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Abstract

Effective code optimization in compilers plays a central role in com-
puter and software engineering. While compilers can be made to
automatically search the optimization space without the need for
user interventions, this is not a standard practice since the search
is slow and cumbersome. Here we present CodeZero, an artificial
intelligence agent trained extensively on large data to produce effec-
tive optimization strategies instantly for each program in a single
trial of the agent. To overcome the huge range of possible test pro-
grams, we prepare a large dataset of training programs that emphasize
quality, naturalness, and diversity. To tackle the vast space of possi-
ble optimizations, we adapt deep reinforcement learning to train the
agent in a sample-efficient manner through interacting with a world
model of the compiler environment. Evaluation on both benchmark
suites and production-level code optimization problems demonstrates
our agent’s supercompiler performances and zero-shot generaliza-
tion abilities, outperforming built-in optimization options designed
by compiler experts. Our methodology kindles the great potential
of artificial intelligence for engineering and paves the way for scal-
ing machine learning techniques in the realm of code optimization.
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1 Introduction

Entering the post-Moore’s law era, code optimization is crucial for com-
puter and software engineering, which plays an important role in realizing
the full potential of slow-growing hardware. Developers typically rely on a
compiler’s ability to transform input programs into semantically equivalent
but more efficient versions, improving metrics like execution time, code
size, and power consumption. For example, standard optimization options
-O1, -O2, and -O3 aim to reduce execution time, while the -Os and -Oz

options are crafted to reduce code size. Still, it is not common for users to
explore beyond these conventional compiler options. Given the vast diver-
sity of programs and platforms, coupled with the increasing number of
optimization passes integrated into compiler frameworks, these off-the-
shelf optimization strategies predefined heuristically by compiler experts
may struggle to guarantee near-optimal performance across ever-changing
scenarios [1, 2].

Automatic code optimization is therefore crucial in compilers. Auto-
tuning [3] improves code by systematically searching the optimization
space through iterative executing and profiling optimization strategies. This
search technique can yield remarkable performance gains but must be
rerun for each new program with thousands of compilations, which is too
time-consuming to be practical for all but a few specialized use cases.
Meanwhile, machine learning techniques hold the capabilities to general-
ize the optimization strategy of one program to other similar ones, thereby
facilitating faster code optimization. A direct method is to use super-
vised learning to predict good optimization strategies of input programs
[4–6], which is impractical due to prohibitive computations to construct
labeled training data by search. Another more promising routine, rein-
forcement learning, that successfully discovered faster sorting algorithm
(AlphaDev [7]) and matrix multiplication algorithm (AlphaTensor [8]), can
explore the optimization space from feedback on optimization metrics
without requiring optimal labeled data. For both techniques, broad gen-
eralization across different programs, even out of the training samples,
arises as a major bottleneck. The community has noted that in a range
of machine learning applications [9–12], training high-capacity models on
large-scale datasets has yielded unprecedented performances. For example,
large language models like GPT-4 have demonstrated impressive zero-shot
generalization abilities [13, 14]. However, in the area of code optimization,
the current practice is to learn optimization heuristics in a per-program
manner [15, 16] or from a small training set with hundreds of programs
[17, 18], lagging far behind the new era of solving challenging problems by
scaling up machine learning models.

In this study, we focus on the LLVM [19] phase ordering problem, a
longstanding challenge for compiler research, and propose CodeZero, a
reinforcement-learned code optimization agent, capable of generating a
sequence of optimization passes tailored to a particular input program. The
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Fig. 1: CodeZero agent performs code optimization using a learned policy in a
compiler environment. Guided by a learned policy, at each step, CodeZero analyzes
the Intermediate Representation (IR) of the program, selects to apply an optimiza-
tion pass, and receives a reward based on the improvement in optimization metrics.
Through sequential interactions, the agent aims to maximize cumulative rewards
and enhance the final IR’s performance.

problem is formulated such that a code optimization agent, upon encoun-
tering a program, selects a series of optimization passes, and receives
feedback based on the outcomes of applying these transformations, from
the compiler environment. To tackle the huge range of possible test pro-
grams, we aim to enhance the generalization ability of trained agents by
assembling a large-scale training dataset of natural programs. Several previ-
ous works rely on randomly generated programs due to data scarcity but the
significant distribution shift from random-generated and human-written
programs can even hurt the generalization of learned agents when tested
on real-world scenarios [20]. Our training data not only includes real-world
programs sourced from GitHub [21] but also incorporates complex algo-
rithmic solutions of competitive programming [22] and diverse programs
generated by large language models (LLM) [23]. To tackle the vast space
of possible optimizations (∼ 1073 sequences), we employ a state-of-the-art
model-based reinforcement learning method [24] to train the code opti-
mization agent sample-efficiently. This method not only learns a predictive
world model of compilers to reduce the amount of real compiler execu-
tions but also benefits generalization by learning representations that better
capture the structure of the compiler state transitions [25]. After training
on massive programs via trial-and-error, the code optimization agent can
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generalize in a zero-shot way to previously unseen programs with superior
optimization performance against off-the-shelf compiler heuristics.

We demonstrate the effectiveness of our trained CodeZero agent on a
range of domains [20] from benchmark suites encompassing fundamen-
tal algorithms that are ubiquitously employed in everyday applications, to
production-level open-source programs, including object files from C++
TensorFlow [26] and OpenCV [27] library. On six test datasets, our agent
can produce optimization sequences in a single trial, yielding more efficient
code size reduction compared to the -Oz flag. Detailed analysis underscores
the effectiveness of both the newly introduced program datasets and the
model-based reinforcement learning technique within the realm of code
optimization. We posit that the agents developed through our approach
could be integrated into the existing toolkits of optimization strategy in
compilers alongside other manually designed heuristics, such as -Oz or -O3.

