(c), there are two branches of excitations, where
the lower magnon-roton dispersion can be associated with the
in-plane spin superfluidity, as a magnetic analog of phonon-
roton dispersion in superfluid helium. Remarkably, there is
a second magnon-roton dispersion that can be ascribed to
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FIG. 4. The specific heat Cm and total magnetic entropy Stot

are shown, which are computed on a YC6×15 cylinder by with
tanTRG [72] method with D = 5000 bond states retained. The
higher (Th ≃ 0.6 K) and the lower (Tl ≃ 0.2 K) temperature scales
are determined from double-peak structure of the specific heat. The
roton entropy contributions S̃R and roton specific heat C̃R are es-
timated based on the spectral density of roton modes in Fig. 3(f).
Roton gaps ∆R1 and ∆R2 are also indicated in the plot.

the out-of-plane fluctuations of spin solidity. Despite a finite
pseudo-Goldstone gap, the six-fold anisotropy in the pseudo-
spin Ψ [see Fig. 1(d)] becomes irrelevant at elevated tem-
perature and there is an emergent U(1) symmetry in the sys-
tem [16, 67]. This can give rise to the Berezinskii-Kosterlitz-
Thouless (BKT) transition [68, 69] similarly as in triangular
lattice quantum Ising antiferromagnets [16, 67, 70, 71]

Thermodynamics of magnon-roton excitations.— As firstly
noticed by Landau [53], rotons are activated at a temper-
ature much lower than the roton gap, and thus contribute
significantly to the low-temperature thermodynamics of su-
perfluid helium [64], due to the very large density of states
of roton excitations. In Fig. 3(f), we show the A(ω) ob-
tained by integrating over the momentum k, i.e., A(ω) =
1
N

∑
k A

zz(k, ω) + A+−(k, ω), with N a normalization fac-
tor such that

∫
A(ω) dω = 1. A prominent peak of A(ω) can

be observed near the roton mode ω ∼ ∆R1,R2, which may
strongly influence the low-temperature properties.

In Fig. 4, we show the calculated entropy Stot and spe-
cific heat Cm from thermal tensor-network calculations. By
taking A(ω) in the particular energy window as the effective
density of states of the roton excitations [51], we also esti-
mate the roton contributions S̃R and C̃R at low temperature.
From the results in Fig. 4, we find that due to the prominent
spectral peak, the roton modes have significant contributions
even below Tl ≃ 0.2 K, despite the considerable roton gap
of ∆R1,R2 ≈ 0.78 K. Therefore, the double magnon-roton
excitations with roton dips significantly influence the low-
temperature thermodynamics, explaining naturally the giant
MCE observed in Na2BaCo(PO4)2 [48].

Discussion and outlook.— In this work, we find a coexis-
tence of three-sublattice spin solidity and gapless Goldstone
magnons, and provide spectroscopic evidence for spin super-
solidity in NBCP. Predictions have been formulated concern-
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ing the emergence of double magnon-roton excitations and the
pseudo-Goldstone gap within the spin supersolid phase. To
further explore these phenomena, INS measurements with en-
hanced energy resolution are required.

Beyond NBCP, the main conclusions here on the dynam-
ical properties may also apply to other similarly structured
triangular-lattice compounds. Very recently, emerging evi-
dence suggests the presence of a spin supersolid phase within
the triangular-lattice cobaltate compound K2Co(SeO3)2, de-
spite of a different extent of easy-axis anisotropy [73, 74].
Owing to the substantial spin exchange interactions present
in this triangular-lattice cobaltate, we anticipate that observ-
ing the predicted dynamical signatures, including roton modes
and pseudo-Goldstone gap, etc, may require less stringent ex-
perimental conditions compared to Na2BaCo(PO4)2.

Note added.— In the finalization of the present work, we
get aware of two recent studies also on the spin dynamics of
spin supersolid phase in Na2BaCo(PO4)2 [75, 76], with main
conclusions consistent with our present study.
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I. DATA ANALYSIS OF THE NEUTRON SCATTERING MEASUREMENTS

The low energy range with ω ∈ [-0.05, 0.05] meV of the INS data in zero field was integrated and treated as the elastic
scattering results. As shown in Fig. S1(a), the coexistence of bright magnetic Bragg peaks with the propagation vector of k =
(1/3, 1/3, 0.16) and diffusive rod-like scatterings are observed. The latter is along the out-of-plane direction and suggest a quasi
two-dimensional nature of NBCP.

