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We study extensions of the mappings arising in usual Channel-State duality to the case of
Hilbert spaces with a direct sum structure. This setting arises in representations of algebras with
centers, which are commonly associated with constraints, and it has many physical applications
from quantum many-body theory to holography and quantum gravity. We establish that there
is a general relationship between non-separability of the state and the isometric properties of
the induced channel. We also provide a generalisation of our approach to algebras of trace-class
operators on infinite dimensional Hilbert spaces.

I. INTRODUCTION

The focus in this work is on mappings encoding
information transport properties in quantum systems,
specifically those which have an algebra of observables
possessing nontrivial center, and, a representation of
the same algebra on Hilbert spaces with a direct sum
structure[13, 16, 17]. These mappings can also be seen
as way to characterize entanglement between subsets of
quantum degrees of freedom of the same systems, in a
context in which no unambiguous notion of subsystem is
immediately available, due to the Hilbert space lacking a
tensor product decomposition.
Let us give a simple example of the maps we consider,

but in a much simpler context, i.e. the simplest bipartite
quantum system made from 2 qubits. For Bell states of
2 qubits, the action of an operator on one of the qubits
can be expressed through an operator on the other, more
specifically its transpose:[19]

(X ⊗ IB) |Φ±〉 = (IA ⊗±Xt) |Φ±〉 (1)

This is possible due to the maximal correlation between
the two qubits in this state, which implies that acting on
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or measuring any property on one of the two is equiva-
lent to performing some related action or measurement
on the other. In the following, we study generalisations
of this property, but with focus on sets of operators, and
on how states with this property are selected. Already in
this simple case, using this state, we can define a corre-
spondence between operators on the two qubits that we
call a transport superoperator : a mapping

TΦ± : B(C2
A)→ B(C2

B) (2)

which takes any (bounded) operator on a subsystem and
turns it into an operator on its complementary subsys-
tem. Such a mapping is state-dependent. How well sub-
systems are mapped onto each other by its action de-
pends both on how similar the subsystems are (in par-
ticular, the dimensions of the subsystem or their tensor
product substructure) and how strongly correlated they
are in the given state.
Given any operator X ∈ B(C2

A), we can write it, using
a notation that applies straightforwardly in the general
case, as

TΦ±(X) = dim(C2
A) · TrA[(X ⊗ IB) |Φ±〉 〈Φ±|] ∈ B(C2

B).
(3)

One can verify easily in components that this does in-
deed give the transpose ±Xt of the operator X for |Φ±〉.
Written like this, it becomes clear that this is a particular
case of Channel-state duality[13, 17].
The duality connects sets of k-positive operators on a
bipartite system H = HA ⊗HB,

Lk(H) = {O ∈ B(H) : ∀ |ψ〉
of Schmidt rank k or less, 〈ψ|O |ψ〉 ≥ 0} (4)
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with the set of k-positive linear maps from B(HA) to
B(HB),

BLk(B(HA),B(HB)) = {T : B(HA)→ B(HB) :

ICk ⊗ T positive} (5)

in the form

BLk(B(HA),B(HB)) ∼= Lk(H) ∀k ≤ dim(HA). (6)

The most commonly used example of this duality is for
k = dim(HA), where the set of operators becomes that of
(unnormalised) states on H, and the set of maps is that of
completely positive(CP) ones. Then, restricting to nor-
malised states/trace-preserving(TP) maps, one recovers
a correspondence between channels and states. (For ex-
ample, between |Φ±〉 and TΦ±).
Given a (1-)positive operator ρ ∈ B(H), we can get the
channel side of the duality in the form

Tρ(X) = TrA[(X ⊗ IB)Σ(ρ)] (7)

where either Σ(ρ) = ρ or Σ(ρ) = ρtA with the partial
transpose (−)tA . The two options here may be referred
to, respectively, as the Jamiolkowski-Pillis and the Choi
mapping. The difference between them is that, while
both establish an isomorphism for k = 1, only the Choi
map extends this to arbitrary k.
The converse requires a noncanonical choice. Given a k-
positive linear map T : B(HA)→ B(HB), we must choose
a reference maximally entangled state |φ〉 ∈ H. With such
a choice, we can define the associated k-positive operator
ρT ∈ B(H)

ρT := (idA ⊗ T ) |φ〉 〈φ| (8)

often referred to as the Choi matrix of the channel. The
reference state must be chosen maximally entangled in
order for the resulting operator to carry the same infor-
mation as the channel, but split between the subsystems
A,B. (If it were for example a product state, then the
resulting operator would only capture one point in the
image of T .) Different reference states |φ〉 generally lead
to different T → ρT correspondences, although there are
some exceptions (see e.g. [13]). We will disregard these
ambiguities in what follows, as we are primarily inter-
ested in the inverse of the correspondence, i.e. ρ → Tρ
. Still, we will point out, when needed, which choice we
make to establish the T → ρT direction of the gener-
alised channel-state duality. This is particularly relevant
because in the case of direct-sum Hilbert spaces, the cor-
rect analogue of a maximally entangled state is not im-
mediately obvious. We will later see that for a sensible
notion of channel-state duality for the direct-sum setting,
it will simply consist of a maximally entangled state per
sector.
We can see that the property of “Bellness”, i.e. max-
imal quantum correlation, of |Φ±〉 does not come into
play in making TΦ± a channel. Rather, regardless of the
quantum correlations present in the state, as long as ρ

is normalised and completely positive, it induces a chan-
nel. In fact, we will demonstrate in the following that
maximal correlation, translated in terms of maximal en-
tanglement entropy, instead corresponds to an additional

property of the channel: it is isometric, where isometry
is defined in the Hilbert-Schmidt inner product on oper-
ators 〈X,Y 〉HS = Tr[X†Y ]:

〈TΦ±(X), TΦ±(Y )〉HS,B = 〈X,Y 〉HS,A . (9)