2 CodeZero Agent

2.1 Code Optimization as Decision Making

As illustrated in Figure 1, compilers consist of three main components: the
front end which translates the source code into an intermediate representa-
tion (IR), the middle end, and the back end which converts IR to the binary
code. The middle end is responsible for language- and platform-agnostic
optimizations over the IR, implemented as passes to either collect informa-
tion about the program or apply a transform on it, like function inlining,
loop unrolling, and dead code elimination. For example, the LLVM-opt tool
has more than 100 optimization passes available. A specific order of apply-
ing these passes forms an optimization sequence for an input program. This
is critical as the right selection and ordering of passes can significantly boost
the program’s performance. Despite that compiler developers have pro-
vided standard optimization sequences at various levels, e.g. -O2, -O3, -Oz,
these preset sequences may not always yield optimal results, especially for
emerging programs written in new frameworks such as TensorFlow. Partic-
ularly due to the increasing number of optimization passes, it is an open
challenge to determine the most effective sequence for each program.

This problem, known as phase ordering, can be naturally formulated as
a partially observable Markov decision process (POMDP) [28]. In this formu-
lation, a code optimization agent determines the optimization sequence of
an input program through a series of interactions with the compiler envi-
ronment, guided by its policy π. The process starts at the initial state s0,
representing the IR of the program to be optimized, which is randomly sam-
pled from all IRs of interest. It is critical that aiming to capture the most
important characteristics of the target optimization, the agent only receives
partially observable information o0 of the state. The observation space can
vary widely, ranging from manually designed features (e.g. the number of
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basic blocks) [15] to more complex tree-based or graph-based program rep-
resentations [29, 30], and even raw text strings of IR [31]. At each time step
t = 0, 1, 2, . . . , the agent takes an action at based on its policy, corresponding
to selecting an optimization pass. Following this action, the agent receives
an immediate reward rt+1, reflecting changes in the optimization metrics,
and an observation ot+1 of the next state st+1 = p(st, at) which represents
the IR transformed by the compiler using the selected pass. This process can
be terminated either when the agent finds no positive gains can be achieved
or a maximum number of steps is reached. The goal of the agent is to learn
an optimization policy π(at | o≤t) that effectively maximizes the cumulative
rewards, thereby optimizing the performance metrics of the final IR.

2.2 Large-Scale Data Preparation

To ensure that our CodeZero agent can effectively generalize to unseen sit-
uations, a concept known as zero-shot generalization, we have identified
three critical factors in preparing our training dataset. Firstly, the dataset
must reflect naturalness. Training data should be within the distribution of
human-written programs, otherwise, overfitting to programs that deviate
significantly from this, such as those generated by tools like Csmith [32] and
llvm-stress [19], could provide no benefits or even hurt the generalization to
real-world scenarios. Secondly, diversity in the dataset is essential. It should
encompass a wide range of human-written program styles and structures,
ensuring globally comprehensive coverage of possible scenarios. Lastly, the
pursuit of high-quality training data is imperative. Existing large-scale pro-
gram collections [21, 29] have been proposed to serve as training data [20]
but are proven unfruitful in our preliminary experiments. Instead, we focus
on data that features moderate lengths of IR, complex algorithmic logic, and
potential room for optimizations. This allows the agent to flexibly explore
and understand the local transformation structure within the IR space. Col-
lectively, these three properties – naturalness, diversity, and high quality –
contribute to aligning the visited IR distribution during training with that
will be encountered in real-world applications.

We construct our training dataset containing hundreds of thousands
of programs by combining three distinct single-source program datasets,
CodeContests [22], FormAI [23], and AnghaBench [21]. CodeContests com-
prises human-written solutions to competitive programming problems
with complex and optimizable algorithmic logic. FormAI is a large col-
lection of AI-generated C programs with various functionality types and
coding styles, aiming to enrich the dataset’s diversity. AnghaBench is a
collection of real-world C programs extracted from GitHub. As shown by
visualization in Figure D2, our training data has a broad coverage of evalua-
tion programs in a variety of domains. Future expansions of the dataset can
be conducted following the aforementioned principles.
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Fig. 2: Design overview of CodeZero. (a) In the model-based training loop, the
CodeZero agent interacts with the compiler environment across diverse training
programs, learns a world model from historical experience, and updates its pol-
icy efficiently through model simulations. (b) Deployment of the trained agent is
capable of zero-shot generalization to unseen programs, delivering effective opti-
mizations. (c) The compiler environment is set up with the input program’s IR, s0.
At each step, upon receiving an optimization pass at, the environment executes the
pass internally, resulting in a transformed IR st+1, and provides the agent with rel-
evant IR features ot+1 and immediate rewards rt+1 based on optimization metric
improvements. (d) The world model simulates the compiler environment, initiated
with an observation, maintaining its internal states, and predicting future observa-
tions and rewards in response to input actions. (e) The policy shares with the world
model a generalizable representation that captures the environment’s structure.

