
Neural Operators Learn the Local Physics of
Magnetohydrodynamics

Taeyoung Kim legend@snu.ac.kr
Department of Mathematical Science
Seoul National University
Seoul 08826, South Korea

Youngsoo Ha youngamath@snu.ac.kr
Department of Mathematical Science
Seoul National University
Seoul 08826, South Korea

Myungjoo Kang mkang@snu.ac.kr

Department of Mathematical Science

Seoul National University

Seoul 08826, South Korea

Abstract

Magnetohydrodynamics (MHD) plays a pivotal role in describing the dynamics of plasma
and conductive fluids, essential for understanding phenomena such as the structure and
evolution of stars and galaxies, and in nuclear fusion for plasma motion through ideal
MHD equations. Solving these hyperbolic PDEs requires sophisticated numerical methods,
presenting computational challenges due to complex structures and high costs. Recent
advances introduce neural operators like the Fourier Neural Operator (FNO) as surrogate
models for traditional numerical analyses. This study explores a modified Flux Fourier
neural operator model to approximate the numerical flux of ideal MHD, offering a novel
approach that outperforms existing neural operator models by enabling continuous infer-
ence, generalization outside sampled distributions, and faster computation compared to
classical numerical schemes.

1. Introduction

1.1 Magnetohydrodynamics

In the mid-20th century, the advent of the Space Age and growing interest in nuclear fusion
led to an intensified focus and understanding of plasma. During this period, significant the-
oretical studies on plasma were conducted, marking early research in kinetic equations by
(Vlasov (1938)) and studies on magnetohydrodynamics (MHD) by (Alfven (1942)). MHD
describes the behavior of electrically conductive fluids and is primarily used for plasmas
and liquid metals under the influence of large-scale, low-frequency magnetic fields (Bitten-
court (2004)). The applications of MHD extend across various fields, including astrophysics
(Kennel et al. (1985)), solar physics (Priest (1982)), the study of Earth’s magnetosphere
(Mukhopadhyay et al. (2021)), and research in nuclear fusion (Wesson (1978)). Ideal MHD
represents one of the simplest forms of these models, disregarding dissipative effects such
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as viscosity, thermal conductivity, and resistance. Despite its simplicity, ideal MHD proves
to be a powerful tool capable of explaining a wide range of plasma phenomena (Sebastien
(2016)). This includes its use in analyzing plasma within tokamaks and stellarators, under-
standing the dynamo process generating Earth’s magnetic field (Rincon (2019)), studying
plasma phenomena inside and on the surface of the sun (Shibata and Magara (2011)),
and describing the formation of galactic structures and the universe (Pakmor and Springel
(2013)).

1.2 Numerical Schemes

Magnetohydrodynamics (MHD) can be viewed as a generalized model that combines hydro-
dynamics with electromagnetism. In particular, ideal MHD is considered as a hyperbolic
conservation law, conserving mass, momentum, magnetic fields, and energy density. Nu-
merical methods for solving hyperbolic conservation laws have a long history, with various
approaches proposed to achieve stability, computational efficiency, and high-order accuracy.
High-order accurate methodologies, such as essentially non-oscillatory (ENO) (Harten et al.
(1987)) and weighted ENO (WENO) (Liu et al. (1994)) schemes, have been effective in solv-
ing hyperbolic conservation laws. Jiang and Shu introduced the WENO scheme with third
and fifth-order accuracy (WENO-JS) (Jiang and Shu (1996)), noted for its robust shock-
capturing capability, albeit with a disadvantage of being dissipative in turbulent flows. To
address this shortcoming, Henrick et al. developed the enhanced WENO-M scheme (Hen-
rick et al. (2005)). However, applying WENO schemes to the system of conservation laws
involves significant computational costs. Various attempts to reduce computational costs
include Jiang and Shu’s work (Jiang and Shu (1996)), Pirozzoli’s hybrid compact-WENO
scheme (Pirozzoli (2002)), and the efforts by (Hill and Pullin (2004))(Costa and Don (2007))
among others. For ideal MHD, maintaining the divergence-free condition for the magnetic
field is essential, with methods like the Constrained Transport (CT) method by (Evans
and Hawley (1988)), and the projection scheme by (Brackbill and Barnes (1980)) proposed.
Comprehensive reviews on methods ensuring the divergence-free condition in ideal MHD
are available in (Toth (2000)). Early studies on numerical solutions for ideal MHD include
works by (Brio and Wu (1988)), (Dai and Woodward (1998)), (Jiang and Wu (1999)). And
other various efforts to solve ideal MHD numerically have been develeoped (Christlieb et al.
(2014))(Rossmanith (2006)). In this research, we innovatively combine traditional numer-
ical schemes with artificial neural network techniques to reduce computational costs and
enforce the divergence-free condition for ideal MHD problems.

1.3 Neural Operators and Flux Neural Operator

In recent times, several Neural Operators have been proposed as a method to replace conven-
tional numerical analysis techniques with machine learning approaches. Notably, the Graph
Kernel Network (Li et al. (2020)), Fourier Neural Operator (FNO) (Li et al. (2021)), Deep-
ONet (Lu et al. (2021)), and various adaptations thereof have been introduced (G. Gupta
and Bogdan (2021))(Wen et al. (2022))(Lee et al. (2023)). A common feature among these
models is their ability to handle functional data, as they are not limited by the resolution
of input data. This characteristic allows for the approximation of operators—mappings
between functional spaces—and paves the way for these models to serve as surrogate mod-
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els for numerical schemes. Unlike traditional numerical schemes that iteratively calculate
solutions, most neural operator models learn global solvers that map initial data directly to
the solution data at a specific time. One advantage of this method is its significantly faster
computation speed compared to classical numerical schemes (Pathak et al. (2022)); how-
ever, it often lacks generalization capability (Kim and Kang (2024a)), making it challenging
to learn actual broad physical phenomena. The recently proposed Flux FNO model (Kim
and Kang (2024a)) combines the strengths of both numerical schemes and neural operators.
In the respective study, it demonstrated a leap in generalization capability by learning nu-
merical flux for hyperbolic conservation law problems, which enabled the neural operator
model to learn local physics. While the study empirically showed the approximation of
numerical flux by Flux FNO for one-dimensional scalar conservation laws, our paper takes
this a step further by applying it to one of the most challenging problems, the ideal MHD
problem.

1.4 Our contribution

In this paper, we employ various techniques motivated from physical property of equa-
tion and numerical analysis to enhance the recently developed machine learning method,
Flux FNO, for solving the ideal magnetohydrodynamic (MHD) problem. Firstly, as the
problem transitions from scalar-valued to vector-valued, we redesign the Flux FNO model
architecture to process each physical variable (density, velocity, magnetic field, energy) in
each separated model. This is due to the experimental finding of limitations in the model’s
expressiveness when handling all variables simultaneously. Secondly, we design and apply
a loss function that endows the approximated numerical flux with the Total Variation Di-
minishing (TVD) property to ensure stability. Unlike classical numerical schemes, if we
only approximate the numerical flux without such measures, severe oscillations could arise
as iterations accumulate. Furthermore, we enforce the divergence-free condition by taking
loss over divergence of magnetic field variables. This loss allows us to impart an induc-
tive bias suitable for the ideal MHD solver, which we verify through an ablation study.
Utilizing these methodologies, we base our model to qualitatively assess generalization per-
formance (inference over continuous time, inference on out-of-distribution samples) and to
solve representative test problems of ideal MHD, comparing them with traditional numerical
methodologies.

