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ABSTRACT
We propose GaussianTalker, a novel framework for real-time
generation of pose-controllable talking heads. It leverages the fast
rendering capabilities of 3D Gaussian Splatting (3DGS) while ad-
dressing the challenges of directly controlling 3DGS with speech
audio. GaussianTalker constructs a canonical 3DGS representation
of the head and deforms it in sync with the audio. A key insight is
to encode the 3D Gaussian attributes into a shared implicit feature
representation, where it is merged with audio features to manipu-
late each Gaussian attribute. This design exploits the spatial-aware
features and enforces interactions between neighboring points. The
feature embeddings are then fed to a spatial-audio attention mod-
ule, which predicts frame-wise offsets for the attributes of each
Gaussian. It is more stable than previous concatenation or multipli-
cation approaches for manipulating the numerous Gaussians and
their intricate parameters. Experimental results showcase Gaus-
sianTalker’s superiority in facial fidelity, lip synchronization accu-
racy, and rendering speed compared to previous methods. Specifi-
cally, GaussianTalker achieves a remarkable rendering speed up to
120 FPS, surpassing previous benchmarks. The code is made public
in https://ku-cvlab.github.io/GaussianTalker/.

CCS CONCEPTS
• Computing methodologies → Reconstruction; 3D imaging; •
Information systems→ Multimedia content creation.

KEYWORDS
Talking Head Generation, 3D Controllable Head, 3D Gaussian Splat-
ting

1 INTRODUCTION
Generating a talking head video driven by arbitrary speech audio is
a popular task that has various uses, including the generation of dig-
ital humans, virtual avatars, movie production, and teleconferenc-
ing [6, 21, 33, 36, 38, 40, 43, 54]. While various works [6, 21, 33, 43]
have successfully attempted to solve this task using generative
models, they do not focus on controlling head poses, limiting their
realism and applicability. Recently, numerous studies [17, 24, 27,
39, 48, 49] have applied neural radiance fields (NeRF) [31] for the
creation of pose controllable talking portraits. By directly condi-
tioning audio features in the multi-layer perceptron (MLP) of NeRF,
these methods can synthesize view-consistent 3D head structure
with its lips synced to the input audio. Although these NeRF-based
techniques achieve high-quality and consistent visual outputs, their
∗ Contributed equally to this research.
† Corresponding author.
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Figure 1: Fidelity, lip synchronization and inference time
comparison between existing 3D talking face synthesis
models [17, 24, 39] and ours. Our method, GaussianTalker,
achieves superior performance at much higher FPS. Note
that we also include GaussianTalker∗, a more efficient and
faster variant. Size of each bubble represents the inference
time per frame of each method.

slow inference speed limits their practicality. Despite recent ad-
vancements [24, 39] achieving rendering speeds up to 30 frames
per second (fps) at 512 × 512 resolution, computational bottlenecks
must be overcome to be applied in real-world scenarios.

Addressing this limitation, an intuitive solution is to leverage
the fast rendering capabilities of 3D Gaussian Splatting (3DGS) [22].
Recently recognized as a viable alternative to NeRF, 3DGS offers
comparable rendering quality while significantly improving infer-
ence speeds. Although 3DGS was initially proposed for reconstruct-
ing static 3D scenes, subsequent works have extended it to dynamic
scenes [30, 44–46]. However, there has been little research on lever-
aging 3DGS to create dynamic 3D scenes with controllable inputs,
most of which focused on using an intermediate mesh representa-
tion to drive the 3D Gaussians [7, 19, 26, 28, 34]. However, relying
on an intermediate 3D mesh representation, such as FLAME [25],
for deformation often lacks fine details in hair and facial wrinkles.

We identify two major challenges in directly mapping the speech
audio to the deformation of 3D Gaussians. First, the 3DGS represen-
tation lacks shared spatial information among the adjacent points,
complicating its manipulation. The optimization process of 3DGS
does not consider relationships between neighboring Gaussians,
crucial for maintaining facial region cohesion during deformation.
Secondly, the extensive parameter space and a substantial number
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of Gaussians pose a challenge to their manipulation. Unlike con-
trollable NeRF representations where the position and the number
of sampling points are fixed, the position, shape, and appearance
attributes of numerous Gaussian points need to be deformed per
frame, while also preserving the intricate facial details.

In this paper, we present GaussianTalker, a novel framework
for real-time pose-controllable talking head synthesis. For the first
time, we leverage the 3D Gaussian representation to exploit its fast
scene modeling capability for audio-driven dynamic facial anima-
tion. We construct a static 3DGS representation of the canonical
head shape and deform this in sync with the audio. Specifically,
we employ a multi-resolution triplane to extract feature embed-
dings for each 3D Gaussian position, from which each Gaussian
attribute is directly estimated. This design ensures that the triplane
learns the spatial and semantic information of the 3D head, while
the interpolation mechanism of the 2D feature grids efficiently
enforces interactions between neighboring points. The feature em-
beddings are subsequently fed to the proposed spatial-audio at-
tention module, where they are merged with the audio features
to predict the frame-wise offsets for the attributes of each Gauss-
ian. This module successfully models the relevance between audio
features and the motions for each Gaussian primitive. The cross
attention offers a more stable approach of manipulating the sub-
stantial number of Gaussians and their intricate parameter space,
compared to concatenation [17, 39] or multiplication [24] as in pre-
vious works. Qualitative and quantitative experiments demonstrate
GaussianTalker’s superiority in facial fidelity, lip synchronization
accuracy, and rendering speed compared to previous methods. Ad-
ditionally, we conduct ablation studies to verify the effectiveness
of individual design choices within our model.

Our main contributions are summarized as follows:
• For the first time, we present a novel audio-conditioned 3D
Gaussian Splatting framework real-time 3D-aware talking
head synthesis.

• We reformulate the 3D Gaussian representation with a fea-
ture volume representation in order to enforce spatial con-
sistency among adjacent Gaussians.

• We integrate cross-attention mechanisms between audio
and spatial features to improve stability and ensure region-
specific deformation across a significant number of Gaus-
sians.

2 RELATEDWORK
2.1 Audio-driven talking portrait synthesis
Audio-driven talking portrait synthesis aims to create realistic facial
animationswith accurate lipmovements based on audio input. Early
2D GAN-based methods [33, 37, 51, 52, 58] achieved photorealism
but lacked control over head pose due to the absence of 3D geometry.
In order to control the head poses, some works [29, 40, 42, 54] utilize
model-based methods, where facial landmarks and 3D morphable
models reinforce the lip sync model with the ability to adjust the
orientation of the head. However, these approaches lead to new
problems such as extra errors from the intermediate representations,
and inaccuracies in identity preservation and realism.

Recently, Neural Radiance Fields (NeRF) [31] have been explored
for talking portraits due to their ability to capture complex scenes.