2.3 Agent Training with Model-based RL

While existing work on reinforcement learning for code optimization preva-
lently focuses on model-free RL methods, model-based RL can offer advan-
tages in terms of both sample efficiency [28] and generalization [25]. Exe-
cuting and profiling extensive optimization sequences, especially for the
runtime metric, can be time-consuming. This is further compounded when
constructing complex observations, such as control-data flow graphs [29,
33]. Model-based RL addresses these challenges by learning a world model
to approximate state transitions and reward signals of the environment.
This allows the agent to learn its policy by simulating trajectories based on
model predictions, rather than relying solely on trial-and-error interactions
in the real compiler environment. This approach thus improves sample effi-
ciency. Moreover, as the policy can share the representation with the world
model, model learning can act as an auxiliary task and thus aid in learning
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representations that better capture the structure of the environment and
manifest in better generalization of the policy [34].

We train the CodeZero agent by adapting an advanced model-based
RL method, Dreamer [24], as depicted in Figure 2. This approach involves
learning a predictive world model (p̂θ, r̂θ) of the compiler environment
by approximating the underlying transition dynamics p(ot+1|o≤t, a≤t) and
reward function r(o≤t, a≤t). Through imaginary rollouts using this world
model over a horizon H , the policy πψ(at|o≤t) can be learned using the
REINFORCE policy gradients [35] with an entropy regularizer H. The train-
ing objective is formulated as

L (ψ) .= Ep̂θ,r̂θ,πψ

[
H∑
t=1

− (Vt − vξ (o≤t)) log πψ (at | o≤t)− ηH [πψ (o≤t)]

]
,

(1)
where Vt is the imagined return estimation and the value prediction vξ
serves as a baseline for variance reduction [36]. The value prediction is
learned separately by regressing the cumulative rewards that the agent
should expect to receive from the current state. All components are realized
as deep neural networks.

After extensive training on a wide range of programs, our agent demon-
strates the capability to generalize “zero-shot” — that is, to be effective with-
out further training — to new, unseen programs across various domains.

3 Results

3.1 Evaluation Benchmarks

Our experiments focus on code size reduction, which benefits applications
targeting low-resource hardware such as embedded systems. This focus is
driven by the practical advantages of code size as a metric: it is both cost-
effective and convenient to construct extensive compilable training and test
datasets and to evaluate the optimization performance for code size.

We evaluate our method on benchmarks from the CompilerGym plat-
form [20]: benchmark suites including cBench [37], CHStone [38], MiBench
[39], and NASA Parallel Benchmarks (NPB) [40], in addition to kernels from
open source projects including BLAS [41], Linux, OpenCV [27], and Ten-
sorFlow [26]. We disregard benchmarks generated by synthetic program
generators [19, 32] since they do not align with real-world scenarios.

3.2 Code Optimization Results

Figure 3 reports CodeZero’s performance in reducing code size, measured in
terms of IR instruction count, compared to the expert-designed -Oz flag in
LLVM. Remarkably, CodeZero, without any specific training on in-domain
programs, outperforms -Oz across all but two test benchmark datasets in a
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Fig. 3: Code size reduction in terms of IR instruction count over LLVM -Oz under
different methods. Bars indicate the geometric mean and min-max range across test
programs in each benchmark dataset.

Table 1: Top performances of the zero-shot CodeZero agent on individual pro-
grams. The agent’s optimization sequences are streamlined, omitting passes that do
not contribute to performance enhancement. Full IRs of these programs before and
after optimizations are shown in the Supplementary Information.

Dataset Program Pass Sequences by CodeZero Agent
Code size

O0 CodeZero Oz (Reduction)

cBench

sha
-sroa -gvn -instcombine -simplifycfg -licm
-early-cse -simplifycfg -indvars -gvn
-simplifycfg -memcpyopt -reassociate

799 349 500 (1.43×)

bzip2

-sroa -gvn -simplifycfg -instcombine
-simplifycfg -early-cse -simplifycfg
-reassociate -memcpyopt -jump-threading
-functionattrs -licm -gvn -simplifycfg
-reassociate -early-cse -jump-threading
-early-cse -instcombine -simplifycfg

28748 13565 15946 (1.18×)

qsort
-sroa -gvn -simplifycfg -instcombine
-simplifycfg -early-cse -gvn -indvars
-gvn -simplifycfg

638 280 315 (1.12×)

OpenCV

#41 -lowerinvoke -simplifycfg -globalopt 28 18 28 (1.56×)

#9

-sroa -gvn -sroa -early-cse -simplifycfg
-loop-deletion -lowerinvoke -simplifycfg
-sroa -early-cse -instcombine -simplifycfg
-early-cse -memcpyopt -early-cse
-simplifycfg -jump-threading -early-cse
-reassociate -instcombine

9510 6341 9269 (1.18×)

TensorFlow

#17
-sroa -gvn -simplifycfg -lowerinvoke
-simplifycfg -sroa -early-cse -indvars
-simplifycfg

5512 4247 5450 (1.28×)

#6
-gvn -simplifycfg -lowerinvoke -simplifycfg
-instcombine -early-cse -gvn
-jump-threading -instcombine

16173 12643 16076 (1.27×)
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Fig. 4: A comparison between a ground-truth code optimization trajectory and an
imagined trajectory by a learned compiler world model. The learned world model
accurately captures the variations of program features and optimization metrics.

