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ABSTRACT

The present paper introduces a novel approach to studying social media habits through
predictive modeling of sequential smartphone user behaviors. While much of the litera-
ture on media and technology habits has relied on self-report questionnaires and simple
behavioral frequency measures, we examine an important yet understudied aspect of media
and technology habits: their embeddedness in repetitive behavioral sequences. Leveraging
Long Short-Term Memory (LSTM) and transformer neural networks, we show that (i) social
media use is predictable at the within and between-person level and that (ii) there are robust
individual differences in the predictability of social media use. We examine the performance
of several modeling approaches, including (i) global models trained on the pooled data from
all participants, (ii) idiographic person-specific models, and (iii) global models fine-tuned on
person-specific data. Neither person-specific modeling nor fine-tuning on person-specific
data substantially outperformed the global models, indicating that the global models were
able to represent a variety of idiosyncratic behavioral patterns. Additionally, our analyses
reveal that the person-level predictability of social media use is not substantially related to
the frequency of smartphone use in general or the frequency of social media use, indicating
that our approach captures an aspect of habits that is distinct from behavioral frequency.
Implications for habit modeling and theoretical development are discussed.
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1 Introduction

Mobile app use is ubiquitous in our daily lives. On average, US smartphone users spend 4.5 hours per day on
their phones [1], maintaining relationships, conducting business, and seeking information or entertainment.
Among the long list of technology-mediated behaviors, social media use deserves special attention, not only
because social media platforms are used by billions of people every day but also because they have been shown
to impact almost every aspect of our lives. For example, social media use has revolutionized social interaction
[2–5], changed the consumption of information and news [6–9], and been linked to a wide range of indicators
of well-being [10–17].

Here, we investigate the predictability of social media use through the theoretical lens of media and technology
habits. Habits are commonly defined as repeated behaviors that are automatically initiated by contextual cues,
such as locations, situational elements, and preceding actions or activities [18–24]. Thus, habitual behaviors are
performed in a semi-conscious manner in which individuals follow a rehearsed script once triggered by the
contextual cue [25].

Past research indicates that social media use is, in large part, habitual behavior [11, 18]. For instance, one might
habitually check one’s phone while waiting for a bus on the way to work, respond to messages on Facebook
before going to bed, or check Instagram by default when unlocking one’s phone. Consequently, sequences of
people’s interactions with their devices tend to exhibit regularities over time. For example, social interaction
and content consumption [26], instant messaging [27], and in-app action sequences [28], follow predictable
patterns that have been characterized as habitual in nature. Moreover, there is a growing body of predictive
work in human-computer interaction and user modeling, suggesting that smartphone user behaviors, including
app engagement, are predictable to varying degrees from factors like device states, temporal context, location,
and preceding actions [29–34].

While these findings demonstrate regularities in smartphone user behaviors that can be interpreted as habitual,
the behavioral science literature has taken a different approach, often relying on relatively simple behavioral
measures (e.g., behavioral frequency, reward devaluation [35, 36]) or self-report measures to assess habits (e.g.,
Self-Report Habit Index [37], Self-Report Behavioral Automaticity Index [38], Unified Theory of Acceptance
and Use of Technology questionnaire [39], Response Frequency Measure of Media Habit [40]). These methods
have proven useful in past research, but they are also limited in at least two important ways. First, people tend
to be inaccurate in reporting past behavior, especially social media use [41]. Notably, such recall biases might
be especially pronounced in the case of mobile and social media habits, as they often occur automatically and
without conscious engagement in the midst of daily life [25, 42, 43]. Second, questionnaire-based methods are
ill-equipped to detect more granular behavioral patterns, such as sequences of device interactions. Significantly,
the same limitation applies to simple behavioral measures, which ignore the embeddedness of behaviors in
preceding and subsequent activities along with surrounding contextual factors. Integrating more objective,
granular, and context-sensitive methods grounded in digital trace data could provide a more holistic and accurate
representation of media habits.

Here, we shift focus from self-report measures to tracking behavioral sequences via smartphone logs. Specif-
ically, we build on recent research positing that repetitive behavioral sequences constitute an important, yet
understudied, aspect of media and technology habits [44]. Under this scope, we can capture media habits as
the extent to which a focal behavior (e.g. the use of a particular social media app) can be predicted from the
history of preceding behaviors (e.g., the use of other applications). Hence, recurring sequences can indicate the
extent to which an app (or combination of apps) acts as a contextual trigger for other app selections, aligning
with past habit research on the role of preceding actions as contextual cues [see][][45]. This operationalization
of media habits offers several important advantages compared to traditional approaches to measuring habit
processes. First, we are able to directly extract habits from objectively trackable smartphone user behaviors in
the real world, thereby circumventing the previously outlined response biases and artificial scenarios. Second,
the reliance on sequences of behavior allows us to paint a more nuanced picture of habitual behaviors than
merely focusing on behavioral frequencies.

The modeling of person-specific behavioral processes has a long tradition in the behavioral sciences [e.g.,
46–51], but much of this work has relied on autoregressive models [47] or classic machine learning techniques
[52]. While these approaches can offer insights into the structure of behavioral sequences, the increasing
adoption of deep learning approaches that are specifically designed to represent complex time series, such as
Long-Short-Term-Memory (LSTM) [53, 54] or transformer neural networks [55], opens the door for more
sophisticated modeling approaches [51].
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Given the fact that habits are - by definition - repetitive, the present paper examines the predictability of social
media habits using LSTM and transformer neural network models to represent recurrent patterns in time series.
First, we examine the extent to which social media use is predictable from intensive longitudinal app log data at
the between and within-person levels and the extent to which the predictability of social media use varies across
individuals. Second, we explore how the predictability of social media use relates to behavioral frequency
measures and other properties of the underlying training data. Third, we examine the size of the relevant
behavioral context window by analyzing the relationship between predictive performance and the length of
the behavioral sequences available to the models. Our analyses are based on the predictive performance of
(i) global models trained on pooled data from all users, (ii) person-specific models trained from scratch on
person-level data, and (iii) global models fine-tuned on person-level data. The present study thus employs
state-of-the-art machine learning approaches to explore a new operationalization of habits that is rooted in the
predictability of objectively trackable behavior.

