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ABSTRACT. The critical beta-splitting tree, introduced by Aldous, is a
Markov branching phylogenetic tree of poly-logarithmic height. Recently,
by a technical analysis, Aldous and Pittel proved, amongst other results,
a central limit theorem for the height Hn of a random leaf.

We give an alternative proof, via contraction methods for random
recursive structures. These techniques were developed by Neininger and
Rüschendorf, motivated by Pittel’s article “Normal convergence problem?
Two moments and a recurrence may be the clues.” Aldous and Pittel
estimated the first two moments of Hn, with great precision. We show
that a limit theorem follows, and bound the distance from normality.

FIGURE 1. A critical beta-splitting tree with leaves labelled
by {1, . . . ,23}. Internal nodes indicate when and where the
set of leaves above is split. Initially, {1, . . . ,23} splits into
{1,2} and {3, . . . ,23}. Then, {1,2} splits into {1} and {2},
{3, . . . ,23} splits into {3,4,5} and {6, . . . ,23}, etc., until
only the singleton sets {1}, . . . ,{23} remain.
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2 B. KOLESNIK

1. INTRODUCTION

The critical beta-splitting tree Tn, introduced by Aldous [2], is a random
recursive combinatorial structure, constructed in the following way. Assume
that n ⩾ 2. We begin with the set {1, . . . ,n}. Let

ϑ(n) =
n

∑
i=1

1
i
∼ logn (1.1)

denote the harmonic sum. The first split occurs between some i and i+1
with probability

p(n, i) =
1

2ϑ(n−1)
n

i(n− i)
, 1 ⩽ i ⩽ n−1, (1.2)

in which case {1, . . . ,n} separates into {1, . . . , i} and {i+1, . . . ,n}. We call
p(n, i) the critical beta-splitting distribution. See Figure 2.

FIGURE 2. p(50, i), for 1 ⩽ i ⩽ 49.

The construction continues recursively, splitting {1, . . . , i} and {i+1, . . . ,n}
independently, etc., until only the singleton sets {1}, . . . ,{n} remain.

Finally, the tree Tn is obtained as follows. Let S denote the set of subsets
of {1, . . . ,n}, determined by the splits in the above procedure. For each
1 ⩽ j ⩽ n, a leaf v( j) = v({ j}) is placed at height

h( j) = #{S ∈ S : j ∈ S}−1.

The “−1” above accounts for the singleton set { j} ∈ S , which does not
contribute to the height of v( j).
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An internal node v(S) is added to the tree, for each S ∈ S with #S > 1.
The two children of v(S) are v(S1) and v(S2), where S1,S2 ∈ S are the
unique pair for which S = S1 ∪S2. There are n−1 internal nodes in total,
one between each i and i+ 1. The first internal node ρ = v({1, . . . ,n}) is
called the root of Tn. The height h( j) is simply the graph distance (number
of edges) between ρ and v( j). See Figure 1 for an example.

As discussed in [2], the tree Tn is “critical” in the following sense. A tree
could be constructed in a similar way, but with p(n, i) instead proportional
to iβ (n− i)β . The value β =−1 in the above construction is of particular
interest, since at this point typical heights h( j) switch from polynomial order
1/nβ+1 to poly-logarithmic order log2 n.

1.1. Results. Amongst other results, Aldous and Pittel [3] recently proved
a central limit theorem for Hn = h(J), where J is uniformly random in
{1,2, . . . ,n}. In other words, Hn is the height of a random leaf in Tn.

Let

ζ (s) =
∞

∑
n=1

1
ns

denote the Riemann zeta function.

Theorem 1 (Aldous and Pittel [3]). As n → ∞, we have that

Hn − 1
2ζ (2) log2 n√

2ζ (3)
3ζ 3(2) log3 n

is asymptotically normal.

1.2. Purpose. Our purpose is to give another proof of Theorem 1, along with
a bound on the rate of convergence, see Theorem 3 below. We will use the
contraction methods of Neininger and Rüschendorf [9,10] (cf. Rösler [15,16],
Rachev and Rüschendorf [14] and Rösler and Rüschendorf [17]), together
with the estimates for the mean and variance of Hn obtained in [3], see (3.1)
below.

We will also discuss, in Section 4.2 below, connections with a result of
Iksanov, Marynych and Möhle [8], on collisions in the beta-coalescent.

1.3. Discussion. The limit theory in [9] was, in part, developed in response
to work of Pittel [13], in which limit theorems are proved for various combi-
natorial quantities of interest (e.g., the independence number of a uniformly
random labelled tree) with mean and variance that are close to linear.