single trial. The marginal performance variations between different meth-
ods on the BLAS and Linux datasets suggest that they are already highly
optimized. CodeZero also demonstrates the ability to match or even slightly
surpass a competitive autotuning method, random search, within a simi-
lar time budget (in the order of seconds), while the latter blindly aggregates
hundreds of trials. This notable performance, coupled with the signifi-
cant advantage over a single random trial, underscores the effectiveness
of our agent’s policy learning. Moreover, CodeZero’s zero-shot generaliza-
tion capability either matches or exceeds the performance of in-domain
counterparts, which are trained using the train subset of each benchmark
dataset. This is particularly significant in cases like the NPB dataset, which
contains only 22 training programs. In such scenarios, where data sparsity
presents a challenge for in-domain agents, the zero-shot CodeZero notably
achieves an extra 3% reduction in code size. Notably, CodeZero’s pre-trained
policy can generalize to IRs compiled from novel programming languages
beyond C and C++, as evidenced in its performances on the BLAS and
NPB datasets of Fortran programs. Further, in an AI-generated benchmark
dataset of Objective-C, another language supported by LLVM-Clang apart
from C/C++, CodeZero successfully improves upon LLVM -Oz, achieving an
average code size reduction of 1.027×, and reaching up to 2.87× in certain
instances.

3.3 Program Case Study

We analyze the internal behavior of our CodeZero agent to optimize IR code
via recording the sequence of passes chosen by the policy on individual pro-
grams. Table 1 presents the agent’s top performance outcomes on various
benchmark datasets. We observe that the agent indeed produces a special-
ized optimization strategy tailored for each program. Additionally, these
results also highlight certain passes, such as -sroa (scalar replacement of
aggregates), -gvn (global value numbering), and -simplifycfg, as particularly
effective in code size optimization.
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a b

c d

Fig. 5: Evaluations of CodeZero with different datasets (a-b) and RL algorithms
(c-d). (a) Performance of CodeZero trained on various datasets, with “Mixture”
representing a combined dataset of CodeContests, FormAI, and AnghaBench. (b)
Performance of CodeZero when trained on the full CodeContests dataset versus a
subset of 100 randomly selected training programs from CodeContests. (c) Learn-
ing curves of various RL algorithms, measured by the geometric mean of code size
reduction on the CodeContests validation set. A Gaussian filter (σ = 2.0) is applied
to enhance the visualization of trends. (d) Zero-shot generalization capabilities of
different RL algorithms on various test benchmark datasets.

In Figure 4, we display a predicted optimization trajectory for an unseen
program from cBench, as forecasted by our learned compiler world model.
The model successfully forecasts numeric features of future IR, including
the counts of branches and blocks, alongside future rewards that signify
optimization outcomes. This instance exemplifies the capability of our
learned compiler world model to serve as a viable alternative for a real
compiler environment in training code optimization agents.

3.4 Effect of Training Dataset

In our quest to understand the impact of training datasets on generaliza-
tion, we explored how different datasets from various domains and sizes
influence performance. As shown in Figure 5a, we discovered that the Code-
Contests dataset stands out as the most effective for generalizing to our
test benchmarks. Although comparable outcomes were observed with other
datasets like FormAI and AnghaBench, agents trained on these datasets
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notably lag in performance when tested on OpenCV and TensorFlow bench-
marks. Moreover, combining these datasets does not yield performance
enhancement. Consequently, we present in Figure 3 the results based on
the agent trained exclusively with the CodeContests dataset. These results
underscore the significance of high-quality training data, a principle that is
increasingly recognized as vital in other scalable machine learning applica-
tions, such as large language models. In Figure 5b, we compare the agent
trained on the full CodeContests dataset versus the one trained on a 100-
program subset sampled from the same dataset. This subset is comparable
in size to the datasets used in previous research [17, 18] that applies rein-
forcement learning to code optimization. The suboptimal performance on
this smaller dataset highlights its inadequacy for training a strong zero-shot
generalizable agent and emphasizes the significance of a larger and more
diverse training set prepared by this study.

3.5 Sample Efficiency and Zero-Shot Generalization

We further evaluate the sample efficiency and zero-shot generalization abil-
ities of CodeZero based on the world model algorithm, Dreamer, against a
range of model-free counterparts. These include notable algorithms such
as DQN [42], A2C [43], APEX [44], IMPALA [45], and PPO [46] (see Appendix
B.4 for more details). Figure 5c shows that while PPO is the most compet-
itive among the model-free baselines, Dreamer outperforms it by learning
an order of magnitude faster, requiring fewer interactions with the compiler
environment to achieve excellent performance. Additionally, as Figure 5d
indicates, Dreamer excels in generalizing to unseen test benchmarks, out-
stripping its counterparts. These findings verify our hypothesis that a world
model-based agent holds a stronger capability to capture the environment’s
structure and can effectively enhance zero-shot generalization.

4 Discussion

We tackled the major challenge of zero-shot generalization that arises when
applying artificial intelligence techniques to improve code optimization.
We introduce the CodeZero agent that leverages the strengths of a diverse,
high-quality training program dataset, as well as the sample efficiency and
generalization capabilities of world model-based reinforcement learning.
Our results have shown that CodeZero, with its zero-shot generalization
ability, attains supercompiler code optimization performance, in the chal-
lenging phase ordering problem for code size reduction. Our study provides
an AI-centric framework and serves as a meaningful step towards scaling
machine learning techniques for code optimization. There is a substantial
scope for further exploration, including expansion of the training dataset,
scaling up the compiler world models, optimizing multiple objectives like
execution time, and enriching feature and action spaces with deeper expert
knowledge or large language models.
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5 Methods

In this section, we provide the mathematical and computational details of
our approach.