The notion of (information) transport superoperators as-
sociated with states, and their properties with respect to
this inner product, can characterise the underlying state
in a useful operational fashion.
In particular, it is a way to characterize quantum corre-
lations beyond the case where the subsystems have iden-
tical Hilbert spaces, or when the total Hilbert space does
not factorise at all in terms of subsystem Hilbert spaces.
Superoperators of this kind have found use in tensor net-
work models of holography[5, 6, 11, 29], where the sys-
tems A and B are seen as, respectively, the bulk and
boundary of a spatially compact system, and state or
operator reconstruction on boundaries are used as hall-
marks of holographic behaviour. Indeed, this is a case
in which the relevant Hilbert spaces are not, in general,
composed of factors of the same size when they factorize
over A and B, or do not factorize at all [3, 7, 10]. Mo-
tivated by these models, we study transport superopera-
tors on bi- and tripartite systems subject to constraints
which prevent the total Hilbert space to fully factorize,
enforcing a structure of the form

H =
⊕

E

HI,E ⊗HO,E . (10)

where labels I and O refer to the possible interpretation
of the two subsystems as, respectively, ”input” and
”output”, and where E is the value of the constraint
charge. In particular, we ask the questions: Given such
a setup, what is a sensible notion of complementary

subsystems, and of a transport operator T from a
subsystem to a complementary one? Further, Is there

an associated version of channel-state duality for this
direct sum setting?

This setting is, as we stressed, quite generic. Consider
two systems with a given series of eigenenergies E, each
with eigenspace HE, and fix their total energy to E . The
corresponding Hilbert space is

HE =
⊕

E+E′=E

HE ⊗HE′ . (11)

So, we may generically see such direct sum spaces as
indicating the imposition of a constraint in some larger
(possibly factorized) Hilbert space.
To give a couple more examples, we can first consider a
spin system on a lattice Λ, described by a qubit on each
site v ∈ Λ. If the dynamics is such that the total angular
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z-momentum J =
∑

v σ
z
v is conserved, it makes sense to

split the Hilbert space into its eigenspaces

Hfree =
⊗

v∈Λ

C
2
v
∼=

⊕

J

HJ (12)

In this case, the sectors are labeled by the total spin J
(whose range depends on the size of the lattice) and do
not have a direct tensor product factorisation due to the
global constraint, unlike the total (free) Hilbert space. If,
however, the lattice is split into complements ΛL|R, we
can equally write them as

HJ
∼=

⊕

JL+JR=J

HΛL,JL
⊗HΛR,JR

(13)

in direct analogy to the energy case before. In this case,
then, the sector label E is given by the total spin J of the
subregions. Contrast this with a case of local constraints
on each site, as in Z2 lattice gauge theory, with qubit
on each link e ∈ Λ. The system is subject to the Gauss
constraints

Gv =
∏

e∩v

σx
e

!
= Iv (14)

which are the lattice counterpart of the continuum Gauss
constraint of gauge field theory and which impose a Z2

gauge invariance of states. The resulting gauge-invariant
Hilbert space HΛ does not have immediate spatial fac-
torisation properties in terms of lattice sites, like in the
example before. However, given a split of the lattice into
complements ΛL|R along a set of links S, one can still
give a direct-sum tensor split

HΛ
∼=

⊕

E

HΛL,E
⊗HΛR,E

(15)

in which the sectors are labeled by the set of Xe-
eigenvalues on S, E := {se ∈ Z2|e ∈ S}. Each of the
tensor factors is simply the gauge invariant Hilbert space
on the respective sublattice, subject to the boundary con-
dition Xe = se ∀ e ∈ S. Let us stress that the same ab-
sence of local factorization is true in the continuum case
and holds for any (field) system with gauge invariance[8–
10, 14].
These examples show also that as long as an a-priori
tensor factorisation is present before imposing the con-
straints, one can keep said structure on the constrained
subspace sector-by-sector in a direct-sum decomposition
over the conserved charges.
The lack of tensor factorisation makes unusable several
technical and conceptual tools. The operator algebra as-
sociated with the full system no longer factorises nicely,
and a clear notion of subsystems defined in terms of
Hilbert subspaces also disappears. Further, the standard
notion of entanglement, based on the deviation from a
product state ρA ⊗ ρB on HA ⊗ HB, is also no longer
valid[7, 14, 16, 31], as no notion of a product state is
available to compare to.

We may of course choose to embed the direct sum in
some bipartite system, with a factorized Hilbert space,
but a choice of such embedding is highly nonunique
and possibly unphysical. In fact, such a choice can be
understood as equivalent to a choice of algebraic sub-
systems for A,B, in the sense of choosing subalgebras
AA|B ⊂ A = B(H)[12, 32]. We deal with all of these
issues in the following sections.
The structure of this paper is as follows. In section II, we
review the problem and introduce relevant concepts (e.g.
algebraic subsystems, extension and partial trace maps).
In section III, we study the case of transport operators on
tripartite systems with no direct sum, and then extend
the discussion to direct sums of tripartite systems. Sec-
tion IV presents the generalization of the Channel-State
duality to the direct sum case. Section V discusses possi-
ble extensions of these notions to the infinite dimensional
case.

II. THE SETTING

Let us start from the algebra A = B(H) of
operators[20] acting on a Hilbert space H of our choice.
Then, select as subsystems two subalgebras AI ,AO, to
be later seen as inputs and outputs of the transport su-
peroperator. These are understood as operations or ob-
servables of the subsystems in consideration. These two
algebras are not necessarily a partition of A, where a
(bi)partition would be rather specified as the output be-
ing the algebraic complement (the commutant) of the
input,

(AI)
′ = AO (AO)

′ = AI , (16)

so that the operators commuting with inputs are pre-
cisely the output operators. This structure, when
present, captures the general properties we may expect
of any operational definition of splitting of the system
into two parts. [21] We have here labeled the two parts
of the bipartition ’input’ and ’output’ in analogy to
a quantum channel, but the labels could refer to any
form of separation of subsystems (it could equally well
be ’Left/Right’, ’Inside/Outside’, ’System/Measurement
apparatus’ or ’Alice/Bob’, etc). For more about this al-
gebraic perspective on subsystems, we recommend the
review[32].
In general, we have that AI ∪AO 6= A, and, more impor-
tantly, we may have a nontrivial center Z = AI ∩ AO,
which consists of operators which commute with all oth-
ers. If the center is trivial, i.e. consisting only of multi-
ples of the identity λI, we have that AI ∪ AO factorises
intoAI⊗AO. Its representations, then, also factorise into
tensor products of Hilbert spaces. This is the simplest
setting. In this special case, we can define subsystems as
Hilbert subspaces in the tensor factorisation and extend
subsystem operators uniquely: XI 7→ XI ⊗ IO[22]; more-
over, the entanglement for pure states is well-defined and
can be quantified, e.g. through von Neumann entropy.
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These properties do not generalise to the case with non-
trivial center.[4, 14, 16]
In the case of nontrivial center, we have a commutative
subalgebra of A. In fact, because the input and output
systems commute with this center, we may seperate rep-
resentations of the algebra into sectors labeled by eigen-
values of operators in Z. This gives rise to the charac-
teristic structure of the Hilbert space