2 Method

2.1 Participants and Procedure

We collected data from a sample of N=182 adults (final N=99 after data cleaning; see below) between mid-
January and early March 2021. Participants were recruited through Prolific, and all were located in the US. All
participants were Android phone users. The current study focuses on Android app logs (time-stamped records
of interactions with various smartphone apps), collected through the Screenomics app [56]. The app logs were
recorded through event-based sampling each time an app was used. Each app was identified by its associated
Android package name, a unique identifier used by the Android operating system and Google Play Store. All
participants gave informed consent. The study received approval under the Stanford University IRB (Protocol
#48234).

2.2 Data Preprocessing

In order to standardize the observation period per user, we discarded users with less than 14 full days of
participation, and we truncated the participation period to 14 days for those who had participated for more
than 14 days. From the app log sequences, we discarded instances of the Screenomics app, which was used
for data collection (0.56% of observations), as well as empty events for which no app was logged (1.65% of
observations). We also discarded logs associated with navigational (e.g., Launcher) and system UI processes
(37.06% of observations), as these events represent engagement with the Android operating system rather than
direct usage of apps. Finally, in order to guarantee sufficient training data at the person level, we removed users
with less than 1,000 logged app sessions over the course of the observation period and users with minimal
social media use (<5% of observations). Through this process, we reduced the participant sample size from
N=182 to N=99, and the number of observations from 585,576 to 282,639.

The target variable, social media use, was derived directly from the app logs using a list of social media apps
(e.g., Facebook, Instagram, TikTok, Snapchat; the full list can be found in SI A), based on the conceptualization
of social media proposed by Bayer et al. [57]. Stand-alone messaging apps like WhatsApp or Telegram were
not considered social media apps for the purpose of the study.

2.3 Modeling

We utilized two neural network architectures that are specifically designed to capture patterns in sequential data:
LSTM [53, 54] and transformer neural networks [55]. LSTM neural networks are a type of recurrent neural
network designed to represent long-term dependencies in sequential data, making them particularly effective
for tasks like language processing or time series analysis [58–60]. Transformer neural networks are a type of
architecture that relies on self-attention mechanisms [55], enabling the processing of entire sequences of data
simultaneously, making them highly efficient and effective for tasks like natural language understanding and
generation [61, 62]. In addition, they also excel at learning from other types of sequential data, such as health
records [63] or life events [64].

In order to standardize the prediction task across individuals, we framed it as a binary classification task,
predicting whether the next app opened by the user would be a social media app or not. For the main analyses,
we constructed a sequence of the 20 preceding actions for each logged app use event, irrespective of the
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temporal distance between events or whether they were separated by a period of inactivity. This was done
separately within each of the training, validation, and testing sets in order to prevent information leakage across
the splits. For the small subset of actions that did not have a sufficient number of preceding data points, we
pre-padded the sequences with zeros. The app logs were fed into an embedding layer, which – in turn – fed into
one or more LSTM or transformer layers and a single fully connected layer before the output layer. The output
layer was a single neuron with a sigmoid activation function.

We first trained general, global models on the combined data of all participants. Second, following an idiographic
modeling approach, we trained person-specific models for each individual in the dataset. Third, we implemented
a hybrid strategy by fine-tuning the global model with person-specific data for each participant. With the
exception of the fine-tuning stage, we tuned the neural network architecture and regularization parameters for
each model in order to avoid spurious differences in model performance as a result of a mismatch between
model hyperparameter settings and idiosyncratic properties of each person’s data. The tuned hyperparameters
include architectural hyperparameters such as the dimensionality of the embedding layer ([5, 50]), the number
([1, 3]) and dimensionalities ([4, 64]) of the LSTM, transformer layers, and dense layers. In order to combat
overfitting, we also tuned various regularization parameters such as dropout rate ([0.2, 0.5]) and recurrent
dropout rate ([0.2, 0.5]), as well as L1 ([1e-5, 1e-3]) and L2 ([1e-4, 1e-2]) norms tuned separately for recurrent,
transformer, and dense layers. Finally, we tuned the learning rate ([1e-4, 1e-2]) that was applied to the Adam
optimizer [65]. Hyperparameter search was performed using Bayesian Optimization [66] with 20 iterations and
five random starting points. The optimization target was the area under the receiver operating characteristic
curve (AUC). The AUC was used as the optimization target because it is insensitive to changes in the class
distribution. This characteristic makes it especially useful in imbalanced datasets where one class outnumbers
the other. A detailed description of the hyperparameter spaces can be found in SI B.

A temporal train-validation-test split was performed for each individual, such that the first section of the data
was allocated to the training set (50% of observations), the second section was allocated to the validation set
(25% of observations), and the final section was allocated to the testing set (25% of observations). The training
set was used to fit the model, the validation set was used for hyperparameter tuning, and the testing set was used
to evaluate model performance. For the global model, the splits were comprised of the union of person-level
splits across participants. In other words, we maintained the same splits that were used at the person level and
combined all individual training/validation/test sets to create overall training/validation/test sets. Each model
was trained for up to 1,000 epochs with a batch size of 1,024 and early stopping with a patience parameter
value of 5 epochs. We chose the relatively low patience value to avoid overfitting. The stopping criterion
was the binary cross-entropy loss computed on the validation set. In order to account for class imbalances
in the testing set, we employed the area under the receiver-operating characteristic curve (AUC) as the main
evaluation metric. Other commonly used binary classification metrics can be found in SI C.

All analyses were conducted using the Tensorflow Python library [67] and the Kerastuner Python library [68].
The code used to generate the results is available on this paper’s OSF page (https://osf.io/rkswe/).

3 Results

3.1 Descriptive Statistics

On average, before excluding individuals from the analysis given cleaning criteria, each participant had 1980
logged app sessions (Median=1456.5, SD=1804.2). The average number of distinct apps (Android packages)
used per person was 54.4 (Median=50.5, SD=24.5). The average proportion of app sessions that were social
media sessions was 17.68% (Median=15.31, SD=15.29). After cleaning, the average number of app sessions
was 2856 (Median=2374, SD=1875.5), the average number of distinct apps (Android packages) used per
person was 64.8 (Median=59, SD=23.1), and the average proportion of social media sessions was 25.33%
(Median=22.09, SD=14.43). A visual representation of the distributions can be found in Figure 1.