AD-NeRF [17] pioneered using NeRF’s implicit representation for
conditional audio input, but separate networks for head and torso
limited its flexibility. Subsequent NeRF-based methods [27, 35, 47]
achieved high quality but suffered from slow rendering speeds.
While RAD-NeRF [39] and ER-NeRF [24] improved efficiency and
quality with grid-based NeRF [32], real-time rendering of pose-
controllable 3D talking head remains challenging.

2.2 3D Gaussian splatting
3DGS [22] is a pioneering technique in point cloud rendering that
utilizes a multitude of ellipsoidal, anisotropic balls to precisely rep-
resent a scene. Each point embodies a 3D Gaussian distribution,
with its mean, covariance, opacity, and spherical harmonics pa-
rameters optimized to accurately capture the scene’s shapes and
appearances. This approach effectively resolves common issues in
point rendering, such as output gaps. Furthermore, combined with
a tile-based rasterization algorithm, it facilitates expedited training
and real-time rendering capabilities. Recently, 3DGS has gained
widespread application in 3D vision tasks such as object manipula-
tion [11, 14], reconstruction [12, 22], and perception [4, 30] within
3D environments.

2.3 Facial animation with 3DGS
Previous methods for facial reconstruction and animation primarily
relied on 3D Morphable Models(3DMM) [16, 23] or utilized neural
implicit representations [1, 15, 56]. Recent approaches [7, 9, 34, 41]
have shifted towards adopting the 3DGS representation, aiming
to leverage the benefits of rapid training and rendering while still
achieving competitive levels of photorealism. GaussianAvatars [34]
reconstructed head avatars by rigging 3D Gaussians on FLAME [25]
mesh. MonoGaussianAvatar [7] learned explicit head avatars by
shifting the mean position of 3D Gaussians from canonical to de-
formed space using Linear Blend Skinning (LBS) and simultane-
ously adjusts other Gaussian parameters through a deformation
field. GaussianHead [41] adopted a motion deformation field to
adapt to facial movements while preserving head geometry and
separately utilized a tri-plane to retain the appearance information
of individual 3D Gaussians. However, the aforementioned meth-
ods tend to depend on parametric models for facial animation. In
contrast to previous works, our audio-driven method is not only
free from the need for data beyond the speech sequence for facial
reenactment but also is readily applicable to novel audio.

3 PRELIMINARY: 3D GAUSSIAN SPLATTING
3D Gaussian splatting (3DGS) [22] employs anisotropioc 3D Gaus-
sians as geometric primitives for learning an explicit 3D represen-
tation. Each 3D Gaussian is defined by a center mean 𝜇 ∈ R3 and
covariance matrix Σ ∈ R3×3 in the 3D coordinate as follows:

𝑔(𝑥) = exp
(
−1
2 (𝑥 − 𝜇)𝑇Σ−1 (𝑥 − 𝜇)

)
, (1)

for a 3D coordinate 𝑥 ∈ R3. The covariance matrix Σ is further
decomposed into Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 with a scaling matrix 𝑆 and a rota-
tion matrix 𝑅, defined by a scaling factor 𝑠 ∈ R3 and a learnable
quaternion 𝑟 ∈ R4, respectively. Additionally, to encode the ap-
pearance information, each 3D Gaussian contains a set of spherical
harmonics with degree 𝑘 such that 𝑆𝐻 ∈ R3(𝑘+1) (𝑘+1) , along with
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Figure 2: Overview of our GaussianTalker framework. GaussianTalker utilizes a multi-resolution triplane to leverage different
scales of features depicting a canonical 3D head. These features are fed into a spatial-audio attention module along with the
audio feature to predict per-frame deformations, enabling fast and reliable talking head synthesis.

an opacity value 𝛼 ∈ R. In summary, 3DGS represents a 3D scene
with a set of 3D Gaussians parameters, defined as:

G = {𝜇, 𝑟, 𝑠, 𝑆𝐻, 𝛼}, (2)
Given a novel viewing direction 𝜋 , a 2D image 𝐼 is rendered as:

𝐼 = R(G;𝜋), (3)
where R(·) is the differentiable rasterizer.

More specifically, for R(·), 3DGS employs differential splat-
ting [50] during novel view rendering. In order to project 3D Gaus-
sians to 2D for rendering, the covariance matrix in the 2D space,
Σ′ ∈ R2×2, is calculated by viewing transform𝑊 and the Jacobian
𝐽 of the affine approximation of the projective transformation [59],
such as:

Σ′ = 𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 . (4)
Subsequently, the color of each pixel is computed by blending all
Gaussians that overlap the pixel and ordered by their depths as
follows:

𝐶 =
∑︁
𝑖=1

𝑐𝑖𝛼
′
𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 ′𝑗 ), (5)

where 𝑐𝑖 is the color of each point determined using the SH coeffi-
cient with view direction, and 𝛼 ′

𝑖
is computed by the multiplication

of the opacity 𝛼 of the 3D Gaussian and its projected covariance Σ′.

4 METHODOLOGY
4.1 Problem formulation and Overview
In this section, we describe themain components of GaussianTalker,
designed for the real-time synthesis of high-fidelity, pose-controllable
talking head images driven by audio input. Our model is trained
on a talking portrait video V = {𝐼𝑛} consisting of 𝑁 number of
image frames for an identity. Our objective is to reconstruct a set
of canonical 3D Gaussians that represent the mean shape of the

talking head, and learn a deformation module that deforms the 3D
Gaussians according to corresponding input audio. During infer-
ence, for the input audio 𝑎𝑛 , the deformation module predicts the
offsets of each Gaussian attribute, and the deformed Gaussians are
rasterized at the viewing point 𝜋𝑛 to output the novel image 𝐼𝑛 .

An overview of our proposed method is depicted in Fig. 2. We
first introduce the multi-resolution tri-plane that encodes the low-
dimensional features of the 3D Gaussians to represent the static
mean shape of the canonical head in Sec. 4.2. In Sec. 4.3, we in-
troduce the speech-motion cross-attention module that fuses 3D
Gaussians features and audio features to accurately model facial mo-
tion driven by input audio. Finally, Sec. 4.4 describes the stage-wise
training strategy and the utilized loss functions.

4.2 Learning canonical 3D Gaussians with
triplane representation

In this section, we introduce the details of learning the canonical
shape of the talking head with 3D Gaussian representation. The
vanilla implementation of 3DGS [22] does not inherently capture
the spatial relationships between neighboring and distant 3D Gaus-
sians. However, an ideal feature representation for a dynamic 3D
head should be analogous for proximal facial regions and distinct
for separated ones, as the close facial primitives would likely move
to the same direction.