2. Preliminaries

2.1 Ideal MHD Equations

Ideal Magnetohydrodynamics (MHD) is described by a system of coupled partial differential
equations that characterize conducting fluids. Among various formulations of MHD, the
ideal MHD equations represent the simplest form, embodying a synthesis of fluid dynamics
and Maxwell’s equations, while excluding effects such as viscosity, resistance, and thermal
conductivity. The conservative form of ideal MHD can be articulated as follows:
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ρt +∇ · (ρu) = 0

(ρu)t +∇ ·

[
ρu⊗ u+

(
p+

1

2
∥B∥2

)
I−B⊗B

]
= 0

Bt +∇ · (u⊗B−B⊗ u) = 0

Et +∇ ·

[(
E + p+

1

2
∥B∥2

)
u−B(u ·B)

]
= 0

Additionally, from Maxwell’s equations, we require the divergence-free condition for the
magnetic field, which is expressed as:

∇ ·B = 0

In the scenario where the fluid is considered incompressible, an analogous divergence-free
condition for velocity would be necessary. However, throughout this paper, we focus on
compressible fluids, where such a condition for velocity is not explicitly required due to the
fluid’s capacity to vary in density. The pressure and energy is coupled through the following
equation:

p = (γ − 1)

(
E − 1

2
ρu2 − 1

2
∥B∥2

)

where γ is the ratio of specific heats.

One dimensional ideal MHD The governing equation for ideal MHD in the one-dimensional
case, expressed in conservative form, can be written as follows:

∂

∂t



ρ
ρux
ρuy
ρuz
By

Bz

E


+

∂

∂x



ρux
ρu2x + p∗ −B2

x

ρuxuy −BxBy

ρuxuz −BxBz

Byux −Bxuy
Bzux −Bxuz

(E + p∗)ux −Bx(u ·B)


= 0

where p∗ = p + B2

2 represents the total pressure, incorporating magnetic pressure. Each
variable with a subscript denotes components of velocity and magnetic field.

Two dimensional ideal MHD For two-dimensional case, the equtions are expressed in
conservative form, can be written as follows:
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∂

∂t



ρ
ρux
ρuy
ρuz
Bx

By

Bz

E


+

∂

∂x



ρux
ρu2x + p∗ −B2

x

ρuxvy −BxBy

ρuxvz −BxBz

0
Byux −Bxuy
Bzux −Bxuz

(E + p∗)ux −Bx(u ·B)


+

∂

∂y



ρuy
ρuyux −ByBx

ρu2y + p∗ −B2
y

ρuyuz −ByBz

Bxuy −Byux
0

Bzuy −Byuz
(E + p∗)uy −By(u ·B)


= 0

2.2 Numerical schemes

To apply our methodology, a dataset consisting of discretized functions over time is required.
Although it is possible to generate the dataset using actual observations, we created both
training and testing datasets using classical numerical analysis techniques. This section
describes the numerical methods utilized to generate the datasets, along with concepts
related to the stability of numerical solutions.
The WENO schemes When using high-order numerical schemes, the phenomenon of
oscillations at discontinuities, known as Gibbs phenomena, occurs. To address this issue,
methods such as flux limiters, essentially non-oscillatory schemes (ENO), and slope lim-
iters have been devised. Among these methods, the Weighted Essentially Non-Oscillatory
(WENO) scheme stands out as it reconstructs the function values in a non-oscillatory man-
ner by nonlinearly weighting each sub-stencil, utilizing the given function values. As an
example, let’s apply this to the one-dimensional conservation laws:

ut + f(u)x = 0, x ∈ R, t ≥ 0. (1)

Let x0 < · · · < xn be the uniform discretization of the computational domain. where
xj+ 1

2
=

xj+xj+1

2 . The equation (1) can be approximated with semi-discrete conservation

schemes:

duj
dt

= −∂f

∂x

∣∣∣
x=xj

(2)

where uj(t) is numerical approximation of function u(xj , t) on a grid. And by approximating
right term of (2) in a conservative manner, we get following formula:

duj
dt

= −
f̂j+ 1

2
− f̂j− 1

2

∆x
(3)

where f̂j± 1
2
is a numerical flux which satisfies lipschitz continuity and consistency with the

physical flux f , namely, f̂(u, . . . , u) = f(u). In fifth-order finite differnece WENO scheme
(WENO-JS), the numerical flux is constructed using 5-point stencil which is subdivided
into three sub-stencils. The computation of WENO-JS is as follows:

5



f̂j+ 1
2
=

2∑
k=0

ωkf̂k,j+ 1
2
.

which is weighted sum of numerical fluxes f̂k,j+ 1
2
(k = 0, 1, 2) which are as follows:

f̂0,j+ 1
2
=

1

3
fj−2 −

7

6
fj−1 +

11

6
fj ,

f̂1,j+ 1
2
= −1

6
fj−1 +

5

6
fj +

1

3
fj+1,

f̂2,j+ 1
2
=

1

3
fj −

5

6
fj+1 −

1

6
fj+2.

The nonlinear weights ωk are contingent upon the variant WENO construction techniques,
with WENO-JS and WENO-Z being predominantly utilized. The detailed calculation of
these weights can be found in (Jiang and Shu (1996)) and (Borges et al. (2008)).
Total Variation Diminish Runge-Kutta method The total variation of numerical
solution is defined as follows:

TV (u) =
∑
j

|uj+1 − uj |

And, we say numerical scheme has total variation diminishing (TVD) property if it satisfies
following condition:

TV (un+1) ≤ TV (un) (4)

Let denote −L(u) is approximation of spatial derivative f(u)x in (2) then a general Runge-
Kutta method for (1) can be written as follows:

u0 = un,

ui =
i−1∑
k=0

(
αiku

(k) +∆tβikL(u
(k))
)
, i = 1, . . . ,m, (5)

un+1 = um.

It is known that Ruge-Kutta method (5) is TVD under the following conditon (Courant-
Friedrichs-Lewy (CFL) condition):

λ ≤ λ0min
i,k

αik

|βik|
,

λ =
∆t

∆x
.

where λ0 is a suitable CFL restriction.
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2.3 Flux Neural Operator

Fourier Neural Operator

Figure 1: Schematic of FNO with CNN layers

Among the various types of neural operators for handling functional data, the Fourier
Neural Operator (FNO) is a neural operator model that processes the global convolution
operations of functions by leveraging the Fourier transform. Its most notable feature is
that the convolution with the kernel function is expressed through the Fourier transform as
multiplication with a high-order tensor. The structure of the FNO is depicted in Figure 1,
where the values of discretized functional data are non-linearly lifted by the lifting layer,
passed through the Fourier layers, and finally projected into the desired dimension vector
by the projection layer composed of FNCs. As shown in diagram (b) of Figure 1, each
Fourier layer consists of a function convolution operation that globally transforms the data
and an auxiliary neural network, which must maintain resolution invariance, with CNN
layers commonly adopted to handle local data processing. The mathematical formulation
for a Fourier Neural Operator (FNO) with a CNN layers can be represented as follows:
Definition (FNO with CNN layers)

v0 := NP (a|X) = (NP (ax·)j)x∈X,j=1,...,dv0

vt+1 := At+1(vt) = σ

(
Ct+1(c1, . . . , cd)(ṽt) + F−1

(
Rt+1 · (F(vt))

))
= σ

( du∑
k=1

c1−1∑
j1=0

· · ·
cd−1∑
jd=0

Kt+1,jk,j1,...,jd ṽt,x1+j1,...,xd+jd,k

+
∑

z,k∈K,k

D†
xkRt+1,k,jkDkzvt,zk

)
(t = 0, ..., L− 1)

