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ABSTRACT
As weak lensing surveys go deeper, there is an increasing need for reliable characterization of non-Gaussian structures at small
angular scales. Here we present the first cosmological constraints with weak lensing scattering transform, a statistical estimator
that combines efficiency, robustness, and interpretability. With the Hyper Suprime-Cam survey (HSC) year 1 data, we obtain
Ωm = 0.29+0.04

−0.03, 𝑆8 ≡ 𝜎8 (Ωm/0.3)0.5 = 0.83 ± 0.02, and intrinsic alignment strength 𝐴IA = 1.0 ± 0.4 through simulation-based
forward modeling. Our constraints are consistent with those derived from Planck. The error bar of Ωm is 2 times tighter than that
obtained from the power spectrum when the same scale range is used. This constraining power is on par with that of convolutional
neural networks, suggesting that further investment in spatial information extraction may not yield substantial benefits.

We also point out an internal tension of 𝑆8 estimates linked to a redshift bin around 𝑧 ∼ 1 in the HSC data. We found
that discarding that bin leads to a consistent decrease of 𝑆8 from 0.83 to 0.79, for all statistical estimators. We argue that
photometric redshift estimation is now the main limitation in the estimation of 𝑆8 using HSC. This limitation is likely to affect
other ground-based weak lensing surveys reaching redshifts greater than one. Alternative redshift estimation techniques, like
clustering redshifts, may help alleviate this limitation.
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1 INTRODUCTION

Due to gravitational lensing, matter density fluctuations in our uni-
verse distort the images of background galaxies. On cosmological
scales, this phenomenon is referred to as cosmic shear (for a review,
see Kilbinger 2015; Mandelbaum 2018). This effect can be used
to probe the geometry and the matter distribution of our Universe.
At relatively large angular scales, the lensing field is approximately
Gaussian and can be characterized by two-point statistics, such as
the power spectrum or correlation function. However, as illustrated
in Figure 1, ongoing weak lensing surveys can probe scales small
enough to reveal rich non-Gaussian structures, requiring additional
statistics to extract the full cosmological information in the field.

As opposed to Gaussian fields, non-Gaussianities possess much
more degrees of freedom, and different statistics may exhibit sensi-
tivity to diverse features and systematic effects in a map. The efficacy

★ E-mail: scheng@ias.edu

of non-Gaussian statistics has been explored in the weak lensing con-
text, including on the most recent datasets (Martinet et al. 2018; Fluri
et al. 2022; Zürcher et al. 2022; Secco et al. 2022b; Liu et al. 2023;
Thiele et al. 2023; Anbajagane et al. 2023; Heydenreich et al. 2022;
Burger et al. 2023; Marques et al. 2024a). However, there has been
no simple agreement on which summary statistic to use. Traditional
moment based statistics are not robust to outliers in real data. Other
simple statistics are usually too focused on particular features, and
thus cannot extract the full cosmological information in a field. On
the other extreme, inference with deep learning methods provide
better constraining power but still lack interpretability.

Recently, a new summary statistic called the scattering transform
has been proposed to extract cosmological information from weak
lensing maps (Cheng et al. 2020). Similar statistics using related
ideas, such as the phase harmonics (Allys et al. 2020) and scattering
spectra (Cheng et al. 2023), have also been proposed and studied
on mock data for cosmology. Originating from the computer vision
community (Bruna & Mallat 2013), the scattering transform is
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2 Cheng et al.

Figure 1. The convergence maps made from HSC Y1 galaxy shear catalog (six panels), and a part of example mock map tailored to GAMA09H with no galaxy
shape noise for reference. To visually demonstrate the cosmic shear signal, we only show maps using galaxies in the full photometric redshift range of 0.3–1.5
and thus with the highest signal-to-noise ratio. The maps are made using the procedure described in section 2.1 with 2 arcmin Gaussian smoothing. There are
visible non-Gaussian structures, such as hierarchically clustered peaks above the noise level.

shown to exhibit high information content and robustness in mock
cosmological (Cheng & Ménard 2021b; Gatti et al. 2023) and
astrophysical (Allys et al. 2019) analysis. In this paper, we present
the first application of this statistic to observational weak lensing
data1. Our analysis uses the Subaru Hyper Suprime-Cam first-year
(HSC Y1) data. We employ a forward modeling approach with a
large set of 𝑁-body simulations and mock catalogs customized for
the data, and derive cosmological constraints.

Weak lensing data is mainly sensitive to two cosmological
parameters and provides roughly uncorrelated constraints on
𝑆8 ≡ 𝜎8

√︁
Ω𝑚/0.3 and Ωm. Here, Ω𝑚 is the total matter density

today, and 𝜎8 represents the linear matter fluctuation within a
sphere of radius 8ℎ−1Mpc. The scattering transform and in general
non-Gaussian statistics are expected to significantly tighten the
constraint of Ωm by distinguishing fields with similar amplitude of
lensing fluctuations but different extent into the non-linear regime.
In addition, in light of the recent tension between 𝑆8 values derived
from the cosmic microwave background (Planck Collaboration

1 Application of the scattering transform has been explored to galaxy cluster-
ing with BOSS data (Valogiannis & Dvorkin 2022; Valogiannis et al. 2023)
but not yet on weak lensing data.

et al. 2020) and large-scale structures found in various studies (e.g.,
Hildebrandt et al. 2020; Asgari et al. 2021a; García-García et al.
2021; Abbott et al. 2022; Amon et al. 2022; Li et al. 2023; Dalal
et al. 2023; Marques et al. 2024b), the exploration of non-Gaussian
statistics provides a consistency check and may open a new avenue
for understanding the underlying cause.

2 STATISTICAL ANALYSIS OF HSC Y1 DATA

We perform a statistical analysis of the first year data of the HSC
survey2 (Aihara et al. 2018), which is a wide-area imaging survey
conducted using the 8.2m Subaru telescope in Hawaii in five broad-
bands, 𝑔𝑟𝑖𝑧𝑦. The HSC is the the deepest large-area weak lensing
survey to date, with 5𝜎 point-source depth of 𝑖 ∼ 26 and typically 𝑖-
band seeing of 0.58". Hence, the HSC data is well suited for studying
the non-Gaussian structures in the lensing field.

The first year data release of HSC, referred to as HSC S16A
(Mandelbaum et al. 2018a), contains data taken from March 2014
to April 2016 and covers an area of 136.9 deg2 area in six disjoint
fields: GAMA09H, GAMA15H, HECTOMAP, VVDS, WIDE12H, and XMM.

2 https://hsc.mtk.nao.ac.jp/ssp/
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Cosmological constraints from weak lensing scattering transform 3

Due to the limited 10×10 deg2 size of our cosmo-varied simulations,
we trim off some edge regions in GAMA09H and GAMA15H that exceed
a width of 10 degrees.

2.1 Weak lensing mass map

Our analysis is based on weak lensing convergence maps (also called
mass maps) created using the galaxy shapes measured by Man-
delbaum et al. (2018a) from the 𝑖-band coadded images with the
re-Gaussianization PSF correction method (Hirata & Seljak 2003).
Figure 1 shows the resulting mass maps, which clearly reveals non-
Gaussian structures such as peaks and ridges. Below, we describe the
procedures for creating the mass maps.

To perform a tomographic lensing analysis, we select source galax-
ies in 4 redshift bins, with edges [0.3, 0.6, 0.9, 1.2, 1.5]. Below, we
will refer to those bins as bin 1 to 4, from low to high redshift. The
redshift bin assignment is determined using the “best-fit” point es-
timate of redshift provided by the Ephor-AB photo-z code (Tanaka
et al. 2018). The effective number density of galaxies in each photo-z
bin is 5.14, 5.23, 3.99, 2.33 arcmin−2, respectively. The total number
of galaxies is about 8.5 million.