To realize this, we modify the 3D Gaussian representation by
learning a low-dimensional feature representation, which can be
later merged with the audio features for per-Gaussian deformation.
We formulate the embedding space to encode information of the at-
tributes of the 3D Gaussians, in order to take into account the shape
and appearance of each Gaussian when predicting its deformation
offsets. More specifically, we adopt a hybrid 3D representation that
utilizes the explicit 3D representation of 3DGS, while also taking
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Figure 3: Visualization of the triplane feature grids. The se-
quence displays a rendered image, followed by its ortho-
graphic projected embeddings: frontal (xy), overhead (yz),
and side (zx) views. The embeddings are visualized by reduc-
ing its dimension to 3 using PCA.

advantage of the encoded spatial information of implicit neural
radiance fields [31]. For each of the canoncial 3D positions 𝜇𝑐 , we
extract feature embeddings 𝑓 (𝜇𝑐 ) from a multi-resolution triplane
representation [3, 5, 13]. These feature embeddings are utilized to
calculate the scale 𝑠𝑐 , rotation 𝑟𝑐 , spherical harmonics 𝑆𝐻𝑐 , and
opacity 𝛼𝑐 of each point. These computed attributes make up the
canonical 3D Gaussian of the talking head, denoted as:

Gcan = {𝜇𝑐 , 𝑟𝑐 , 𝑠𝑐 , 𝑆𝐻𝑐 , 𝛼𝑐 }. (6)

During training, instead of directly updating the 3D Gaussian at-
tributes, the feature grids of the triplane and the attribute predic-
tion networks are optimized. This allows for the feature embedding
𝑓 (𝜇𝑐 ) to store the region-specific facial information of the canonical
3D head, while also enforcing spatial relationships between neigh-
boring Gaussians. In the following, we introduce the formulation
of each module in detail.

4.2.1 Triplane representation for 3D Gaussian. In order to encode
the spatial information of the canonical 3D head, we adopt a multi-
resolution triplane representation, constructed by three orthogonal
2D feature grids, 𝑃 = {𝑃xy, 𝑃yz, 𝑃zx}. Each of these planes has shape
𝐻 × 𝑅 × 𝑅, where 𝐻 stands for the hidden dimension of features,
and 𝑅 denotes the resolution of each dimension. For individual 3D
Gaussian with position 𝜇, each of its coordinate values is normalized
between [0, 𝑅), and its corresponding features are computed by
interpolating the point into a regularly spaced 2D grid for each
plane. These features are combined using the Hadamard product∏

for each plane, followed by concatenation
⋃

along the different
dimensions, to produce a final feature vector 𝑓 (𝜇) of length 𝐻 for
each of the canonical Gaussian position 𝜇𝑐 , such as:

𝑓 (𝜇) =
⋃∏

𝑝∈𝑃
interp

(
𝑝, 𝜁𝑝 (𝜇𝑐 )

)
, (7)

where 𝜁𝑝 (𝜇) denotes a projection of 𝜇 onto the 𝑝’th plane and
‘interp’ denotes bilinear interpolation of a point into the regularly
spaced 2D grid. The visualization of features in our multi-resolution
triplane is depicted in Fig. 3.

4.2.2 Attribute prediction of canonical 3D Gaussians. Unlike the
original 3DGS implementation shown in (2), we do not explicitly

store the shape information 𝑟 and 𝑠 , and the appearance infor-
mation 𝑆𝐻 and 𝛼 . Instead, these attributes are obtained from the
corresponding feature representation 𝑓 (𝜇). Specifically, we employ
a set of MLP layers, denoted as Fcan (·), to map the feature to the
mean scale 𝑠𝑐 , mean rotation 𝑟𝑐 , mean spherical harmonics 𝑆𝐻𝑐 ,
and mean opacity value 𝛼𝑐 from 𝑓 (𝜇), such as:

{𝑠𝑐 , 𝑟𝑐 , 𝑆𝐻𝑐 , 𝛼𝑐 } = Fcan
(
𝑓 (𝜇)

)
. (8)

Compared to the original 3DGS [22] where each Gaussian is opti-
mized independently, our hybrid representation conditioned on an
implicit feature volume enforces shared facial information between
adjacent points.

4.3 Learning audio-driven deformation of 3D
Gaussians

Previous works [17, 24, 27, 39] employ a conditional NeRF repre-
sentation, wherein the 3D coordinates of the sampling point along
each ray remain fixed, with only color and density conditioned to
input audio. However, in order to fully benefit from the explicit rep-
resentation of 3DGS, we choose to deform the 3D Gaussians, where
we manipulate not only the appearance information but also the
spatial positions and shape of each Gaussian primitive. While this
can more accurately capture the constantly fluctuating 3D shape
of the talking head, deformation of 3D Gaussians is a much more
complex task compared to controlling a NeRF representation. The
intricate nature of Gaussian primitives, coupled with their sheer
quantity, presents significant challenges for deformation due to
the extensive parameter space of 3D Gaussians. In addition, input
audio does not impact the whole facial image uniformly, making it
vital for the deformation module to understand how varying facial
regions respond to audio conditions for authentic facial animation.

In order to model the relations between the dynamic features
and the vast amount of 3D Gaussians, we fuse the input speech
audio 𝑎𝑛 with the encoded feature 𝑓 (𝜇𝑐 ) in an attention mecha-
nism, in order to produce the audio-aware feature ℎ𝑛 for the 𝑛-th
image frame. The deformation offsets of each Gaussian attribute
for subsequent frames are directly conditioned on the feature ℎ𝑛 .
Finally, the deformed set of 3D Gaussian for the 𝑛-th image frame
is defined as:

Gdeform,𝑛 = {𝜇𝑐 +Δ𝜇𝑛, 𝑟𝑐 +Δ𝑟𝑛, 𝑠𝑐 +Δ𝑠𝑛, 𝑆𝐻𝑐 +Δ𝑆𝐻𝑛, 𝛼𝑐 +Δ𝛼𝑛}, (9)

where Δ𝜇𝑛,Δ𝑠𝑛,Δ𝑟𝑛,Δ𝑆𝐻𝑛,Δ𝛼𝑛 are the deformation offsets at 𝑛-
th frame for 3D position, scale, rotation, spherical harmonics pa-
rameters and opacity, respectively. The details of each module is
introduced in the following paragraphs.

