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We study the J1-J2 spin-1/2 chain using a path integral constructed over matrix product states
(MPS). By virtue of its non-trivial entanglement structure, the MPS ansatz captures the key phases
of the model even at a semi-classical, saddle-point level, and, as a variational state, is in good agree-
ment with the field theory obtained by abelian bosonisation. Going beyond the semi-classical level,
we show that the MPS ansatz facilitates a physically-motivated derivation of the field theory of the
critical phase: by carefully taking the continuum limit—a generalisation of the Haldane map—we
recover from the MPS path integral a field theory with the correct topological term and emer-
gent SO(4) symmetry, constructively linking the microscopic states and topological field-theoretic
structures. Moreover, the dimerisation transition is particularly clear in the MPS formulation—an
explicit dimerisation potential becomes relevant, gapping out the magnetic fluctuations.

Introduction—The J1-J2 chain has provided an
archetypal model in which to investigate the role of topol-
ogy in quantum systems, and harbours a rich phase dia-
gram. Semi-classically, an incommensurate helimagnetic
phase interpolates between the ferromagnetic and anti-
ferromagnetic (Néel) phases, and a plethora of numeri-
cal and analytical approaches have revealed further fea-
tures [1–7]. We will be most concerned with the transi-
tion in the quantum S = 1

2 chain between a critical anti-
ferromagnetic phase and the dimer phase, where compet-
ing first- and second-neighbour antiferromagnetic terms
drive adjacent spins into singlets.

Under abelian bosonisation [8, 9], this transition ap-
pears to be of Kosterlitz-Thouless (KT) character. In
obscuring the SU(2) symmetry, however, this misses the
spacetime topology of the quantum states, and the fact
that topological defects in one phase are bound to the
charges of the other—the boundary between two singlet
covers has a single (delocalised) spin. Field-theoretically,
this is encoded in additional topological Wess-Zumino
(WZ) terms [10–12] (generalisations of the Haldane Θ-
term [13]), which measure the winding of the joint Néel-
singlet order parameter during the tunneling events (in-
stantons) that drive the transition out of the dimer phase.

These ideas are central to the understanding of de-
confined quantum criticality [14] and underpin a rich
network of dualities between different two-dimensional
quantum states. In the J1-J2 model, these terms may be
derived via a mapping of the spins to fermionic degrees
of freedom [10–12]. In this letter, we give an alterna-
tive derivation working with the original spin degrees of
freedom, mirroring the derivation of the Θ-term in the
antiferromagnet [13].

∗ These authors contributed equally to this work

A matrix product state (MPS) ansatz encompassing
the key physics of the different phases is the basis of
our approach—even as a variational wavefunction, it cap-
tures a continuous phase transition between the critical
and dimer phases. Reparametrising in terms of the order
parameters of these phases, we construct the path inte-
gral over the MPS ansatz [15], and demonstrate how the
resulting effective action recovers the non-linear sigma
model (NLSM) of the critical phase, with the SO(4) WZ
term (cf. [13]), explicitly linking these topological field-
theoretic structures to the microscopic states. Further,
the MPS field theory clarifies the nature of the dimeri-
sation transition, with an explicit potential term which
breaks the SO(4) symmetry and opens the gap.

Model and MPS ansatz—The Hamiltonian of the J1-J2
chain consists of competing Heisenberg interactions be-
tween nearest and next-nearest neighbours,

Ĥ =
∑
i

(J1σ̂i · σ̂i+1 + J2σ̂i · σ̂i+2) , (1)

where σ̂ = (σ̂x, σ̂y, σ̂z) is the vector of Pauli matrices.
We introduce our variational state as an MPS ansatz with
bond-dimension two,

|Ψ⟩ =
∑
{σ}

⊗
i

(
Aσi

[i] |σin̂i⟩
)
, A+

[i] =

(
cosψi 0
0 ieiξi sinψi

)
,

A−
[i] = eiπ/4

(
0 cosψi

ieiξi sinψi 0

)
, (2)