We begin by creating shear maps from the galaxy shape catalog.
The survey area is discretized into pixels, each with a size of 0.88
arcminutes. Then, we calibrate and average the observed galaxy el-
lipticity 𝒆 to obtain an unbiased estimator 𝜸̂ of the underlying cosmic
shear 𝜸 for each pixel,

𝜸̂ =
1

1 + 𝑚̄tot

(
𝒆

2R̄
− 𝒄

)
, (1)

where 1+𝑚tot is the total multiplicative bias, 𝒄 is the additive bias for
each galaxy, andR ≡ 1−𝑒2

rms denotes the responsivity. This estimator
originates from taking expectation of both sides of the shear distortion
equation at small shear limit: 𝒆 = 𝒆int+2(1+𝑚)R𝜸+ 𝒄+ 𝒆mea, where
𝒆int and 𝒆mea are the intrinsic galaxy ellipticity and measurement
error, both assumed to have zero expectation.

Following Hikage et al. (2019), we include three terms in the
total multiplicative bias 𝑚tot = 𝑚 + 𝑚sel + 𝑚R , where 𝑚 is that
obtained from image simulations (Mandelbaum et al. 2018b) and
averaged within each of the individual fields and for each of the
four redshift bins, 𝑚sel = [0.0086, 0.0099, 0.0091, 0.0091] is the
multiplicative bias caused by galaxy size selection for each redshift
bin, and 𝑚R = [0.000, 0.000, 0.015, 0.030] is the correction for
redshift-dependent responsivity (see section 5.3 of Mandelbaum et al.
2018b).

In eq. 1, the bar ·̄ represents averages weighted by 𝑤:

𝜙(𝑥, 𝑦) ≡
∑

in pixel (x,y) 𝑤𝑖𝜙𝑖∑
in pixel (x,y) 𝑤𝑖

, (2)

where 𝜙(𝑥, 𝑦) represent the value of any quantity in {𝒆,R, 𝑚tot, 𝒄}
at the pixel (x,y), and the weights 𝑤𝑖 are read directly from the
HSC S16A catalog (Mandelbaum et al. 2018a), where it is defined
as 𝑤 = (𝑒2

rms + 𝜎2
𝑒 )−1, where 𝜎2

𝑒 is the mean square of galaxy
ellipticity in each component, estimated from all galaxies with sim-
ilar color, brightness, and seeing, and 𝜎2

𝑒 is the measurement error
(Mandelbaum et al. 2018b). We further smooth our shear map with
a Gaussian smoothing kernel of 2 arcmin in size to reduce the effect
caused by the non-uniform weight map (galaxy counts per pixel). For
Gaussian statistics, an uneven weight map can be analytically incor-
porated in the definition of the statistics. However, for non-Gaussian
statistics except moment based ones, there is no general method to
analytically incorporate the weight map, therefore a proper smooth-
ing is usually needed. We note that compared to our two companion

papers (Thiele et al. 2023; Marques et al. 2024a), the smoothing
algorithm used in this paper incorporates the weight map in a way
closer to the optimal weighting in power spectrum analysis and thus
provides lower noise level. The algorithm of smoothing and more
discussions are presented in appendix A. After smoothing, pixels
with galaxy density lower than half of the mean density are masked
and set to zero. For visualization purpose, we in-paint the masked
regions (Pires et al. 2009) when generating Figure 1, but keep the
masked regions as zero for statistical analysis. The shear maps are
then converted into the mass maps using their arithmetic relation in
Fourier space (Kaiser & Squires 1993) and implemented assuming
periodic boundary conditions for each field of view.

2.2 Scattering transform and power spectra

We consider two types of summary statistics of the convergence
maps: the power spectrum extracting Gaussian information, and scat-
tering transform coefficients providing substantial non-Gaussian in-
formation.

The scattering transform was recently introduced to cosmology
and has desirable properties when performing statistical analyses: it
compresses the information in a robust way (Cheng et al. 2020). It
achieves the constraining power of a deep convolutional neural net-
work without the need to train millions of neurons. The number of
coefficients used is only comparable to that of the power spectrum,
which is smaller than most other non-Gaussian statistics. In practice,
such an internal compression of information significantly reduces the
estimation noise of the covariance matrix and likelihood emulator.
Compared to high-order moment based statistics, the scattering co-
efficients do not amplify outliers, making the estimator stable under
cosmic variance and robust to outliers in real observations.

The scattering transform also serves as a bridge between traditional
moment-based statistics and convolutional neural networks. In the
context of weak lensing maps, it can measure the scale-dependent
sparsity of structures in the field, which reflects how non-linearly
the fluctuations have evolved and therefore significantly improve the
constraint of Ωm. For a more intuitive understanding, we refer the
reader to our pedagogical review (Cheng & Ménard 2021a).

From a lensing convergence field 𝜅, the scattering transform first
separates scales by wavelet convolutions, and then applies a point-
wise modulus as non-linearity:

𝐼
𝑗 , 𝜃

1 (𝑥, 𝑦) = |𝜅 ∗ 𝜓 𝑗 , 𝜃 | , (3)

where ’∗’ represents convolution, and wavelets𝜓 are band-pass filters
labeled by their size 𝑗 and orientation 𝜃. As shown in Figure 2, we
use wavelets that are one-sided in Fourier space and thus complex-
valued in real space. The modulus therefore converts fluctuations
into their local amplitude (i.e. envelope) so that the 𝐼1 fields are local
intensity maps of fluctuations in a frequency range. In particular we
use directional Morlet wavelets, whose profiles in frequency space
are close to off-centered Gaussians. The mathematical form is given
in Appendix B.

The 1st-order scattering coefficients are the average of these 𝐼1
fields over space and orientations

𝑠1 ( 𝑗) = ⟨𝐼1⟩𝑥,𝑦, 𝜃 . (4)

The 𝑠1 coefficients are qualitatively similar to the power spectrum at
the central frequency of the wavelet 𝜓 𝑗 – they just differ in the sense
of being 𝐿1-norm of the 𝐼1 fields instead of the square of 𝐿2-norms.

To characterize more non-Gaussian features, each of the 𝐼1 fields

MNRAS 000, 1–12 (2024)



4 Cheng et al.

Figure 2. Upper: The 2D profile of a Morlet wavelet used in the scattering
transform. In real space it is a local wave packet, and in Fourier space it is
a band pass window. Other wavelets in the same family can be created by
dilation and rotation. Lower: The radial profile of a family of Morlet wavelets
in Fourier space. The pixel size is 0.88 arcmin. In our main analysis, we use
maps with 2 arcmin smoothing and wavelets with 𝑗=2–4.

are further analyzed following the same procedure,

𝐼
𝑗1 , 𝜃1 , 𝑗2 , 𝜃2
2 (𝑥, 𝑦) = |𝐼 𝑗1 , 𝜃1

1 ∗ 𝜓 𝑗2 , 𝜃2 | = | |𝜅 ∗ 𝜓 𝑗1 , 𝜃1 | ∗ 𝜓 𝑗2 , 𝜃2 | (5)

𝑠2 ( 𝑗1, 𝑗2) = ⟨𝐼2⟩𝑥,𝑦, 𝜃1 , 𝜃2 (6)

For the second-order scattering coefficients, as pointed out in (Cheng
et al. 2020), most of the cosmological information lies in the
orientation-average coefficients. Therefore, we average over both ori-
entations 𝜃1 and 𝜃2. It has also been shown that only coefficients with
𝑗1 < 𝑗2 are informative. Intuitively, this is because the modulus con-
verts fluctuations into their local amplitude (envelope), which tends
to be smoother than the original fluctuations. The number of scatter-
ing coefficients is therefore 𝐽 + 𝐽 (𝐽 − 1)/2, where 𝐽 is the number of
wavelet scales used.