The most commonly used apps were Google Chrome (10.07% of observations, 9.34% after cleaning), Facebook
(5.04% of observations, 6.17% after cleaning), Google Mail (4.71% of observations, 4.58% after cleaning),
Saumsung’s messaging app (4.64% of observations, 4.63% after cleaning), Google Quick Search Box (3.76%
of observations, 3.65% after cleaning), Facebook Messenger (3.51% of observations, 3.97% after cleaning),
Google’s messaging app (3.47%, 2.91 after cleaning), Snapchat (3.13% of observations, 3.88% after cleaning),
Instagram (3.07% of observations, 3.77% after cleaning), and Reddit (2.82% of observations, 3.33% after
cleaning). A detailed list can be found in Table 1.
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Figure 1: Frequency distributions across participants for the number of app logs, the number of distinct apps
used during the observation period, and the proportion of social media sessions relative to other apps prior to
excluding participants from the dataset pre (top) and post-cleaning (bottom).

3.2 Predictability of Social Media Use

Global Pre-Trained Models. We first trained a global model on the combined training sets of all individuals
and performed a hyperparameter search using the combined validation sets of all individuals. Both the LSTM
and the transformer model performed well on the combined test sets (AUClstm=0.782, AUCtrans=0.773),
suggesting that social media app use is moderately to highly predictable at the between-person level (for
additional evaluation metrics, please refer to SI C).

We then evaluated the global model on the individual test set of each participant to analyze the distribution
of model performance scores across individuals. For this purpose, we computed separate AUC scores for
each individual test set based on the predicted probability scores of the global models. We found considerable
variance in the predictability of social media use across individuals for the global model. On average, the
LSTM models yielded an AUC of 0.699 (SD=0.088, Min=0.515, Max=0.908), and the transformer models
yielded an AUC of 0.679 (SD=0.072, Min=0.507, Max=0.853). The difference between global and person-level
AUC scores indicates that the global model picks up on between-person variation in addition to within-person
variation. A graphical representation of the distributions can be found in Figure 2.

To determine the sensitivity of the results to data cleaning decisions, we also evaluated an additional set of
models trained on a less conservatively cleaned data set (i.e., including launcher and other system UI processes).
While the predictive performance in these alternative models was generally higher than in the ones presented
here (navigational events can be highly predictive of subsequent app use), the overall pattern of results was
almost identical (see SI D). Additionally, we evaluated a set of models accounting for class imbalances in
training by weighting the loss for each class with a value inverse to its frequency. The class weights were
computed for each individual model based on the relative frequencies observed in its training set. While this
approach led to slightly lower predictive performance in the case of transformer models, the overall pattern of
results was almost identical to those of the main analysis as well (see SI F).
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App Proportion of Sessions Proportion of Users Proportion of Sessions Proportion of Users
Pre-Cleaning Pre-Cleaning Post-Cleaning Post-Cleaning

Google Chrome 10.07 92.86 9.34 95.96
Facebook 5.04 52.20 6.17 68.69
Google Mail 4.71 84.62 4.58 88.89
Samsung Messaging 4.64 39.56 4.63 44.44
Google Search 3.76 87.36 3.65 91.92
Facebook Messenger 3.51 53.30 3.97 66.67
Google Messaging 3.47 39.56 2.91 36.36
Snapchat 3.13 34.62 3.88 49.49
Instagram 3.07 47.80 3.77 70.71
Reddit 2.82 40.11 3.33 54.55
Discord 2.34 28.02 2.81 35.35
Twitter 1.89 31.87 2.32 44.44
Samsung Browser 1.82 18.13 1.80 25.25
Youtube 1.49 73.08 1.58 85.86
TikTok 1.36 25.27 1.62 34.34
Settings 1.17 95.05 0.92 96.97
Samsung Call UI 0.98 47.80 1.00 56.57
Gallery 0.96 47.25 1.03 57.58
Google Play Store 0.96 92.31 0.81 96.97
Spotify 0.69 31.87 0.83 42.42

Table 1: List of most used apps by proportion of sessions and proportion of users who used the app at least
once during the observation period in percent.

Person-Specific Modeling. Next, we trained a series of models for each participant to test whether idiosyn-
cratic patterns of social media use would be better represented in person-specific models. Hyperparameter
search was performed on person-level validation data, and model performance was evaluated on person-level
test data. The splits were held constant with respect to those used for the global model. Similar to the global
model, the person-specific models showed varying predictive performance across individuals. On average, the
LSTM models yielded an AUC of 0.609 (SD=0.092, Min=0.414, Max=0.817), and the transformer models
yielded an AUC of 0.627 (SD=0.087, Min=0.447, Max=0.861). The models did not outperform the global
model on average, but for a small subset of participants (LSTM: 13.13% of participants; transformer: 26.26%
of participants), the individual models showed improved model performance. A graphical representation of the
distributions can be found in Figure 2.

To test whether the relative strength of the global models compared to person-specific models was based on its
ability to represent diverse behavioral patterns or simply because individuals exhibited very similar behavioral
patterns in the first place, we examined the generalizability of person-specific models across participants. If the
person-specific models were to generalize well across participants, this would indicate that their patterns of
social media use were indeed similar. If the person-specific models did not generalize across individuals, we
would conclude the inverse. This would suggest that the global models, too, were able to represent a multitude
of idiosyncratic behavioral patterns.

We evaluated each person-specific model on the testing sets of all other individuals across the whole sample and
then compared the average performance to the original results. We found that person-specific models did not
generalize well across individuals with an average performance of AUC=0.526 for LSTM and AUC=0.538 for
transformer models, both of which are considerably lower than their performance on within-person testing data
and marginally beat the chance baseline of AUC=0.5. These results indicate that the person-specific models
do not pick up on general behavioral patterns that are common across individuals. Instead, the strength of the
models, including the pre-trained global models, seems to be driven by their ability to capture a multitude of
individual behavioral patterns.

Fine-Tuning Global Models on Person-Specific Data. We fine-tuned the pre-trained global model to test
whether personalized models could benefit from general representations of patterns of social media use and
vice versa. For this purpose, we continued to train the pre-trained global models for up to 1000 additional
epochs on the training data of each individual and performed early stopping using the binary cross-entropy
loss on the individual’s validation set as the stopping criterion. In order to avoid overriding previously learned
relationships, a low learning rate of 0.0001 was applied. This procedure resulted in a fine-tuned LSTM and a
fine-tuned transformer model for each individual. On average, the fine-tuned LSTM models yielded an AUC of
0.702 (SD=0.089, Min=0.522, Max=0.908), and the fine-tuned transformer models yielded an AUC of 0.683
(SD=0.077, Min=0.497, Max=0.858). While the fine-tuned models outperformed the global model in most
cases (LSTM: 68.68% of participants; transformer: 63.63% of participants), the fine-tuning only resulted in
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Figure 2: Distributions of model performance scores (AUC) across participants for global (left), person-specific
(middle), and fine-tuned (right) models.

a very minor improvement over and above the global pre-trained model. A graphical representation of the
distributions can be found in Figure 2.