The integrated intensities of the magnetic Bragg peaks on top of the diffuse scatterings were extracted for further analysis.
As shown in Fig. S1(b), the intensities of the four non-equivalent reflections agree with an UUD configuration of the Co2+

moments along the c-axis described by the irreducible representation Γ1. The moment sizes on the z = 0 layer are estimated to
be 0.606(27), −0.303(13) and −0.303(13) µB, for the ‘down’, ‘up’, and ‘up’ spins in three sublattices, respectively. The results
are well consistent with our previous neutron diffraction results on NBCP also under zero field [48] and supports the presence
of out-of-plane spin solidity in the compound.
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FIG. S1. (a) Contour plot of the elastic part of INS results with ω ∈ [−0.05, 0.05] meV. The data is the same with those in Fig. 1(a) in the main
text, but shown in a different color bar to emphasize the rod-like diffuse scatterings. They arise from the almost dispersionless spin excitations
at very low energy along the out-of-plane direction. (b) The comparison between the observed and calculated (integrated) intensities of four
non-equivalent magnetic reflections for B = 0 T, adopting the UUD spin configuration of the Co2+ moments along the c-axis described by
the irreducible representation Γ1.

The low-energy part of the 2.5 T data, with ω ∈ [−0.1, 0.1] meV, is used for background subtraction for the zero-field INS
data. As shown in Fig. S2(c), the spin excitations observed with an in-plane field of B = 2.5 T are clearly gapped. Therefore,
we utilize the low-energy part of the 2.5 T data as the intrinsic background to be subtracted for the 0 T case shown in Fig. S2(b),
and obtain the result shown in Fig. S2(a). By integrating the scatterings along the out-of-plane [0, 0, ζ] direction, it is found that
the spin excitations emanating and away from the ordering vector look quite similar, as shown in Fig. S3(a) for ζ ∈ [−0.2, 0.2]
and Fig. S3(b) for ζ ∈ [0.3, 0.7], also indicating clearly a good two dimensionality of NBCP.

II. GROUND STATE DYNAMICAL CALCULATIONS

A. Derivation of dynamical spin structure factor and spectral function

In this section, we detail the derivation of ground-state dynamical spin structure factor S(k, ω) and spectral function A(k, ω).
We start form the real-time correlation function

gαβ(k, t) ≡ 1

N
eiE0t

∑
i,j

e−ik·(ri−rj) ⟨ψ0|Sα
i e

−iHtSβ
j |ψ0⟩ , (S1)
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FIG. S2. INS results with B = 0 (a,b) and B = 2.5 T (c). (b) and (c) are the raw data, while (a) is obtained from (b) by subtracting the
background below 0.1 meV in (c).
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FIG. S3. The INS data cut along the high-symmetry [ξ, ξ] direction measured in zero field. Scatterings are integrated along the [−η, η, 0]
direction for η ∈ [−0.4, 0.4], and along the out-of-plane [0, 0, ζ] direction for (a) ζ ∈ [−0.2, 0.2] and (b) ζ ∈ [0.3, 0.7], respectively. The
close agreement between the two plots indicates that the compound exhibits robust two-dimensional characteristics.

where |ψ0⟩ is the ground state, E0 is the ground-state energy, N is the total site number, and (Sα
i )

† = Sβ
i . Then we take the

complex conjugate and arrive at

gαβ(k, t)∗ =
1

N
e−iE0t

∑
i,j

e−ik·(rj−ri) ⟨ψ0|Sα
j e

iHtSβ
i |ψ0⟩ = gαβ(k,−t). (S2)

With the real-time correlation function, we obtain the dynamical spin structure factor S(k, ω)

Sαβ(k, ω) ≡
∫ ∞

−∞
gαβ(k, t)eiωt dt =

∫ ∞

0

gαβ(k, t)eiωt dt+

∫ ∞

0

gαβ(k,−t)e−iωt dt

= 2

∫ ∞

0

Re[gαβ(k, t)eiωt] dt.

(S3)

Similar, we can calculate the spectral function A(k, ω) ≡ − 1
π Im[GR(k, ω)] where GR(k, ω) is the retarded Green’s function

GR,αβ(k, ω) ≡− i

N

∑
i,j

e−ik·(ri−rj)

∫ ∞

0

eiωt ⟨ψ0| [Sα
i (t), S

β
j (0)] |ψ0⟩ dt

=− i

N

∑
i,j

e−ik·(ri−rj)

∫ ∞

0

eiωt(eiE0t ⟨ψ0|Sα
i e

−iHtSβ
j |ψ0⟩ − e−iE0t ⟨ψ0|Sβ

j e
iHtSα

i |ψ0⟩) dt

=− i

∫ ∞

0

eiωt[gαβ(k, t)− gβα(−k,−t)] dt.

