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With the help of Newman-Janis method new spinning black hole (BH) solution for a non-local gravity model

was obtained. We show how to account the quantum gravitational correction part in BH shadows modelling

using spinning BH metrics with a model independent approach. It is confirmed that in the future to follow the

increasing of the experimental accuracy and therefore to reproduce new results theoretically one could take into

account different field correction terms instead of introducing of new fields and/or curvature expansions.

1. INTRODUCTION

The idea to use non-local actions in extended grav-

ity models is discussed for a long time [1]. Using this

approach gives hope to model the dark energy in a

more natural way. Non-local constructions were used,

for example, in Randall-Sundrum models [2]. Further

considering of non-local additions allowed to set new

constrains on gravity models using high energy physics

data [3]. So non-local operators also appear in the

unique effective action for quantum gravity

L = R+ c1R
2 + c2RµνR

µν + c3RµναβR
µναβ

+ αR log
�

µ2
R+ βRµν log

�

µ2
Rµν

+ γRµναβ log
�

µ2
Rµναβ , (1)

where R, Rµν and Rµναβ are the Ricci scalar, Ricci and

Riemann tensors correspondingly, ci, α, β and γ are

numerical coefficients [4]. The BH solution for the ac-

tion (1) was obtained and has the form (in (−,+,+,+)

signature):

ds2 = −ftdt
2 + frdr

2 + r2dΩ2, (2)

where

fr ≃

(

1−
2GnM

r

)

−1

−
β̂~G2

nM

r3
+O(G3

n),

ft ≃

(

1−
2GnM

r

)

−
α̂~G2

nM

r3
+O(G3

n).

The values α̂ and β̂ are the linear combinations of gauge

coefficients from Table 1 in [4], M is the BH mass and

Gn is the effective gravitational constant.

Here it is necessary to emphasis few important

items. The first one is that the structure of non-local

actions in different theories could have the same struc-

ture. Therefore their BH solutions will also have the

same structure. The most developed BH solution is Eq

(2) where one can see the combinations like GnM . This

means that the BH mass M is followed by the quan-

tum coefficient Gn. Taking into account the real mass

of Sgr A* it means the difference of 1044 between these

two values therefore the influence of non-local part is

negligible. Anyway we suppose that to proceed the

shadow modelling till the finish is interesting from 2

items. One of them is to show the model-independent

approach for quantum gravity effects accounting. The

other one is to demonstrate that if the non-local action

would have the same form (but with coefficients not

from the Planckian range) one could apply the sug-

gested scheme to make the theoretical predictions for

BH shadows more accurate without adding new fields

and/or curvature expansions.

So as one can see from Eq. (2) the obtained so-

lution is the spherically-symmetric BH. Following the

widely discussed idea that the study of BH shadows

image could give an additional information of the ex-

tended gravity structure [5,6] it seems interesting to use

the last results of the Event Horizon Telescope (EHT)

[7]. Here it is necessary to note that the simple esti-
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mation of the discussed method application to describe

the Universe accelerated expansion (to calculate the

turnaround radius [8]) gives the negative result by the

same reason discussed above.

Further both objects studied by the EHT represent

the spinning BHs. Meanwhile the BH solution estab-

lished in [4] is non-rotating BH. So to increase the ac-

curacy of theoretical predictions one has to generate a

Kerr-like solution from the existing Schwarschild one.

At the next step one has to use the Kerr-like metrics

for the theoretical modeling.

To fulfill the suggested program the paper structure

is as follows. The Section 2 is devoted to the Kerr-like

BH solution generation, in Section 3 we discuss the

generic items on spinning BH images and the corre-

sponding modelling ideas, The Section 4 contains the

results of our BH shadows modelling in the hypotheti-

cal case Gn ≈ M , Section 5 is devoted to the comparing

of our results with EHT ones and the Section 6 contains

the discussion and our conclusions.

2. ADDING ROTATION

2.1. Newman-Janis method application

To obtain a rotating solution the Newman-Janis al-

gorithm could be applied [6, 9]. This algorithm treats

a rotating solution as the generation of non-rotating

one [10]. According to the algorithm at the first step

one has to establish the initial non-rotating metrics in

Eddington-Finkelstein coordinates (u, r, θ, φ) using the

transformation rule:

dt =

√

fr
ft

du+ dr. (3)

Therefore the metrics (2) takes the form:

ds2 = −ftdu
2
− 2
√

frftdudr + r2dΩ2. (4)

Further we introduce the complex veirbein

ea = (lµ, nµ,mµ,m∗µ) with the conditions:

ηab =













0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0













, (5)

and therefore:

lµ = δµr ,

nµ =

√

1

frft
δµu −

1

2fr
δµr

mµ =

√

1

2r2

(

δµθ +
i

sin θ
δµφ

)

m∗µ =

√

1

2r2

(

δµθ −
i

sin θ
δµφ

)

To generate a rotation one has to include a complex

veirbein transformation in the form:

r → r
′

= r − ia cos θ,

u → u
′

= u+ ia cos θ,

where a is angular acceleration. After the transforma-

tion the functions ft, fr and the squared radial coordi-

nate r2 take the form:

fr → F̃r(r, θ, a), (6)

lim
a→0

F̃r(r, θ, a) = fr, (7)

ft → F̃t(r, θ, a), (8)

lim
a→0

F̃t(r, θ, a) = ft, (9)

r2 → ρ2 = r2 + a2 cos2 θ. (10)

Following [11] it is necessary to note that the trans-

formations (6 - 9) are not unique and additional con-

ditions are required. The most convenient choice is

grt = grφ = 0. Therefore the renewed veirbein takes

the form:

lµ′ = δµr′ , (11)

nµ′ =

√

1

F̃rF̃t

δµu′ −
1

2fr
δµr′ , (12)

mµ′ =

√

1

2ρ2

(

δµθ + ia sin θ(δµu′ − δµr′) +
i

sin θ
δµφ

)

. (13)

Using equations (5) and (11)-(13) one obtains the BH

metrics where the rotation is now included:

ds2 = − F̃tdu
2
− 2

√

F̃rF̃tdudr + ρ2dθ2

− 2a sin2 θ(

√

F̃rF̃t − F̃t)dudφ

+ 2a sin2 θ(

√

F̃rF̃tdrdφ

+ sin2 θ

(

ρ2 + a2 sin2 θ(2

√

F̃rF̃t − F̃t)

)

dφ2.(14)

Finally the transverse transformation in the form

du = dt+ χ1(r)dr,

dφ = dϕ+ χ2(r)dr (15)
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is applied. Following [11] we take χ1(r) and χ2(r) as:

χ1 = −
fr(ω + a2)

r2 + a2fr
, (16)

χ2 = −
fra

r2 + a2fr
, (17)

ω = r2
√

1

frft
. (18)

So the final form of Kerr-like metrics for the discussed

model is:

gtt = −
1

ρ2

[

(ω + a2)2

(f−1
r r2 + a2)

− a2 sin2 θ

]

,

gtφ = −
1

ρ2

[

(ω + a2)a

(f−1
r r2 + a2)

− a

]

,

gφφ = −
1

ρ2

[

a2

(f−1
r r2 + a2)

−
1

sin2 θ

]

,

gθθ =
1

ρ2
, grr =

f−1

r r2 + a2

ρ2
. (19)

Here

ρ2 = r2 + a2 cos2 θ,

fs = 1−
2MGn

r
,

fex =
~G2

nM

r3
,

ω = r2

(

1 +
(α̂+ β̂)fex

2

)

.

2.2. The Hamilton-Jacobi equation

To be able to derive the photons trajectories

around the spinning BH the form of Sr(r) and Sθ(θ)

from Hamilton-Jacobi equation is required. For null

geodesics:

gµν
∂S

∂xµ

∂S

∂xν
= 0. (20)

As the obtained metric has no dependence upon t and

φ therefore 2 conserved quantities occur. They are:

E = −pt and Lz = pφ (photon’s energy and angular

momentum respect symmetry axis). Therefore to di-

vide the variables one has to look for the solution of

equation (20) in the form:

S = −Et+ Lzφ+ Sr(r) + Sθ(θ). (21)

Next it is necessary to conclude that the variables in

eq. (20) for pr and pθ can be divided as:

ρ4(ṙ)2

E2
= R(r), (22)

ρ4(θ̇)2

E2
= Θ(θ), (23)

where

R(r) =
(

ω + a2 − aλ
)2

− (f−1

r r2 + a2)
[

η + (a− λ)
2
]

,

Θ(θ) = η + cos2 θ

(

a2 −
λ

sin2 θ

)

. (24)

Here η = Q
E2 , λ = Lz

E
and Q is Carter’s constant.

To calculate the equation for the circular photon or-

bit (only such photons could reach an remote observer)

R = 0, (25)

dR

dr
= 0. (26)

Substituting eq. (24) to (25) and (26) one finds the

solutions for λ and η in the form:

λ =
ω + a2

a
−

2ω′

a

(f−1

r r2 + a2)

(f−1
r r2)′

, (27)

η =
4(f−1

r r2 + a2)

(f−1
r r2)′

2
ω′2

−
1

a2

[

ω −
2(f−1

r r2 + a2)

(f−1
r r2)′

ω′

]2

,

where strokes denote the derivatives respect to r. Con-

sidering the plane normal to the direction to the remote

observer the shadow coordinates cab be written as fol-

lows

x′ = −
λ

sin θ0
, (28)

y′ = ±

√

η + a2 cos2 θ0 −
λ2

tan2 θ0
, (29)

where θ0 is solid angle between the BH rotation plane

and the axis to observer.