Now we consider the power spectrum which carries only the Gaus-
sian information. To cover exactly the same frequency range and
make a fair comparison between the Gaussian and non-Gaussian in-
formation, we use the same wavelets 𝜓 to weigh and bin the power
spectrum, thereby obtaining a wavelet power spectrum,

𝐶wavelet
𝑙

( 𝑗) = ⟨|𝜅 ∗ 𝜓 𝑗 , 𝜃 |2⟩𝑥,𝑦, 𝜃 = ⟨𝐼2
1 ⟩𝑥,𝑦, 𝜃 (7)

The wavelet power spectrum 𝐶wavelet
𝑙

( 𝑗) is the averaged power spec-
trum 𝐶𝑙 within the frequency coverage of the wavelets3. For brevity,
we shall use 𝐶𝑙 to represent 𝐶wavelet

𝑙
( 𝑗) in figures and tables and

specify the 𝑗-range in the captions. Compared to the normal binning
of power spectrum, the wavelet binning guarantees that the scale
coverage of the power spectrum is exactly the same as the scattering
transform. We also compute the normally binned power spectrum,

3 Strictly speaking, the averaging kernel is ⟨
∫
( 𝜓̃ 𝑗, 𝜃 (𝑘, 𝜃𝑘 ) )2𝑘𝑑𝜃𝑘 ⟩𝜃 ,

while Figure 2 shows 𝜓̃ 𝑗, 𝜃 (𝑘, 𝜃𝑘 = 0) . More discussion can be found in
the appendix C of Cheng & Ménard (2021a).

Figure 3. Significant improvement of constraining power by including joint
non-Gaussian tomography, shown with mock inference. For simplicity we as-
sume no intrinsic alignment. The orange region represents our default setting
with 15 joint 𝜅 maps for scattering transform and 10 maps for the wavelet
power spectra (see section 2.4 for more explanations) with 𝑗=2–4. It is the
68% contour of posterior inferred from the mean data vector at fiducial cos-
mology. The dark blue contour represents the constraint with one map using
galaxies with all redshifts, and the cyan contour represents the constraint with
four tomographic maps for galaxies from each individual redshift bin.

where 8 bins are set in the range 300 < 𝑙 < 3500 with equal spac-
ing in logarithmic of 𝑙. They are computed directly from the 𝜅 map
without further treatment on masks. As we follow a forward model-
ing approach and compute the statistics for observational and mock
data in the same way, the mask should not bias the inference. When
computing the scattering transform and power spectra, we adopt
the flat sky approximation and assume periodic boundary condition.
To reduce the influence of masks, when calculating the scattering
transform 𝑠1, 𝑠2 and wavelet power spectrum 𝐶𝑙 ( 𝑗), we exclude the
masked regions in the last step of spatial average, i.e., ⟨·⟩𝑥,𝑦 becomes
a weighted average with the mask as its weight.

2.3 Mock data and emulator

We follow a simulation-based inference approach to infer cosmolog-
ical parameters from the observational data, as there is no analytical
predictions for the scattering transform statistics so far. To build an
emulator for the summary statistics, we use two sets of 𝑁-body sim-
ulations (Takahashi et al. 2017; Shirasaki et al. 2021) to generate
multiple realizations of mock shear catalogs customized for our ob-
servational data (HSC Y1), and then make mass maps following the
same pipeline as on real data.

Detailed description of the procedures to make the mock catalogs,
the cosmological inference framework, and inclusion of systematics
are presented in Appendix C, and details about the 𝑁-body simula-
tions are presented in Appendix D. Below we only briefly summarize
the information.

In our mock dataset, the 𝑁-body simulations assume the ΛCDM
model. One set is used to sample cosmic variance at a fiducial cos-
mology (Takahashi et al. 2017), and the other is used to explore the
cosmological dependence ofΩm and 𝑆8 (Shirasaki et al. 2021), which
samples 100 cosmology in the range of 0.1 < Ωm < 0.7 and 0.23
< 𝑆8 < 1.1 . After the mock mass maps are made, we build a like-
lihood emulator of the summary statistics to perform cosmological

MNRAS 000, 1–12 (2024)
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statistics remarks scale range # of coefficients Ωm × 1000 𝜎 (Ωm ) × 1000 𝑆8 × 1000 𝐴IA 𝑝-value

𝑪𝒍 + ST 𝑗=2–4 120 287 +42
−30 36 832 ± 18 0.96 ± 0.41 0.70

ST 𝑗=2–4 90 318 +62
−41 52 821 +19

−22 1.14 ± 0.40 0.46
𝐶𝑙 𝑗=2–4 30 300 +83

−70 77 820 +18
−22 1.27 ± 0.47 0.42

𝐶𝑙 𝑙=300–3500 80 357 +126
−86 106 814 +22

−30 1.21 ± 0.48 0.92
𝐶𝑙 𝑙=300–1900 60 290 +152

−83 118 814 +21
−29 1.00 ± 0.55 0.83

no IA 252 +25
−21 23 831 ± 17 0 0.43

1’ smoothing 275 +38
−27 33 835 ± 16 0.76 ± 0.40 0.82

TNG baryon 301 +48
−33 41 836 ± 19 0.95 ± 0.41 0.69

𝐶𝑙 + ST no psf 𝑗=2–4 120 299 +47
−32 39 834 ± 18 0.92 ± 0.41 0.69

mizuki photo-z 294 +48
−34 41 825 ± 19 1.26 ± 0.41 0.59

frankenz photo-z 262 +70
−42 56 829 ± 18 0.82 ± 0.33 0.57

no bin 3 370 +120
−79 100 786 +29

−36 0.82 ± 0.36 0.53

Table 1. Summary of our cosmological constraints (marginal medians and 16 and 84 percentiles) using different summary statistics, and the p-values at the best
fit of the posterior assuming Gaussian sampling distribution. The default setting (first line with boldface) uses 2 arcmin smoothing, MLZ photo-z and no baryonic
effect.

inference. We fit the simulations with Gaussian sampling distribution
whose mean vector changes with Ωm and 𝑆8, but covariance matrix
is independent of cosmological parameters.

We also include the intrinsic alignment strength 𝐴IA as a nuisance
parameter to be inferred, and we marginalize over two systematic
effects: multiplicative bias and PSF residual. For baryonic feedback
and different photometric redshift, we only test their influence on
different prescriptions but not marginalizing them. We do not include
source clustering in our mock data as it is not expected to bias our
statistics, which are even functions of the field values (e.g., Gatti
et al. 2024).

2.4 Non-Gaussian tomography

Correlated Gaussian information between different tomographic
maps can be exhausted by computing all the 4 auto- and 6 cross-
power spectra. However, when considering non-Gaussian statistics,
because many non-Gaussian statistics are defined on single maps,
the analysis has usually been performed on individual tomographic
maps, and there has not been an agreed way to extract correlated
non-Gaussian information. In the context of peak count statistics,
Martinet et al. (2021) proposed to include the cross information by
simply computing non-Gaussian statistics on joint maps,

𝜅joint =
∑︁
𝑖

𝑁𝑖𝜅𝑖 (8)

where 𝑁 is the effective galaxy number density for a tomographic
map and the summation is over subsets of 1, 2, 3, 4. There are 11 such
combinations plus the 4 individual maps. We point out that this is also
similar to the way neural networks deal with multi-channel images,
and it can be interesting to consider not only the summation, but more
general linear combinations, and further look for the optimal choices.
Nevertheless, in this study we just follow the idea of Martinet et al.
(2021) and compute the scattering transform on the 15 maps. We
find that including the cross-map information significantly improves
the constraining power on Ωm and 𝐴IA. Figure 3 shows the mock
inference for Ωm and 𝑆8 with no intrinsic alignment. Compared to
the usual strategy of using only 4 tomographic maps or only 1 map
with galaxies of all redshifts, a factor of two is earned by including
the joint maps. In fact, when assuming 𝐴IA = 0, it suffices to add only
3 joint maps, 𝜅1+2+3+4, 𝜅2+3+4, and 𝜅3+4 to the 4 individual maps
𝜅1, 𝜅2, 𝜅3, and 𝜅4, which provides essentially the same constraining

Figure 4. Posterior contours (68% and 95%) ofΩm and 𝑆8 = 𝜎8 (Ωm/0.3)0.5

with HSC Year 1 data, using the tomographic scattering transform (ST) and
wavelet power spectra covering the same frequency range ( 𝑗=2–4), with
intrinsic alignment parameter 𝐴IA marginalized. The maps are smoothed by
a 2’ Gaussian kernel. The values of marginal constraints are listed in Table 1.
The scattering transform tightens the constraints of Ωm by a factor of 2.

power as using all 15 maps. However, when marginalizing over 𝐴IA,
including all the 15 maps improves the constraint of Ωm by about
20%. A quantitative comparison using real HSC Y1 data is shown in
Table 1.