In order to incorporate hyperparameter tuning into the fine-tuning approach, an alternative set of fine-tuned
models was trained by freezing the model weights of the embedding layers, LSTM layers, and transformer
layers while retraining the dense layers and output layers from scratch with another round of hyperparameter
search (i.e., adjusting layer dimensions, regularization, and learning rate). This approach places a higher
emphasis on finding appropriate hyperparameters at the cost of discarding the model weights of layers for which
hyperparameters are tuned. The procedure did not result in improved model performance (see SI E). Taken
together, the results show that the pre-trained global models already captured the vast majority of explainable
within-person variation in social media use and that fine-tuning provided only limited value.

3.3 Relationships Between Predictability and Behavioral Frequency

To gain a better understanding of the factors driving individual differences in the predictability of social media
use, we analyzed its associations with properties of the underlying training data. Specifically, we analyzed the
association between predictability scores and frequency measures as indicators of habitual behavior. We found
that predictability scores were weakly correlated with the overall volume of data (number of app logs) per person
in the global (rlstm=-0.014; rtrans=0.058) and fine-tuned models (rlstm=-0.017; rtrans=0.029). As would
be expected, the correlation was higher for person-specific models trained on person-level data (rlstm=0.273,
rtrans=0.322). Similarly, predictive performance scores were not related to the absolute number of social media
sessions for global models (rlstm=-0.049, rtrans=0.004) and fine-tuned models (rlstm=0.035, rtrans=0.003)
but were somewhat related for person-specific models (rlstm=0.247; rtrans=0.258). The proportion of social
media sessions relative to the total number of app sessions was weakly negatively related to model performance
in global models (rlstm=-0.082; rtrans=-0.118) and fine-tuned models (rlstm=-0.052; rtrans=-0.092) but
weakly positively related for person-specific models (rlstm=0.178; rtrans=0.124). These findings indicate that
(i) differences in the predictability of social media use are not primarily driven by the availability of training
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Figure 3: Global model performance as a function of sequence length. While longer sequences were generally
associated with higher predictive performance, the incremental performance gains decreased with sequence
length.

data, even in the case of person-specific models, and (ii) they support the proposition that the predictability of
social media use is indeed distinct from behavioral frequency.

3.4 Relationships Between Predictability and Context Size

In order to examine the boundaries of the relevant behavioral context, we analyzed model performance as a
function of input sequence length (i.e., the number of preceding app sessions available to the model). For
this purpose, we re-trained the global model for sequence lengths between one and twenty time steps and
another model with 50 preceding app sessions, accounting for the possibility that far-removed behaviors would
still contain useful information. The results show that longer sequences are generally associated with higher
model performance, with diminishing incremental contributions of each additional time step. The LSTM model
reached its best test performance at a sequence length of 17 with an AUC of 0.789, while the transformer model
reached its best test performance at a sequence length of 13 with an AUC of 0.775. Models trained on sequences
of 50 time steps did not perform better (AUClstm=0.787; AUCtrans=0.775). The results also reveal that even
extremely short sequences are predictive of subsequent social media use. For example, both models performed
considerably above chance based on information about only the last preceding app session (AUClstm=0.672;
AUCtrans=0.671). Generally, the incremental performance improvement for each additional unit in sequence
length leveled off dramatically for models trained on sequences of more than three to ten app sessions. For a
visual presentation of the results, please refer to Figure 3.

4 Discussion

The present paper is among the first to examine the predictability of social media use through the lens of media
and technology habits. The results demonstrate that social media use is moderately to highly predictable from
preceding smartphone user behaviors. This finding highlights the repetitive, predictable nature of social media
habits and is aligned with past research on the predictability of more fine-grained online social behaviors such
as active and passive social media use [26], instant messaging [27] or in-app action sequences [28], as well as
app usage in general [29–34].

Contributing specifically to the habits literature, our study highlights the importance and predictive validity
of preceding action cues [45], which have not been examined at this level of granularity in previous work.
The results indicate that objectively captured preceding action cues contain considerable information about
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momentary social media use and that the sequential structure of app use matters above and beyond more general
behavioral tendencies that have been studied in most previous work [see 11]). Relatedly, our analysis of the
relationship between sequence lengths and predictive performance indicates that the relevant context window
spans sequences of between roughly three and ten apps, as predictive performance did not increase substantially
for longer sequences. While this finding is highly specific to the research setting and the predictive task at hand,
it provides an intuitive way to distinguish between longer-term behavioral tendencies and preceding action cues.
Behavioral tendencies are captured by the consistency of behavioral frequencies over time, whereas preceding
action cues can be defined by their incremental predictive contribution with respect to a focal behavior.

Our results also address the question of the generalizability of social media habits across individuals. As
the person-specific models did not generalize well across individuals, our results indicate that the models
pick up on idiosyncratic habits [48, 69, 70]. At the same time, the fact that person-specific models did not
systematically outperform global models indicates that the global models not only represent general behavioral
trends but simultaneously learn a broad range of idiosyncratic patterns, given sufficient training data. These
findings raise the question as to whether individual differences in the predictability of social media use can be
interpreted as an objective measure of habit strength, focusing on the predictably recurrent nature of habit. The
fact that predictive performance scores were not highly correlated with frequency measures of social media use
indicates that they capture a fundamentally different aspect of social media habits. While the interpretation
of predictability as habit strength still needs to be substantiated by dedicated psychometric analyses, it could
open up new opportunities for studying habits based on the wealth of objective behavioral data that is available
through consumer electronics and online social platforms [71, 72].

More broadly, the current research represents a novel approach to the study of media and technology habits and
affirms the potential of modeling sequential behavior for the future of habit research. By utilizing objective
records of smartphone use, our study circumvents these limitations of self-report methods [41] while retaining
the ecological validity of studying individuals’ own real-world habits. Moreover, the focus on predictive
models designed to represent temporal dependencies presents a new step in the identification of media and
technology habits. This approach aligns with the broader shift in behavioral science research towards leveraging
objectively trackable data and machine learning to uncover patterns that are not readily apparent through
traditional methods [72–74].