4.3.1 Spatial-audio cross attention. Previous approaches to imple-
ment region-aware audio, like ER-NeRF [24], simply adjust the
weights for the audio features at each 3D point through elemen-
twise multiplication. However, it encounters a challenge in that,
regardless of the diverse audio inputs in a dynamic scene, a partic-
ular static 3D point consistently maintains the same audio weight.
This fails to acknowledge that a fixed 3D coordinate may not consis-
tently correspond to the same facial region as the scene progresses.
To address this issue and enhance the extraction of spatial-audio
features, we introduce spatial-audio attention module, a cross-
attention mechanism that merges spatial feature embedding 𝑓 (𝜇𝑐 )



of the canonical 3D Gaussians with subsequent audio features, cap-
turing how the input speech audio affects the movement of the 3D
Gaussians. The spatial-audio attention module comprises 𝐿 sets of
cross-attention layer T𝐶𝐴 (·) and feed-forward layer 𝐹𝐹𝑁 (·), each
interconnected with skip connections. The module is formulated
as:

𝑧0𝑛 = 𝑓 (𝜇𝑐 ), (10)

𝑧′𝑛
𝑙
= T𝐶𝐴 (𝑧𝑙−1𝑛 , 𝑎𝑛) + 𝑧𝑙−1𝑛 , 𝑙 = 1...𝐿, (11)

𝑧𝑙𝑛 = 𝐹𝐹𝑁 (𝑧′𝑛
𝑙 ) + 𝑧′𝑛

𝑙
, 𝑙 = 1...𝐿, (12)

whereby the cross-attention between the spatial feature 𝑓 and the
audio feature 𝑎𝑛 of the 𝑛-th image frame is computed. As a re-
sult, the output feature 𝑧𝐿𝑛 successfully amalgamates audio features
with the rich facial details captured by each 3D Gaussian. This
cross-attention module offers a more nuanced and stable method of
feature combination than simple concatenation or multiplication,
as the module reforms the spatial-aware facial features with respect
to the subsequent audio features, taking into account the dynamic
variability inherent in each 3D Gaussian.

4.3.2 Disentanglement of speech-related motion. When synthesiz-
ing a talking head, the corresponding speech audio does not account
for all the intricate and diverse facial movements. Subtle expres-
sions like eye blinks and facial wrinkles, along with external factors
such as hair movement and variations in lighting, do not directly
correlate with input speech audio. Thereby, it is crucial to separate
the non-verbal motions and scene variations when mapping speech
audio to the 3D Gaussian deformation. In this section, we address
this challenge by introducing additional input conditions that cap-
ture non-verbal motions, allowing us to disentangle speech-related
motion from the monocular video.

Following previous works [24, 39], we first apply explicit eye
blinking control with the eye feature 𝑒 . Specifically, we employ
AU45 from the Facial Action Coding System [10] to describe the de-
gree of the eye blink, and utilize a sinusoidal positional encoding in
order to match the input dimensions. Additionally, we integrate the
camera viewpoint as an auxiliary input to disentangle non-verbal
scene variations. While we formulate the framewise camera 𝜋𝑛 as
facial viewpoints, the typical video is recorded with a static camera
while the head undergoes continuous movement. Consequently,
variations in the portrait image, such as hair displacement and
lighting changes, occur independently of the speech audio. Hence,
we employ a facial viewpoint embedding 𝜐 as an additional input
condition to disentangle these non-auditory scene fluctuations. 𝜐𝑛
is an embedding vector obtained by mapping the extrinsic camera
pose 𝜋𝑛 to a small MLP to have the same dimensionality as the
other inputs. Finally, we discovered that using a single null-vector
(∅) for all frames promotes consistency as a global feature across
video frames. We incorporate this null-vector as an additional input
for our cross-attention network. Thus, we reformulate (11) as:

𝑧′𝑛
𝑙
= T𝐶𝐴 (𝑧𝑙−1𝑛 , {𝑎𝑛, 𝑒𝑛, 𝜐𝑛, ∅}) + 𝑧𝑙−1𝑛 , 𝑙 = 1...𝐿. (13)

In Fig. 4, we visualize the attention scores for each input in order to
demonstrate the efficacy of disentangling audio-related motion. Fur-
ther details on the network structure and visualization procedure
are provided in the supplementary file.

rendered audio eye blink viewpoint null

Figure 4: Illustration of attention score distributions across
different modalities for two individuals. From left to right:
the original rendered image, attention scores responsible
for audio cues, eye blink dynamics, head orientation (facial
viewpoint), and temporal consistency (null), respectively.

4.3.3 Audio-conditioned deformation of 3D Gaussian. The final
deformation network takes the spatially-aware audio features en-
coded in each 3D Gaussians in order to compute the deformation of
position, rotation, and scaling. We define the set of MLP regressors
Fdeform (·) in order to predict the offsets of each Gaussian attributes,
such as:

{Δ𝜇𝑛,Δ𝑠𝑛,Δ𝑟𝑛,Δ𝑆𝐻𝑛,Δ𝛼𝑛} = Fdeform (𝑧𝐿𝑛 ) . (14)

4.4 Training
4.4.1 Stage-wise optimization. 3DGS [22] showed that the quality
of reconstruction is influenced by the initialization of 3D Gaussians.
Similarly, the training of the deformation field should also be con-
ducted using a proper initialization of the canonical facial shape.
To this end, we employ a two-stage training approach.

In the first stage, canonical stage, we first reconstruct the mean
shape of the talking face, by optimizing the positions of 3D Gaus-
sians and the multi-resolution triplane. Instead of the conventional
initialization using structure from motion (SFM) points, we opt to
utilize the 3D coordinates of the mesh vertices from fitting 3D mor-
phable models. Note that the 3DMM fitting of each frame involves
no extra preprocessing, as this is a necessary part of obtaining the
camera parameters of the talking face and is widely adopted in
NeRF-based talking face synthesis works [17, 24, 39]. The static
image of the canonical talking head is rasterized via:

𝐼can = 𝑅(Gcan;𝜋𝑛) . (15)

This is followed by the deformation stage, where we optimize
the whole network, from which we learn the cross-attention defor-
mation network. For each frame, the dynamic talking head video
frame can be rendered as:

𝐼𝑛 = 𝑅(Gdeform,𝑛 ;𝜋𝑛) . (16)

4.4.2 Loss Functions. For the canonical stage for a static shape
of talking head, we follow the original 3DGS implementation [22]
and utilize a combination of L1 color loss L1 and a D-SSIM term
LD−SSIM. Following previous audio-driven NeRF works [17, 24, 39],
we also utilize LPIPS [53] loss Llpips to capture sharp details. For
a given input frame 𝐼 , the overall loss function of the canonical
stage is denoted as Lcan = LL1 + 𝜆lpipsLlpips + 𝜆D−SSIMLD−SSIM.