H =
⊕

E

HE =
⊕

E

HI,E ⊗HO,E (17)

in which the central operators have been diagonalised
with eigenvalues given by E. A very concrete way
to present this sort of algebra is through block matri-
ces, where each block corresponds to a sector E in the
above decomposition. Lacking a clear notion of separable
states, the simple notion of entanglement as non-product
states does not hold up, but, of course, this is not the
end of the story, and for example entropies may still be
calculated[2, 8, 16].
Still, the particular structure of the algebras and Hilbert
spaces considered above indicates a natural way forward.
We still have a notion of subsystem in each sector due

to factorisation, given by operators on input and out-
put Hilbert spaces, in each of them. That is, there are
associated subalgebras

⊕

E

B(HI,E)⊗ IO,E

⊕

E

II,E ⊗ B(HO,E) (18)

of operators on the individual subsystems for each sector.
These are a consistent definition of complementary sub-
systems in the case of the Hilbert space structure above
- they form subalgebras, have the correct commutant re-
lation and the right center given by sums of identity op-
erators in each sector, which represent the diagonalised
operators from Z.
They also have unique extensions from the image of naive
partial traces to the full algebra, and are the largest set to
have this property. This means that, if we take the naive
partial trace of an operator X =

∑

E,F XE,F ∈ B(H)

(splitting into blocks over the different sectors), which is
given by

TrO[X ] =
∑

E

TrHO,E
[X ] =

∑

E

TrHO,E
[XE,E] (19)

then we only keep the diagonal blocks inX , because there
is no notion of a trace on the non-diagonal blocks. The
reason for this is that, while there is a natural ’evaluation’
or trace map on V ∗ ⊗ V for any vector space V , this is
not true for

B(HE ,HF ) ∼= H
∗
E ⊗HF (20)

when E 6= F (or any vector spaces which are not
equal). Without providing such maps by hand (which
amounts to a different choice of partial trace map), we

can only arrive at operators of the above form by re-
ducing to subsystems. Similarly, if we want to extend
some abstract subsystem operator, for example given by
U =

∑

E,F UE,F ∈ B(
⊕

E HI,E) on the input subsys-
tem, to the full system, then we would naively do so by
extending it with ’identity operators’ IO;E,F

iI(U) :=
∑

E,F

UE,F ⊗ IO;E,F , (21)

which however are only unambiguously defined, again,
for E = F . This is simply the statement that the off-
diagonal blocks will not have a clear notion of a diagonal,
and certainly not of an ’identity’, without prescribing
it by hand. In this sense, the choice of subsystem we
indicate here is the only unambiguous one - for others, we
would need to prescribe by hand extra data for defining
any extension and restriction. To summarize, the natural
way forward is to use the unique unambiguous definition
of subsystems in each sector and extend it to the sum over
sectors, to obtain information channels and a generalised
channel/state duality for the whole system. What we
do in the following is to show that this way forward can
indeed be pursued, that it leads to a well-defined result,
and that the resulting construction is, in the sense we
clarified, the only natural one.

III. MAPPINGS ON ALGEBRAS WITH

NONTRIVIAL CENTERS

In order to define generalisations of the transport su-
peroperator from before, we can follow the path indicated
above, using a few ingredients:

1. Choices of input and output systems BI|O, e.g.
BI|O =

⊕

E B(HI|O,E),

2. Identifications/Injections iI|O : BI|O →֒ A, whose
images we identify as the complementary subsys-
tems AI|O,

3. Conjugate partial trace maps PTrI|O : A → BI|O
that reduce an operator on the full system to a
subsystem,

4. A mapping Σ : A → A, usually related to a density
matrix ρ, e.g. Σ(X) = XρtI .

We will now go into detail about this construction in
the case of a trivial center at first, which corresponds
to a system with simple tensor product factorisation in
its Hilbert space. This will illustrate that the notion
of transport operators is useful also in this simple case,
and already shows the main behaviour of their proper-
ties, namely that there exists a 2-out-of-3 implication for
purity of the state ρ, trace preservation and isometry of
the mapping associated to it[23]. After that, we show the
generalisation to the case with multiple blocks/sectors or
nontrivial center, and find that the same thing holds, but
the conditions split per sector.
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A. Trivial center

For starters, consider the C*-algebra A = B(H) of
bounded linear operators on a finite dimensional Hilbert
space H, equipped with the Hilbert-Schmidt inner prod-
uct., together with a tripartition of H ∼= HI ⊗ HO ⊗ HB

into input, output and background spaces. In concrete
cases, this induces subsystems AI|O|B and associated ex-
tension

iI|O|B : BI|O|B →֒ A (22)

and partial trace maps

PTrI|O|B : A → BI|O|B (23)

which are, respectively, injective and surjective and, up
to normalisation, inverses of each other. As before, we
identify AI|O|B = Im(iI|O|B).
We prescribe usually the subsystems as the obvious
choice of subalgebras of B(H):

BI = B(HI) BO = B(HO) BB = B(HB). (24)

In this concrete case, they are simply given by

iI(X) = X ⊗ IBO PTrI(X) = TrBO[X ] (25)

and will from now on refer to B and A interchangeably
where there is no risk of confusion.
In fact, the partial trace is best defined in terms of an
adjoint to an extension. For example, for the bipartite
case, it is the defining property of the partial trace that

〈XI ⊗ IO, Y 〉HS = 〈XI ,TrO[Y ]〉HS,I

∀XI ∈ BI , Y ∈ BO
(26)

Using this relation, we can define more general par-
tial trace and extension maps which share the same be-
haviour.
These extension and partial trace maps may be used

to create various kinds of transport maps from the input
to the output system. In general, such a mapping will
take the form

TΣ : BI → BO (27)

X 7→ PTrO[Σ(iI(X))] (28)

where Σ : A → A is some linear mapping that twists the
trivial extension-restriction operation. For Σ = idA, this
gives a completely depolarising channel up to normalisa-
tion. We are interested in a twisting by multiplication
with a density operator ρ of the full system. These have
the interpretation of first preparing the system in the
state given by a density matrix ρ, acting on a subsystem
I with some operator and then looking at the results of
that action in subsystem O. This gives an effective in-
duced operator in O, and therefore provides a notion of
’operator transport’ similar to the 2-qubit case that we
discussed in the introduction.