3 RESULTS AND DISCUSSIONS

Figure 4 shows the cosmological constraints on HSC Y1 data. As the
default setting, we use maps smoothed by a 2 arcmin Gaussian kernel
and wavelets with 𝑗 = 2, 3, 4 corresponding to central frequencies
at 𝑙 = 600, 1200, 2400 and together covering 𝑙 ≈ 300–3500 (see
Figure 2). In total 90 scattering coefficients (45 𝑠1 and 45 𝑠2) are
computed from 15 tomographic maps and joint maps. The wavelet
power spectra is computed using the same wavelets for frequency

MNRAS 000, 1–12 (2024)



6 Cheng et al.

binning and on 10 tomographic and joint maps, which is enough to
cover all Gaussian information.

The posteriors of Ωm and 𝑆8 are obtained with the intrinsic
alignment parameter 𝐴IA and other nuisance parameters marginal-
ized. The constraints are also listed in Table 1. Our tight con-
straint obtained from the scattering transform and power spectra,
Ωm = 0.287+0.042

−0.030 and 𝑆8 ≡ 𝜎8 (Ωm/0.3)0.5 = 0.832 ± 0.018, is
consistent with the value inferred by Planck Collaboration et al.
(2020) (TT,TE,EE+lowE+lensing) in both parameters. The small er-
ror bar of Ωm and its consistency with Planck demonstrate the power
and reliability of the scattering transform statistics.

In Table 1, we also show the constraints with several adjustments
to the default setting to demonstrate the robustness of our result. In
particular, we find that an Illustris-TNG baryonic feedback only shifts
the 𝑆8 inference up by 0.004 (0.2𝜎). Further study of the impact of
baryons can be found in Grandón et al. (2024). Different photo-z
codes or PSF-residual modeling do not shift 𝑆8 significantly, either.

3.1 Non-Gaussian estimate improvements

By adding the scattering transform coefficients to the wavelet power
spectra, the constraint on Ωm is improved by a factor of 24. Cheng
et al. (2020) have shown that on a single-redshift convergence map,
the constraining power of the scattering transform is on par with that
of the convolutional neural networks reported in Ribli et al. (2019).
Here we confirm the same constraining power on tomographic anal-
ysis of real data by comparing to Lu et al. (2023)’s convolutional
neural net (CNN) results with the same data set.

Recently, new types of neural-net-based models have also been
proposed for cosmological inference (Dai & Seljak 2022, 2024). In
particular, the multiscale flow model combines the wavelet decom-
position idea as used in the scattering transform with the normalizing
flow idea to model the likelihood of the whole field, and has been
reported to achieve better constraining power than CNN and the scat-
tering transform on simulated weak lensing data (Dai & Seljak 2024).
However, its performance in real data with source clustering, survey
mask, and other systematics remains to be confirmed.

As for the constraining power of 𝑆8, we find on both mocks and
real data no significant improvement from including non-Gaussian
information, consistent with previous forecast on mock data (Cheng
et al. 2020). There has been some confusion in the literature about
the tightening of 𝑆8 constraint from non-Gaussian statistics. We find
that almost all the reported tightening of 𝑆8 in the literature can
be explained by two reasons. One is the aforementioned mismatch
of scales between the non-Gaussian and Gaussian statistics. Many
non-Gaussian statistics rely on map smoothing to cut scales, but a
Gaussian smoothing kernel does not draw a sharp frequency cut
(Figure 2). The second reason is leakage from the tightening of
Ωm due to remaining correlation between 𝑆8 and Ωm, which can
be eliminated by optimizing the power index 𝑎 in the definition of
𝑆8 ≡ 𝜎8 (Ωm/0.3)𝑎 or by fixing (conditioning on) Ωm. Therefore,
we conclude that there is no evidence that non-Gaussian statistics can
significantly tighten the error bar of 𝑆8. Nevertheless, non-Gaussian
statistics do provide consistency checks for the 𝑆8 constraint.

4 When compared to the power spectra with 6 bins between 𝑙 = 300–1900,
as adopted by Hikage et al. (2019), the improvement is a factor of 3, but
apparently, the additional factor of 1.5 comes from extending the frequency
range rather than including non-Gaussian information.

Figure 5. Shift of 𝑆8 inference when using different subsets of redshift bins.
The constraints are performed using tomographic wavelet power spectra (in-
cluding the cross-spectra). To avoid error leaked from the poorly constrained
Ωm and 𝐴IA, the inference is conditioned on Ωm=0.315 and 𝐴IA=0. As long
as the 3rd redshift bin (photo-z = [0.9-1.2]) is included, the 𝑆8 value is stable
around 0.82 (gray), otherwise it is around 0.79 (blue), indicating a potential
underestimate of redshift in the 3rd bin.

3.2 Influence of photometric redshift on 𝑆8

In this section we first point out an internal tension of 𝑆8 estimates
between different redshift bins, suggesting that photometric redshift
is a main limiting factor for an accurate estimate of 𝑆8. We then
show that when adopting a similar treatment of photometric redshift,
our result is consistent with other major results of HSC data anal-
yses. However, changing the treatment of photometric redshift will
substantially change the inferred value of 𝑆8.

Figure 5 shows an internal consistency check of photo-z calibration
using the inference from different subsets of tomographic maps. For
example, the label ‘12 4’ means that all the 6 auto- and cross-power
spectra without bin 3, where bin 1–4 correspond to photo-z ranges
of [0.3–0.6], [0.6–0.9], [0.9–1.2], and [1.2–1.5]. A systematic trend
is found that as long as the 3rd redshift bin is absent, the inferred 𝑆8
value is lower than those with bin 3 by 0.03. Similar patterns are also
found when using the scattering transform or binned power spectra as
summary statistics, in addition to the wavelet power spectra inference
shown in Figure 5, so this pattern should not be caused by particular
statistics but rather linked to the galaxy catalog or map itself.

Though such a lowering of 𝑆8 (1.5𝜎) may be caused by statisti-
cal fluctuations, it may also be caused by an underestimate of the
density of high redshift sources, i.e. a tail in the redshift distribution
of the 3rd photo-z bin. Indeed, there are multiple challenges to ob-
taining reliable photometric redshift estimates when going to deeper
magnitude and higher redshifts (e.g. Salvato et al. 2019). It requires
modeling not only the spectra of galaxies within the redshift range
of interest (0.3–1.5 in our case) but all galaxies, and the modeling
error for any other galaxies can cause contamination into the redshift
range of interest. The sensitivity comes from sharp features, mainly
the Balmer and Lyman alpha breaks, in galaxy spectra. However,
the narrow range of optical bands and photometric error lead to de-
generate photo-z solutions. As a result, the underlying true redshift
distribution of galaxies selected within our photo-z bins tends to have
a long tail towards high redshifts, making it difficult to robustly esti-
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Figure 6. Comparison of 𝑆8 inference. The upper part shows results from HSC, demonstrating the consistency when using the same raw photometric redshift
and the shift towards lower values when adjusting the redshift: for our results, we removed bin 3 from the analysis; for HSC Y3, the authors set free biases of
redshift calibration as nuisance parameters and joint constrain them by data. The lower part shows results from other stage-III weak lensing survey and CMB
data: (Madhavacheril et al. 2023; Bianchini et al. 2020; Aghanim et al. 2020; Zürcher et al. 2022; Doux et al. 2022; DES and KiDS Collaboration 2023; Gatti
et al. 2022; Fluri et al. 2019; Secco et al. 2022a; Amon et al. 2022; Asgari et al. 2021b; Loureiro et al. 2022).

mate the redshift distribution of the population. In addition, galaxies
above 𝑧 = 2 in general have high star formation rates and rich emis-
sion lines, making it difficult to build reliable templates for galaxy
spectra.