(S4)

Note that the Hamiltonian and the ground state is invariant under the space reversal transformation ri → −ri, we have
gαβ(k, t) = gαβ(−k, t). Besides, with zero magnetic field, the Hamiltonian is invariant under the spin flip transformation
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Sz
i → −Sz

i , S
y
i → −Sy

i , thus we have g+−(k, t) = g−+(k, t). Note that we only consider A+−(k, ω), Azz(k, ω) under zero
field, we can obtain the spectral function as

Aαβ(k, ω) ≡− 1

π
Im[GR,αβ(k, ω)] = − 2

π
Im[

∫ ∞

0

[cos(ωt) + i sin(ωt)] Im[gαβ(k, t)]]

=− 2

π

∫ ∞

0

Im[gαβ(k, t)] sin(ωt) dt.

(S5)

In the calculations, we first obtain |ψ0⟩ using density matrix renormalization group [57] and then perform real-time evolution
to simulate |ψ′(t)⟩ ≡ e−iHtSβ

j |ψ0⟩ with time dependent variational principle (TDVP) [58, 59]. Having acquired the real-time
correlation function, we proceed to calculate the dynamic structure factor and the spectral functions, which are convolved with
an appropriate window function to account for experimental broadening effects, i.e.,

Sαβ(k, ω) =

∫ tmax

0

Re[gαβ(k, t)eiωt]W (
t

tmax
) dt,

Aαβ(k, ω) = −
∫ tmax

0

Im[gαβ(k, t)] sin(ωt)W (
t

tmax
) dt,

(S6)

where W (t) is the Parzen window function, and tmax is the maximal TDVP evolution time (in natural unit). The energy
resolution ε ≃ 8/tmax as determined by W (t/tmax), the full width at half maximum (FWHM) of its Fourier transform. In
practical calculations, we perform real-time evolution with retained bond dimension up to D = 3000 on a YC6× 15 lattice for
zero field and bond dimension D = 600 on a YC6 × 30 lattice under in-plane field of B = 2.5 T, with the involved Y−type
cylindrical lattice shown in Fig. S4 below.
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FIG. S4. The YC6 × 15 lattice employed in the calculations. The number labels the order of the MPS site, and the orange dashed lines
represent the periodic boundary condition along Y direction.

B. The estimation of energy resolution

The energy resolution ε is determined by W (t/tmax), as the FWHM of its Fourier transform. In practice, we choose the
Parzen window function following as

W (t) =



−2(−1 + t)3 1
2 < t ≤ 1

2(1 + t)3 −1 ≤ t < − 1
2

1− 6t2 − 6t3 − 1
2 ≤ t < 0

1− 6t2 + 6t3 0 ≤ t ≤ 1
2

0 otherwise

, (S7)
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As the Fourier transformation reads

F [W (t)](ω) = 6

√
2

π

e−iω(−1 + eiω/2)4

ω4
, (S8)

the energy resolution FWHM can be obtained as ε ≃ 8/tmax.

C. Estimation of density of states

Here we show the details of density of states (DOS) estimation. We consider the local spectral density A(ω) ≡
1
N

∑
k∈BZA(k, ω), where BZ is the first Brillouin zone and N is the system size. According to Eq. (S5), we have

Aαβ(ω) ≡
∑
k∈BZ

Aαβ(k, ω) = − 2

π
Im[

∫ ∞

0

eiωtIm[
1

N

∑
k

gαβ(k, t)]]. (S9)

Note that
1

N

∑
k

gαβ(k, t) =
1

N
eiE0t

∑
k

⟨ψ0|Sα
−ke

−iHtSβ
k |ψ0⟩

=
1

N
ei(E0−Em)t

∑
k,m

|| ⟨m|Sβ
k |ψ0⟩ ||2,

(S10)

where Sβ
k = 1√

N

∑
i e

ikriSβ
i , {|m⟩} are the eigenstates ofH with energyEm and we assume (Sα

−k)
† = Sβ

k . Substitue Eq. (S10)
into Eq. (S9), we have

Aαβ(ω) =− 2

Nπ

∑
k,m

|| ⟨m|Sβ
k |ψ0⟩ ||2

∫ ∞

0

Im[eiωtIm[ei(E0−Em)t]] dt

=
1

Nπ

∑
k,m

|| ⟨m|Sβ
k |ψ0⟩ ||2

∫ ∞

0

Re[ei(ω+E0−Em)t]− Re[ei(ω−E0+Em)] dt

=
1

N

∑
k,m

|| ⟨m|Sβ
k |ψ0⟩ ||2(δ(ω + E0 − Em)− δ(ω − E0 + Em)).