The first concrete case we are interested in is the choice
Σ(X) = K · Xρ with some positive constant K, which
produces the Jamiolkowski-Pillis mapping

Tρ(X) = K PTrO[iI(X)ρ]. (29)

For the purpose of generality, we do not assume the den-
sity matrix has been trace-normalised and keep its ap-
pearance explicit in the following. This mapping is char-
acterised by the relation in Hilbert-Schmidt inner prod-
ucts

〈Tρ(X), Y 〉O = 〈KiI(X)ρ, iO(Y )〉
= 〈X,K PTrI [ρ

†iO(Y )]〉I .
(30)

The middle form here gives a clear interpretation of the
inner products: we extend both X from the input and Y
from the output to the full system, then take their inner
product with the density matrix in between. Due to the
cyclicity of the full trace on A, this is the same as the
expression

KTrH[iO(Y )iI(X)†ρ] = K〈ρ, iO(Y )iI(X)†〉
= K〈iO(Y )iI(X)†〉ρ

(31)

which is just, up to scaling, the expectation value of the
operator given by X† on the input subsystem and by Y
on the output subsystem, in the state ρ.

We can, of course, change the twisting map Σ to a
different operation, but there is no uniquely compelling
alternative. The perhaps most obvious alternative comes
from a seemingly innocuous difference: the Choi mapping

Tρ(X) = K PTrO[iI(X)ρtI ]. (32)

uses the partial transpose of the state with respect to
the subspace HI . The Choi mapping has a number of
more favorable properties compared to the Jamiolkowski-
Pillis mapping. In particular, unlike the latter, the Choi
mapping provides an isomorphism between the sets of CP
mapsHI → HO and of (unnormalised) states onHI⊗HO.
Also, for bipartite systems, the Choi mapping for a pure
state |φ〉 〈φ| can always be written as

Tρ(X) = ΦXΦ† (33)

where the map Φ : HI → HO has components 〈o|Φ |ι〉 =
〈ι, o|φ〉. This can be seen through

〈o| Tρ(X) |õ〉 =
∑

i,̃i

〈i|X |̃i〉 〈̃i, o| (|φ〉 〈φ|)tI |i, õ〉 (34)

=
∑

i,̃i

〈i|X |̃i〉 〈o|Φ |i〉 〈̃i|Φ† |õ〉 . (35)

Trace and isometry conditions

We will ask two important questions about this map-
ping: first, when it is a channel, and second, when it is
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an isometry (in the Hilbert-Schmidt sense).
The former is a standard question, but the latter has an
interesting new aspect to it: if the mapping is isometric,
we can see the system itself as providing an ’information
funnel’ from input to output (this, in turn, has been used
as a proxy of holographic behaviour in the literature).
First, if ρ ≥ 0, it is clear that the mapping is completely
positive. Trace preservation amounts to

K PTrI [ρ] = II

=⇒ K =
dim(HI)

Tr[ρ]
, PTrI [

ρ

Tr[ρ]
] =

II

dim(HI)
.

(36)

In other words, being a quantum channel fixes the overall
normalisation of the mapping and also puts the require-
ment on the reduced input state that it must be flat.
Isometry may be expressed easily as well, using swap
operators[24] on the Hilbert spaces:

〈T (X), T (X)〉O (37)

= TrO[T (X)†, T (Y )] (38)

= TrO⊗2 [(T (X)† ⊗ T (Y ))SO] (39)

= K2TrH⊗2 [(X† ⊗ Y )(ρ⊗ ρ)SO] (40)

= K2TrI⊗2 [(X† ⊗ Y )TrOB⊗2 [(ρ⊗ ρ)SO]] (41)

which translates into the requirement

K2TrO⊗2 [(ρIO ⊗ ρIO)SO] = SI . (42)

This in turn implies the two equalities (the second from
multiplying the isometry condition by SI)

K2Tr[ρ]2e−S2(ρO) = DI (43)

K2Tr[ρ]2e−S2(ρIO) = D2
I (44)

expressed using the second Rényi entropy

e−S2(ρ) =
Tr[ρ2]

Tr[ρ]2
. (45)

Combining these two leads to the general, normalisation-
independent requirement

e−S2(ρIO)+S2(ρO) = DI . (46)

The form of the exponent suggests looking for a subsys-
tem inequality for Rényi entropies - however, it is known
that such inequalities do not exist[15][25]. Still, in gen-
eral these conditions fix K2Tr[ρ]2 to be in the interval

[DI , DIDO] ∩ [D2
I , D

3
IDO] = [D2

I , DIDO]. (47)

The minimum value K = DI

Tr[ρ] is part of the trace condi-

tion above, while the maximum is K = DI

Tr[ρ]

√

DO

DI
is in-

compatible with being trace-preserving, in general. How-
ever, we should not preemptively choose the former value.
Indeed, if we do, then the above conditions turn into

D2
Ie

−S2(ρO) = DI =⇒ S2(ρO) = log(DI) (48)

D2
Ie

−S2(ρIO) = D2
I =⇒ S2(ρIO) = 0 (49)

which means that the reduced state ρIO must be pure,
and therefore the state must factorise ρ = ρIO ⊗ ρB, and
the reduced input (and output) state must be maximally
mixed S2(ρO) = S2(ρI) = log(DI).
In other words, isometry (ISOM) and trace preservation
(TP) imply purity of the state ρIO (PURE).