The following line of reasoning is referred to as “Pittel’s principle” in [9, p.
379]. Indeed, in [13, p. 1260], the author states that:
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For various global characteristics of large size combinatorial
structures [...] one can usually estimate the mean and the vari-
ance, and also obtain a recurrence for the generating function
[...]. As a heuristic principle based on our experience, we
claim that such a characteristic is asymptotically normal if
the mean and the variance are “nearly linear” [...]. The tech-
nical reason is that in such a case the moment generating
function [...] of the normal distribution with the same two
moments “almost” satisfies the recurrence.

A general theory is developed in [9], which, in particular, yields limit
theorems in such situations (see [9, Corollary 5.2]). In fact, their results
apply to a large family of random structures Xn, which satisfy a distributional
recurrence of the form (see [9, (1)])

Xn
d
=

K

∑
i=1

Ar(n)X
(r)

I(n)r
+bn. (1.3)

As discussed in [9], such situations arise, e.g., in divide-and-conquer type
algorithms. In this context, bn is called the toll function, associated with the
“cost” of splitting into smaller, but similar subproblems.

Under certain conditions, a limit theorem can be proved for Xn satisfying
(1.3), via the so-called contraction method. Roughly speaking, this strategy
aims to identify the limiting distribution of Xn, by means of the fixed point
equation

X d
=

K

∑
i=1

A∗
r X (r)+b∗, (1.4)

obtained by taking n → ∞ in (1.3). The normal distribution is associated
with the situation that ∑

K
i=1(A

∗
r )

2 = 1 and b∗ = 0.
See [9, Theorem 5.1 and Corollary 5.2] for their univariate results. See

also [9, §5.4] for discussion on the multivariate case, and when K = Kn is
random, and potentially also Kn → ∞.

The height Hn of a random leaf in the critical beta-splitting tree Tn satisfies
a simple recurrence. Specifically, by (1.2), we have that

Hn
d
= HIn +1, (1.5)

where
P(In = i) =

1
(n− i)ϑ(n−1)

, 1 ⩽ i ⩽ n−1. (1.6)

That being said, the results in [9] do not apply. The problem is that b∗ = 0,
K = 1, and that, as it turns out (see (3.1) below), the mean and variance of
Hn are of poly-logarithmic order. This leads to a trivial fixed point equation
X d
= X , which yields no information about X .
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However, the follow-up article [10], by the same authors, deals with this
very situation, and it is these results that we will apply in the current article.
Specifically, we will use Theorem 2.1 in [10]. In fact, this result does not
apply as stated, but we will show that its proof can be suitably adapted.

We note that several applications of contraction methods are discussed in,
e.g., [9, §5.2–5.3] and [10, §4–5]. In many cases, limit theorems follow quite
easily using these techniques. We were introduced to them, while studying
randomized importance sampling algorithms for perfect matchings [4] (cf.
Neininger and Straub [11]).

1.4. Time-heights. In closing, let us mention that it is also natural to con-
sider an alternative formation of Tn, in which splitting events occur contin-
uously in time. In [3], the authors analyze the case of exponential holding
times on subsets, with rates ϑ(k− 1) on subsets of size k. In this setting,
a central limit theorem is proved for the time-height Dn of a random leaf.
Aldous [1] has given an alternative, probabilistic proof, via martingales.

A limit theorem for Dn seems to be out of reach, however, by the methods
in the current article, mainly due to the fact that Dn has smaller variance,
see (3.1) and (4.1) below. Therefore, it would appear that the critical beta-
splitting tree provides an example of a model, at the borderline of what can
be analyzed using current contraction techniques.

1.5. Acknowledgments. We thank David Aldous and Boris Pittel for inspir-
ing conversations. We are also grateful to Oleksandr Iksanov, who recently
informed us that Theorem 1 can be derived from Theorem 12 in Gnedin,
Pitman and Yor [7] (also proved using [10]) or by Theorem 3.1(a) in Gnedin
and Iksanov [5] (proved using renewal theory).

2. CONTRACTION, WITH TRIVIAL FIXED POINT

To begin, let us state the main result in [10, Theorem 2.1].
Suppose that a sequence (Xn) of random variables satisfies

Xn
d
= XIn +bn, (2.1)

where (In,bn) and (Xn) are independent, and In takes values in {1, . . . ,n−1}.
(In [10], In can take values in {0,1, . . . ,n}, but we have no use for this.)