Notably, our analytical framework can be extended to generate a wide range of features related to the predictabil-
ity of behavior that are not examined in the current research. Aside from analyzing predictive performance
purely based on preceding actions, it would be possible to analyze predictive performance with regard to other
theoretically relevant constructs. For example, the per-person uptick in predictive performance after adding
location data to the model could be interpreted as a “context-contingency score”, indicating the varying degrees
to which people’s behaviors are determined by their environments. Similarly, the degree of generalizability
of person-specific models could be interpreted as an “idiosyncrasy score”, indicating the extent to which
individuals exhibit unique behavioral associations. Relatedly, measures of model complexity (in the absence of
regularization) in person-specific models could serve as a measure of habit complexity. Future research should
investigate the viability of these suggestions and perform dedicated psychometric analyses.

Finally, our approach may not be limited to the study of social media habits but could also be applied to other
behavioral phenomena and theoretical perspectives, such as personality and person-situation transactions. For
example, the Cognitive-Affective Personality System (CAPS) [75, 76] defines personality not as a set of static
traits but rather as a collection of individual differences in how people respond to varying situations. According
to this theory, personality is understood through the distinctive patterns of thoughts, feelings, and behaviors
that emerge as individuals interact with specific situational contexts. Our modeling approach would lend itself
to examining this notion of personality based on extensive behavioral records. Finding a large predictive
contribution of context features and relatively low generalizability across person-specific models would indicate
the validity of CAPS with regard to online behaviors and would extend prior work on the behavioral consistency
of smartphone use [77].

4.1 Limitations and Directions for Future Research

Our work has several limitations that need to be addressed in future research. Firstly, while the overall volume of
data was sufficient to train complex machine learning models, we faced data limitations for the person-specific
models. The lack of training data per person is one potential explanation for the finding that person-specific
models were outperformed by global models. The relatively low correlation between person-level AUC scores
and the number of data points per person, however, suggests that differences in predictability are not merely an
artifact introduced by varying degrees of data availability across individuals. Nonetheless, additional research is
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needed in order to fully rule out concerns related to data coverage. Mirroring the concerns about data coverage
for training person-specific models, insufficient fine-tuning data could have decreased the effectiveness of the
fine-tuning stage. Importantly, the limited effectiveness of person-specific modeling and fine-tuning could also
be related to the decision to frame the predictive task as a binary classification task (i.e., collapsing various
social media apps into the single category of “social media use”). This approach likely attenuated some of the
idiosyncratic patterns that person-specific or fine-tuned models might have otherwise picked up on. Future
research should therefore consider examining a more granular range of target behaviors.

Second, by condensing all social media use into a single category, our approach does not distinguish between
different platforms, their unique affordances [78], or the nature of the engagement (e.g., active versus passive
use) [79–81]. While this decision was necessary to standardize the target variable across models, it leaves room
for further exploration, as different social media platforms have distinct features and may engender different
patterns of usage. For instance, the usage patterns on a visually oriented platform like Instagram may differ
from text-based platforms like X or Reddit. Additionally, active use (such as posting or commenting) likely
follows different habitual patterns compared to passive use (such as browsing without interacting) – and these
differences may have implications for well-being [16]. Future research should take these distinctions into
account and examine how different types of social media engagement impact user behavior and experience. This
could lead to a more nuanced understanding of social media habits and their effects on individuals, potentially
offering more targeted insights for the development of interventions for healthier technology use.

Third, we did not analyze the relationships between person-level predictive performance and self-reported habit
measures. Future research should alleviate this concern and also analyze the relationships between predictability
scores and other variables known to be related to habitual social media use. However, as we maintain that the
predictability of behavior captures an aspect of habits not sufficiently represented in self-report measures, we
would not necessarily expect a high correlation. A better empirical test of criterion validity would be whether
individual differences in the predictability of social media use show incremental explanatory power above and
beyond existing self-report measures. Additionally, future work can compare how preceding sequences relate
to other indirect indicators of habitual behavior (e.g., devaluation insensitivity).

Finally, we exclusively focused on preceding user behaviors as input features without incorporating other
contextual features that could provide a more complete picture of social media usage patterns. In future research,
including other contextual data such as time of day or location could allow for a more explicit examination of
the context-contingent nature of social media habits. Similarly, examining the effects of technical cues (e.g.,
notifications) and data from other smartphone sensors could add nuance to our research. This approach could
potentially improve the predictive performance of our models by identifying contextual conditions under which
certain behaviors are more or less likely to occur.

4.2 Practical Implications

Aside from its theoretical implications, our work lays the foundations for more habit-centered approaches to
user modeling. This shift could, in turn, lead to the development of new technologies and user experiences
that are more aligned with users’ needs and preferences. For example, the ability to predict when and what
type of app a user is likely to engage with can be utilized for prefetching content [32]. This means that apps
could preload content before a user is likely to engage. This not only enhances the user experience by reducing
loading times but can also help to manage network traffic more effectively by spreading content download over
time.

Another potential opportunity lies in adaptive user interfaces and notifications. Interfaces could adjust their
layout and content to align with the user’s predicted preferences and habits at different times. For example,
apps that are likely to be used could be presented on the home screen for easy access. Similarly, knowing when
users are most likely to engage with social media could help time notifications and alerts more effectively. As
smartphone use can have negative effects on productivity [82–84], predictions of social media engagement
could also be used to optimize the delivery timing of messages and avoid unwanted interruptions. A similar idea
has been discussed as “bounded deferral” [85, 86], where messages are held back while a user is busy, but only
up to a maximum amount of time. For users who wish to balance their social media exposure, predictive models
can make interventions more personalized and effective. For example, it has been shown that introducing
friction (e.g., a short wait period before opening a social media app) can be highly effective in reducing social
media use [87]. Such interventions could be dynamically adjusted based on ongoing or preceding user behavior,
making them more relevant and effective. For instance, users might want to intervene in habit-driven use but
not goal-directed use.
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Finally, a better understanding of social media habits can help policymakers develop user-centric policies to
protect young users from the potential harms of excessive media consumption and promote digital well-being
[88].