Table 1: Quantitative comparison under the self-driven setting. The top, second-best, and third-best results are shown in red,
orange, and yellow, respectively. Our GaussianTalker and the lightweight version GaussianTalker achieves performance on par
with or better results at significantly lower inference time.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ LMD ↓ AUE ↓ Sync ↑ CSIM ↑ Training
Time ↓ FPS↑

Ground Truth N/A 1 0 0 0 0 8.653 1 N/A N/A
Wav2Lip [33] 30.461 0.911 0.024 33.074 4.458 1.761 9.606 0.887 - 19
PC-AVS [57] 21.958 0.699 0.053 42.646 4.619 1.875 9.185 0.519 - 32
AD-NeRF [17] 30.341 0.906 0.026 20.243 5.692 2.331 4.939 0.908 13h 0.13
RAD-NeRF [39] 30.703 0.915 0.026 26.238 3.142 2.196 5.757 0.911 3h 32
ER-NeRF [24] 31.673 0.919 0.014 19.829 3.003 1.974 5.976 0.922 1h 34
GaussianTalker∗ 32.269 0.930 0.016 10.771 2.711 1.758 6.443 0.933 1h 121
GaussianTalker 32.423 0.931 0.018 11.951 2.928 2.292 6.554 0.932 1.5h 98

Table 2: Quantitative comparison under the cross-driven set-
ting. We extract two audio clips from SynObama demo [38]
to drive each method and compare lip synchronization.

Testset A Testset B

Methods Sync↑ LMD↓ AUE↓ Sync↑ LMD↓ AUE↓

Ground Truth 7.850 0 0 6.976 0 0
Wav2Lip [33] 8.028 14.879 3.609 8.094 10.916 3.715
PC-AVS [57] 8.190 12.780 3.891 7.974 6.881 3.175
AD-NeRF [17] 5.128 18.986 3.654 5.109 9.221 3.266
RAD-NeRF [39] 5.126 12.485 3.611 4.497 7.760 3.447
ER-NeRF [24] 4.694 12.477 3.779 4.822 7.698 3.287
GaussianTalker∗ 4.579 12.401 3.611 4.844 7.682 3.123
GaussianTalker 5.356 12.702 3.663 5.413 7.812 3.265

During the deformation stage, we employ an additional loss func-
tion on the lip area of the talking head. Specifically, we apply a
reconstruction loss for the image patch obtained by cropping where
the lips are located based on the facial landmarks [2]. Thus, the
total loss function for the deformation stage can be formulated as
Ldeform = Lcan+𝜆lipLlip. Note that the deformed 3D Gaussians are
directly splatted onto the combined background and torso image, in
order to render the head with the background and torso, a common
technique that prevents noise around the facial contours [24, 39].
A more detailed explanation of this technique can be found in the
supplementary file.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Dataset and pre-processing. For each target subject, we re-
quire several minutes of talking portrait video with a corresponding
audio track for training. Specifically, the datasets are obtained from
publicly-released video datasets utilized in previous NeRF-based
works [17, 27, 35, 49], averaging 6,000 frames for each video at 25
fps. We also perform experiments on selected video clips sourced
from the HDTF dataset. [55]. Each portrait video is cropped and
resized to 512 × 512, apart from the Obama video, which is of the
resolution 450 × 450. We split each video into train and test sets

at a ratio of 10:1, following the pre-processing steps introduced in
AD-NeRF [17].

5.1.2 Comparison baselines. We comparatively evaluate our pro-
posed GaussianTalker framework against recent NeRF-based ap-
proaches tackling the same task. We introduce two variants of
our method: the full model GaussianTalker with 𝐿 = 2 cross-
attention layers and a lightweight version, GaussianTalker∗, with
𝐿 = 1 layer. Our method is compared with the recent NeRF-based
approaches that address the same problem settings. We utilize
three models as baselines: AD-NeRF [17], RAD-NeRF [39], and
ER-NeRF [24]. For fair comparison, we implement each method by
utilizing the torso part from the ground-truth frames. Additionally,
we include a comparison with one-shot 2D talking head models,
such as Wav2Lip [33] and PC-AVS [57], to provide a wide range of
comparisons.

5.2 Quantitative Evaluation
5.2.1 Comparison settings and metrics. Following previous NeRF-
based works [24, 39], our comparisons are structured into two
distinct settings: self-driven and cross-driven. In the self-driven
setting, we evaluate the accuracy of head reconstruction for a par-
ticular identity using the test subset. We employ several reconstruc-
tion metrics including peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM), and learned perceptual image
patch similarity (LPIPS). Notably, these metrics are exclusively
measured on the facial region. We also measure realism of the re-
constructed face using Fréchet Inception Distance (FID) [18] and
identity preservation of the animated video using Cosine Similarity
of Identity Embedding (CSIM) [20].

For the cross-driven setting, all methods are driven by entirely
unrelated audio tracks to evaluate lip synchronization. The au-
dio clips used in this setup were extracted from demos of Syn-
Obama [38]. Due to the absence of ground-truth images, we assess
lip sync accuracy with landmark distance (LMD) and SyncNet con-
fidence score (Sync). We also employ action units error (AUE) to
measure the precision of facial movements. Finally, we compare
the training time and frames-per-second (FPS) as measures to
evaluate the efficiency of each method.
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Figure 5: Comparative visualization of lip synchronization across different audio-visual models. The sequence depicts the lip
shape conforming to specific phonemes in the spoken words ‘country’, ‘of’, ‘crime’, ‘we’, ‘up’, ‘especially’, ‘like’, with the last
frame showing a closed mouth (‘mute’).

5.2.2 Self-driven evaluation. The self-driven evaluation results
are presented in Tab. 1. Note that Wav2Lip [33] scores for PSNR,
SSIM and LPIPS are not valid as it takes ground truth images as
input. While the one-shot 2D-based methods, Wav2Lip and PC-AVS
generate results with high synchronization scores, they fall short
in the faithful reconstruction, showing low PSNR and LPIPS scores.
Benefiting from the 3DGS representation, GaussianTalker achieves
comparable image fidelity with significantly faster rendering speeds
(over 120 fps for GaussianTalker*). Our method also shows the best
scores in most metrics while reaching higher score than other
NeRF-based baselines in Sync scores. The results show that our
method can synthesize high lip-sync accurate 3D heads in real time
rendering speeds.

5.2.3 Cross-driven evaluation. Results in Table 2 showcase suc-
cessful lip movement synthesis with general audio input. Gaus-
sianTalker consistently exhibits the highest Sync score among
NeRF-based methods, demonstrating its effectiveness in handling
unseen audio for lip synchronization. These results highlight Gaus-
sianTalker’s ability to generate high-fidelity 3D heads with real-
time rendering speeds and accurate lip synchronization even with
diverse audio inputs.

5.3 Qualitative Evaluation
In Fig. 5, we showcase results from self-driven and cross-driven
experiments. We choose four key frames from each of the two
experiment settings to compare the reconstruction quality and
lip-sync accuracy. While 2D-based methods (Wav2Lip, PC-AVS)
excel in lip synchronization, they for short of generating a faithful
and consistent face when the head is rotated. AD-NeRF suffers



Table 3: Ablation study results comparing various attribute
configurations to be conditioned by 𝑓 (𝜇𝑐 ) for the canonical
3D head.