(S11)

Here we introduce the excitation energy εm ≡ Em − E0 and only consider the positive energy part, and we can arrive at

Aαβ(ω > 0) =
1

N

∑
k,m

|| ⟨m|Sβ
k |ψ0⟩ ||2 δ(ω − εm). (S12)

Regarding the low-energy excitation states |m⟩ as free gas of Bogoliubov quasi-particle with energy εk, the Hamiltonian can be
represented as H ≃

∑
k εkγ

†
kγk. The excitation states can be represented as |m⟩ ≃ Πk′

1√
nk′ !

(γ†k′)nk′ |ψ0⟩, where γk is the

Bogoliubov quasi-particle operator. Therefore, Eq. (S12) can be rewritten as

Aαβ(ω > 0) ≃ 1

N

∑
k

|| ⟨ψ0| γkSβ
k |ψ0⟩ ||2 δ(ω − εk), (S13)

where we assume multi-magnon excitation states have vanishing contributions, and || ⟨ψ0| γkSβ
k |ψ0⟩ ||2 ∼ O(1). With this

(crude) approximation, we arrive at

Aαβ(ω > 0) ≈
∑
k

δ(ω − εk), (S14)

estimates the density of state of magnon excitations with energy εk. At low temperature, we treat the magnons and rotons as free
boson gas, and the entropy and specific heat according to

S̃(T ) =

∫ ∞

0

A(ω)[
ω/T

eω/T − 1
− ln(1− e−ω/T )] dω,

C̃(T ) =T
∂S̃(T )

∂T
,

(S15)

where A(ω) ≡ A+−(ω) +Azz(ω) is normalized such that
∫∞
0
A(ω) dω = 1.
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FIG. S5. Spectral functions Azz(k, ω), A+−(k, ω), and Atot(k, ω) = Azz(k, ω)+A+−(k, ω) computed on a YC6×15 lattice with different
bond dimensions D = 1000, 2000. The energy resolution is set as ε ≃ 0.036 meV.

D. Data convergence

Below we show in Fig. S5 the calculated spectral function results with different bond dimensions retained. By increasing the
bond dimension, the magnon-roton excitations become more clear and the downward renormalization at M ≡ [1/2, 1/2] point
becomes more prominent. Besides, we also show the spectral functions with different bond dimensions, momentum points, and
energy resolutions. As shown in Fig. S6, we find the spectral functions are well converged with a retained bond dimension
D = 3000.
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FIG. S6. Zero-field spectral functions computed on a YC6× 15 lattice with various bond dimensions D, momenta, and spin components.
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E. High-energy excitation continuum

In this section, we discuss about the high-energy continuum observed in both INS experiments and tensor-network calcula-
tions. In Fig. S7(a) we show the experimental results, and in Figs. S7(b-f) spectral functions with different energy resolutions
are presented, where the W -shape excitation continuum does not sharpen as the energy resolution improves.
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FIG. S7. (a) contour plot of INS result. (b-f) spectral function A+−(k, ω) under different energy resolution with bond dimension D = 1000.

F. Fitting of magnon-maxon-roton excitations

Here we show the magnon-maxon-roton fitting of the calculated spectral function. The terminology magnon, maxon, and roton
originates from the excitations spectrum of superfluid helium-4 [77]. Here a magnon represents the gapless linear excitation,
also known as the Goldstone mode arising from U(1) symmetry breaking. The maxon corresponds to the quadratic excitation
near the peak of the dispersion relation, whereas the roton denotes the quadratic excitation at the bottom of the dispersion curve,
characterized by a finite minimum energy. We adopt the undetermined function with the following form

f(ξ) =


−k0(ξ − 1/3) + ∆0, ξ ≤ 1/3

k0(ξ − 1/3) + ∆0, 1/3 < ξ ≤ ξ0

−aM(ξ − ξM)2 +∆M, ξ0 < ξ ≤ ξ1

aR(ξ − 1/2)2 +∆R, ξ1 < ξ

(S16)