4.3 Conclusion

Taken together, our results indicate that social media use is predictable within and across individuals and
that global models are capable of making accurate predictions, even at the within-person level. By utilizing
objective behavioral time series data, employing advanced predictive models, and examining the predictability
of social media use at both the within and between-person level, our work highlights a new direction in habit
research. Our findings shed light on the predictive validity of preceding action cues and the value of sequential
information in predicting social media habits. In addition, our findings reveal individual differences in the
predictability of social media use and raise the question as to whether they can be interpreted as a novel indicator
of habit strength. Finally, our study not only enhances our understanding of media consumption behaviors but
also paves the way for more data-driven strategies to manage everyday media and technology habits.
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Supplementary Information

A List of Social Media Apps

• Discord
• Facebook
• Facebook Lite
• Facebook Local
• Facebook Messenger
• Instagram
• Kik
• LinkedIn
• Pinterest
• Reddit
• Snapchat
• TikTok
• Tumblr
• Twitter
• Youtube
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B Hyperparameter Spaces

B.1 LSTM Models

Hyperparameter Name Min Max Step Size

Embedding Dimensions 5 50 5
Number of LSTM Layers 1 3 1
LSTM Units 4 64 4
Recurrent Dropout 0.2 0.5 0.1
LSTM L1 Regularization 1e− 5 1e− 3 Continuous (log)
LSTM L2 Regularization 1e− 4 1e− 2 Continuous (log)
Dense Layer Units 4 64 4
Dense Layer L1 Regularization 1e− 5 1e− 3 Continuous (log)
Dense Layer L2 Regularization 1e− 4 1e− 2 Continuous (log)
Dropout Rate Top Layer 0.2 0.5 0.1
Learning Rate 1e− 5 1e− 2 Continuous (log)

B.2 Transformer Models

Hyperparameter Name Min Max Step Size

Embedding Dimensions 5 50 5
Number of Transformer Layers* 1 3 1
Transformer Units 4 64 4
Recurrent Dropout* 0.2 0.5 0.1
Transformer L1 Regularization 1e− 5 1e− 3 Continuous (log)
Transformer L2 Regularization 1e− 4 1e− 2 Continuous (log)
Dense Layer Units 4 64 4
Dense Layer L1 Regularization 1e− 5 1e− 3 Continuous (log)
Dense Layer L2 Regularization 1e− 4 1e− 2 Continuous (log)
Dropout Rate Top Layer 0.2 0.5 0.1
Learning Rate 1e− 4 1e− 2 Continuous (log)

B.3 Fine-Tuned Models

Hyperparameter Name Min Max Step Size

Dense Layer Units 4 64 4
Dense Layer L1 Regularization 1e− 5 1e− 3 Continuous (log)
Dense Layer L2 Regularization 1e− 4 1e− 2 Continuous (log)
Dropout Rate Top Layer 0.2 0.5 0.1
Learning Rate 1e− 4 1e− 2 Continuous (log)
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C Additional Model Evaluation Metrics

C.1 Performance of Global LSTM Model Across 20 Rounds of Hyperparameter Search

rank acc pre rec f1 auc

1 0.779 0.713 0.651 0.668 0.782
2 0.781 0.728 0.631 0.648 0.780
3 0.780 0.716 0.652 0.669 0.778
4 0.769 0.700 0.615 0.628 0.764
5 0.771 0.705 0.618 0.632 0.763
6 0.765 0.728 0.571 0.566 0.761
7 0.770 0.707 0.607 0.618 0.761
8 0.768 0.705 0.605 0.615 0.760
9 0.769 0.706 0.605 0.616 0.759
10 0.767 0.695 0.617 0.629 0.758
11 0.768 0.695 0.625 0.639 0.759
12 0.769 0.705 0.604 0.615 0.758
13 0.769 0.701 0.613 0.626 0.757
14 0.768 0.703 0.604 0.614 0.755
15 0.768 0.702 0.608 0.620 0.754
16 0.769 0.704 0.608 0.620 0.753
17 0.767 0.702 0.598 0.607 0.749
18 0.741 0.371 0.500 0.426 0.507
19 0.741 0.371 0.500 0.426 0.500
20 0.741 0.371 0.500 0.426 0.568

C.2 Performance of Global Transformer Model Across 20 Rounds of Hyperparameter Search

rank acc pre rec f1 auc

1 0.775 0.706 0.643 0.659 0.773
2 0.777 0.716 0.628 0.644 0.775
3 0.771 0.697 0.659 0.672 0.774
4 0.776 0.712 0.636 0.652 0.774
5 0.774 0.709 0.630 0.645 0.773
6 0.776 0.716 0.626 0.641 0.773
7 0.775 0.707 0.645 0.661 0.774
8 0.775 0.717 0.621 0.635 0.773
9 0.775 0.709 0.636 0.651 0.771
10 0.776 0.715 0.626 0.641 0.774
11 0.773 0.701 0.646 0.661 0.772
12 0.775 0.712 0.626 0.641 0.772
13 0.773 0.703 0.642 0.658 0.772
14 0.775 0.708 0.636 0.651 0.773
15 0.775 0.710 0.634 0.649 0.773
16 0.775 0.710 0.633 0.649 0.773
17 0.772 0.707 0.620 0.634 0.767
18 0.774 0.711 0.621 0.635 0.769
19 0.774 0.716 0.614 0.627 0.771
20 0.771 0.709 0.613 0.625 0.766
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C.3 Distributions of Model Performance Scores (LSTM, Global Model)

auc acc pre rec f1

mean 0.699 0.785 0.627 0.580 0.578
std 0.088 0.100 0.106 0.075 0.092
min 0.515 0.552 0.386 0.486 0.432
25% 0.635 0.714 0.570 0.522 0.508
50% 0.690 0.795 0.621 0.556 0.554
75% 0.752 0.875 0.691 0.631 0.645
max 0.908 0.978 0.886 0.798 0.806

C.4 Distributions of Model Performance Scores (Transformer, Global Model)

auc acc pre rec f1

mean 0.679 0.779 0.620 0.560 0.554
std 0.072 0.103 0.089 0.054 0.068
min 0.507 0.566 0.408 0.494 0.447
25% 0.630 0.701 0.579 0.515 0.493
50% 0.677 0.768 0.629 0.546 0.543
75% 0.724 0.855 0.669 0.592 0.597
max 0.853 0.981 0.823 0.703 0.728
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C.5 Distributions of Model Performance Scores (LSTM, Person-Specific Models)

auc acc pre rec f1

mean 0.609 0.772 0.451 0.520 0.469
std 0.092 0.114 0.114 0.051 0.080
min 0.414 0.422 0.287 0.483 0.320
25% 0.544 0.689 0.374 0.500 0.425
50% 0.611 0.776 0.415 0.500 0.451
75% 0.681 0.857 0.468 0.500 0.479
max 0.817 0.981 0.829 0.724 0.740