Method PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ Sync ↑
Ground Truth N/A 0 0 0 8.935
𝑠, 𝑟, 𝑆𝐻, 𝛼 33.195 0.016 9.976 2.873 6.927
𝑆𝐻, 𝛼 33.299 0.014 9.808 2.891 6.853
𝑟, 𝑠 33.056 0.016 11.775 2.873 6.892
random init. 33.040 0.017 11.915 2.996 6.543

Table 4: Ablation study on selection of deformed attributes.

Method PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ Sync ↑
Ground Truth N/A 0 0 0 8.935
Δ𝑆𝐻,Δ𝛼 32.746 0.021 44.933 3.179 6.694
Δ𝜇,Δ𝑟,Δ𝑠 33.036 0.013 17.52 2.970 6.688
Δ𝜇,Δ𝑟,Δ𝑠,Δ𝑆𝐻Δ𝛼 33.299 0.013 9.808 2.890 6.928

from blurry reconstructions due to its lack of eye blink control.
RAD-NeRF and ER-NeRF, while demonstrating improved facial
consistency, can exhibit discrepancies in lip synchronization and
fail to capture hair movement during head rotations.

In contrast, GaussianTalker generates photorealistic images with
intricate details in non-rigid regions like eyes and wrinkles. Our
spatial-audio attentionmodule effectively disentangles audio-driven
motions from scene variations, enabling precise control of mouth
movements. This capability allows our model to capture hair move-
ment realistically when the head rotates, leading to superior overall
head reconstruction fidelity. In order to comprehensively visual-
ize the efficacy of our proposed method, we provide the rendered
videos in the supplementary file. The provided supplementary video
demonstrates impressive lip synchronization capabilities and high
fidelity head reconstruction with realistic motion.

5.4 Ablation Study
In this section, we provide ablation studies to validate the efficacy
of the design choices of our model. We also show detailed visual-
izations of the generated results in the supplementary material for
better comparison.

5.4.1 Attribute conditions for triplane. Our proposed triplane en-
codes the facial information of the canonical 3D head learned by
3D Gaussians. The mechanism also enforces spatial relationships
between Gaussians for better deformation. In Tab. 3, we demon-
strate the effectiveness of this approach by conducting quantita-
tive ablation on the selection of attributes that are conditioned on
the embedding 𝑓 (𝜇𝑐 ). We also provide results where all attributes
are optimized separately following the original implementation,
and the triplane is trained in the deformation stage. Utilizing only
subsets of the Gaussian attributes show lower performance in lip
synchronization and precision. Removing the attribute conditions
during training leads to loss of spatial information embedded in
the triplane embeddings, leading to a lack of facial cohesion during
inference time.

5.4.2 Selection of deformed attributes. A major challenge of ma-
nipulating the Gaussians is the magnitude of the parameters that

Table 5: Ablation study on augmented input conditions.

Method PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ Sync ↑
Ground Truth N/A 0 0 0 8.935
w/o null-vec 32.997 0.014 9.908 2.933 6.698
w/o eye feature 32.826 0.015 10.060 2.902 6.911
w/o viewpoint 31.866 0.019 13.231 3.052 6.563
All (Ours) 33.299 0.014 9.809 2.891 6.928

Table 6: Ablation study on the effectiveness of stage-wise
training.

Method iter. PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ Sync ↑
Ground Truth - N/A 0 0 0 8.935

w/o stage-wise
500 26.063 0.072 66.629 3.446 1.348
1000 26.478 0.064 56.890 3.344 4.007
5000 32.676 0.016 14.026 2.971 6.602

w/ stage-wise
500 31.076 0.029 31.301 3.792 1.548
1000 31.923 0.024 20.366 3.245 4.449
5000 32.733 0.014 11.173 2.923 6.736

need to be controlled. While estimating offsets for only a subset
of attributes could reduce computational load, it may compromise
overall fidelity due to the lack of control. To address this, in Tab. 4,
we investigate different selections of Gaussian attributes for defor-
mation. Controlling only 𝑆𝐻 and 𝛼 makes the formulation similar
to conditional NeRF-based works [17, 24, 39]. Because 3DGS is an
explicit representation that specifies the 3D positions and shapes,
only controlling the appearance attributes leads to loss of over-
all fidelity. However, only controlling attributes that make up the
position and shape of 3D Gaussians show lower reconstruction
accuracy. Deformation of all Gaussian attribute is crucial for the
highest fidelity and superior lip synchronization.

5.4.3 Disentanglement of audio-unrelated motion. We also investi-
gate the significance of using augmented conditions, such as eye
blink, facial viewpoint, and null-vector. We evaluate the influence
of additional conditions on image fidelity and lip synchronization
by selectively removing them during training (Table 5). The lower
reconstruction scores are attributed to the low lip-sync accuracy
due to entanglement of verbal motion and scene variations unre-
lated to audio. In the supplementary material, we also visualize
the attention scores of each comparison experiment for detailed
analysis.

5.4.4 Stagewise optimization. In Fig. 6, we investigate the impor-
tance of employing a separate canonical stage. We opt to optimize
the whole architecture by training each of the module simultane-
ously from scratch. While the final generated results show similar
performance, optimizing the coarse facial geometry before training
the deformation network results in faster optimization of the whole
methodology.

6 CONCLUSION
In this work, we have proposed GaussianTalker, a novel frame-
work for real-time pose-controllable 3D talking head synthesis,
leveraging the 3DGaussians for the head representation. Ourmethod
enables precise control over Gaussian primitives by conditioning



features extracted from a multi-resolution triplane. Additionally,
the integration of a spatial-audio attention module facilitates the
dynamic deformation of facial regions, allowing for nuanced ad-
justments based on audio cues and enhancing verbal motion disen-
tanglement. Our method is distinguished from prior NeRF-based
methods by its superior inference speed and high-fidelity results
for out-of-domain audio tracks. The efficacy of our approach is val-
idated by quantitative and qualitative analyses. We look forward to
enriched user experiences, particularly in video game development,
where real-time rendering capabilities of GaussianTalker promise
to enhance interactive digital environments.
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Appendix
In the following, we describe the implementation details and fur-

ther analyses of GaussianTalker. Specifically, we first introduce
the details of our network design and hyperparameter settings in
Sec. A. We also provide details of our analysis on the proposed
method that was conducted in the main paper in Sec. B. In Sec. C,
we validate our methodology with more qualitative results from
our experiments, and also conduct a user study. Then, more abla-
tion studies are conducted in Sec. D. To further demonstrate the
robustness and effectiveness of our framework, we also provide a
supplementary video (Sec. E). Finally, we discuss the limitations
and ethical considerations of our research in Sec. F.

A IMPLEMENTATION DETAILS
A.1 Network architecture
A.1.1 Multi-resolution Triplane. Our multi-resolution triplane con-
sists of three orthogonal grids, with the hidden feature dimension
of 𝐻 = 64, and its base resolution of 𝑅 = 64, which is further
upsampled by 2.