G(a; θ) := NQ(vL) = (NQ(vLx·)j)x∈X,j=1,...,dvL
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where NP and NQ are neural networks used for lifting and projection, respectively. a|X rep-
resents the discretized functional data of a, and each Ci is a d-dimensional CNN layer with
a kernel tensor Ki. The Ri tensors are weight tensors that parameterize the kernel function
of the Fourier layers. Dkz represents the components of the discrete Fourier transform, also
denoted as F .
Flux Neural Operator

Figure 2: Schematic of the forward structure for flux neural operator (Flux NO)

The Flux Fourier Neural Operator (Flux FNO) introduced in the paper (Kim and Kang
(2024a)), inspired by the numerical schemes of hyperbolic conservation laws, represents a
method designed to learn the local physics of conservation laws directly through the ap-
proximation of fluxes, differing from original neural operators that predict target snapshots
of solutions. The area where FNO is applied within Flux FNO can be substituted with
other Neural Operators, leading to the generalized concept referred to as the Flux Neural
Operator (Flux NO). The schematic of Flux NO for domain of one-dimensional case is
shown in Figure 2, and unlike conventional neural operators, Flux NO aims to approximate
the flux itself and calculates local residuals based on this approximation, offering a novel
approach to handling local physical phenomena. For an N-dimensional problem, the Flux
NO operates as described in formula (6). Each Gi(·; θi) is approximated flux function along

spatial direction xi (θi is parameter of neural operator). And each U
li,k
j , U

ri,k
j denote shifted

Uj along spatial direction (which is corresponding spatial index).

Uj+1 = Uj +
k∑

i=1

∆t

∆xi

[
Gi(U

li,1
j , . . . ,U

li,m
j ; θi)−Gi(U

ri,1
j , . . . ,U

ri,m
j ; θi)

]
(6)

To train the Flux NO, the required training dataset shape is [batch size, Nt, Nx1 , · · · , Nxk
,

Nu] where Nt represents the number of interations along time, Nxi represent the number
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of grid points along each spatial dimensions across which the problem is defined, and Nu

indicates the dimensionality of the problem (e.g., velocity components in fluid dynamics).
Given this structured dataset, the loss function motivated from equation (6) for training
Flux NO can be constructed as follows:

Ltm({Ui}Bi=1) :=
B∑
i=1

Nt−1∑
j=1

∥∥∥∥∥(Ui,j+1 −Ui,j)

−

(
k∑

i=1

∆t

∆xi

[
Gi(U

li,1
i,j , . . . ,U

li,m
i,j ; θi)−Gi(U

ri,1
i,j , . . . ,U

ri,m
i,j ; θi)

])∥∥∥∥∥
2

(7)

This loss function quantifies the difference between residual constructed from the predicted
flux values by the Flux NO and the actual (or target) residual values, aiming to minimize this
discrepancy during the training process. By focusing on flux approximation, the Flux NO
offers a detailed and localized understanding of the underlying physical processes, making
it especially suitable for problems governed by conservation laws where the flux plays a
critical role. And we consider additional loss which guarantees the consistency of Flux
function which is essential for convergence to weak solutions:

Lconsi({Ui}Bj=1) :=
B∑
i=1

Nt∑
j=1

k∑
l=1

∥Gl(Ui,j , . . . ,Ui,j ; θl)− Fl(Ui,j)∥2 (8)

where Fi are actual physical fluxes. The actual training is implemented by optimizing
weighted sum of these losses: Ltm + λLconsi. These losses are presented also in (Kim and
Kang (2024a)), in this work, we consider more additional losses which make the convergnce
of training well and approximate propery with robustness and more generalization ability.

3. Methods

3.1 Adaptive FNO Architecture for Multidimensional Outputs in Ideal MHD

In the referenced study (Kim and Kang (2024a)), the output dimension was one-dimensional
since it dealt with one-dimensional scalar conservation laws. However, in the case of ideal
Magnetohydrodynamics (MHD) discussed in this paper, the output dimension is seven-
dimensional for one-dimensional problems and eight-dimensional for two-dimensional prob-
lems. We experimentally observed significant issues with expressiveness when a single FNO
model was tasked with handling all outputs in cases of large output dimensions. To address
this issue, we allocated separate FNO models to handle each physical quantity. Specifically,
density, energy, velocity vectors, and magnetic field vectors were each processed by their
own FNO models. For two-dimensional problems, given that the physical flux functions
exist for both the x and y axes, we further segregated the considerations for each physical
flux. This architectural approach is summarized in the schematic shown in the Figure 3.
Modified version of (6) for one-dimensional case can be written as follows:
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Uj+1 = Uj +
∆t

∆x

[
Gl −Gr

]
Gl =

(
Gρ(U

l1
j , . . . ,U

lm
j ; θρ), Gu(U

l1
j , . . . ,U

lm
j ; θu)

T ,

GB(U
l1
j , . . . ,U

lm
j ; θB)

T , GE(U
l1
j , . . . ,U

lm
j ; θE)

)T
(9)

Gr =
(
Gρ(U

r1
j , . . . ,Urm

j ; θρ), Gu(U
r1
j , . . . ,Urm

j ; θu)
T ,

GB(U
r1
j , . . . ,Urm

j ; θB)
T , GE(U

r1
j , . . . ,Urm

j ; θE)
)T

And the two-dimensional case can be written as follows:

Uj+1 = Uj +
∆t

∆x

[
Gl −Gr

]
+

∆t

∆y

[
F t − F b

]
Gl =

(
Gρ(U

l1
j , . . . ,U

lm
j ; θGρ ), Gu(U

l1
j , . . . ,U

lm
j ; θGu )

T ,

GB(U
l1
j , . . . ,U

lm
j ; θGB)

T , GE(U
l1
j , . . . ,U

lm
j ; θGE)

)T
Gr =

(
Gρ(U

r1
j , . . . ,Urm

j ; θGρ ), Gu(U
r1
j , . . . ,Urm

j ; θGu )
T ,

GB(U
r1
j , . . . ,Urm

j ; θGB)
T , GE(U

r1
j , . . . ,Urm

j ; θGE)
)T

(10)

F t =
(
Fρ(U

t1
j , . . . ,U

tm
j ; θFρ ), Fu(U

t1
j , . . . ,U

tm
j ; θFu )

T ,

FB(U
t1
j , . . . ,U

tm
j ; θFB)

T , FE(U
t1
j , . . . ,U

tm
j ; θFE)

)T
F b =

(
Gρ(U

b1
j , . . . ,Ubm

j ; θFρ ), Fu(U
b1
j , . . . ,Ubm

j ; θFu )
T ,

FB(U
b1
j , . . . ,Ubm

j ; θFB)
T , FE(U

b1
j , . . . ,Ubm

j ; θFE)
)T

Let the residual in (9) and (10) be ∆R(Uj ; θ) := Uj+1 − Uj where θ is collection of
parameters. Then the loss (7) can be now written as follows:

Ltm({Ui}Bi=1) :=

B∑
i=1

Nt−1∑
j=1

∥∥∥(Ui,j+1 −Ui,j)−∆R(Ui,j ; θ)
∥∥∥2 (11)