C.6 Distributions of Model Performance Scores (Transformer, Person-Specific Models)

auc acc pre rec f1

std 0.087 0.105 0.136 0.059 0.083
min 0.447 0.523 0.295 0.455 0.371
25% 0.560 0.691 0.432 0.500 0.452
50% 0.635 0.769 0.501 0.500 0.479
75% 0.685 0.841 0.643 0.569 0.570
max 0.861 0.981 0.915 0.752 0.757
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C.7 Distributions of Model Performance Scores (LSTM, Fine-Tuned Models)

auc acc pre rec f1

mean 0.702 0.791 0.626 0.577 0.569
std 0.089 0.098 0.136 0.080 0.102
min 0.522 0.605 0.372 0.492 0.426
25% 0.640 0.720 0.541 0.503 0.480
50% 0.689 0.796 0.625 0.556 0.553
75% 0.754 0.877 0.700 0.627 0.627
max 0.908 0.978 0.972 0.800 0.807

C.8 Distributions of Model Performance Scores (Transformer, Fine-Tuned Models)

auc acc pre rec f1

mean 0.683 0.783 0.625 0.568 0.560
std 0.077 0.102 0.100 0.068 0.085
min 0.497 0.552 0.388 0.489 0.437
25% 0.635 0.707 0.572 0.513 0.486
50% 0.681 0.788 0.630 0.548 0.552
75% 0.731 0.859 0.688 0.609 0.616
max 0.858 0.981 0.823 0.753 0.766

The full set of results is available for download in CSV format on this project’s OSF page (https://osf.io/rkswe/).

22

https://osf.io/rkswe/


D Models Trained on Data Including Launcher and SystemUI Events

D.1 Visualization of Model Performance Scores

D.2 Performance of Global LSTM Model Across 20 Rounds of Hyperparameter Search

rank acc pre rec f1 auc

1 0.847 0.737 0.622 0.649 0.826
2 0.847 0.737 0.626 0.653 0.827
3 0.848 0.747 0.608 0.634 0.827
4 0.847 0.737 0.620 0.646 0.826
5 0.847 0.758 0.590 0.611 0.826
6 0.847 0.735 0.624 0.651 0.827
7 0.845 0.734 0.607 0.632 0.818
8 0.842 0.716 0.652 0.674 0.823
9 0.845 0.729 0.616 0.641 0.822
10 0.846 0.734 0.623 0.649 0.823
11 0.846 0.737 0.612 0.637 0.821
12 0.846 0.733 0.614 0.639 0.819
13 0.838 0.733 0.551 0.553 0.793
14 0.839 0.728 0.562 0.570 0.792
15 0.830 0.415 0.500 0.454 0.704
16 0.830 0.415 0.500 0.454 0.701
17 0.830 0.415 0.500 0.454 0.692
18 0.830 0.415 0.500 0.454 0.495
19 0.830 0.415 0.500 0.454 0.500
20 0.830 0.415 0.500 0.454 0.501

D.3 Performance of Global Transformer Model Across 20 Rounds of Hyperparameter Search

rank acc pre rec f1 auc

1 0.846 0.730 0.636 0.662 0.825
2 0.848 0.752 0.602 0.627 0.824
3 0.847 0.741 0.613 0.639 0.824
4 0.847 0.740 0.613 0.639 0.823
5 0.847 0.736 0.621 0.647 0.823
6 0.849 0.757 0.606 0.632 0.824
7 0.848 0.743 0.618 0.644 0.822
8 0.848 0.740 0.618 0.644 0.822
9 0.849 0.746 0.622 0.650 0.823
10 0.847 0.744 0.610 0.636 0.821
11 0.847 0.745 0.608 0.634 0.821
12 0.846 0.748 0.593 0.615 0.820
13 0.847 0.740 0.610 0.636 0.817
14 0.844 0.728 0.616 0.641 0.818
15 0.846 0.735 0.612 0.638 0.816
16 0.844 0.725 0.616 0.641 0.813
17 0.839 0.733 0.557 0.562 0.802
18 0.841 0.726 0.585 0.603 0.805
19 0.840 0.719 0.589 0.609 0.801
20 0.837 0.710 0.564 0.575 0.787
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E Fine-Tuned Models (Top Layers Only)

E.1 Distributions of Model Performance Scores (LSTM)

auc acc pre rec f1

mean 0.678 0.771 0.532 0.554 0.521
std 0.090 0.118 0.147 0.081 0.109
min 0.394 0.251 0.285 0.483 0.251
25% 0.626 0.689 0.410 0.500 0.447
50% 0.678 0.782 0.496 0.500 0.481
75% 0.723 0.856 0.638 0.601 0.599
max 0.902 0.978 0.906 0.801 0.805

E.2 Distributions of Model Performance Scores (Transformer)

auc acc pre rec f1

mean 0.654 0.766 0.585 0.554 0.538
std 0.083 0.111 0.116 0.065 0.085
min 0.384 0.517 0.369 0.406 0.405
25% 0.599 0.681 0.496 0.500 0.475
50% 0.655 0.766 0.589 0.532 0.524
75% 0.703 0.846 0.650 0.592 0.590
max 0.819 0.981 0.915 0.767 0.776
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F Models Trained with Weighted Loss to Adjust for Class-Imbalances

F.1 Performance of Global LSTM Model Across 20 Rounds of Hyperparameter Search

rank acc pre rec f1 auc
1 0.728 0.481 0.658 0.556 0.781
2 0.719 0.471 0.697 0.562 0.785
3 0.715 0.466 0.698 0.559 0.783
4 0.714 0.465 0.699 0.559 0.783
5 0.720 0.471 0.690 0.560 0.784
6 0.703 0.451 0.682 0.543 0.767
7 0.681 0.429 0.711 0.535 0.761
8 0.677 0.428 0.733 0.540 0.766
9 0.685 0.434 0.719 0.541 0.765
10 0.645 0.404 0.786 0.534 0.763
11 0.682 0.430 0.711 0.536 0.760
12 0.683 0.432 0.716 0.539 0.762
13 0.697 0.444 0.680 0.537 0.760
14 0.711 0.457 0.625 0.528 0.757
15 0.679 0.428 0.718 0.536 0.761
16 0.695 0.441 0.668 0.531 0.755
17 0.680 0.428 0.711 0.534 0.758
18 0.687 0.434 0.691 0.533 0.757
19 0.674 0.413 0.616 0.494 0.714
20 0.741 0.000 0.000 0.000 0.500