5.1 LLVM Phase Ordering POMDP

We formulate the phase ordering problem of LLVM as a partially observable
Markov decision process (POMDP)M = (S,A, r, p, µ,O, ϕ). The state space
S covers all possible Intermediate Representations (IRs), the action spaceA
comprises individual compiler optimization passes, and the reward func-
tion r is defined by the metric being optimized. The transition dynamics
p : S × A 7→ S represents the outcome of applied IR transformations. The
initial state distribution µ ∈ ∆(S) captures all IRs of interest, which can be
approximated via uniform sampling from the training dataset. The obser-
vation function ϕ : S 7→ O maps the underlying IR into the observation
space. Complex observation spaces offer comprehensive program informa-
tion, while expert-designed features embed problem-specific knowledge,
potentially enhancing the optimization policy’s generalization by eliminat-
ing irrelevant details. The code optimization agent with a policy π interacts
with the compiler environment according to the protocol described in
Section 2.1. We fix the horizon of interactions to 45 steps.

Following Autophase [15] and CompilerGym [20], the action space con-
sists of 42 optimization passes out of over a hundred in LLVM, which
effectively prunes the vast optimization space while not sacrificing the per-
formance of the learned policy. The observation space is a concatenation
of two numeric features: the 56-dimension Autophase feature summariz-
ing the statistics of the IR, such as the number of specific basic blocks,
branches, and instructions, and a 42-dimension histogram of the agent’s
previous actions. The reward function is defined as the normalized change
of the optimization metric C(s):

rt+1 =
C(st)− C(st+1)

C(s0)− C(sb)
, (2)

where a lower C indicates better performance and C(sb) stands for the per-
formance of a baseline policy, such as built-in -Oz or -O3. A total reward
greater than 1 means that the optimization sequence performs better than
the baseline policy.

5.2 Training Dataset

We construct our training datasets, by considering three datasets from
distinct domains. The CodeContests dataset [22] consists of over 13,000
competitive problems, each on average having hundreds of solutions in
three languages. We subsample up to ten C++ solutions for each train-
ing problem, resulting in 110,240 programs, as part of our training data,
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and sample one solution for each of 100 test problems from CodeCon-
tests as our validation data. We also include the full Form-AI dataset [23]
with 112,000 AI-generated programs and the collection of the largest 9,998
single-function programs and 15,264 multiple-function programs from the
AnghaBench [21] into our training data.

5.3 Model-based RL Method

We utilize a deep model-based RL method, DreamerV3 [24], to model the
compiler environment upon which it learns an effective policy that maps
observations to actions with parameterized deep neural networks.

World Model

The world model simulating the compiler environment is formulated as a
latent dynamics model with the following four components:

Representation model: zt ∼ qθ(zt | zt−1, at−1, ot)

Transition model: ẑt ∼ pθ(ẑt | zt−1, at−1)

Image decoder: ôt ∼ pθ(ôt | zt)
Reward decoder: r̂t ∼ pθ(r̂t | zt)

(3)

The representation model estimates the latent state zt based on the previ-
ous state zt−1, the previous action at−1 and the current observation ot, while
the transition model predicts it directly from zt−1 and at−1. The overall mod-
els are jointly learned by minimizing the negative evidence lower bound
(ELBO) [47, 48]:

Lmodel(θ)
.
= Eqθ(z1:T |a1:T ,o1:T )

[ T∑
t=1

(
− ln pθ(ot | zt)− ln pθ(rt | zt) (4)

+KL [qθ(zt | zt−1, at−1, ot) ∥ pθ(ẑt | zt−1, at−1)]
)]
.

In practice, we employ a reward smoothing technique [49] to mitigate
the sparsity and the long tail distribution of rewards during an episode. This
is achieved through the following equation:

r′t ← αr′t−1 + (1− α)rt, t = 1, 2, . . . (5)

with α ∈ [0, 1). Consequently, we train a reward decoder pθ(r̂′t | zt) to predict
the smoothed rewards.

13
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Actor-Critic Learning

The actor and critic neural networks are parameterized on top of the latent
representations:

Actor: ât ∼ πψ (ât | ẑt) Critic: vξ (ẑt) ≈ Epθ,πψ
[∑

τ≥t
γτ−tr̂τ

]
. (6)

The actor and critic are jointly trained on the same imagined trajectories
{ẑτ , âτ , r̂τ}with horizonH , generated by the interactions between the tran-
sition model and reward model in Eq. (3) and the actor: starting at the latent
state ẑt = zt, at each step τ = t, t + 1, t + 2, . . . , the policy takes an action
âτ ∼ πψ (âτ | ẑτ ), and transits to the next latent state ẑτ+1 ∼ pθ(ẑτ+1 | zτ , aτ )
with a reward r̂τ+1 ∼ pθ(r̂τ+1 | ẑτ+1). The critic is trained to predict the
λ-return [28] through a discrete regression loss [24, 50]:

Lcritic(ξ)
.
= Epθ,πψ

[
t+H∑
τ=t

− log vξ(V
λ
τ | ẑτ )

]
, (7)

V λτ
.
= r̂τ + γ

{
(1− λ)vξ(ẑτ+1) + λV λτ+1 if τ < t+H

vξ(ẑτ+1) if τ = t+H.
(8)

The actor, meanwhile, is trained to maximize the imagined return through
the REINFORCE policy gradient [35]:

Lactor(ψ)
.
= Epθ,πψ

[
t+H∑
τ=t

(
−
(
V λτ − vξ (ẑτ )

)
log πψ (âτ | ẑτ )− ηH [πψ(ẑτ )]

)]
,

(9)

where H [πψ(ẑτ )] is an entropy regularization which encourages exploration,
and η is a hyperparameter that adjusts the regularization strength.
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Appendix A Related Work

In this section, we will elaborate a more extensive review of the develop-
ment of machine learning methods for code optimization in compilers.