In fact, a similar photo-z tension is also found for the 3rd and
4th redshift bins in the HSC Year 3 (Y3) data with 3 times more
galaxies (Dalal et al. 2023; Li et al. 2023). As shown in Figure 6, the
inferred 𝑆8 values also cluster into two groups: with the raw photo-z
used, values of 𝑆8 = 0.823+0.032

−0.028, 0.824 ± 0.021, 0.813 ± 0.024 are
obtained by the correlation analysis of HSC Y1 data (Hamana et al.
2020), correlation analysis of HSC Y3 data (fig. 12 of Li et al. 2023),
and pseudo-𝐶𝑙 analysis of HSC Y3 (Dalal et al. 2023). All of the
three are consistent with each other and our result5 at a ‘high value’
of 𝑆8.

5 When comparing their results to ours, we note that for photo-z prescription,
they all use the COSMOS re-weighted redshift distribution from galaxies,
while we use the stacked redshift posterior with the MLZ code. According to
the tests presented in table 7 of Hikage et al. (2019) and figure 7 of Hamana
et al. (2020), the inferred 𝑆8 is higher by about 0.02 when switching from
their method to ours. Therefore, before any special adjustment on photo-z,
most HSC analyses, including our simulation-based inference, provide almost
identical high values of 𝑆8 at 0.82. The only analysis giving a low 𝑆8 without
photo-z adjustment is the pseudo-𝐶𝑙 analysis of HSC Y1 data reported in
Hikage et al. (2019) (𝑆8 = 0.78). However, they also obtain an unusually

On the other hand, when a photo-z adjustment is performed, a
similar lowering of 𝑆8 is also found in the other HSC analyses. Instead
of just excluding bin 3 as we did, the larger area of Y3 data allows for
a simultaneous inference (self calibration) of photo-z errors. Dalal
et al. (2023) and Li et al. (2023) assume that the shape of true redshift
distribution in bin 3 and 4 are the same as that provided by the photo-
z code, but an unknown overall offset is to be fitted. It turns out that
the HSC Y3 data favors an uncomfortably large offset of Δ𝑧 ∼ 0.1
and 0.2 in the two tomographic bins, which dramatically lowers the
inferred 𝑆8 value: 𝑆8 = 0.769+0.031

−0.034 and 0.776 ± 0.032 are obtained
from the correlation (Li et al. 2023) and power spectrum (Dalal et al.
2023) analyses, consistent with the lowering of 𝑆8 we found in HSC
Y1 data when excluding galaxies with photo-z between 0.9 and 1.2.
Moreover, this internal tension is also observed with non-Gaussian
statistics, including in our scattering transform analysis and the peak
count analysis of the HSC Y1 data (fig. 9 of Marques et al. 2024a),
despite the different choices of tomography and scale cut.

low Ωm = 0.16 not shared by the other analyses, which casts doubts on the
reliability of their analysis.
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3.3 Comparison to other 𝑆8 estimates

Figure 6 shows the comparison of our 𝑆8 inference with others in
the literature. Regardless of which statistic is used, our results based
on the raw redshift estimate from the HSC pipeline (Tanaka et al.
2018) have a ‘high’ value of 𝑆8 consistent with Planck. As discussed
in section 3.2, if we remove background sources with photometric
redshifts in the 0.9–1.2 range (based on their "best point estimate"
using the Ephor-AB code), the 𝑆8 estimates become relatively lower
and more consistent with those obtained with the KiDS6 and DES7

weak lensing surveys. Because of this internal redshift tension, it
is currently difficult to robustly conclude on which value of 𝑆8 is
correct.

For a deep survey like the HSC, a significant fraction of galax-
ies have relatively high redshifts. Therefore, simply removing them
from the analysis causes substantial loss of constraining power. The
self-calibration method adopted by Dalal et al. (2023) and Li et al.
(2023) is a practical solution but still not ideal, as the uncertainty
of the redshift distribution is likely from the tail part which is not
well captured by the simple overall shift. To definitively identify the
nature of this internal tension from photo-z estimate, it may be essen-
tial to obtain independent redshift estimates, for example using the
clustering redshift technique (e.g., Schneider et al. 2006; Newman
2008; Ménard et al. 2013; Schmidt et al. 2013; Chiang et al. 2019).

The above internal tension of 𝑆8 suggests that photo-z calibration
is a main limiting factor for 𝑆8 inference in HSC and other ground
based surveys reaching a similar depth, including the Rubin Observa-
tory LSST8 (LSST Science Collaboration et al. 2009). Before robust
photo-z estimates become available, improvement of 𝑆8 is unlikely
to come from optimizing the choice of spatial statistic or machine
learning tools 9. As the photo-z bias is likely caused by the ambiguity
of spectral structures such as the Balmer and Lyman alpha breaks,
space-based surveys such as Euclid10 (Laureĳs et al. 2011), Xuntian
space telescope survey(Zhan 2021), and Roman space telescope sur-
vey11 (Spergel et al. 2015) which extend photometry to near infrared
may significantly alleviate the photo-z problem and therefore draw
conclusion on the 𝑆8 tension.

4 CONCLUSION

We present the first application of the scattering transform to weak
lensing observations. The scattering transform is a summary statistic
that borrows ideas from convolutional neural nets, but requires no
training and is compact and interpretable (see Cheng & Ménard
2021a for more details). To best demonstrate its power with real
data, we choose to analyze the HSC Year 1 data (Mandelbaum et al.
2018a), which is the deepest wide-field weak lensing survey data
available to date. From a full tomographic analysis of the HSC Y1
data, we conclude:

(i) Spatial statistics: We find that the scattering transform signif-
icantly improves the constraint on Ωm. It tightens the error bar by a
factor of 2 when compared to Gaussian statistics in the same scale
range, reaching the constraining power of convolutional neural nets

6 https://kids.strw.leidenuniv.nl/
7 https://www.darkenergysurvey.org/
8 https://www.lsst.org/
9 Nevertheless, the inference of Ωm using non-Gaussian statistics seems
robust to the potential photo-z bias.
10 https://www.cosmos.esa.int/web/euclid
11 https://roman.gsfc.nasa.gov/

(Lu et al. 2023). We also find that to improve Ωm constraint, the non-
Gaussian information across tomographic maps cannot be ignored,
and it can be captured by measuring non-Gaussian statistics on linear
combinations of different tomographic maps.