F.2 Performance of Global Transformer Model Across 20 Rounds of Hyperparameter Search

rank acc pre rec f1 auc
1 0.702 0.451 0.707 0.550 0.775
2 0.726 0.477 0.644 0.548 0.774
3 0.700 0.449 0.702 0.548 0.773
4 0.710 0.459 0.685 0.550 0.772
5 0.675 0.427 0.756 0.546 0.773
6 0.684 0.435 0.741 0.548 0.774
7 0.697 0.445 0.703 0.545 0.771
8 0.687 0.437 0.731 0.547 0.774
9 0.691 0.441 0.727 0.549 0.773
10 0.708 0.457 0.681 0.547 0.773
11 0.674 0.426 0.754 0.545 0.770
12 0.696 0.445 0.701 0.544 0.769
13 0.667 0.420 0.756 0.540 0.769
14 0.670 0.423 0.751 0.541 0.768
15 0.688 0.437 0.716 0.543 0.765
16 0.692 0.439 0.691 0.537 0.762
17 0.680 0.425 0.673 0.521 0.745
18 0.698 0.441 0.632 0.520 0.745
19 0.683 0.431 0.704 0.535 0.738
20 0.741 0.000 0.000 0.000 0.545
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F.3 Distributions of Model Performance Scores (LSTM, Global Model)

auc acc pre rec f1

mean 0.694 0.732 0.621 0.623 0.605
std 0.088 0.113 0.060 0.075 0.066
min 0.502 0.522 0.514 0.505 0.450
25% 0.634 0.648 0.578 0.573 0.565
50% 0.678 0.722 0.610 0.612 0.598
75% 0.739 0.815 0.668 0.656 0.645
max 0.909 0.969 0.776 0.828 0.774

F.4 Distributions of Model Performance Scores (Transformer, Global Model)

auc acc pre rec f1

mean 0.681 0.705 0.611 0.612 0.583
std 0.076 0.124 0.058 0.064 0.064
min 0.519 0.479 0.490 0.492 0.457
25% 0.626 0.605 0.567 0.561 0.534
50% 0.679 0.682 0.605 0.616 0.585
75% 0.730 0.803 0.649 0.649 0.618
max 0.848 0.964 0.810 0.773 0.724
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F.5 Distributions of Model Performance Scores (LSTM, Person-Specific Models)

auc acc pre rec f1

mean 0.630 0.595 0.568 0.586 0.507
std 0.087 0.166 0.082 0.066 0.120
min 0.375 0.157 0.113 0.447 0.152
25% 0.580 0.504 0.535 0.541 0.459
50% 0.633 0.609 0.566 0.579 0.528
75% 0.688 0.688 0.612 0.632 0.582
max 0.834 0.945 0.787 0.774 0.765

F.6 Distributions of Model Performance Scores (Transformer, Person-Specific Models)

auc acc pre rec f1

mean 0.554 0.580 0.419 0.518 0.398
std 0.075 0.251 0.173 0.044 0.145
min 0.411 0.083 0.041 0.442 0.076
25% 0.500 0.357 0.330 0.500 0.297
50% 0.546 0.646 0.459 0.500 0.447
75% 0.592 0.792 0.536 0.514 0.487
max 0.770 0.953 0.866 0.731 0.681
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F.7 Distributions of Model Performance Scores (LSTM, Fine-Tuned Models)

auc acc pre rec f1

mean 0.696 0.739 0.622 0.629 0.616
std 0.088 0.106 0.059 0.075 0.063
min 0.501 0.544 0.517 0.516 0.503
25% 0.636 0.658 0.581 0.574 0.571
50% 0.686 0.728 0.612 0.616 0.606
75% 0.743 0.813 0.666 0.661 0.658
max 0.909 0.970 0.776 0.826 0.774

F.8 Distributions of Model Performance Scores (Transformer, Fine-Tuned Models)

auc acc pre rec f1

mean 0.682 0.720 0.608 0.623 0.605
std 0.076 0.104 0.056 0.064 0.057
min 0.520 0.529 0.499 0.499 0.495
25% 0.635 0.653 0.574 0.576 0.566
50% 0.679 0.693 0.601 0.625 0.604
75% 0.731 0.785 0.643 0.656 0.641
max 0.849 0.966 0.748 0.779 0.730

The full set of results is available for download in CSV format on this project’s OSF page (https://osf.io/rkswe/).

28

https://osf.io/rkswe/

	Introduction
	Method
	Participants and Procedure
	Data Preprocessing
	Modeling

	Results
	Descriptive Statistics
	Predictability of Social Media Use
	Relationships Between Predictability and Behavioral Frequency
	Relationships Between Predictability and Context Size

	Discussion
	Limitations and Directions for Future Research
	Practical Implications
	Conclusion

	List of Social Media Apps
	Hyperparameter Spaces
	LSTM Models
	Transformer Models
	Fine-Tuned Models

	Additional Model Evaluation Metrics
	Performance of Global LSTM Model Across 20 Rounds of Hyperparameter Search
	Performance of Global Transformer Model Across 20 Rounds of Hyperparameter Search
	Distributions of Model Performance Scores (LSTM, Global Model)
	Distributions of Model Performance Scores (Transformer, Global Model)
	Distributions of Model Performance Scores (LSTM, Person-Specific Models)
	Distributions of Model Performance Scores (Transformer, Person-Specific Models)
	Distributions of Model Performance Scores (LSTM, Fine-Tuned Models)
	Distributions of Model Performance Scores (Transformer, Fine-Tuned Models)

	Models Trained on Data Including Launcher and SystemUI Events
	Visualization of Model Performance Scores
	Performance of Global LSTM Model Across 20 Rounds of Hyperparameter Search
	Performance of Global Transformer Model Across 20 Rounds of Hyperparameter Search

	Fine-Tuned Models (Top Layers Only)
	Distributions of Model Performance Scores (LSTM)
	Distributions of Model Performance Scores (Transformer)

	Models Trained with Weighted Loss to Adjust for Class-Imbalances
	Performance of Global LSTM Model Across 20 Rounds of Hyperparameter Search
	Performance of Global Transformer Model Across 20 Rounds of Hyperparameter Search
	Distributions of Model Performance Scores (LSTM, Global Model)
	Distributions of Model Performance Scores (Transformer, Global Model)
	Distributions of Model Performance Scores (LSTM, Person-Specific Models)
	Distributions of Model Performance Scores (Transformer, Person-Specific Models)
	Distributions of Model Performance Scores (LSTM, Fine-Tuned Models)
	Distributions of Model Performance Scores (Transformer, Fine-Tuned Models)