ISOM ∧ TP =⇒ PURE (50)

However, this setup is too restrictive. On the other
hand, the maximal value implies

e−S2(ρO) =
1

DO

=⇒ S2(ρO) = log(DO) (51)

e−S2(ρIO) =
DI

DO

=⇒ S2(ρIO) = log(DO)− log(DI),

(52)

so once again the state reduced to the output system is
maximally mixed. Now, however, the reduced state ρIO
no longer needs to be pure. So quite intriguingly, the
mapping we propose cannot be a quantum channel and
an isometry in general, unless the state used factorises in
a nice way.
Additionally, we may ask when the mapping we defined
is unital. This gives an input-output swapped version of
the trace preservation condition:

KρO = IO =⇒ K =
DO

Tr[ρ]
,
ρO

Tr[ρ]
=

IO

DO

(53)

and we can again check when this is compatible with the
mapping being isometric: we need D2

O ∈ [D2
I , DIDO],

but when DI ≤ DO this is only the case iff DI = DO. In
that case, isometries are unitaries, and trace preservation
and unitality are equivalent. Additionally, K is fixed
uniquely to the value K = DI

Tr[ρ] =
DO

Tr[ρ] and there is no

other option than ρIO being pure.
We can frame this simple result as follows. If we fix a
state ρ, then select manually input and output systems
such that they are of equal size, then there is no way
to have an isometry between the operator spaces from
the Jamiolkowski-Pillis mapping if the state does not
factorise into pure states.
Even in this simple setting, operator transport has clear
limitations in the multipartite case. The ’environment’
or ’bath’ B generically makes it impossible for the
mappings above to be isometric.

To specialise this discussion, let us assume that the
state ρIO = |φ〉 〈φ| is pure and we use either the Choi or
Jamiolkowski-Pillis mapping (the requirements, for both
of them, turn out to be the same). Then the isometry
condition is

|K|2TrO2 [ρ⊗2
IOSO] = |K|2TrO[ρIO]⊗2SI = SI . (54)

This is simply the requirement of the reduced input state
being flat:

ρI =
II

|K| =
II

DI

. (55)
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This is precisely the condition we found before for trace
preservation. So for pure states ρIO, trace preservation
and isometry are in fact equivalent:

PURE ∧ TP =⇒ ISOM

PURE ∧ ISOM =⇒ TP .
(56)

This, together with the implication we found before,
shows a 2-out-of-3 property of the Jamiolkowski-Pillis
or Choi mappings. Phrased in terms of entanglement
properties, we may say that for pure states, isometry
holds precisely when the induced transport is trace
preserving, or equivalently when the two subsystems are
maximally entangled.

We can also study the opposite case and ask what hap-
pens when the state ρIO is seperable. In that scenario,
we find (assuming a normalised ρ) that

〈Tρ(X), Tρ(Y )〉O
〈X〉ρI

〈Y 〉ρI

= Cseperable = K2e−S2(ρO) , (57)

which is, importantly, independent of X and Y . In sim-
ple terms, this is just the situation in which the inner
product in O factorises between X and Y . Of course,
the same thing happens in the maximally mixed case -
if ρIO = I

DIDO
in the standard setup, then the above

formula holds for maximal entropy of ρO. This suggests
that, while the isometry condition indeed seems to favour
entangled states, it also disfavours mixed states, gener-
ally.
We note that already in [1], it had been shown that even
for mixed states one can link separability with proper-
ties of the induced transport superoperator. It would be
interesting to extend these considerations to our more
general setting, but we leave this for future work.

An example

We illustrate, for concreteness, the Choi mapping on
the classic Werner states on 2 qubits

ρ = pΨ− + (1− p) I
4

(58)

where the Bell state Ψ− = |ψ−〉 〈ψ−| is maximally entan-
gled, and so the mapping is expected to give isometry.
The Choi map (here for K = 2) is linear in the state ρ,
and, for the Bell state alone, induces a conjugation by
the 2nd Pauli matrix:

TΨ−(X) = σ2Xσ2 (59)

Therefore, the Werner states induce the superoperator

Tρ(X) = pσ2Xσ2 + (1 − p) IO
2

. (60)

The isometry condition can therefore be checked directly:

〈Tρ(X), Tρ(Y )〉 = p2〈X,Y 〉I+
1− p2

2
TrI [X ]TrI [Y ] (61)

and we can see that isometry only holds for the pure case
p = 1; it is not a consequence of entanglement by itself,
but rather of entanglement together with purity.

Isometry degree of the average state

We can achieve a generic understanding of the tripar-
tite case by employing Page-type averaging arguments[2,
28]. We can in principle just consider a random pure
state ρ = |ψ〉 〈ψ| of the full system and compute quanti-
ties according to the unitary average 〈−〉U , where states
are given as U |ψref〉. Then we can check the isometry
condition in the average as well:

〈|K|2 TrO⊗2 [(ρIO ⊗ ρIO)SO]〉U
= |K|2 TrOB⊗2 [〈ρ⊗2〉USO] ,

(62)

and use the result (found via Schur’s theorem for the
permutation group on the two copies of the system):

〈ρ⊗2〉U =

∫

U(D)

dµHaar(U) (U †ρU)⊗2

=
IH⊗H + SH⊗H

D(D + 1)
.

(63)

This means that on average the left side of the isometry
condition becomes

|K|2D2
ODB

D(D + 1)
(SI +

DB

DO

IH⊗H) (64)

which shows two conditions which must hold on average:

r =
DB

DO

<< 1 |K|2 =
D(D + 1)

D2
ODB

≈ rD2
IDO . (65)

So we can see already that only small environments allow
for the average state to still give rise to isometries. This
is unsurprising: in that scenario, a typical reduced state
ρIO is close to being pure. We can again take traces of
this expression with II and SI to find

DI
!
= 1 . (66)

We interpret this as follows. In order to have a system
whose average pure state gives rise to an isometric map,
the system sizes must follow the above conditions. Of
course, if we restrict the average to a smaller class of
states, we might find more lenient conditions. For exam-
ple, we may only work with states of the form

ρ = Π† |ψ〉 〈ψ|Π

with some projector Π : HB → P ⊂ HB to a subspace
of the environment, suitably extended to the full sys-
tem. This essentially restricts the environment into a
class of states. Then, the above calculation goes through
as before, but replacing DB by D̃B = dim(P ). Such a
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projection can then make the first condition superfluous
by choosing P to be small enough. So better knowledge
of the state of the environment makes the effective Choi
map more isometric. If we also want to check for trace
preservation in this setting, we get the condition

KDOD̃B

D
= 1←→ KTP = DI

KIsom =

√

D̃BDI .