Let µn = E(Xn) and σ2
n = Var(Xn).

As usual, ∥Y∥p = (E|Y |p)1/p denotes the Lp-norm.

Theorem 2 (Neininger and Rüschendorf [10]). Suppose that (Xn) satisfies
(2.1), with ∥Xn∥3 < ∞,

limsup
n→∞

E[log(In/n)]< 0, sup
n⩾1

∥ log(In/n)∥3 < ∞.
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Assume also that, for some α,λ ,κ ∈ R with 0 ⩽ λ < 2α , and some C > 0,
we have that

∥bn −µn +µIn∥3 = O(logκ n), σ
2
n =C log2α n+O(logλ n),

and
β = min{3/2,3(α −κ),3(α −λ/2),α −κ +1}> 1.

Then, as n → ∞,
Xn −µn√
C logα n

is asymptotically normal.

Furthermore, it is shown that the distance from normality is O(1/ logβ−1 n),
with respect to the Zolotarev metric ζ3 [19, 20]. As discussed in [10],

ζ3(U,V ) = sup |E f (U)−E f (V )|,
where the supremum is over all twice differentiable f , with 1-Lipschitz f ′′.
Convergence with respect to ζ3 implies weak convergence.

3. PROOF OF THEOREM 1

In proving Theorem 1, we will not apply Theorem 2 directly. Instead, we
will adapt its proof.

We will use the following, remarkably precise, estimates in [3, Theorem
1.2]. Throughout this section, we let µn = E(Hn) and σ2

n = Var(Hn). We
have that

µn =
1

2ζ (2)
log2 n+

γζ (2)+ζ (3)
ζ 2(2)

logn+O(1),

σ
2
n =

2ζ (3)
3ζ 3(2)

log3 n+O(1), (3.1)

where
γ = lim

n→∞
(ϑ(n)− logn)

is the Euler–Mascheroni constant.
The reason Theorem 2 does not apply directly is that, by (1.1) and (1.6),

we have that

E| log(In/n)|k = 1
ϑ(n−1)

n−1

∑
i=1

| log(i/n)|k

n− i

∼ 1
logn

∫ 1

0

| log(1− x)|k

x
dx =

k!ζ (k+1)
logn

. (3.2)

We do, however, have the distributional recurrence (1.5). Hence, by (3.1) and
(3.2), we have, in the notation of Theorem 2, that bn = 1, κ = 2/3, α = 3/2
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and λ = 0. In particular, to see that κ = 2/3, let us note that, by elementary
arguments it can be shown, using (3.1) and (3.2), that

∥1−µn +µIn∥3 = O(logn)∥ log(In/n)∥3 = O(log2/3 n). (3.3)

We will prove the following result, which, as we will see, follows by the
proof of Theorem 2 (Theorem 2.1 in [10]), after a few adjustments.

Theorem 3. Let Hn be the height of a uniformly random leaf in the critical
beta-splitting tree Tn. Then

H∗
n =

Hn −µn

σn

is asymptotically normal, where µn = E(Hn) and σ2
n = Var(Hn). Further-

more, for any ε > 0,

ζ3(H∗
n ,Z) = O

(
1

log1/2−ε n

)
,

where Z is a standard normal random variable.

In what follows, we will assume familiarity with the proof of Theorem
2.1 in [10], and the notation introduced therein. Since only a few changes
are required, we will not explain the full proof here, but rather only discuss
the places that need adjustment.

Proof. We put C = 2ζ (3)/3ζ 3(2), so that, by (3.1),

σ
2
n =C log3 n+O(1).

There are two main parts of the proof of [10, Theorem 2.1] that need
attention. The first is the technical result [10, Lemma 3.1]. In fact, the proof
of this result simplifies. Secondly, we will revisit the upper bound [10, (19)],
as this estimate is used in the inductive proof of [10, Lemma 3.1].

Let us start with the second part. Recall that P(In ∈ {0,n}) = 0. We set
δ = 1, and let ℓn = logn+1n=1 play the role of Lδ (n).

As noted above, α = 3/2. In particular, we simply have

b(n) =
1−µn +µIn√

Cℓ
3/2
n

,

τn =
σn√
Cℓ

3/2
n

,

Gn =
σIn√
Cℓ

3/2
n

.

We claim that the right hand side of [10, (23)] (and so also the left hand
side of [10, (19)]) is O(1/ log5/2 n). To see this, we first note, using (3.3),
that ∥b(n)∥3

3 = O(1/ log5/2 n). Similarly, it can be shown that ∥b(n)∥2 =
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O(1/ logn). Next, we observe that, clearly, |τn −1|= O(1/ log3 n). Finally,
we note, by similar arguments as (3.3), that

|Gn −1|= O
(

1+(logn)2| log(In/n)|
log3 n

)
.