3.2 Enhanced Loss Function for Ideal MHD

We have developed additional loss functions to enhance the existing loss function introduced
in (Kim and Kang (2024a)), and to impart suitable inductive biases for specialized issues
such as ideal MHD, which is the focus of this paper. Three further loss functions have been
considered; one associated with the Total Variation Diminishing (TVD) property, another
related to the divergence-free condition, and a third concerning local information about the
flux.
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Figure 3: Schematic of the calculation of numerical fluxes based on Flux NO models for (a)
one-dimensional ideal MHD (b) two-dimensional ideal MHD cases.
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TVD Loss According to Godunov’s theorem, the WENO method, which performs high-
order polynomial approximations for all stencils, does not inherently possess the Total
Variation Diminishing (TVD) property. Nevertheless, WENO exhibits a considerably non-
oscillatory manner. The results we will present in Section 4 are based on models trained
using training data generated by the high-order WENO method. Although the training
data generated through the WENO method do not satisfy the TVD property, we have
designed a loss function that imparts an inductive bias towards the TVD property to our
model, inspired by equation (4). Since the training data inherently lack the TVD property,
we adopted an l2 rather than l1 function as a loss to apply the inductive bias in a soft
manner. The specific formulation of this loss is as follows:

LTV D({Ui}Bi=1) :=

B∑
i=1

Nt−1∑
n=1

⌊TV (Ũi,n+1)− TV (Ui,n)⌋2+ (12)

where ⌊·⌋+ := max(0, x) and Ũ is an output of Flux NO.
Divergence Free Loss Since the magnetic vector field in multidimensional ideal MHD
is divergence-free, our approximated fluxes should also construct a divergence-free vector
field. To achieve this, we have designed a loss function that imparts this condition. This
approach can also be applied to other problems, such as incompressible fluids, which require
a divergence-free condition for the velocity vector field. Each of F and G represents the
physical fluxes for the two-dimensional ideal MHD equations, as introduced in Section 2.1.
The subscript B in (13) indicates that the components of the vector are specifically related
to the magnetic vector fields.

∇ · ∂U
∂t

=
∂∇ ·U

∂t
= ∇ ·

(
− ∂G

∂x
− ∂F

∂y

)
⇒ 0 =

∂∇ ·B
∂t

= ∇ ·
(
− ∂G

∂x
− ∂F

∂y

)
B

(13)

According to equation (13), the residual of the magnetic field must also satisfy the divergence-
free condition. Therefore, we will design a loss function to ensure that the residuals con-
structed from our approximated flux satisfy this condition. However, the training datasets
generated through numerical analysis may still exhibit non-zero divergence of the magnetic
field, despite the application of divergence-free relaxation. Consequently, instead of imple-
menting a hard constraint that forces the divergence-related loss to converge nearly to zero,
or requiring the model architecture to output the residual of the magnetic field as the curl
of a specific vector field, we empirically calculate the average or maximum values of the
magnetic field’s divergence in the training dataset. Using this information, we set a thresh-
old such that the l2 loss related to the divergence is applied only when the model’s output
exceeds this threshold. The specific mathematical formulation of this loss is as follows:

Ldiv({Ui}Bi=1) :=
B∑
i=1

Nt−1∑
j=1

⌊
∥∇ ·∆R(Ui,j ; θ)B∥22 − θdiv
|∥∇ ·∆R(Ui,j ; θ)B∥22 − θdiv|

⌋
+

∥∇ ·∆R(Ui,j ; θ)B∥22 (14)
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where θdiv is the threshold value.

l∞ Loss In addition to the l2 norm of the residuals proposed in (Kim and Kang (2024a)), we
also consider the l∞ norm, which is used to handle outlier values (Bar and Socher (2021)).
Utilizing the l∞ norm allows for the expectation of pointwise convergence, thereby enabling
a more accurate approximation of the flux embedded in the training dataset. In cases
like ideal MHD where the output is vector-valued, we apply the l∞ norm to each vector
component and then sum these values. The specific mathematical expression for this is as
follows:

L∞({Ui}Bi=1) :=
B∑
i=1

Nt−1∑
n=1

Nu∑
l=1

sup
j,k

(
(Ui,n+1,j,k,l −Ui,n,j,k,l)−∆R(Ui,n,j,k,l; θ)

)
(15)

3.3 Overall Algorithm

Now, by combining the defined loss functions in Equations (8), (11), (12), (14), and (15), we
demonstrate the training algorithm (Algorithm 1) for our modified Flux Neural Operator
(Flux NO). Since inference is straightforwardly conducted using Equation (6), we omit
the details. We focus on the two-dimensional case, as the training process for the one-
dimensional case is similar to the algorithm proposed in (Kim and Kang (2024a)), with the
exception of the enhanced loss function.

4. Results

4.1 Training Dataset and Architecture of Flux Neural Operator

One-dimensional case For the one-dimensional problem, we constructed the initial con-
ditions using Gaussian random fields. Specifically, we set the initial values for density and
the Bx to 1, and specified the velocity and magnetic field components as vectors discretized
to size 256, derived from Gaussian random fields with a covariance of k(x, y) = e−100(x−y)2 .
To ensure the well-posedness of the problem, each component of the velocity and magnetic
field was scaled by 0.3. Given that the γ value was set to 2.0, the initial value of the energy
is determined by the following equation: E = 1.0 + 1

2ρu
2 + 1

2∥B∥
2. Based on these initial

conditions, we solved the problem using the WENO-JS scheme for spatial order 5 and the
RK method of order 4 for temporal discretization. The CFL number was 0.3. Based on
this scheme, we divided the solution from t = 0.0 to t = 0.6 into 600 segments and then ex-
tracted snapshots only from t = 0.1 to t = 0.6 to form a dataset consisting of 500 snapshots
for each function. We generated 500 tensors representing functions in C∞([0.1, 0.6]× [0, 1])
to create the training dataset. In the model architecture, the Neural Operator component
fundamentally employs the Fourier neural operator; however, as FNO performs poorly with
non-periodic functions, all datasets were composed as periodic functions. We anticipate
finding suitable models for non-periodic functions as well, since the Neural Operator com-
ponent can be replaced with other models. For the one-dimensional problem discussed in
this paper, the model’s architecture uses 5 modes, width 64, and depth 3, with output
dimensions of 1, 3, 2, and 1 for density, velocity, magnetic field, and energy, respectively.
The kernel size of the CNN layer in the Fourier layer is uniformly set to 1.
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Algorithm 1 An algorithm for training

Input: Dataset U = ((Ub,i,j,k,m), (∆tb,i))
Output: trained FNO models Gρ(·; θGρ ), Gu(·; θGu ), GB(·; θGB), GE(·; θGE) and Fρ(·; θFρ ),

Fu(·; θFu ), FB(·; θFB), FE(·; θFE)
for epoch= 1, . . . , E do

for Batch ∈ Train loader do
Ũ−j̃ ← roll Ub,i,·,·,m by j̃ in the third index for j̃ = −q, . . . , p+ 1

Ũ−k̃ ← roll Ub,i,·,·,m by k̃ in the fourth index for k̃ = −q, . . . , p+ 1
U l ← concatenate along fifth index (Ũ−p, . . . , Ũq)
U r ← concatenate along fifth index (Ũ−p−1, . . . , Ũq−1)
U t ← concatenate along fifth index (Ũ−p, . . . , Ũ q)
U b ← concatenate along fifth index (Ũ−p−1, . . . , Ũ q−1) ▷ Thus, the concatenated

function is now a 8(p+q)-dimensional vector-valued function
Gl ← concatenate along fifth index (Gρ(U

l; θGρ ), Gu(U
l; θGu ), GB(U

l; θGB), GE(U
l; θGE))

Gr ← concatenate along fifth index (Gρ(U
r; θGρ ), Gu(U

r; θGu ), GB(U
r; θGB), GE(U

r; θGE))

F t ← concatenate along fifth index (Fρ(U
t; θFρ ), Fu(U

t; θFu ), FB(U
t; θFB), FE(U

t; θFE))

F b ← concatenate along fifth index (Fρ(U
b; θFρ ), Fu(U

b; θFu ), FB(U
b; θFB), FE(U

b; θFE))

∆R(Ub,i,·,·,·; θ)←
∆tb,i
∆x

[
Gl −Gr

]
+

∆tb,i
∆y

[
F t − F b

]
Ltm(Batch)←

∑B
b=1

∑Nt−1
i=1 ∥Ub,i+1,·,·,· − Ub,i,·,·,· −∆R(Ub,i,·,·,·; θ)∥22 ▷ B is batch

size
V p+q ← concatenate U p+q times.