A.1.2 Canonical 3D Gaussian attribute predictor. The employed
network that predicts the attributes of canoncial 3D Gaussians is
made up of MLPs, such as: Fcan = {𝜙shared, 𝜙𝑟 , 𝜙𝑠 , 𝜙𝑆𝐻 , 𝜙𝛼 }. Specif-
ically, a tiny MLP 𝜙shared encodes the triplane embedding 𝑓 (𝜇𝑐 )
and outputs a shared feature 𝜅 for all attributes. The following MLP
regressors maps this feature to each 3D Gaussian attribute such as:

𝜅 = 𝜙shared (𝑓 (𝜇)),
𝑟𝑐 = 𝜙𝑟 (𝜅), 𝑠𝑐 = 𝜙𝑠 (𝜅), 𝑆𝐻𝑐 = 𝜙𝑆𝐻 (𝜅), 𝛼𝑐 = 𝜙𝛼 (𝜅) .

(17)

A.1.3 Deformation offset predictor. Similar to Fcan, the deforma-
tion prediction network, Fcan = {𝜓𝜇 ,𝜓𝑟 ,𝜓𝑠 ,𝜓𝑆𝐻 ,𝜓𝛼 }, that esti-
mates the deformation offsets of each Gaussian attribute for each
frame consists of several small MLP regressors. For the 𝑛-th frame,
the final output embedding from the cross-attention module, 𝑧𝐿𝑛 , is
mapped to each attribute offset such that

Δ𝜇𝑛 = 𝜓𝜇 (𝑧𝐿𝑛 ), Δ𝑟𝑛 = 𝜓𝑟 (𝑧𝐿𝑛 ), Δ𝑠𝑛 = 𝜓𝑠 (𝑧𝐿𝑛 ),

Δ𝑆𝐻𝑛 = 𝜓𝑆𝐻 (𝑧𝐿𝑛 ), Δ𝛼𝑛 = 𝜓𝛼 (𝑧𝐿𝑛 ).
(18)

A.2 Hyperparameter Configuration
During the canonical stage, we conduct training over 8, 000 itera-
tions for a specific identity. We set the weights for the loss functions
as follows: 𝜆1 = 0.8, 𝜆lpips = 0.01, and 𝜆D−SSIM = 0.2. The initial
learning rate for the multi-resolution triplane is set to 0.0016, grad-
ually decaying to 0.00016. Similarly, the learning rate for Fcan starts
at 0.0001 and diminishes to 0.00001. We cap the maximum number
of 3D Gaussians at 50,000, and we abstain from utilizing the opacity
reset operation from the original implementation [22], as we found
it does not yield discernible benefits in our experiments.

Subsequently, in the deformation stage, we proceed with train-
ing the network for 8,000 iterations. We maintain the same weight-
ing scheme for the loss functions: 𝜆1 = 0.8, 𝜆lpips = 0.01, 𝜆D−SSIM =

0.2, and 𝜆lip = 0.8. All modules are trained with an initial learning
rate of 0.0001, gradually decreasing to 0.00001.

While our spatial-audio attention module primarily employs
𝐿 = 2 cross-attention layers, our modified GaussianTalker∗ with

𝐿 = 1 can achieve comparable results with even faster inference
speeds.

B ADDITIONAL ANALYSIS
B.1 Splatting on the background image
Initially, our research followed the method outlined in the original
implementation [22], where faces were generated on a white back-
ground. However, we encountered limitations with this approach.
To render images containing only faces on a white background, cor-
responding ground truth images with similar characteristics were
required, necessitating the use of a segmentation model. However,
due to the inherent inaccuracies of the segmentation model, the
obtained facial masks tended to encompass larger areas, including
the background. Additionally, the disproportionate emphasis of loss
terms such as SSIM and perceptual loss on imperfect facial con-
tours relative to mouth and eye movements hindered the learning
process.

As a solution, we opted to generate faces GT backgrounds in-
stead. This approach allowed for the accurate learning of Gaussian
presence boundaries by distributing loss across the entire image.
Similar to preprocessing techniques employed in previous NeRF-
based works [17, 24, 39], we interpolated the human form from the
background image to create an image with the person removed.
Subsequently, faces were directly rendered using Gaussian methods,
enabling comparisons with GT videos. By adopting this strategy,
our GaussianTalker is trained without the need for facial mask,
facilitating the faithful representation of intricate details such as
hair.

B.2 Visualization of Attention
In our spatial-audio attention module, the computation of the at-
tention score is formalized by the following equation:

A𝑙
𝑛 =

softmax(𝑞𝑘⊺𝑛 )𝑙√︁
𝑑𝑘

, (19)

where 𝑙 denotes the index of {𝑎𝑛, 𝑒𝑛, 𝜐𝑛, ∅} and A𝑙
𝑛 corresponds

to its calculated attention score. A𝑛 denotes the concatenation of
all A𝑙

𝑛 , resulting in a shape of 𝐵 × 𝐻 × 𝑁 × 𝑑𝑘 , which respectively
indicate batch size, number of heads, number of Gaussians, and
number of features per Gaussian.

For each attention score A𝑙
𝑛 , we visualize the attention by as-

signing the score to RGB values. Thereby we obtain attention visu-
alization colors 𝑐𝑎𝑡𝑡 for each Gaussian. The overall visualization of
attention is then calculated with the typical 3DGS rendering pro-
cess following (5). This formulation allows us to visually interpret
the model’s focus within the generated representations, effectively
highlighting the areas of greatest feature impact.

B.3 Visualization of triplane
Fig. 3 of the main paper visualizes the PCA analysis result of our
multi-resolution triplane, showing the efficacy of using triplane
to embed Gaussian features. We perform PCA on each triplane
with dimensions 𝐻 × 𝑅 × 𝑅, linearly transforming the first dimen-
sion down to three principal components, resulting in dimensions



3 × 𝑅 × 𝑅. Subsequently, the values of the first dimension are nor-
malized between [0, 255] to denote RGB values. As a result, in
all xy, yz, and zx triplanes, semantically close facial regions are
consistently represented with similar colorations.

C ADDITIONAL EXPERIMENTS
C.1 Additional qualitative experiments.
We present additional visualization of generated keyframes from
comparison experiments in the self-driven setting and the cross-
driven setting in Fig. 6 and Fig. 7 respectively. These experiments
showcase the stability of our method and its applicability to various
identities.