(67)

So we have in fact that once again, choosing a small P
makes trace preservation and isometry nearly equivalent.
So by either making the environment small, or choosing
its coupling to the system to be small, or by assuming
strong knowledge of the system (for example assuming

it to be in a pure state, making D̃B = 1), we can find
isometries in the tripartite case.

B. Nontrivial center

Let us first discuss the bipartite case. Consider an
algebra A with representation space H, pre-selected sub-
systems AI|O, such that (AI)

′ = AO, but with nontrivial
center[26] Z = AI ∩ AO. The case of interest to us is
that of Hilbert spaces of the form

H =
⊕

E

HI,E ⊗HO,E (68)

with the full algebra A = B(H), and subsystem algebras
BI|O =

⊕

E B(HI|O,E). In this sector-split Hilbert space
setting, extension and partial trace operations are defined
sector-wise.

iI(X) =
∑

E

XE ⊗ IOE
PTrI [X ] =

∑

E

TrOE
[XE ] ,

(69)

which are adjoints to each other under the Hilbert-
Schmidt scalar products on the algebras. We also
identify AI|O, the true subsystems, as the images of
BI|O under the extension maps. In practical terms, any
operator that may be reached by partial tracing needs
to be in BI|O. Similarly, any operator that is obtained
from extending one in BI|O must be in AI|O.

We may once again define a Jamiolkowski-Pillis (or
Choi with partial transpose) mapping via the property
30 which is also fulfilled in the case of trivial center. We
allow ourselves to rescale this mapping again by a con-
stant K:

Tρ(X) = K PTrO[iI(X)ρ]

=
∑

E

KcE TrIE [(XE,E ⊗ IOE
)ρE,E ] , (70)

where we decompose the state as

ρ =
∑

E,Ẽ

√
cEcẼρE,Ẽ , (71)

with Tr[ρE,Ẽ ] = δE,Ẽ and cE = TrE [ρ] ≥ 0,
∑

E cE = 1.

For the tripartite case, we can proceed analogously.
We assume: 1) a Hilbert space structure

H =
∑

E

HI,E ⊗HO,E ⊗HB,E ; (72)

2) input/output algebras

BI =
⊕

E

B(HI,E) BO =
⊕

E

B(HO,E) ; (73)

3) the mapping

Tρ(X) = K PTrO[iI(X)ρ]

=
∑

E

KcE TrIEBE
[(XE,E ⊗ IOEBE

)ρE,E ] ,

(74)
and investigate about trace preservation and isometry.
Trace preservation is just the property

TrBEOE
[ρE,E ] =

IIE

DIE

cE =
DIE

K
. (75)

Identifying isometry is made easier by the aforemen-
tioned relation 30, which entails that the adjoint to Tρ is
(unsurprisingly) given by

T ∗
ρ (X) = PTrI(ρ

†iO(X)) . (76)

Letting σE = TrBE
[ρ] and rescaling our definitions by K,

we obtain the isometry condition

(T ∗ ◦ T )(X) (77)

=
∑

E

|K|2 TrOE
[(IIE ⊗ TrIE [(XE ⊗ IOE

)σE ])σ
†
E ] (78)

=
∑

E

|K|2
∑

a,b,c,d

〈b|XE,E |a〉· (79)

· |c〉 〈d| · TrOE
[〈a|σE |b〉〈c|σE |d〉] (80)

!
= X =

∑

E

∑

a,b,c,d

〈b|XE,E|a〉 · |c〉 〈d| · δa,dδb,c , (81)

where we choose some orthonormal basis of IE labeled
by a, b, c, d in the last line. This leads directly to the
condition

|K|2TrO2

E
[σ⊗2

E SOE
] = SIE , (82)

as before. Notice however now that we use the same
prefactor for all sectors, meaning the requirement hinges
more on the properties of the reduced states σE . There-
fore the sector-wise condition

e−S2(σE)+S2((σE)O) = DIE (83)

must hold as well as

KcE

DIE

e−S2(σE) = 1. (84)
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Again, we can see that trace preservation together with
isometry necessitates that the reduced state σE is pure.

Additionally, as before, if we assume the state σE =
|φE〉 〈φE | to be pure, we reduce the isometry condition
to

(σE)I =
IIE

∑

F DIF

cE =
DIE

∑

F DIF

, (85)

which comes from the condition |K| = ∑

E DIE . This
is, again, just the trace preservation condition. So also
in the setting with nontrivial center, demanding purity
makes TP and isometry equivalent. So once again, the
three conditions give a 2-out-of-3 implication.

IV. CHANNEL-STATE DUALITY

Here, we wish to extend the usual statement of
channel-state duality to the case of systems with a bipar-
tition (AI)

′ = AO, but with nontrivial center in general.
Therefore, we will only consider certain types of channels
and states to be meaningful:

• We only consider channels T : AI → AO between
the subsystems. In terms of Hilbert space repre-
sentations, this implies that the channel is block
diagonal in the sectors E.

• We consider only operators (’states’) which lie in
the algebra generated by the union AI ∪AO. This
is the set of operators generated from operations on
the subsystems.

These are meaningful as they preserve the intuition of
channel-state duality making a statement about channels
between subsystems, which correspond to states of the
joint subsystems. The strongest kind of statement we
can aim for is an isometric bijection

BLk(BI ,BO) ∼= ”Lk(H)” ⊆ A , (86)

identifying the k-positive linear maps between input and
output algebras (the channel side) with a to-be-identified
set of ’k-positive operators’ given as a subset of the full
algebra A (the quotation marks indicate this lack of pre-
cise identification at this stage).
The easiest motivating example is given by the Choi map,
which decomposes

Tρ =
∑

E

KcETρE,E
. (87)

In each sector, the map TρE,E
is a CPTP map in

B(HI,E ,HO,E) and therefore has a dual density matrix
given by ρE,E. We can therefore already say that at least
the usual set of k-positive operators Lk(HE) of each sec-
tor is possible on the right hand side:

⊕

E

Lk(HE) ⊆ ”Lk(H)”. (88)

Also, using the same kind of Choi matrix τ as for
usual channel-state-duality, we can restrict the tenta-
tive ”Lk(H)” further from above: Given an element
X =

∑

E,F XE,F ∈ A with XE,F =
∑

kE,F
akE,F

⊗ bkE,F
,

we can try to compute

τT (X) =
∑

E,F

∑

kE,F

TrOE
[T (akE,F

)btkE,F
], (89)

but it’s clear that T (akE,F
) is ill-defined unless E = F .