(ii) Photo-z calibration: We find that the inference of 𝑆8 is more
limited by photo-z calibration than choosing spatial statistics. When
excluding galaxies with photo-z in [0.9-1.2] (the 3rd bin in HSC) from
the analysis, the inferred 𝑆8 changes from 0.82 to 0.79 independent of
which statistic is used, suggesting an under-estimation of redshift of
those galaxies. A similar shift is also found in the analyses of HSC Y3
data (Li et al. 2023; Dalal et al. 2023). The 𝑆8 estimation is currently
limited by photometric redshift estimation. This photo-z problem
is likely shared by all ground-based weak lensing surveys reaching
a similar depth. Calibration with clustering redshift and infrared
photometry from space-based telescopes may help to overcome this
problem and provide final answer to the 𝑆8 tension.
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APPENDIX A: SMOOTHING OF MASS MAP

With smoothing, the weighted average should be extended from
within each pixel to galaxies in its neighborhood, therefore the
weighting becomes a combination of the weights of individual galax-
ies, 𝑤𝑖 and a smoothing kernel 𝑊 (Δ𝑟). Approximating the positions
of each galaxy by the center of the pixels where they are located, a
smooth 𝜙 can be obtained by smoothing individually the numerator
maps and the denominator map in eq. 2,

𝜙(𝑥, 𝑦)smooth ≡
𝑊 (Δ𝑟) ∗∑in pixel (x,y) 𝑤𝑖𝜙𝑖

𝑊 (Δ𝑟) ∗∑in pixel (x,y) 𝑤𝑖
, (A1)

where ‘∗’ represents convolution on a grid, and the smoothed fields
𝜙(𝑥, 𝑦)smooth for the four quantities {𝒆,R, 𝑚tot, 𝒄} are used to gener-
ate the 𝜸̂ map through eq. 1. We use the Gaussian smoothing kernel
with standard deviation 𝜎𝑟 = 2 arcmin:

𝑊 (Δ𝑟) = 1
2𝜋𝜎2

𝑟

exp
(
− Δ𝑟2

2𝜎2
𝑟

)
. (A2)

In the literature, as little variation is expected in the map of 𝑚tot
and R in eq. 1, they are usually treated as constants over a field of
view and redshift bin. We have confirmed that replacing 𝑚̄tot and R̄
maps by the global weighted averages over all galaxies only results
in negligible change in the cosmological inference. Therefore, our
map making method is essentially the same as Oguri et al. (2018);
Lu et al. (2023).

Below we discuss the advantage of this smoothing method com-
pared to a direct convolution of 𝜙(𝑥, 𝑦), as adopted in Thiele et al.
(2023); Marques et al. (2024a). Compared to eq. A1 where both
the numerator and denominator are convolved by the smoothing ker-
nel, an alternative is to directly convolve the pixelized map by the
smoothing kernel,

𝜙′ (𝑥, 𝑦)smooth ≡ 𝑊 (Δ𝑟) ∗
∑

in pixel (x,y) 𝑤𝑖𝜙𝑖∑
in pixel (x,y) 𝑤𝑖

, (A3)
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However, such a direct convolution is not an optimal estimator be-
cause it weighs pixels equally while the effective number of galaxies
in each pixel is different. Thus it increases the noise level of the
map and reduces the constraining power on cosmological parame-
ters. This is a main difference between the maps used in Marques
et al. (2024a); Thiele et al. (2023) and this paper. To give a quan-
titative comparison, on the non-tomographic mass map at fiducial
cosmology smoothed by a 1 arcmin kernel, our weighted smoothing
method provides a correlation coefficient of 0.38 (an S/N of 0.37)
between a noisy mock and the noiseless convergence map, whereas
the equal-weight smoothing gives a correlation coefficient of 0.32
(an S/N of 0.22). The error bar of inference increases by 50% in Ωm
and 25% in 𝑆8 ≡ 𝜎8 (Ωm/0.3)0.5 on both mock and real data. In
power spectrum and correlation function analyses (e.g., Hikage et al.
2019; Hamana et al. 2020), although there is no explicit smoothing in
the map making step, a treatment of weighting equivalent to eq. A1
is included in the formalism of computing their statistics.

APPENDIX B: MORLET WAVELET

The profile of the Morlet wavelets we use is given by

𝜓 𝑗 , 𝜃 (®𝑥) = 1
𝜎

exp
(
− 𝑥2

2𝜎2

)
[exp(𝑖 ®𝑘0 · ®𝑥) − 𝛽] , (B1)

𝜓̃ 𝑗 , 𝜃 ( ®𝑘) = exp

[
− (®𝑘 − ®𝑘0)2𝜎2

2

]
− 𝛽 exp(− 𝑘2𝜎2

2
) , (B2)

where ·̃ represents Fourier transform, and

𝜎 = 0.8 × 2 𝑗 , |𝑘0 | = 0.75𝜋 × 2− 𝑗 , angle(𝑘0) = 𝜋𝜃/𝐿 (B3)

specify the dependence on wavelet size index 𝑗 and orientation index

𝜃. The offset 𝛽 = exp
(
− 𝑘2

0 𝜎
2

2

)
is introduced to guarantee that the

wavelets are strictly band-pass instead of low-pass filters: 𝜓̃(0) = 0.
More explanations of the mathematical form can be found in the
appendix B of Cheng & Ménard (2021a).

As a result, the central frequency of the 𝑗 = 0 wavelet kernel is
defined to be 3/8 pixel−1, and when 𝑗 increases by 1, the wavelet
becomes larger in real space by a factor of 2. In this study we use
wavelets with 𝑗 = 2–4. The 𝑗 = 2 wavelet roughly covers 𝑙 ≈ 1200–
3500, 𝑗 = 3 wavelet covers 𝑙 ≈ 600–1800, and 𝑗 = 4 wavelet covers
𝑙 ≈ 300–900. In principle the sampling of 𝑗 does not have to be
integers, nevertheless we still sample 𝑗 at integers as we find no
significant improvement of cosmological constraint from finer sam-
pling. As for orientations, we follow previous studies and set the total
number of orientations to be 𝐿 = 4, i.e., sampling every 45 degrees.

APPENDIX C: SIMULATION BASED INFERENCE
METHOD

C1 Mock catalogs

The mock catalogs are generated following Shirasaki et al. (2019) by
first randomly rotating the observed galaxies and statistically sepa-
rating the measurement noise from intrinsic galaxy shape,

𝒆int = random rotate
(

𝑒rms√︃
𝑒2

rms + 𝜎2
𝑒

)
𝒆obs (C1)

𝒆mea = 𝜎𝑒𝑵 (C2)

where 𝑒rms and 𝜎𝑒 are read from the observed galaxy catalog (Man-
delbaum et al. 2018b) and 𝑵 is a random variable independently
sampled for each galaxy from a standard Gaussian distribution with
zero mean and unity variance Then, the mock ellipticity catalog is ob-
tained by applying cosmic shear distortion 𝜹sh to the intrinsic galaxy
shapes and then adding mock measurement noise (Miralda-Escude
1991; Bernstein & Jarvis 2002)12

𝑒1 =
𝑒int

1 + 𝛿sh
1 + 𝑎𝛿sh

2 (𝛿sh
1 𝑒int

2 − 𝛿sh
2 𝑒int

1 )
1 + 𝜹sh · 𝒆int + 𝑒mea

1 (C3)

𝑒2 =
𝑒int

2 + 𝛿sh
2 + 𝑎𝛿sh

1 (𝛿sh
2 𝑒int

1 − 𝛿sh
1 𝑒int

2 )
1 + 𝜹sh · 𝒆int + 𝑒mea

2 (C4)

𝑎 ≡ 1 −
√︁

1 − (𝛿sh)2

(𝛿sh)2 =
1

1 +
√︁

1 − (𝛿sh)2
(C5)

𝜹sh ≡ 2(1 − 𝜅)
(1 − 𝜅)2 + 𝛾2 𝜸 , (C6)

where 𝑎 is a factor close to 0.5 at the small shear limit, and the shear
distortion 𝜹sh is obtained by ray-tracing the 𝑁-body simulations. We
also simulate the effect of multiplicative bias 𝑚tot by replacing 𝜸
with (1 + 𝑚tot)𝜸.