3. THE MODELLING OF BH SHADOW: HOW

TO INCLUDE THE ROTATION

With help of Python coding language we proceed

the numerical modelling of the BH shadow from the

metrics (19). Using expressions (28) and (29) coordi-

nates on the picture plane X and Y на were calculated.

The metrics (19) was applied with the different values

of rotation characteristics a and the coefficients α and

β.

As it was demonstrated earlier [12] the shadow from

spinning BH has some particular properties:

1. Horizontal shift The shadow shift along x axis

could be calculated with the help of the expres-

sion:

D =
xmin + xmax

2
, (30)

where xmin and xmax are the minimal and max-

imal x values respectively.
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2. Asymmetry When the values of spinning pa-

rameter a increase and become rather large the

shadow asymmetry appears [6] so that the hori-

zontal radius value becomes less than the vertical

one which does not change. Therefore the hori-

zontal shadow size becomes a measure of asym-

metry:

∆x = xmax − xmin. (31)

3. Diameters Let’s treat the horizontal diameter

as:

∆x = xmax − xmin = xR − xL, (32)

where L and R are left and right shadow shape

points. One can define the vertical diameter in

the same manner as:

∆y = ymax − ymin = yT − yB = 2yT , (33)

where B and T are the bottom and top points

of the shadow edge. Due to the symmetry of the

shadow: yB = yT , and Fig. 1(a) shows the rela-

tionship between ∆y, ∆x and points R,L, T and

B.

4. Circular approximation As the shadow has

the quasi-circular form it is convenient to treat

the points T , R and B lying on the circular [13].

Hence the shadow radius rs becomes the first ob-

servational value. As the second observational

value one can use the distortion parameter:

δcs = ∆cs/rs, (34)

where ∆cs is the distance from the circular to the

point L on the shadow (See Fig. 1(b)).

4. THE MODELLING OF BH SHADOW FOR

THE SPACE-TIME (19)

After few preliminary notes one can start to calcu-

late the shadow dependence upon α and β. Applying

gravitational corrections to the stable star metric sat-

isfying Tolmen-Oppenheimer-Volkov equation [14] we

introduce new variables α = α̂ и β = β̂ that are model-

independent.

Here it is necessary to point out that we use the

coefficient values from [4] as examples. So we establish

the shadow shapes for M = 11) and different a values

for Kerr metric and its extensions defined at [14] (in

the scalar field ξ = 1/3) on Fig. 2. The angle of plane

1) Because in the real case M = 10
44 the effect is vanishing as

it was pointed out in the Introduction

of rotation is equal to θ0 = π
2
. Note the 2 main partic-

ularities. Firstly the shadow shape shifts from rotation

axis with the increasing of a. Secondary the shadow

becomes asymmetric along x axis for big values of a.

Both particularities vanish at a → 0 when the circular

shadow corresponding to Schwarzchield case reduces.

Also note that when θ0 = π/2 the shadow size does

not change depending upon rotation (because the ver-

tical diameter remains the same).

For different field types we obtained the following

effective shadow sizes rs (Table 1):

Solution type α β rs

Kerr 0 0 5.196

Example 1 0.0318 0.0318 5.193

Example 2 0.0849 -0.1273 5.228

Example 3 0.1698 -0.2546 5.259

Example 4 4.52 -1.846 5.813

As EHT constrained the shadow size as

(4.3M < rs < 5.3M) [15] one conditionally could

neglect the last line in the table 1.

Now we concentrate on BH images study. We are

interesting in the shift D and and distortion parameter

δ. On Fig. 3(a) we show the dependence of D against

rotation parameter a in all discussed case. While α and

β increase the shift becomes smaller. The only excep-

tion is the case of near extreme rotation with a = 0.98

and the value for the Example 1. We suppose that the

reason is that in the discussed case β > 0 and in other

ones it is negative. In the case of big α and β values

the shift has the linear dependence against a. Unfor-

tunately, in practice it is difficult to extract the value

of this parameter as there is no information on the co-

ordinate origin. The distortion parameter δ is shown

on the Fig. 3(b)). The most difference from spherical

form occurs in Example 1. At Example 4 case in α and

β have rather big absolute values the shadow remains

spherically-symmetric even in the big a case.