One of the key challenges for compilation is to determine which code
transformations to apply, how to apply them (e.g., using suitable parame-
ters), and in what order. This requires effectively searching and evaluating
a massive number of possible options, known as iterative compilation [3]
or autotuning [51]. However, this search-based approach only finds a good
optimization for one specific program and does not generalize into a com-
piler heuristic. This limitation underscores the importance of integrating
machine learning techniques.

Pioneering work has delved into supervised machine learning, adopt-
ing two main approaches. The first one learns a predictive model that can
directly predict the best option. It involves iteratively compiling training
programs to identify the most effective compilation strategy for each, which
then serves as the labels of training data. An early example [4] used a neural
network for branch prediction, and one more well-known work is Milepost-
GCC [5], a practical attempt to integrate machine learning into a production
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compiler, GCC. It employs models trained on a large dataset of programs
distributed over the Internet. The second approach aims to learn a cost or
performance function capable of estimating the quality of various compiler
options, which enables evaluation of a range of possible options without
the need to compile and profile each one [52, 53].

Recent advancements have seen reinforcement learning (RL) tech-
niques making strides in compiler optimization, circumventing the require-
ment for collecting optimal labeled data [54]. This technique has been
applied to optimize individual compilation heuristics, such as inlining [55],
loop transformation [56, 57], and graph partitioning [58]. Several works rel-
evant to us have explored the full optimization pipeline, i.e. the LLVM phase
ordering problem, including AutoPhase [15], CORL [17], and POSET-RL [18].
These methods predominantly utilize model-free RL algorithms while our
work pioneers the use of an advanced model-based RL approach to reduce
real compiler interactions. Model-based RL [59] learns a simulation model
of the compiler environment, which is related in spirit to the aforemen-
tioned approach of supervised performance models. However, it goes a step
further by also learning a policy capable of directly determining the best
optimization option, thereby eliminating the necessity for a guided search
process.

Both machine learning techniques require crafting high-quality features
that capture the important characteristics of programs, a process known as
feature engineering. The most prevalent feature vectors are based on the
frequencies of various types of instructions within the programs [15, 60],
designed by expert intuitions. Numerous studies have aimed to reduce the
cost of feature design. Following the success of word2vec embeddings in
natural language processing [61], methods like code2vec [62], inst2vec [63],
and IR2vec [64] represent programs as distributed vectors that capture syn-
tactic and semantic information from the abstract syntax tree (AST) or
intermediate representation (IR). The surge in deep learning has enabled
feeding raw information such as AST [30], control-data flow graphs (CFG)
[29, 33], and code token sequences [31] into powerful deep neural networks,
capable of learning useful representations end-to-end.

Platforms that expose the compiler as a playground for AI experi-
ments have significantly reduced the entry barriers to intelligent compiler
research. OpenTuner [65] and YaCoS [66] serve as autotuning frameworks
with a range of compiler optimization techniques. Our experiments uti-
lize CompilerGym [20], which offers user-friendly interfaces for researchers
to interact with compilers in a reinforcement learning manner. We are
optimistic that the future release of our trained code optimization agents,
in conjunction with these platforms, can have a democratizing effect on
applying AI techniques to compiler optimizations.

21



Supercompiler Code Optimization with Zero-Shot Reinforcement Learning

Appendix B Implementation Details

B.1 Compiler Environment

Our experiments are conducted on the CompilerGym platform [20], version
0.2.5, with LLVM-10.0.0 integration.

B.2 Features and Actions

We extract program features following the approach of Autophase [15]. As
described in Section 5.1, we use a 56-dimension Autophase feature vector
concatenated with a 42-dimension action histogram vector as the observa-
tion. The Autophase feature contains various statistics of the IR code, with
each dimension thoroughly explained in Table B1. The action histogram
vector contains the counts of actions already taken by the agent within the
current episode. Both vectors are normalized to ensure that their values fall
within a reasonable range. Specifically, each element of the Autophase vec-
tor is divided by the total instruction count of the program, whereas the
action histogram vector is normalized by the total action count per episode,
set as 45.

Our action space is derived from Autophase [15], comprising 45 LLVM
optimization passes. However, CompilerGym excludes 3 actions due to
updates in the latest LLVM version. Thus, we utilize a total of 42 actions.
Table B2 presents the names of the LLVM optimization passes correspond-
ing to these 42 actions.

B.3 Hyperparameters

The hyperparameters for our DreamerV3 agent implementation are out-
lined in Table B3. For hyperparameters not specified, we use the same value
as the original DreamerV3 [24].

B.4 Model-Free Baselines

We use RLlib [67] to train and test model-free reinforcement learning algo-
rithms including PPO [46], A2C [43], IMPALA [45], APEX [44], and DQN [42].
All the experiments are conducted with 10 CPUs and an RTX-3090 GPU
over a minimum duration of 10 hours. The training process uses 5 roll-
out workers to interact with the environment and use 4 evaluation workers
to evaluate the checkpoint on the validation set. We use default hyperpa-
rameters of algorithms in RLlib following the CompilerGym platform [20],
except that we have carefully tuned the hyperparameters for our strongest
baseline, PPO, as listed in Table B4.
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Table B1: Descriptions of 56-dimension Autophase features (adapted from [20]).