Lconsi(Batch) ←
∑B

b=1

∑Nt
i=1

(
∥G̃(V p+q

b,i,·,·,·; θ) − G(V p+q
b,i,·,·,·)∥

2
2 + ∥F̃ (V p+q

b,i,·,·,·; θ) −

F (V p+q
b,i,·,·,·)∥

2
2

)
▷ Each of G̃ and F̃ represents concatenated numerical fluxes, and G and

F are the physical fluxes.
LTV D(Batch)←

∑B
b=1

∑Nt−1
i=1 ∥⌊TV (Ub,i,·,·,· +∆R(Ub,i,·,·,·; θ))− TV (Ub,i,·,·,·)⌋+∥22

L∞(Batch)←
∑B

b=1

∑Nt−1
i=1

∑Nu
l=1 supj,k ∥Ub,i+1,j,k,l − Ub,i,j,k,l −∆R(Ub,i,j,k,l; θ)∥22

Ldiv(Batch)←
∑B

i=1

∑Nt−1
j=1

⌊
∥∇·∆R(Ui,j ;θ)B∥22−θdiv
|∥∇·∆R(Ui,j ;θ)B∥22−θdiv |

⌋
+

∥∇ ·∆R(Ui,j ; θ)B∥22

Calculate backpropagation for
λtmLtm(Batch) + λconsiLconsi(Batch) + λTV DLTV D(Batch) + λ∞L∞(Batch) +
λdivLdiv(Batch) ▷ Each λ with a subscript is a weight for the losses.

Take an optimization step.
end for

end for
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Two-dimensional case For the two-dimensional problem, initial conditions were generated
using two-dimensional Gaussian random fields. We independently sampled the components
of velocity and magnetic field vectors from Gaussian random fields. And set the initial
density value to γ2. The Gaussian random fields we used have a power spectrum P (k) ∝
k−2.5. Unlike the one-dimensional case, in two dimensions, the divergence of the magnetic
field must be zero for physically meaningful results and for the numerical scheme to be
stable; therefore, the randomly sampled magnetic fields were relaxed using the Poisson
equation (Jiang and Wu (1999)). The grid size for the initial conditions was set to 64 along
both the x and y axes, and the γ value was set to 5/3. The initial energy value will be
determined by the following equation: E = 5

2 + 1
2ρu

2 + 1
2∥B∥

2. Based on these initial
conditions, we used the WENO-Z scheme for spatial order 5, temporal discretization of
fourth order RK method, and set the CFL numbers to 0.4. Under this scheme, we divided
the solution from t = 0.0 to t = 0.75 into 150 segments, and then extracted snapshots only
from t = 0.25 to t = 0.75 to form a dataset consisting of 100 snapshots per function. In this
way, we created 100 tensors, each representing a function in C∞([0.25, 0.75] × [0, 2π]2) for
training. The model architecture adopted a 2D FNO for the neural operator component,
with architecture hyperparameters including 4 modes each for x and y axes, width 72, and
depth 2. The output dimensions for models concerning density, velocity, magnetic field,
and energy are 1, 3, 3, and 1, respectively. The kernel size of the CNN layer in the Fourier
layer is uniformly set to 1. Both one-dimensional and two-dimensional problems use the
GELU activation function. Each neural operator takes concatenated tensors composed of
eight tensors, which are shifted circularly from -3 to 4 (where an i shift means j → j + i)
for Gl and F t, and from -4 to 3 for Gr and F b for corresponding indices.

4.2 Generalization Ability

The results in sections 4.2 to 4.4 were obtained using models trained under the following
hyperparameters. For the one-dimensional case: the optimizer was Adam with a learning
rate of 1e−3 and weight decay of 1e−3. The scheduler was CosineAnnealingWarmRestarts
with T0 = 100 and eta min=1e− 4. The batch size was 5, λtm = 1.0, λTV D = 5e− 3, λ∞ =
1.0, and λconsi = 1.0. For the two-dimensional case: the optimizer was Adam with a learning
rate of 4e−4 and weight decay of 2e−4. The scheduler was CosineAnnealingWarmRestarts
with T0 = 100 and eta min=1e − 5. The batch size was 1, λtm = 4.0, λTV D = 2.5e − 4,
λdiv = 1e − 2, λ∞ = 1.0, and θdiv = 150. Where terms such as T0 and eta min follow the
conventions used in PyTorch. In this section, we analyze the results of inferences made by
our model on examples that are within the test distribution but were not utilized as training
data, both qualitatively and quantitatively. Additionally, we experimentally demonstrate
that our model can make inferences over longer time periods than those covered by the
functions used in the training dataset for the test samples, and we also analyze results
under conditions of higher resolution.

Short term inference

We conducted experiments on test samples that were sampled from the same distribution
as the training dataset and had the same short-term span lengths as the training samples
(t = 0.1 to 0.6 for the one-dimensional case, t = 0.25 to 0.75 for the two-dimensional case).
The results for the one-dimensional case are presented in Figure 4 and Table 1, while the
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results for the two-dimensional case are shown in Figure 5, 6, 14, 7 and Table 2. Tables 1
and 2 provide statistics on the relative l2 norm and l∞ norm across 10 test samples. Due
to the smaller domain size in the one-dimensional case compared to the two-dimensional
case, the changes in the solutions are observed to be more dynamic. In addition, in the
one-dimensional case, the solution generated by Flux NO tends to lose stability more easily
because the grid size of 256 (compared to 64 in each axis for the two-dimensional case) makes
it easier to violate the CFL condition. For the one-dimensional problem, the instability of
Flux NO is such that only results up to t = 0.2 are shown in Table 1. From Table 1, it can
be seen that the norms related to velocity are the largest and increase the fastest, which
can be attributed to the poorer approximation of the uy and uz components, while ux is
well approximated compared to these, as indicated by Figure 4. Consequently, although
the training dataset for the one-dimensional problem is richer, consisting of 500 functions
compared to 100 for the two-dimensional problem, it is expected to have lower stability and
generalization power due to the reasons mentioned above. For the two-dimensional problem,
the performance on test samples within the short-term training distribution appears to be
satisfactory, as can be seen from Figure 5, 6, 14, 7 and Table 2, indicating that the solution
for each component has been well resolved.