5. CONSTRAINTS FROM EHT RESULTS ON

SGR A*

Now we have all information necessary to compare

our results with EHT images for Sgr A*. EHT claims

that the most probable values of a are equal to 0.5 and

to 0.94 [15]. This assumption appeared to be possible

as Sgr A* is situated in our Galaxy and the orbits of

surrounding stars were observed. Fig. 4 demonstrates

the profile of BH shadow for Sgr A* from EHT data

4
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(rotation plane inclination is equal to θ0 = π/6, a is

equal to 0.5 и 0.94). For comparison the case a = 0

is also presented. From fig. 4 one can conclude that

for the given angle value the shape distortion is small

but the shadow size changes. We start from the shift

of shadow size (fig. 5). In contrast with the case where

θ0 = π/2 if θ0 = π/6 the shadow size depends against

a. From the plot it is seen that EHT constraint line

passes all the fields (green region) except example 4

one (reg region). Concerning to the shift D (fig. 6(a))

one concludes it becomes less than in the previous case

from previous paragraph. As for the distortion param-

eter δ (fig. 6(b)): it has a maximum at a = 0.94 about

5-8% (except neglected example 4). At a = 0.5 the

distortion is equal to 1.5%.

6. DISCUSSION AND CONCLUSIONS

Using the Newman-Janis algorithm we obtained

spinning solution for the quantum gravity model with

the action (1). We proceed the modelling of BH shadow

for the rotating metrics for the pure quasi-Kerr case and

taking into account the additional fields in the limit

Gn ≈ M . For a more visual representation we take

θ0 = 90◦ as at such a case a shadow obtains maximal

distortions during the fast rotation. We show that for

fast rotation (when a tends to 1) for all cases except ex-

ample 4 one the BH shadow is deformed. For the pure

Kerr metrics and example 1 this deformation is equal

to 10-11%, for the example 2 and example 3 is drops to

5-8%. Here it is necessary to point out that less accu-

racy is required to fix this deformation than to fix the

shadow size. This occurs because of 2nd and 3rd order

corrections as it was shown earlier [5]. In the discussed

approximation Gn ≈ M corrections and a rotation con-

tribute opposite one to the other and, therefore, could

compensate each other. So in the future to follow the

increasing of the experimental accuracy and therefore

to reproduce new results theoretically one could take

into account non-local terms (if compatible with BH

mass) instead of introducing of new fields and/or cur-

vature expansions.

EHT results [15] show that the most probable tilt

angle for Sgr A* is θ0 = 30◦ and the most probable

values of a are equal to 0.5 and 0.94. We demonstrated

that in this case (in the hypothetical case Gn ≈ M)

the shadow deformation is not big. At a = 0.94 defor-

mation appears to be 5-8% (except Example 4), when

a = 0.5 deformation drops to 1.5%. Therefore after

increasing the accuracy the rotation characteristics of

Sgr A* could be extracted better. Next, for a given

inclination of the rotation plane the shadow size de-

pends upon a. This fact could also help to establish

BH shadow properties in future.

Finally the algorithm of non-local gravitational ef-

fects accounting in BH shadow modelling was sug-

gested. This algorithm is independent on the ultra-

violet structure of complete theory of quantum gravity

and could be extended to other non-local theories.
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ЖЭТФ Non-local gravitational сorrections in black hole shadow images

Fig. 1. The shadows limiting values R, L, T and B against shadow diameters ∆x and ∆y (a). The observable rs and

∆cs, obtained from the circle passing T , R and B (b).
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Fig. 2. The shadow profile for different rotation parameters a for Kerr-like metric and its generalisations when the

inclination angle of the rotation plane is θ0 =
π

2
.
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Fig. 3. The dependence of the shift D (a) and distortion parameter δ (b) against rotation acceleration a for quasi-Kerr

metric and for different fields added when the inclination angle of the rotation plane is θ0 =
π

2
.
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Fig. 4. The BH shadow profile against rotation acceleration a for example 2 field when the inclination angle of the

rotation plane is θ0 =
π

6
(Sgr A*).
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Fig. 5. The dependence of BH shadow size rs against rotation acceleration a for Kerr-like metric and with the additional

fields added when the inclination angle of the rotation plane is θ0 =
π

6
(Sgr A*). The red line (more than 5.3) denotes

the region excluded by EHT results on Sgr A*, the green line (less than 5.3) denotes the region allowed by EHT results

on Sgr A*.
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Fig. 6. The dependence of the shift D (a) and distortion δ (b) against rotation acceleration a for Kerr-like metrics and

with the additional fields added when the inclination angle of the rotation plane is θ0 =
π

6
(Sgr A*).
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