where {k0,∆0, ξ0, aM, ξM, ξ1, aR,∆R} are the fitting parameters. The first two lines are the (pseudo-)Goldstone part, the third
line is the maxon part, and the last line is the roton dispersion. Note that f(ξ) should be a continuous function, thus the fitting
parameters can be reduced to {k0,∆0, ξ0, ξM, ξ1,∆R}. With numerical results of the dispersion εk obtained from the calculated
spectral functions, these parameters can be fitted and the corresponding results are shown in Fig. S8. In examining Goldstone
mode excitations determined from Azz(k, ω), we assume ∆0 to be zero, consistent with the anticipated symmetry breaking
scenario. Conversely, when analyzing the A+−(k, ω) excitation channel, we allow ∆0 to vary, serving as a free parameter to be
precisely fitted to the data.
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FIG. S8. The magnon-maxon-roton fitting of dispersion εk. Based on the data εzzk obtained from the spectral function Azz , we arrive at the
fitting parameters {k0 = 1.24,∆0 = 0, ξ0 = 0.39, ξM = 0.439, ξ1 = 0.425,∆R = 0.0637}. For ε+−

k from the spectral function A+−, we
find parameters {k0 = 1.24,∆0 = 0.008, ξ0 = 0.385, ξM = 0.439, ξ1 = 0.425,∆R = 0.07}. See definitions of these fitting parameters in
Eq. (S16).

III. LINEAR SPIN WAVE CALCULATIONS

Details of the linear spin-wave calculations of easy-axis TLAF model H =
∑

⟨i,j⟩ Jxy(S
x
i S

x
j + Sy

i S
y
j ) + JzS

z
i S

z
j are shown

below, where ∆ = Jz/Jxy . The ground state of the easy-axis TLAF model with ∆ > 1 is a Y-shaped state in the x-z plane.
There are three sublattices, namely A, B, and C, and thus three kinds of Holstein-Primakoff bosons, a, b, and c are introduced.
For the sublattice A, we have

Sz = (S − a†a),

Sx =

√
2S

2
(a+ a†),

Sy =

√
2S

2i
(a− a†).

(S17)

On the other two sublattices, there are angles ±θ between spins on A and B(C) sublattices. For sublattice B, the transformation
reads

Sz = cos θ (S − b†b)− sin θ

√
2S

2
(b+ b†),

Sx = sin θ (S − b†b) + cos θ

√
2S

2
(b+ b†),

Sy =

√
2S

2i
(b− b†),

(S18)

and for sublattice C

Sz = cos θ (S − c†c) + sin θ

√
2S

2
(c+ c†),

Sx = − sin θ (S − c†c) + cos θ

√
2S

2
(c+ c†),

Sy =

√
2S

2i
(c− c†).

(S19)

Through the Holstein-Primakoff and Fourier transformations, we arrive at a quadratic form of the Hamiltionian

HHP =
∑
k

α†
kH0(k)αk,
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where α†
k = (a†k b†k c†k a−k b−k c−k) denote the magnon creation operators. The quadratic Hamiltonian is H0(i, j) =

S A0(i, j)Z(i, j), where the k-independent symmetric part is A0 = A + AT, i, j label the matrix index, and S = 1/2 for
the present case. A is a 6× 6 upper triangular matrix

A =

(
M N
0 M

)
, (S20)

with

M =

−3∆ cos θ cos θ+1
2

cos θ+1
2

0 3
2 (sin

2 θ −∆cos2 θ −∆cos θ) cos2 θ+1−∆sin2 θ
2

0 0 3
2 (sin

2 θ −∆cos2 θ −∆cos θ)

 , (S21)

and

N =

 0 cos θ−1
2

cos θ−1
2

cos θ−1
2 0 cos2 θ−1−∆sin2 θ

2
cos θ−1

2
cos2 θ−1−∆sin2 θ

2 0

 , (S22)

∆ = Jz/Jxy is the anisotropic parameter, and Z(k) is a 6× 6 matrix

Z(k) =


1 z z∗ 1 z z∗

z∗ 1 z z∗ 1 z
z z∗ 1 z z∗ 1
1 z z∗ 1 z z∗

z∗ 1 z z∗ 1 z
z z∗ 1 z z∗ 1

 , (S23)

with z =
∑

i e
ikδi with δ1 = (1, 0), δ2 = (− 1

2 ,
√
3
2 ), δ3 = (− 1

2 ,−
√
3
2 ). The angle θ can be obtained by minimizing ground state

energy E0 = S2(2∆ cos θ +∆cos2 θ − sin2 θ), and for the realistic parameter ∆ = 1.68 we have θ = 128.91◦. With this, we
diagonalize HHP and obtain the linear spin-wave dispersion shown in Fig. 2 of the main text.
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