(M, SD) t=0.05 t=0.1 t=0.15 t=0.2

rel l2ρ (3e-4, 1.10e-1) (1e-3, 1.10e-1) (1.9e-3, 1.11e-1) (3.5e-3, 1.11e-1)

rel l∞ρ (4.08e-8, 1.08e-1) (4.76e-7, 1.09e-1) (1.97e-6, 1.09e-1) (4.77e-6, 1.09e-1)

rel l2u (7.5e-3, 1.11e-1) (1.47e-2, 1.11e-1) (2.4e-2, 1.11e-1) (3.52e-2, 1.11e-1)

rel l∞u (6e-4, 1.10e-1) (4.1e-3, 1.11e-1) (1.07e-2, 1.11e-1) (2.23e-2, 1.11e-1)

rel l2B (4.5e-3, 1.11e-1) (8.4e-3, 1.11e-1) (1.15e-2, 1.11e-1) (1.51e-2, 1.11e-1)

rel l∞B (2e-4, 1.10e-1) (1.9e-3, 1.11e-1) (2.2e-3, 1.11e-1) (4.5e-3, 1.11e-1)

rel l2E (8e-4, 1.10e-1) (1.9e-3, 1.11e-1) (3.2e-3, 1.11e-1) (5e-3, 1.11e-1)

rel l∞E (2.05e-5, 1.10e-1) (3e-4, 1.10e-1) (4e-4, 1.10e-1) (2.9e-3, 1.11e-1)

Table 1: Means (M) and Standard Deviations (SD) of Relative l2 and l∞ Norms Between
the Output of Flux NO and Reference for Each Component at Various Times in the One-
Dimensional Case, Across 10 Test Samples.
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Figure 4: Time Evolution of Each Component of the Output from Flux NO and Reference
Data for One-Dimensional Ideal MHD.
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Figure 5: Short-Term Time Evolution of ρ and E in the Output from Flux NO Compared
to Reference Data for Two-Dimensional Ideal MHD.
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Figure 6: Short-Term Time Evolution of (ux, uy) and (Bx, By) in the Output from Flux
NO Compared to Reference Data for Two-Dimensional Ideal MHD.
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Figure 7: Short-Term Time Evolution of Each Component for Section y = π
3 in the Output

from Flux NO Compared to Reference Data for Two-Dimensional Ideal MHD.
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(M, SD) t=0.375 t=0.5 t=0.675 t=0.75

rel l2ρ (9e-4, 1.10e-1) (2.5e-3, 1.11e-1) (4.4e-3, 1.11e-1) (6.7e-3, 1.11e-1)

rel l∞ρ (5.44e-8, 1.08e-1) (4.24e-7, 1.09e-1) (1.52e-6, 1.09e-1) (5.51e-6, 1.09e-1)

rel l2u (2.1e-3, 1.11e-1) (4.7e-3, 1.11e-1) (7.4e-3, 1.11e-1) (1.02e-2, 1.11e-1)

rel l∞u (9.23e-5, 1.10e-1) (3e-4, 1.10e-1) (6e-4, 1.10e-1) (1e-3, 1.10e-1)

rel l2B (1.6e-3, 1.10e-1) (3.5e-3, 1.11e-1) (5.6e-3, 1.11e-1) (7.8e-3, 1.11e-1)

rel l∞B (3.96e-5, 1.10e-1) (2e-4, 1.10e-1) (4e-4, 1.10e-1) (7e-4, 1.10e-1)

rel l2E (3e-3, 1.11e-1) (5.2e-3, 1.11e-1) (6.8e-3, 1.11e-1) (8.1e-3, 1.11e-1)

rel l∞E (5e-4, 1.10e-1) (1.6e-3, 1.10e-1) (3.2e-3, 1.11e-1) (2.7e-3, 1.11e-1)

Table 2: Means (M) and Standard Deviations (SD) of Relative l2 and l∞ Norms Between
the Output of Flux NO and Reference for Each Component at Short Term Times in the
Two-Dimensional Case, Across 10 Test Samples.

Long term inference We conducted experiments over time spans significantly longer than
the time domains of the functions used for training, with the initial conditions configured
from the same distribution as training dataset. Due to instability issues, long-term experi-
ments were not conducted for the one-dimensional case; instead, they were carried out only
for the two-dimensional case, with the results presented in Figure 8, 18, 15, 19 and Table
3. The training functions’ time domain ranged from t = 0.25 to t = 0.75, with a fixed
time interval of delta ∆t = 0.005, allowing for the terminal point to be reached after 100
iterations. However, in our results, using the same time intervals, the iterations extended
to much longer times: t = 1.25 (200 iterations), t = 1.5 (250 iterations), t = 1.75 (300
iterations), and t = 2.0 (350 iterations). As shown in Figures 14 and 15, the error increases
almost linearly with the number of iterations, affecting both the global and local character-
istics of the solution and leading to progressively increasing discrepancies with the reference,
as qualitatively evident in Figures 8, 18 and 19. A notable aspect of the long-term inference
for the two-dimensional problem is that, unlike the one-dimensional case, even with many
more iterations, the solutions output by Flux NO did not blow up.
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Figure 8: Long-Term Time Evolution of ρ and E in the Output from Flux NO Compared
to Reference Data for Two-Dimensional Ideal MHD.
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(M, SD) t=1.25 t=1.5 t=1.75 t=2.0

rel l2ρ (1.31e-2, 1.11e-1) (1.62e-2, 1.11e-1) (1.98e-2, 1.11e-1) (2.45e-2, 1.11e-1)

rel l∞ρ (1.77e-5, 1.10e-1) (2.78e-5, 1.10e-1) (2.95e-5, 1.10e-1) (4.90e-5, 1.10e-1)

rel l2u (2.15e-2, 1.11e-1) (2.91e-2, 1.11e-1) (3.86e-2, 1.11e-1) (4.68e-2, 1.11e-1)

rel l∞u (4.6e-3, 1.11e-1) (6.6e-3, 1.11e-1) (1.45e-2, 1.11e-1) (1.98e-2, 1.11e-1)

rel l2B (1.75e-2, 1.11e-1) (2.39e-2, 1.11e-1) (2.97e-2, 1.11e-1) (3.59e-2, 1.11e-1)

rel l∞B (4.5e-3, 1.11e-1) (9.2e-3, 1.11e-1) (1.07e-2, 1.11e-1) (1.63e-2, 1.11e-1)

rel l2E (1.33e-2, 1.11e-1) (1.69e-2, 1.11e-1) (2.38e-2, 1.11e-1) (3.16e-2, 1.11e-1)

rel l∞E (7.3e-3, 1.11e-1) (8.6e-3, 1.11e-1) (4.27e-2, 1.11e-1) (4.4e-2, 1.11e-1)

Table 3: Means (M) and Standard Deviations (SD) of Relative l2 and l∞ Norms Between
the Output of Flux NO and Reference for Each Component at Long Term Times in the
Two-Dimensional Case, Across 10 Test Samples.

High resolution inference We conducted tests on samples at a higher resolution (96 by
96) than the resolution of the training data (64 by 64). Initial conditions were sampled from
a Gaussian random field with the same power spectrum as the training data, and references
were computed using the WENO-Z scheme with each snapshot spaced by a ∆t = 0.005.
The test results are presented in Figures 9, 20, and 16; trends in errors, which showed no
significant difference from the original resolution, have been omitted. As seen in Figures 9
and 20, while Flux NO captures the global characteristics of the solution, local instabilities
gradually appear in the snapshots at t = 1.5 and t = 2.0. This instability, similar to that
observed in the one-dimensional case, appears to arise from the higher resolution and is
somewhat related to the CFL condition. Attempts to more easily satisfy the CFL condition
by reducing the interval to ∆t = 0.0025 for denser inference were made, yet instabilities still
formed. From these experimental results, we hypothesize that as the resolution of vectorized
functions increases, the domain dimension of their data distribution expands, making it
challenging to approximate the data distribution itself, leading to these outcomes.