Index Name Description

0 BBNumArgsHi Number of BB where total args for phi nodes is gt 5
1 BBNumArgsLo Number of BB where total args for phi nodes is [1, 5]
2 onePred Number of basic blocks with 1 predecessor
3 onePredOneSuc Number of basic blocks with 1 predecessor and 1 successor
4 onePredTwoSuc Number of basic blocks with 1 predecessor and 2 successors
5 oneSuccessor Number of basic blocks with 1 successor
6 twoPred Number of basic blocks with 2 predecessors
7 twoPredOneSuc Number of basic blocks with 2 predecessors and 1 successor
8 twoEach Number of basic blocks with 2 predecessors and successors
9 twoSuccessor Number of basic blocks with 2 successors
10 morePreds Number of basic blocks with gt. 2 predecessors
11 BB03Phi Number of basic blocks with Phi node count in range (0, 3]
12 BBHiPhi Number of basic blocks with more than 3 Phi nodes
13 BBNoPhi Number of basic blocks with no Phi nodes
14 BeginPhi Number of Phi-nodes at beginning of BB
15 BranchCount Number of branches
16 returnInt Number of calls that return an int
17 CriticalCount Number of critical edges
18 NumEdges Number of edges
19 const32Bit Number of occurrences of 32-bit integer constants
20 const64Bit Number of occurrences of 64-bit integer constants
21 numConstZeroes Number of occurrences of constant 0
22 numConstOnes Number of occurrences of constant 1
23 UncondBranches Number of unconditional branches
24 binaryConstArg Binary operations with a constant operand
25 NumAShrInst Number of AShr instructions
26 NumAddInst Number of Add instructions
27 NumAllocaInst Number of Alloca instructions
28 NumAndInst Number of And instructions
29 BlockMid Number of basic blocks with instructions between [15, 500]
30 BlockLow Number of basic blocks with less than 15 instructions
31 NumBitCastInst Number of BitCast instructions
32 NumBrInst Number of Br instructions
33 NumCallInst Number of Call instructions
34 NumGetElementPtrInst Number of GetElementPtr instructions
35 NumICmpInst Number of ICmp instructions
36 NumLShrInst Number of LShr instructions
37 NumLoadInst Number of Load instructions
38 NumMulInst Number of Mul instructions
39 NumOrInst Number of Or instructions
40 NumPHIInst Number of PHI instructions
41 NumRetInst Number of Ret instructions
42 NumSExtInst Number of SExt instructions
43 NumSelectInst Number of Select instructions
44 NumShlInst Number of Shl instructions
45 NumStoreInst Number of Store instructions
46 NumSubInst Number of Sub instructions
47 NumTruncInst Number of Trunc instructions
48 NumXorInst Number of Xor instructions
49 NumZExtInst Number of ZExt instructions
50 TotalBlocks Number of basic blocks
51 TotalInsts Number of instructions (of all types)
52 TotalMemInst Number of memory instructions
53 TotalFuncs Number of non-external functions
54 ArgsPhi Total arguments to Phi nodes
55 testUnary Number of Unary operations
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Table B2: A list of LLVM transformation passes selected as actions.

Index Name Index Name Index Name

0 -adce 14 -instcombine 28 -lowerinvoke
1 -break-crit-edges 15 -ipsccp 29 -lowerswitch
2 -constmerge 16 -jump-threading 30 -mem2reg
3 -correlated-propagation 17 -lcssa 31 -memcpyopt
4 -deadargelim 18 -licm 32 -partial-inliner
5 -dse 19 -loop-deletion 33 -prune-eh
6 -early-cse 20 -loop-idiom 34 -reassociate
7 -functionattrs 21 -loop-reduce 35 -sccp
8 -functionattrs 22 -loop-rotate 36 -simplifycfg
9 -globaldce 23 -loop-simplify 37 -sink
10 -globalopt 24 -loop-unroll 38 -sroa
11 -gvn 25 -loop-unswitch 39 -strip
12 -indvars 26 -lower-expect 40 -strip-nondebug
13 -inline 27 -loweratomic 41 -tailcallelim

Table B3: Hyperparameters of DreamerV3 in our experiments.

Hyperparameter Value

Architecture

RSSM recurrent units 1024
RSSM number of latents 32
RSSM classes per latent 32
MLP layers 4
MLP hidden units 400
Activation LayerNorm + SiLU

Training

Random exploration 500 environment steps
Replay buffer capacity 2× 106

Reward smoothing α [49] 0.6
Training frequency Every 5 environment steps
Batch size 50
Batch length T 50
Imagination horizon H 15
Discount γ 0.99
λ-target discount 0.95
World model loss scales 100.0 for Autophase

10.0 for action histogram
1.0 for reward
5.0 for discount
0.1 for KL

Actor entropy regularization η 3× 10−4

KL balancing 0.8
Optimizer Adam
World model learning rate 1× 10−4

Actor-critic learning rate 3× 10−5

Weight decay 1× 10−5

Gradient clipping 100
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Table B4: Hyperparameters for the PPO baseline, well tuned on our dataset to be
deviating from the default value in RLlib.

Hyperparameters Value

PPO

gamma 1.0
use gae True
lambda 1.0
train batch size 9000
lr 5e-5
kl coeff 0.2
kl target 0.01
vf loss coeff 1.0
num sgd iter 30
sgd minibatch size 128
clip param 0.3
vf clip param 10.0
weight decay 1e-6

Table C5: Dataset division of 8 CompilerGym benchmarks.