Therefore, we must restrict to the sector-diagonal oper-
ators X =

∑

E XE,E, where

τT (X) =
∑

E

τT ,E(XE,E). (90)

So with both arguments, we know that the most we can
expect is

Lk(H) ∼=
⊕

E

Lk(HE) . (91)

However, the maps we consider do not mix sectors, so
the statement holds by channel-state duality in the finite
dimensional, bipartite case in each sector:

BLk(BI ,BO) ∼=
⊕

E

Lk(HE) . (92)

Therefore, the direct sum case of the duality reduces di-
rectly to the standard one. This is certainly not surpris-
ing, but it is worth stressing the ingredients that go into
this statement. In principle, one might expect a corre-
spondence on a much larger set of mappings on the left
and operators on the right. However, under the assump-
tions we stated, and as our analysis of subalgebras has
shown, the sets AI|O must be chosen such that the du-
ality becomes a per-sector statement. So in a sense, the
nontrivial part lies in the selection of subsystems and the
subsequent identification of the correspondence ρ ↔ Tρ.
We can also highlight the ambiguities in this correspon-
dence: As in the single-sector case, we need to specify
reference maximally entangled state for the channel →
state direction; in the current setting, this freedom is ex-
tended to a maximally entangled state per sector. How-
ever, again, once these are chosen, a bijective isomor-
phism can be defined with them.

V. GENERALISATIONS

Here we give some indications towards the generalisa-
tion of our construction and results to the infinite dimen-
sional setting.
The setting of general C*-algebras, through GNS repre-
sentations and Stinespring’s factorisation theorem, can
essentially be reduced to the study of a cospan

B(HI)
V

†
I
(−)VI−→ B(H)

V
†
O
(−)VO←− B(HO) , (93)
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where all Hilbert spaces are separable and the maps
VI|O : H → HI|O are bounded. We can generalize our
results by taking a more general cospan of bounded op-
erator algebras between Hilbert spaces. More precisely,
let us list the key ingredients in our construction and how
each of them can be generalised.

1. Existence of states ρ. This can be generalised to
density matrices in the folium of a state ω ∈ S(A)
of some C*-algebra.

2. Existence of the identities I for use in defining ex-
tension maps. They may be generalised to approx-
imate identities of C*-algebras and associated nets
of approximate extension maps.

3. Existence of partial traces. Relative to an extension
map, one may either take the inverse or the adjoint
generalisation. Working with the inverse is maybe
simpler and requires less structure. For the adjoint
variant, we can either take the Banach adjoint or,
in the presence of a scalar product, use the associ-
ated Hilbert adjoint (if the partial trace is bounded
or at least densely defined). Either choice, though,
will generically force us to move away from the full
algebra and at least into the space of compact op-
erators, as even the identity I does not have finite
trace on infinite dimensional spaces.

Recall first some relevant notation and the subsets of
bounded operators on an infinite dimensional Hilbert
space H:

Fin(H) ⊂ L1(H) ⊂ L2(H) ⊂ K(H) ⊂ B(H) . (94)

These are the finite rank, trace class, Hilbert-Schmidt,
compact and bounded operators, respectively. Hilbert-
Schmidt rank ones obey the special property L2(H) ∼=
H∗⊗H. In this notation, we will find a generalised map-
ping between

T : B(HI)→ L1(HO) , (95)

which may be restricted to a mapping on Hilbert-
Schmidt operators.

We propose here one particular generalisation for the
bipartite case, focused on trace class operators. Given
some bounded injective *-homomorphism between the

(non-unital!) C*-algebra of compact operatorsK(HO)
iO→

K(H), we can form its Banach adjoint[27]

ĩO : K(H)∗ → K(HO)
∗, ĩO(f)(x) = f(iO(x)) . (96)

Then, we use the fact that the map

αK : L1(H)→ K(H)∗, αK(x)(y) = Tr[xy] , (97)

turning trace class operators into associated functionals,
is an isometric bijection (see Proposition 3.4 of[18]). We
can then define a partial trace as

PTrO = α−1
K ◦ ĩO ◦ αK : L1(H)→ L1(HO) , (98)

which satisfies

Tr[PTrO(x)y] = Tr[xiO(y)]

∀ y ∈ K(HO), x ∈ L1(H) .
(99)

Note that these extension and partial trace operations do
not have compatible (co)domains, as the partial trace is
only defined on a subset of the target. Therefore, we will
also require that our extension maps iI|O satisfy

iI|O(L
1(HI|O)) ⊆ L1(H) . (100)

With this in hand, we can proceed as in the finite-

dimensional case. Given an extension map B(HI)
iI→

B(H), we can twist it by some Σ : B(H) → L1(H) and
get

TΣ : B(HI)
iI→ B(H)

Σ→ L1(H)
PTrO→ L1(HO) , (101)

which is the analogue of our transport superoperator
from the finite-dimensional case. In particular, we may
choose

Σ(x) = ρ(tI)x, ρ ∈ L1(H) , (102)

which gives the Jamiolkowski or Choi map, depending on
whether we use the transpose or not. We note that this
construction must be a special case of the general fact[17]
that

BL(B(HI),B(HO))
isometric∼= (B(HI)⊗π L

1(HO))
∗ ,
(103)

in which mappings between operator algebras are equiv-
alent to linear functionals on a projective tensor product
algebra. We have here a case

L1(HI ⊗HO)→ BL(B(HI), L
1(HO)) . (104)

So, in order to connect to the previous work, one should
find a map L1(H)→ (B(HI)⊗π L

1(HO))
∗. This must be

ρ 7→ τρ, τρ(x⊗ y) = Tr[(iI(x)iO(y)
tO )ρ(tI)] , (105)

simply using the expression of the isometric isomorphism
103. This functional is defined on B(HI) ⊗π K(HO),
which what we needed. Our example fits directly into
a small class of maps in the general scheme which can
be represented by a density matrix ρ. Using the general
statement of isometry, we even have a way to estimate
the norm of T :

||T || = sup
v∈B(HI)⊗πL1(HO)

|τρ(v)|
π(v)