4.3 Tests on Out of Distribution Samples

In this section, we qualitatively evaluate the performance of our model given initial con-
ditions outside the training distribution. We intended to apply the Brio-Wu problem, a
type of Riemann problem, but since we assumed periodic boundary conditions for the one-
dimensional case, we slightly modified the original Brio-Wu problem and set the initial
conditions as follows:

(ρ, ux, uy, uz, By, Bz, p)t=0 =

{
(1, 0, 0, 0, 1, 0, 1), −0.5 < x < 0.5

(0.125, 0, 0, 0,−1, 0, 1), otherwise.

Where Bx = 1. Under these conditions, we performed calculations using the numerical flux
based on Flux NO, and the results are shown in Figure 10. As can be seen from the figure,
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Figure 9: Time Evolution of ρ and E in the Output from Flux NO Compared to Reference
Data in the Higher Resolution (96 by 96) for Two-Dimensional Ideal MHD.
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our model is able to approximate compound waves, rarefaction waves, and shock waves to
some extent. Although Flux NO was able to capture shock waves, numerical instability
issues prevented long-term inference. For the two-dimensional problem, we addressed the
Orszag-Tang problem. The initial conditions for the Orszag-Tang problem are described as
follows:

ρ(x, y, 0) = γ2, vx(x, y, 0) = − sin y, vy(x, y, 0) = sinx,

p(x, y, 0) = γ, Bx(x, y, 0) = − sin y, By(x, y, 0) = sin 2x, uz(x, y, 0) = Bz(x, y, 0) = 0.

When given the initial conditions of the Orszag-Tang problem, the solution at t = 0.25 was
used as the initial condition for the Flux NO scheme, and under these initial conditions,
iterations were run 50 (t = 0.5), 100 (t = 0.75), 350 (t = 2.0), and 550 (t = 3.0) times,
with results shown in Figures 11 and 22. Similar to the results in section 4.2, the model
approximates well for short-term inference below the time length of the training sample, but
accuracy decreases for long-term inference, though the trend is generally followed. It was
also observed that the error magnitude increases near shock waves. The values of ρ at the
cross-section of y = 0.625π and how they evolve over time are shown in Figure 23. Given
that it performs well in short-term prediction, we conducted a further experiment where
we used the values at each time point of the Orszag-Tang problem as initial conditions to
predict the values after a ∆t = 0.5 time. The results of this are shown in Figure 12, and
the errors compared to the reference are shown in Figure 17. As can be seen from the
figures, when predictions are made in the short-term, the errors are significantly reduced.
Considering the good generalization performance and short-term approximation ability of
the Flux NO model compared to the typical Neural Operator, we can apply the Flux NO
model as a surrogate for numerical schemes in short-term inference.

4.4 Comparison with Other Methods

In this section, we demonstrate both quantitatively and qualitatively that the Flux NO
model possesses superior generalization abilities compared to traditional FNO models. Like
Flux NO, both FNO 2D and FNO 3D use frequencies up to 4 on each axis and have a
width of 72. FNO 2D operates by predicting an 8-dimensional vector value after a delta t
= 0.5 given an input function, while FNO 3D works by producing the next 25 snapshots
simultaneously from a 4D image of dimensions 25 by 64 by 64 by 8, considering the time
axis in the dataset. For FNO 2D, we also trained a larger model, FNO 2D (heavy), with
8 frequencies and a width of 104. The dataset was adapted from the one used for training
Flux NO, structured with 10,000 function pairs for 2D FNO and 500 pairs for 3D FNO. All
models used the same learning rate and weight decay settings of 1e-3 and 1e-4 respectively,
with Adam as the optimizer and StepLR as the scheduler with a step size of 200 and gamma
of 0.5. Training was conducted over 1000 epochs, with a batch size of 500 for 2D FNO and
25 for 3D FNO. Experimental results on the test dataset are presented in Table 4, showing
Flux NO’s significantly superior performance, with 3D FNO being the better performer
among the remaining models. To quantitatively and qualitatively compare 3D FNO and
Flux NO, we tasked 3D FNO with inferring solutions for the Orszag-Tang problem. The
results for Flux NO and 3D FNO are detailed in Table 5, with qualitative illustrations in
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Figure 10: Snapshot of the Output from Flux NO and Reference Data at t = 0.007 for the
Modified Brio-Wu Shock Tube Problem.
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Figure 11: Snapshot of the Output from Flux NO and Reference Data at t = 0.5 and
t = 0.75 for the Orszag-Tang Vortex Problem.
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Figure 12: Snapshots of the Output from Flux NO and Reference Data at t = 0.5 (top
left), t = 1.0 (top right), t = 1.5 (middle left), t = 2.0 (middle right), t = 2.5 (bottom left),
and t = 3.0 (bottom right) for the Orszag-Tang Vortex Problem. Each result represents the
solution after 50 iterations calculated with Flux NO for the given initial conditions.
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Figures 11, 22, and 24. As the table and figures illustrate, unlike Flux NO, 3D FNO fails
to perform effectively on out-of-distribution samples and in long-term inference scenarios.

(M, SD) t=0.5 t=0.75 t=1.75 t=2.0

rel l2 Flux NO (2.5e-3, 1.11e-1) (6.6e-3, 1.11e-1) (2.63e-2, 1.11e-1) (3.37e-2, 1.11e-1)

rel l∞ Flux NO (1.5e-3, 1.10e-1) (2.5e-3, 1.11e-1) (4.27e-2, 1.11e-1) (4.4e-2, 1.11e-1)

rel l2 2D FNO (2.39e-1, 2.91e-2) (8.02e-1, 3.64e-2) (8.14e-1, 5.54e-2) (7.70e-1, 1.99e-2)

rel l∞ 2D FNO (1.95e-1, 6.01e-2) (7.71e-1, 1.30e-1) (8.83e-1, 3.08e-1) (6.91e-1, 1.25e-1)

rel l2 2D FNO(heavy) (1.51e-1, 1.71e-2) (7.44e-1, 4.29e-2) (7.53e-1, 2.9e-2) (7.42e-1, 2.66e-2)

rel l∞ 2D FNO(heavy) (6.59e-2, 3.59e-2) (6.97e-1, 1.03e-1) (6.73e-1, 1.06e-1) (6.67e-1, 1.29e-1)

rel l2 3D FNO (1.42e-1, 1.46e-2) (3.09e-1, 3.68e-2) (6.42e-1, 6.29e-2) (6.83e-1, 5.46e-2)

rel l∞ 3D FNO (8.22e-2, 7.41e-2) (2.26e-1, 1.44e-1) (1.02, 8.74e-1) (1.07, 6.21e-1)

Table 4: Comparisons of Flux NO with Other Standard FNO Models: Means (M) and
Standard Deviations (SD) of Relative l2 and l∞ Norms Between the Outputs from Each
Model and Reference Data at Various Times in the Two-Dimensional Case, Across 10 Test
Samples.

t=0.5 t=0.75 t=1.75 t=2.0

rel l2 Flux NO 4.42e-2 8.38e-2 2.28e-1 2.53e-1

rel l∞ Flux NO 1.11e-2 2.08e-2 3.13e-1 5.39e-1

rel l2 3D FNO 1.36e-1 3.73e-1 1.03 1.06

rel l∞ 3D FNO 5.59e-2 4.04e-1 7.72 10.32

Table 5: Comparisons of Flux NO with 3D FNO: Relative l2 and l∞ Norms Between the
Outputs from Each Model and Reference Data at Various Times in the Two-Dimensional
Case, on the Orszag-Tang Problem.