Dataset Training Split Validation Split Test Split

BLAS 200 50 50
cBench 23 N/A N/A
CHStone 12 N/A N/A
Linux 13,794 50 50
MiBench 40 N/A N/A
NPB 22 50 50
OpenCV 342 50 50
TensorFlow 1,885 50 50

Appendix C Benchmarks

CompilerGym Benchmarks

In our study, we select eight benchmarks for zero-shot test and in-domain
training: BLAS, cBench, CHStone, Linux, MiBench, NPB, OpenCV, and Ten-
sorFlow. These benchmarks are part of the built-in datasets provided by
CompilerGym version 0.2.5. For benchmarks with a total number of pro-
grams more than 100, we use the first 50 programs as the test set, the
following 50 programs as the validation set, and all of the rest as the training
set. These training and validation sets are only used for in-domain training.
The datasets comprising fewer than 100 programs are not applicable for in-
domain training; instead, all their programs are allocated to the test set. The
number of programs in each dataset after division is detailed in Table C5.
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AI-Generated Benchmarks

To further test the generalization ability of our CodeZero agent on different
programming languages, we borrow the method from FormAI [23] and gen-
erate a dataset containing 50 unique Objective-C programs using GPT-3.5.
We use the same prompt as FormAI, except that we add an instruction to ask
GPT to generate programs that can be directly compiled under Clang ver-
sion 10.0.0 and do not use ARC (Automatic Reference Counting), to improve
the compilation pass rate of generated programs. We compile the generated
programs using Clang without including any third-party libraries, and all
programs that cannot pass compilation are discarded.

Appendix D Extended Experimental Results

D.1 Learning Curves

The zero-shot test performance of our CodeZero agents during training is
shown in Figure D1. Note that we validate and test the agent every 10000
environment steps and report the test performance from the checkpoint
that achieved the best validation results for comparison among various
methods.
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Fig. D1: Zero-shot test performance of the CodeZero agent during training. We
report mean and standard deviation across three runs.

D.2 Quantitative Results

Quantitative results corresponding to Figure 3 in the main text are provided
in Table D6.
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Table D6: Quantitative results for code size reduction, corresponding to Figure 3. We
report mean and standard deviation across three runs.

-O0 Random Policy
Random Search

(1s)
CodeZero

(In-domain)
CodeZero

(Zero-shot)

BLAS
geomean 0.931 0.821±0.018 0.960±0.004 0.993±0.005 0.991±0.000
min 0.707 0.432±0.106 0.723±0.076 0.831±0.148 0.913±0.000
max 1.000 1.002±0.004 1.031±0.010 1.025±0.005 1.016±0.000

cBench
geomean 0.481 0.737±0.015 0.858±0.020 N/A 1.036±0.002
min 0.299 0.401±0.097 0.560±0.030 N/A 0.962±0.001
max 0.626 1.150±0.113 1.298±0.083 N/A 1.395±0.054

CHStone
geomean 0.487 0.701±0.043 1.037±0.006 N/A 1.094±0.005
min 0.402 0.278±0.108 0.889±0.044 N/A 1.000±0.006
max 0.655 1.038±0.033 1.304±0.038 N/A 1.378±0.021

Linux
geomean 0.988 0.981±0.004 1.001±0.000 0.993±0.000 0.986±0.005
min 0.615 0.740±0.126 1.000±0.000 0.700±0.001 0.642±0.041
max 1.011 1.001±0.002 1.011±0.000 1.011±0.000 1.009±0.003

Mibench
geomean 0.389 0.812±0.022 1.005±0.001 N/A 1.006±0.002
min 0.278 0.352±0.074 0.858±0.010 N/A 0.879±0.003
max 0.760 1.392±0.074 1.603±0.015 N/A 1.588±0.000

NPB
geomean 0.530 0.833±0.011 1.074±0.010 1.075±0.017 1.108±0.001
min 0.191 0.414±0.043 0.805±0.104 0.810±0.082 0.886±0.000
max 1.066 1.848±0.193 2.141±0.062 2.315±0.028 2.343±0.012

OpenCV
geomean 0.981 0.949±0.011 1.080±0.001 1.087±0.007 1.092±0.000
min 0.833 0.603±0.133 0.888±0.021 0.898±0.001 0.897±0.000
max 1.370 1.409±0.167 1.571±0.022 1.635±0.186 1.556±0.000

TensorFlow
geomean 0.983 0.912±0.009 1.006±0.003 1.032±0.000 1.032±0.001
min 0.927 0.618±0.046 0.877±0.009 0.970±0.010 0.968±0.011
max 1.010 1.235±0.034 1.267±0.007 1.289±0.008 1.282±0.002

D.3 Data Distribution Visualization

In Figure D2, we visualize the distribution of our training and test datasets.
To accurately represent the dynamic behavior of programs, we randomly
select 1000 action sequences, each with a length of 45, from our action
space. These sequences are subsequently executed on each program, with
the resulting Autophase features concatenated to form a feature vector with
dimensions of 1000 × 45 × 56 for every program. These comprehensive
feature vectors are finally processed using t-SNE [68] for dimensionality
reduction and visualization.

Figure D2 illustrates that our training data (denoted as triangles) has a
broad coverage of test programs (denoted as circles). This contrasts with
the Csmith dataset (denoted as crosses) employed in CompilerGym exper-
iments [20], which shows a significant deviation from real-world appli-
cations. Nonetheless, our visualization can still not perfectly capture the
transferability across datasets. For instance, empirical evidence suggests
that CodeContests are the most effective in generalizing to OpenCV and
TensorFlow, while the visual analysis does not directly imply this.
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Fig. D2: t-SNE [68] visualization of programs from training and test datasets.
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