C.2 User study
Following previous works [24, 39], we conducted a user study in
order to better judge the visual quality of the generated talking head
videos. 21 participants with an age range of 20-40 years old were
solicited to evaluate the rendered results in the head reconstruction
setting. For accurate judgments, we combine all generated videos
into a single high-resolution video, enabling simultaneous obser-
vation of all movements by the participants. To ensure fairness in
the comparison process, we assign a number to each generated re-
sult instead of identifying them by their method. Participants were
asked to evaluate the three perspectives of the generated portraits:
(1) Lip-sync Accuracy; (2) Video Realness; and (3) Image Quality.
The results are shown in Tab. 7.



of be require long up quality

GT

Wav2Lip

PC-AVS

AD-NeRF

RAD-NeRF

ER-NeRF

Ours

Figure 6: More results comparison on the self-driven setting.
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Table 7: User study results. The rating is of scale 1-5, the higher the better. The top, second-best, and third-best results are
shown in red, orange, and yellow, respectively.

self-driven cross-driven
Methods Lip-sync Accuracy Image Quality Video Realness Lip-sync Accuracy Image Quality Video Realness
Wav2Lip [33] 3.167 2.665 2.459 2.678 2.313 2.135
PC-AVS [57] 2.625 1.896 1.921 1.958 1.292 1.229
AD-NeRF [17] 2.031 2.492 2.396 2.574 3.042 2.365
RAD-NeRF [39] 2.417 2.750 2.541 2.938 3.146 2.604
ER-NeRF [24] 2.354 3.042 2.771 2.792 3.458 3.146
GaussianTalker 3.083 3.667 3.188 3.250 3.729 3.208



D ABLATION STUDIES
D.1 Initialization of 𝜇𝑐
Our study explores the impact of initialization on canonical 3D
Gaussian optimization. In the default setting, we leverage a pre-
optimized Basel Face Model [8] to obtain camera parameters during
preprocessing. These optimized mesh vertices are used to initialize
the 3D positions, 𝜇𝑐 of the 3D Gaussians.

To investigate the impact of the proposed 3DMM-based initial-
ization, we conduct an ablation study by comparing it to random
initialization from a sphere. In Fig. 8, we visually analyze the opti-
mization process of the canonical stage under both initialization
settings. Our experiments demonstrate that utilizing 3DMM-based
initialization leads to faster convergence, attributed to the facial
depth information encoded in the initialized points.

D.2 Selection of attributes inferred for triplane
embeddings.

In Fig. 9, we support the quantitative comparison in the main paper
by presenting key frames of the rendered results. Conditioning the
triplane embeddings on the structure information such as 𝑟 and 𝑠
tends to show less accurate facial details such as wrinkles in facial
muscle. In contrast, while conditioning on appearance information
𝑆𝐻 and 𝛼 produce accurate reconstructions of the canonical head,
the facial motion appears less dynamic compared to the ground
truth, and does not correlate well with input speech audio.

D.3 Selection of deformed attributes.
We also provide qualitative comparisons from our ablation study
on selection of Gaussian attributes to be deformed. Utilizing the
same comparison settings from Sec.5.4.2, we visualize the rendered
results in Fig. 10. Only deforming 𝑆𝐻 and 𝛼 show blurry results
with unrealistic deformations, while only manipulating

D.4 Disentanglement of audio-unrelated motion
Finally, we reinforce the insights drawn from the quantitative anal-
ysis in Section 5.4.3. We elucidate the disentanglement of speech-
related motion in Fig. 11 by presenting visualizations of the atten-
tion scores for the input conditions across the ablation experiment
settings. Notably, the attention scores of the input speech audio
become more widely distributed across other facial regions, indi-
cating inadequate disentanglement of speech-related motion when
solely provided with speech as the input condition.

E SUPPLEMENTARY VIDEO
To comprehensively visualize the efficacy of our proposed method
in the domain of talking facial video synthesis, we prepared a sup-
plementary video. This video encompasses the results and analysis
of our experiments presented in the main paper and the supple-
mentary document. We showcase talking head videos generated
under both the self-driven and cross-driven settings and compare
them with previous NeRF-based works [17, 24, 39]. We also demon-
strate the effectiveness of our spatial-audio attention module by
showing how the attention scores of each condition evolve as the
scene progresses. Lastly, the video includes a set of ablation studies

that systematically examine the impact of each component of our
proposed method.

F FURTHER DISCUSSIONS
F.1 Ethical Considerations
Our goal with GaussianTalker is to create realistic talking 3D heads
for practical real-world applications like digital assistants and video
production. However, its photorealism raises ethical concerns, as
it’s difficult to distinguish real from synthetic videos. This can be
used to create deepfakes, which are manipulated videos that can be
used to spread misinformation or damage someone’s reputation. To
address this, we propose several measures: 1) informing users about
video authenticity, 2) sharing our results with deepfake detection
communities to improve detection algorithms, and 3) advocating for
digital watermarks in real videos to deter misuse. Finally, we believe
responsible use requires clear regulations to govern deepfakes on
social media, protecting users from potential manipulation.

F.2 Limitations and future work
GaussianTalker shares a common limitation with previous NeRF-
based talking head synthesis methods: per-identity training. This
restricts the model’s ability to generalize to new identities, mak-
ing data preparation for audio and eye features time-consuming.
Additionally, free-viewpoint rendering remains a challenge due to
the lack of multi-view training data. While the deformation stage
achieves high fidelity and generalizes well to out-of-domain audio,
it struggles with extreme viewpoints. Our current approach uses
limited canonical training for coarse structure, leading to inconsis-
tencies when synthesizing from very different angles.

Future work will focus on overcoming these limitations. We
aim to explore techniques for multi-identity training and efficient
data pre-processing. Additionally, we will investigate methods for
free-viewpoint rendering using techniques like multi-view data
acquisition or neural rendering approaches.
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Figure 8: Ablation study on initialization of the canonical position 𝜇𝑐 . We evaluate the effectiveness of the 3DMM-based
initalization by visualizing the optimization process of the reconstructed canonical 3D head, and compare it to random
initialization. Our experiments demonstrate that utilizing 3DMM-based initialization leverages the depth information of the
human face, leading to significantly faster convergence. In contrast, optimizing from randomly sampled points prolongs
training duration and fails to completely resolve artifacts, particularly around the eyes and hair regions.
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Figure 9: Ablation study on the selection of attributes inferred from the triplane embedding 𝑓 (𝜇). We compare the generated
results from
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Figure 10: Deforming only spherical harmonics and opacity resulted in a significant loss of facial detail and blurry recon-
structions. Notably, this led to unrealistic deformations in lip regions, where the lips and teeth appeared merged. Conversely,
deforming only structural information (𝜇, 𝑟, 𝑠) produced much less dynamic lip movements. In addition, the generated results
show the inside of the mouth, such as teeth and tongue less frequently.



rendered audio eye viewpoint null-vec

w/o
eye feature

𝑒𝑛

w/o
viewpoint

𝜐𝑛

w/o
null-vector

∅

All (Ours)

Figure 11: Ablation study on disentanglement effect of each input conditions.We assess the effectiveness of each input condition
by alternatively turning them on and off, and visualizing the attention scores of each condition.
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