The fiducial simulation set (Takahashi et al. 2017; Shirasaki et al.
2019) includes 108 quasi-independent full-sky realizations at one
fiducial cosmology with the ΛCDM model and WMAP9 parameters
(Hinshaw et al. 2013): Ωcdm = 0.233, Ωb = 0.046, Ωm = Ωcdm +Ωb
= 0.279, ΩΛ = 0.721, ℎ = 0.7, 𝜎8 = 0.82, and 𝑛𝑠 = 0.97. The sky
footprint of the HSC fields was rotated in 21 angles to take full
advantage of the large volume of each simulation, resulting in a total
of 2,268 realizations of mock HSC lensing maps. More details are
described in Appendix D and the references. This set of mock data
at the fiducial cosmology is used to estimate the cosmic variance.

The cosmic-varying simulation set in (Shirasaki et al. 2021)
samples 100 different cosmologies with 0.1 < Ωm < 0.7 and
0.23 < 𝑆8 < 1.1. The other parameters are consistent with the
Planck 2015 results (Planck Collaboration et al. 2016): Ω𝑏 = 0.049,
Ωm +ΩΛ = 1, ℎ = 0.6727, and 𝑛𝑠 = 0.9645. We make 50 realizations
per cosmology by random arrangement of the simulation boxes and
further enlarge the size to 150 by adding different realizations of
galaxy noise.

To obtain the 𝜅 and 𝜸 in eq. C6 to enable generation of the mock
galaxy shape catalog, one needs to assign a redshift to each of the
galaxies. We follow the same method detailed in (Shirasaki et al.
2019). In brief, we use the stacked redshift posterior of galaxies
provided by the MLZ code, a photo-z code using a self-organizing
map, in each tomographic bin as the assumed redshift distribution.

C2 Likelihood emulator

We parameterize the likelihood function by assuming that at each
cosmology, the summary statistics ®𝑠 follow a multivariate Gaussian
distribution under cosmic variance and galaxy shape noise:

𝑝(®𝑠 |𝜃) =
exp [− 1

2 (®𝑠 − ®𝜇(𝜃))𝑇C−1
fid (®𝑠 − ®𝜇(𝜃))]

(2𝜋 |Cfid |)
dim( ®𝑠)

2

. (C7)

12 With some algebra, one can rewrite these equations in a compact form,
which can be found in the literature, in terms of the complex-valued reduced
shear 𝑔 ≡ 𝛾

1−𝜅 and complex ellipticity: 𝑒 =
𝑒int+2𝑔+𝑔2𝑒int∗

1+|𝑔 |2+2Re(𝑔𝑒int∗ ) , by using the

relation 𝛿sh =
2𝑔

1+|𝑔 |2 and 𝑎 =
1+|𝑔 |2

2 .
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Usually, this assumption is justified by the fact that the statistical
estimator is an average over a large field of view, for which the
central limit theorem Gaussianizes its distribution. This assumption
is particularly well justified for the scattering transform coefficients
because the modulus operation avoids amplification of outliers and
thus accelerates the Gaussianization (Cheng & Ménard 2021b).

We estimate the mean 𝜇(𝜃) as a function of cosmological parame-
ters 𝜃 = (Ω𝑚, 𝑆8) from the set of cosmic varied simulations, by first
calculating the sample mean at each cosmology 𝜇̂(𝜃𝑖) and then fit it
with 6th-order polynomials of (logΩ𝑚, log 𝑆8).

®𝜇(Ωm, 𝑆8) =
∑︁

0≤𝑛+𝑚≤6
®𝑎𝑛,𝑚 (logΩm)𝑛 (log 𝑆8)𝑚 , (C8)

where 𝑛 and 𝑚 are natural numbers. The reason to use logarithms
is that 𝜇(Ωm, 𝑆8) or its derivatives may have singularity at Ωm = 0
or 𝑆8 = 0. As the summary statistics may change quickly when Ωm
approaches zero, we use a logarithm to regularize this behavior and
make the polynomial regression converge faster. The regression is
implemented through least square method for each component of
®𝑎𝑛,𝑚. We verify the robustness of our emulator by fitting it with 5th-
order and 7th-order polynomials and find no significant difference,
which means our choice does not under-fit or over-fit. The covari-
ance matrix Cfid in our model is fixed and does not change with
cosmological parameters. We estimate it only with the 2,268 fiducial
realizations that originate from 108 quasi-independent simulations
and a full-sky setting. In addition, we find small differences between
the fiducial mocks and the emulator prediction based on the cosmo-
varied simulations, which is likely caused by the small and adaptive
box sizes used in the cosmo-varied simulations. We calibrate the
emulator using the mean value of fiducial mocks, which is described
in detail in appendix D.

C3 Systematics

To account for observational and astrophysical systematics, we in-
clude the following parameters in our emulator: multiplicative cali-
bration error Δ𝑚, galaxy intrinsic alignment strength 𝐴IA, and bary-
onic feedback strength 𝐴tng. We further model their influence to the
summary statistics with a simple form,

®𝜇(Ωm, 𝑆8, 𝐴IA,Δ𝑚, 𝐴tng) = ®𝑏𝐴IA ®𝑐𝐴tng ®𝑑Δ𝑚 ®𝜇(Ωm, 𝑆8, 0, 0, 0) ,
(C9)

where the coefficients ®𝑏, ®𝑐, ®𝑑 are constants estimated using simula-
tions described below and the operations are meant as element-wise.
That parameterization is equivalent to a linear model for the loga-
rithm of our statistics,

log ®𝜇(Ωm, 𝑆8, 𝐴IA,Δ𝑚, 𝐴tng) =

𝐴IA log ®𝑏 + 𝐴tng log ®𝑐 + Δ𝑚 log ®𝑑 + log ®𝜇(Ωm, 𝑆8, 0, 0, 0) .
(C10)

We consider it better than a linear model of the original statistics
because both the scattering coefficients and the power spectrum are
always positive and related to fluctuation strength. This relation is
accurate in the neighborhood of the fiducial cosmology, though its
accuracy may gradually degrade as one moves away from the fiducial.

C3.1 Intrinsic alignment

To incorporate intrinsic alignment to our emulator for non-Gaussian
statistics, we use a mock catalog provide in Harnois-Déraps et al.
(2022) which simulates this effect. This catalog was made following

a prescription called 𝛿-NLA, which computes the intrinsic alignment
field 𝒆IA according to the non-linear tidal alignment model (NLA)
(Hirata & Seljak 2004) but also samples galaxies naturally according
to the matter density field 𝛿. Therefore, compared to the NLA model,
it realistically up-weights regions with higher matter density. The
intrinsic alignment strength is still parametrized by 𝐴IA as in NLA.
For simplicity we assume no evolution of 𝐴IA with redshift. Previous
studies with HSC Y1 data obtains consistent constraints with different
error bar sizes, 𝐴IA = 0.4 ± 0.7 (Hikage et al. 2019) and 𝐴IA =

0.9 ± 0.3 (Hamana et al. 2020), with the NLA model. According to
those approximate range of 𝐴IA, we build mocks with 𝐴IA = 0 and

1.5, and determine the coefficient ®𝑏 in eq. C9 by ®𝑏 =

(
⟨ ®𝑠⟩𝐴IA=1.5
⟨ ®𝑠⟩𝐴IA=0

) 1
1.5

.

The average is measured from 400 mocks with 10×10 deg2 field of
view, generated by adding different galaxy shape noise realizations
to the 10 mock catalogs provided in Harnois-Déraps et al. (2022).

C3.2 Error in multiplicative bias

To account for the effect of mis-calibration of multiplicative bias,
we model its influence on summary statistics and then marginalize
over it. A prior of a Gaussian with 0.01 standard deviation is applied,
which is the level of calibration residual estimated from image sim-
ulations (Mandelbaum et al. 2018b). We determine the coefficient 𝑐

in eq. C9 by its value at fiducial cosmology ®𝑑 =

( ⟨ ®𝑠⟩fid,Δ𝑚=+0.01
⟨ ®𝑠⟩fid,Δ𝑚=−0.01

) 1
0.02 ,

which are obtained by adding Δ𝑚 = +0.01 and –0.01 to the multi-
plicative bias of mock galaxies in the 2,268 realizations of fiducial
mock catalogs, while keeping all other ingredients including the ran-
dom seed for galaxy shape noise unchanged. We find that the effect
of multiplicative bias error basically shifts 𝑆8 by the same fraction,
while not changing the inference of Ωm. Data itself is not able to
constrain Δ𝑚 and it is mainly driven by the prior.