It follows that ∥Gn −1∥2 = O(1/ log3/2 n), ∥Gn −1∥3
3 = O(1/ log4 n) and

∥∆n∥3
3 = E|τ2

n −G2
n|3/2 = O(1/ log5/2 n).

Altogether, the right hand side of [10, (23)] is O(1/ log5/2 n), as claimed.
Therefore, to the complete the proof, it remains only the prove the follow-

ing analogue of the technical result in [10, Lemma 3.1].

Claim 4. Let In be as in (1.6). Suppose that nonnegative sequences (dn) and
(rn) satisfy

dn ⩽ E

[(
ℓIn

ℓn

)9/2

dIn

]
+ rn, n ⩾ 2, (3.4)

and

rn = O
(

1

log5/2 n

)
. (3.5)

Then, for all small ε > 0, it follows that

dn = O
(

1

log1/2−ε n

)
.

To see this, we will follow the proof of [10, Lemma 3.1]. We can, in fact,
make some simplifications in this special case. Using (1.6), (3.2) and (3.5),
let M > 0 and n1 be such that rn ⩽ M/ log5/2 n and

E[log(In/n)]
logn

+
P(In = 1)

logn
+

1
log2+ε n

⩽ 0

for all n ⩾ n1.
Put

R = M∨max{dkℓ
1/2−ε

k : 1 ⩽ k ⩽ n1}.

To prove the claim, we will show, by induction, that dn ⩽ R/ℓ1/2−ε
n . By the

choice of R, there is nothing to prove for n ⩽ n1. On the other hand, for
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n > n1, by (3.4), the choice of n1, and the inductive hypothesis,

dn ⩽ E

[(
ℓIn

ℓn

)9/2 R

ℓ
1/2−ε

In

]
+

M

log5/2 n

⩽
R

ℓ
1/2−ε
n

[
E
(
ℓIn

ℓn

)
+

1
log2+ε n

]
⩽

R

ℓ
1/2−ε
n

(
1+

E[log(In/n)]
logn

+
P(In = 1)

logn
+

1
log2+ε n

)
⩽ R/ℓ1/2−ε

n ,

as required.
This finishes the proof, as the rest of the proof of Theorem 2.1 in [10]

applies, without any further changes. ■

4. FINAL REMARKS

4.1. Time-height. Recall, as discussed in Section 1.4 above, that Dn is the
time-height of the critical beta-splitting tree with exponential holding times.
In [3, Theorem 1.1], it is shown that

E(Dn) =
1

ζ (2)
logn+O(1),

var(Dn) = (1+o(1))
2ζ (3)
ζ 3(2)

logn. (4.1)

Finer estimates are available, assuming a certain “h-ansatz,” see [3, §2.2].
The proof of Theorem 3 does not seem to work for Dn. First of all, the o(1)

in the above variance estimate effectively gives only λ = 2α . Furthermore,
since α = 1/2 for Dn, rather than α = 3/2 for Hn, the right hand side of [10,
(23)] is ≫ 1/ log2 n. As a result, the contribution from E[log(In/n)]/ logn is
not enough to yield an analogue of Claim 4.

4.2. Collisions. Finally, as mentioned in Section 1.2 above, let us discuss
the central limit theorem proved by in [8] for the number of collisions Ξn in
the β (2,b)-coalescent. See, e.g., Pitman [12], Sagitov [18] and the survey
by Gnedin, Iksanov and Marynych [6] for background.

In [8, (2)], there is a similar recurrence as (1.5) above. Also, Theorem 2
does not apply for similar reasons (compare (3.2) with [8, Remark 3.2]).
To overcome this issue, an alternative, and more complicated, recurrence
is derived [8, (14)], and then Theorem 2 is applied. However, the authors
ask [8, Remark 1.6] if a more direct proof, using the simpler recursion [8, (2)],
is possible.
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It seems that we cannot quite answer this question. The reason is that,
by [8, Theorem 1.1],

E(Ξn) = A log2 n+B logn+O(1),

var(Ξn) =C log3 n+O(log2 n), (4.2)

for explicit constants A,B,C. Therefore, λ = 2 for Ξn, whereas λ = 0 for
Hn. As such, once again, the right hand side of [10, (23)] is ≫ 1/ log2 n.
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