, (106)

with π the projective norm on B(HI)⊗π L
1(HO), under

which it is a Banach space. For it to be an isometry, of
course, we need that ||T || = 1. In this infinite dimen-
sional setting, this is the most we can require as there is
no good notion of, say, the partial trace in the Hilbert-
Schmidt setting directly.
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Now, granted the validity of the general scheme, we still
need concrete injection maps. The central issue to be
tackled in the construction is not iI , which we can sim-
ply take to be iI(x) = x⊗π IO, but rather iO, which can
not work in the same way as in the finite-dimensional
case, since II is not compact. Instead, we must content
ourselves with an approximate identity

{I(λ)I ∈ K(HI) | I(λ)I s.a., λ ∈ Λ} (107)

and thus construct an approximate family of injections

i
(λ)
O (y) = I

(λ)
I ⊗ y. This, then, results in a family of

superoperators whose formal limit

T = lim
λ∈Λ
T (λ) = lim

λ∈Λ
(PTr

(λ)
O ◦ Σ ◦ iI) (108)

gives us the mapping we seek. Whether this limit exists
as an operator in BL(B(HI), L

1(HO)) is of course non-
trivial, but it is a requirement for T to be an isometry.
Now if we also restrict the mapping to Hilbert-Schmidt
operators, L2(HI), then we can in fact still speak of the
same kind of isometry under Hilbert-Schmidt:

〈T (X), T (Y )〉L2(HO)
?
= 〈X,Y 〉L2(HI) . (109)

Note, though, that the Banach adjoint exists here, while
the Hilbert adjoint is not defined (as L1(HO) is not a
Hilbert space). We therefore will need to make a choice
on what kind of isometry we are looking for - or rather,
which norm we wish to preserve.

VI. CONCLUSIONS

We have studied information transport channels for
quantum systems defined by operator algebras with cen-
ters, corresponding to Hilbert spaces with a structure of a
direct sum of factorized Hilbert spaces (each identifying
a natural notion of subsystems), generalizing the usual
situation of factorized Hilbert spaces. Operator algebras
and Hilbert spaces of this type appear in a very broad and
diverse range of physical contexts, from condensed mat-
ter and quantum many-body systems, to (lattice) gauge
theories, to quantum gravity and holography. In par-
ticular, we have proposed a generalization of the usual
channel-state duality adapted to this direct sum context.
We have also sketched how our construction, given in the
finite-dimensional case, could be extended to the infinite-
dimensional one. These transport channels offer a power-
ful way to characterize and study quantum correlations
(entanglement) beyond the simple definition relying on
non-separability of quantum states. This conceptual and
analytic power, together with the vast range of physical
systems with the algebraic characterization we consid-
ered, imply the possibility of many future developments
from the application of our construction.
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tropies and mutual information[30]. These have a known
expression and satisfy nice properties as an analogue of
the von Neumann mutual information.

[26] Note8. This assumes an extension map and associated
partial trace operation have been chosen.

[27] Note9. The usual issues of domains apply, but as long as
the extensions are bounded, we may neglect them.

[28] D. N. Page. Average Entropy of a Subsystem.
Physical Review Letters, 71(9):1291–1294, Aug. 1993.
ISSN 0031-9007. doi:10.1103/PhysRevLett.71.1291.
URL http://arxiv.org/abs/gr-qc/9305007. arXiv:gr-
qc/9305007.

[29] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill.
Holographic quantum error-correcting codes: Toy mod-
els for the bulk/boundary correspondence. Jour-
nal of High Energy Physics, 2015(6):149, June 2015.
ISSN 1029-8479. doi:10.1007/JHEP06(2015)149. URL
http://arxiv.org/abs/1503.06237. arXiv: 1503.06237
version: 2.

[30] S. O. Scalet, A. M. Alhambra, G. Styliaris, and J. I.
Cirac. Computable R\’enyi mutual information: Area
laws and correlations. Quantum, 5:541, Sept. 2021.
ISSN 2521-327X. doi:10.22331/q-2021-09-14-541. URL
http://arxiv.org/abs/2103.01709. arXiv:2103.01709
[cond-mat, physics:quant-ph].

[31] J. Watrous. The Theory of Quantum Infor-
mation. Cambridge University Press, 1 edi-
tion, Apr. 2018. ISBN 978-1-316-84814-2 978-
1-107-18056-7. doi:10.1017/9781316848142. URL
https://www.cambridge.org/core/product/identifier/978131684814

[32] P. Zanardi. Virtual Quantum Subsystems. Physical
Review Letters, 87(7):077901, July 2001. ISSN 0031-
9007, 1079-7114. doi:10.1103/PhysRevLett.87.077901.
URL http://arxiv.org/abs/quant-ph/0103030.
arXiv:quant-ph/0103030.

http://arxiv.org/abs/2302.12799
https://doi.org/10.1007/JHEP11(2016)009
http://arxiv.org/abs/1601.01694
http://arxiv.org/abs/1702.04924
https://doi.org/10.1103/PhysRevA.87.022310
https://link.aps.org/doi/10.1103/PhysRevA.87.022310
http://arxiv.org/abs/1808.05939
https://doi.org/10.1098/rspa.2012.0737
http://arxiv.org/abs/1212.0248
https://doi.org/10.1007/JHEP01(2016)070
http://arxiv.org/abs/1511.02671
https://doi.org/10.1103/PhysRevA.88.026301
https://link.aps.org/doi/10.1103/PhysRevA.88.026301
https://www.math.ru.nl/~mueger/PDF/Trace-class.pdf
https://doi.org/10.1103/PhysRevLett.71.1291
http://arxiv.org/abs/gr-qc/9305007
https://doi.org/10.1007/JHEP06(2015)149
http://arxiv.org/abs/1503.06237
https://doi.org/10.22331/q-2021-09-14-541
http://arxiv.org/abs/2103.01709
https://doi.org/10.1017/9781316848142
https://www.cambridge.org/core/product/identifier/9781316848142/type/book
https://doi.org/10.1103/PhysRevLett.87.077901
http://arxiv.org/abs/quant-ph/0103030