4.5 Memory and Time costs

In this section, we analyze the memory requirements, specifically the number of parameters,
and the inference time required for each model. Experimental results for each model are
presented in Table 6, where WENO-Z calculations were performed on a CPU, while the
rest of the neural operator models were computed on a GPU basis. As indicated in the
table, assuming efficient GPU computation parallelization, our Flux NO is approximately
25 times faster than the WENO-Z method. Even with higher resolution images, the compu-
tational complexity of Flux NO is inferred to depend simply on the lifting, projection layer’s
FCN and Fourier layer’s CNN layers, and the computation of the Fast Fourier Transform
due to the limited frequency usage in the Fourier layer. Because Flux NO inherently per-
forms calculations locally, it naturally takes more time to reach the same point compared
to the traditional FNO. However, unlike FNO, which can only infer fixed distributions at

29



fixed time intervals, Flux NO offers the advantage of flexible time interval selection, allow-
ing for continuous inference. As shown in Table 6 and the results in Section 4.4, despite
having a similar number of parameters, 2D FNO (heavy) and 3D FNO show inferior gen-
eralization capabilities compared to Flux NO. Considering these factors, Flux NO can be
seen as embodying the strengths of both numerical schemes—generalization capability and
robustness—and the fast computational abilities of neural operators.

Models
Inference Time
for ∆t = 0.5

Number of Parameters

Flux NO 4.16e-1s (4.16e-3s) 8,204,176

2D FNO 3.04e-3s 1,022,264

2D FNO(heavy) 4.74e-3s 8,355,064

3D FNO 1.81e-2s (9.05e-3s) 7,990,064

WENO-Z 1.05e+1s (1.05e-1s)

Table 6: Comparisons of Flux NO with Other Standard FNO Models: Memory Require-
ments and Inference Times. The time in parentheses represents the inference time for a
single run.

4.6 Albation Study

In this section, we conduct an ablation analysis to explore the effects of the additional loss
functions we designed. Models were trained with both TVD (Total Variation Diminishing)
loss and divergence-free loss selectively removed, and the impact on∇·B and Total Variation
was observed over 75 iterations across 10 test samples. The results are presented in Figure
13, which illustrates the influence of each loss on the corresponding values of ∇ · B and
Total Variation. Relaxing ∇ · B is a significant factor in obtaining physical solutions and
also affects the stability when computing time steps adaptively. Mitigating the increase in
Total Variation is likewise related to the stability of the numerical scheme.
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Figure 13: Graphical Representation of Means (M) and Standard Deviations (SD) of Total
Variation (left) and ∥∇·B∥2 (right) Values Across 10 Test Samples Along the Time-Marching
Iterations. The Shaded Area Represents Scaled Standard Deviation, and the Solid Line
Represents the Mean.

5. Conclusion

In this study, we propose a method to solve the one-dimensional and two-dimensional cases
of the ideal MHD, one of the equations describing plasma, using our newly designed Flux
NO technique. We have demonstrated through experiments that Flux NO can be applied
not only to the one-dimensional scalar conservation law (Kim and Kang (2024a)) but also
to the more complex ideal MHD equations, exhibiting long-term inference capabilities and
generalization ability on out-of-distribution samples. We implemented specific loss functions
to satisfy the TVD properties and divergence-freeness of the solutions, and adapted the
model architecture to allocate different models to handle various variables appropriately.
Our designed Flux NO shows flexibility in these modifications, particularly in the potential
for adapting or improving Neural Operator component in the scheme to suit the problem.
Although Flux NO requires more iterations to achieve the same solution, resulting in longer
inference times compared to other Neural Operators, it allows for continuous inference and
notably shorter inference times than classical numerical schemes. The dataset we adopted in
this research is quite limited, and computing resources were also constrained; nonetheless, it
is noteworthy that we achieved such generalization performance. Flux NO has the potential
for further advancement and broadening of its application scope with more diverse datasets,
larger-scale computing resources, and modifications to the loss functions and architecture.
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Appendix A. Error Plots

Figure 14: Short-Term Time Evolution of Relative Errors for Each Component in the
Output from Flux NO Compared to Reference Data for Two-Dimensional Ideal MHD.
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Figure 15: Long-Term Time Evolution of Relative Errors for Each Component in the Output
from Flux NO Compared to Reference Data for Two-Dimensional Ideal MHD.
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Figure 16: Time Evolution of Relative Errors for ρ in the Output from Flux NO Compared
to Reference Data in the Higher Resolution (96 by 96) for Two-Dimensional Ideal MHD.
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Figure 17: Snapshots of the Errors between Output from Flux NO and Reference Data at
t = 1.0 (top left), t = 2.0 (top right), t = 3.0 (middle left), t = 4.0 (middle right), t = 5.0
(bottom left), and t = 6.0 (bottom right) for the Orszag-Tang Vortex Problem. Each result
represents the solution after 50 iterations calculated with Flux NO for the given initial
conditions.
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Appendix B. Supplementary Figures

Figure 18: Long-Term Time Evolution of (ux, uy) and (Bx, By) in the Output from Flux
NO Compared to Reference Data for Two-Dimensional Ideal MHD.

36



Figure 19: Long-Term Time Evolution of Each Component for Section y = π
3 in the Output

from Flux NO Compared to Reference Data for Two-Dimensional Ideal MHD.
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Figure 20: Time Evolution of (ux, uy) and (Bx, By) in the Output from Flux NO Compared
to Reference Data in the Higher Resolution (96 by 96) for Two-Dimensional Ideal MHD.
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Figure 21: Time Evolution of Each Component for Section y = π
3 in the Output from Flux

NO Compared to Reference Data in the Higher Resolution (96 by 96) for Two-Dimensional
Ideal MHD.
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Figure 22: Snapshot of the Output from Flux NO and Reference Data at t = 2.0 and t = 3.0
for the Orszag-Tang Vortex Problem.
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Figure 23: Time Evolution of Sectional Graphs of Flux NO and Reference Data for Each
Component at Section y = 0.625π. Snapshots taken at t = 0.5 (top left), t = 0.75 (bottom
left), t = 2.0 (top right), and t = 3.0 (bottom right).

Appendix C. Experimental Details

All experiments were conducted using Pytorch 1.10.0, with Python 3.6.9. The specifications
of the hardware environment are as follows.
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Figure 24: Snapshot of the Output from 3D FNO at t = 0.5 (top left), t = 0.75 (top right),
t = 2.0 (bottom left) and t = 3.0 (bottom right) for the Orszag-Tang Vortex Problem.
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CPU GPU RAM
80 Intel(R) Xeon(R) Gold 6242R 2 Nvidia RTX3090 503GB

Table 7: Specifications of Computer Hardware Used in the Study.

Appendix D. Courant–Friedrichs–Lewy Condition (CFL Condition)

The Courant-Friedrichs-Lewy (CFL) condition is a crucial criterion for the stability of nu-
merical solutions in computational simulations. It ensures that the physical propagation
speed of a wave within a given timestep is less than or equal to the numerical propagation
speed, which is essential for maintaining stability. For general N-dimensional case, the CFL
condition is commonly expressed as follows:

∆t

(
N∑
i=1

ui
∆xi

)
≤ C

Here, ui represents the wave speed, and C is the Courant number, typically set to a value
less than one. This constraint ensures that the numerical method can adequately capture
the physical phenomena within the constraints of the time-step and spatial resolution.
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