C3.3 Baryonic feedback

We use the kappa-TNG mocks (Osato et al. 2021) to test baryonic
effects. They are a set of convergence maps made from the hydro-
dynamic IllustrisTNG simulations (Nelson et al. 2019), with 10,000
realizations of 5×5 deg2 maps ray-traced from the highest resolution
of the largest box TNG300-1 and its corresponding dark-matter-only
counterpart TNG300-1-Dark. Those simulations adopts a cosmology
consistent with Planck Collaboration et al. (2016). Since these mocks
are not tailored for the HSC Y1 field of view, the map statistics are
not defined identically to the emulator or observation due to mask
and edge effects. The coefficient ®𝑐 in eq. C9 is then determined by the
ratio between hydro and dark matter only simulations: ®𝑐 =

⟨ ®𝑠⟩TNG
⟨ ®𝑠⟩TNG-dark

.

C3.4 Photometric redshift algorithms

To test the influence of photometric redshift error, we generate 210
new mocks at the fiducial cosmology using photo-z from two other
codes, frankenz and mizuki (Tanaka et al. 2018). Due to the limited
number of additional mocks, we are not able to incorporate Δ𝑧phot
as a nuisance parameter and marginalize over it. Therefore, we only
apply the ratio ⟨®𝑠⟩fid,frankenz/⟨®𝑠⟩fid,MLZ and ⟨®𝑠⟩fid,mizuki/⟨®𝑠⟩fid,MLZ
to the emulator and examine the shift of cosmological inference.

MNRAS 000, 1–12 (2024)
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C3.5 PSF residual

We also include PSF systematics in our model. Errors in the mea-
surement of point spread function (PSF) and the PSF leakage from
imperfect deconvolution lead to additive bias of the shear measure-
ment. The residual of this calibration acts like correlated noises added
to the shear map. To account for its effect, we simulate this noise in
our mock maps by adding a Gaussian random field to the mock con-
vergence maps, with the four redshift bins sharing the same PSF
systematics. We set the power spectrum of this noise using Figure
7 of Lu et al. (2023), which corresponds to setting 𝛼psf = 0.03 and
𝛽psf = −0.89 as measured from data by Hamana et al. (2020). For
simplicity we omit the uncertainty of this power spectrum. Assum-
ing no PSF residual typically shifts 𝑆8 up by 0.004 and Ω𝑚 up by
0.01. A more complicated treatment such as a marginalization of the
parametrized power spectrum of the PSF systematics is left for future
work.

C3.6 Source clustering

We have not modeled the effect of source clustering, but according
to an exploration performed by Gatti et al. (2023), we expect negligi-
ble biased for the scattering transform and power spectrum. Source
clustering is the fact that background galaxies are not uniformly
distributed but clustered with some correlation of the foreground.
Therefore, the observed lensing map is sampled in a biased way and
have different statistical properties from uniformly sampled ones as
used in our simulations. Nevertheless, source clustering mostly in-
fluences statistics that are odd function of the field (i.e., statistics that
change their sign when the field is flipped) (e.g., Gatti et al. 2024).
As a result, the power spectrum and the scattering transform are
not much influenced but source clustering, whereas third-order mo-
ment based statistics, phase harmonic coefficients that are odd, and
machine-learning methods may be significantly biased if the source
clustering effect is not properly modeled.

APPENDIX D: 𝑁-BODY SIMULATIONS

The fiducial simulation set (Takahashi et al. 2017; Shirasaki et al.
2019) includes 108 quasi-independent full-sky realizations at one
fiducial cosmology with the ΛCDM model and WMAP9 parameters
(Hinshaw et al. 2013): Ωcdm = 0.233, Ωb = 0.046, Ωm = Ωcdm +Ωb
= 0.279, ΩΛ = 0.721, ℎ = 0.7, 𝜎8 = 0.82, and 𝑛𝑠 = 0.97. In total
6 independent runs, each with 14 simulations with different box
sizes (450–6300ℎ−1 Mpc), were implemented to keep the angular
resolution roughly the same along the line of sight. Each box has
20483 particles corresponding to an angular particle grid size of
3.4–6.8 arcmin at the initial condition. The particles in each box are
also randomly shifted and ray-traced to create 108 quasi-independent
full sky maps with HEALPix resolution 𝑁side=8192. It has been
tested that for lensing convergence with sources at 𝑧 = 1, the power
spectrum in simulation is consistent with halo-fit results within 5%
till around 𝑙 = 3000 (see Fig. 23 in Takahashi et al. (2017) and eq. 26
in Shirasaki et al. (2019)).

The cosmic-varying simulation set in (Shirasaki et al. 2021)
samples 100 different cosmologies with 0.1 < Ωm < 0.7 and
0.23 < 𝑆8 < 1.1. The other parameters are consistent with the
Planck 2015 results (Planck Collaboration et al. 2016): Ω𝑏 = 0.049,
Ωm +ΩΛ = 1, ℎ = 0.6727, and 𝑛𝑠 = 0.9645. At each cosmology, four
𝑁-body simulations with different box sizes and resolutions were
run and connected along the light cone to cover a 10 × 10 deg2 field

of view. The box sizes are designed to match the opening angle at
all redshifts, with typical values at Ωm = 0.3 to be 280–930 Mpc/ℎ.
The projected particle grid at the initial condition in these simula-
tions has a size of 1.3–2.5 arcmin, which is 2.5 times finer than the
fiducial set of simulations. By randomly shifting each simulation box
assuming periodic boundary condition, 50 cosmic shear realizations
were generated for each cosmology. From stability tests such as using
only a subset of the realizations to build the emulator, we find that
50 realizations are not enough to overcome the numerical noise of
the cosmological dependence to mean data vector, so we enlarge the
mocks to 150 realizations per cosmology by adding different galaxy
noise.

We find that the 𝜇(𝜃) predicted by the emulator at the fiducial
cosmology has an offset from the sample mean ⟨®𝑠⟩ of the fidu-
cial simulations. For all tomographic maps, our emulator based on
cosmo-varied simulations predicts a lower power spectrum. The de-
viation is highest for low redshift and for large scales. The deviation
in cosmic shear power spectrum (noise removed) is about 20% for
the 1st tomographic bin and 10% for the 4th bin at 𝑙 = 300. The
deficit gradually changes to zero at around 𝑙 = 2500 and becomes an
excess after that. The excess is expected as the cosmo-varied simula-
tions have higher resolution, but the cause of power deficit is unclear.
This difference, dominated by the large scale power deficit, results
in an offset in parameter inference. When using the mean of fidu-
cial data vector as input for mock inference, we obtain a best fit of
Ωm = 0.261 and 𝑆8 = 0.808, 6.5% lower in Ωm and 2% higher in
𝑆8 than the fiducial values. We suspect that the deficit of power of
our cosmo-varied maps based on Shirasaki et al. (2021) is caused by
the adaptive box size of simulations along the light cone, as this is
the main difference from another simulation based analysis of HSC
year 1 data (Lu et al. 2023), where no such effect is observed. The
adaptive box size results in the fact that a large angular scale always
corresponds to roughly the simulation box size, at which the power
may be suppressed due to spectral leakage under windowing. For
this study, we just correct for this effect by multiplying the emulator
prediction of ®𝜇 by a factor vector ⟨®𝑠⟩fid/ ®𝜇(0.279, 0.791)emulator. A
full understanding of the deficit is left for future study.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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