where |n̂⟩ represents a spin-coherent state polarised in
the direction of the unit vector n̂. (we discuss the gauge-
fixing in the supplementary [16]). The angle ξ allows
tuning between singlet and S = 0 triplet configurations
and will generally not appear in the following.
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FIG. 1. Saddle point phase diagram as a function of arctan(J2/J1)/π. (a) Variational ground state energy: the blue curve
shows the energy of the uniform entanglement saddle point (ψA = ψB), and the green curve the energy of a singlet cover.
Near the crossover (inset), another saddle point solution emerges (see [16]), so that the transition is continuous even at this
level. (b) The helimagnetic pitch ∆/π (blue) and the entanglement sin(2ψ) (green). The entanglement is uniform except in
the singlet phase, and near the transition (inset). The singlet phase suppresses the development of an incommensurate spiral
(dashed curves show the optimum uniform entanglement state).

This state captures the key phases of the J1-J2 model.
In particular, it can represent a product state antifer-
romagnet with ψ = 0 or π/2, and |n̂i⟩ = |(−1)in̂⟩,
and the singlet covers are obtained by setting ψ2i = π/4,
ψ2i−1 = 0 (or vice-versa), with |n̂i⟩ = |(−1)in̂⟩.

Saddle-point phase diagram—Before turning to the
connections to the field theory, let us first discuss the
phase diagram that results from the ansatz (2). The
finite, two-site correlation length implies that ⟨Ĥ⟩ can
be calculated and manipulated analytically; Eq. (2) is
in left canonical form with left-environment 1 and right-
environment Ri = (1 + σz cos 2ψi+1)/2.

In order to simplify the optimisation, we restrict n̂ to
lie in the xy-plane with a constant pitch angle ∆ ∈ [0, π],
such that n̂i · n̂i+1 = cos∆. Further, we assume that
the entanglement parameters ψi will at most alternate
between two values ψA on even sites and ψB on odd sites.
Now, the expectation value of the Hamiltonian (1), over
the MPS ansatz (2) with these restrictions, is

E =J1

[
(cos2 2ψA + cos2 2ψB) cos∆

− sin[2(ψA + ψB)] (1− cos∆)
]

+ J2

[
2 cos2 2ψA cos2 2ψB cos 2∆

+ sin 4ψA sin 4ψB(1 + cos 2∆)/4
]
. (3)

The variational (saddle-point) phase diagram (Fig. 1) fol-
lows by minimising Eq. (3) over ψA, ψB and ∆. The pitch
angle follows the classical result for most of the phase
diagram—an (incommensurate) helimagnetic phase with
∆ = arccos[−J1/(4J2)] interpolates between ferromag-
netic and Néel order at J1/J2 < −4 and J1/J2 > 4

respectively, dressed with some uniform entanglement.
The helimagnetic order is suppressed, however, by the
dimerised singlet phase for 0.1619 ≲ J2/J1 ≲ 1.317.

The transition between the Néel and singlet phases
occurs at J2/J1 ≈ 1/6. On the scales indicated in
Figs. 1(a) & (b), the singlet phase appears to be formed
at an abrupt first order discontinuity in the parameters
of the MPS ansatz; however, zooming in on the region
around this point reveals two continuous transitions (at
saddle-point level): the first at J2/J1 ≈ 0.1619, where
the translation symmetry is first broken; and the second
at J2/J1 = 3 − 2

√
2 ≈ 0.1716, where the singlet state is

fully formed (see the supplementary [16] for the analytic
details).

This in-plane optimisation of the MPS ansatz invites
a comparison with abelian bosonisation, which predicts
a KT dimerisation transition around the same point
J2/J1 ≈ 1/6 [8, 9, 16]. Whilst this picture will be mod-
ified by the topological terms, we still expect a univer-
sal jump in the spin stiffness ρ (which we derive in the
supplementary [16]). The MPS ansatz (2), on the other
hand, furnishes us with an estimate of ρ much more
straightforwardly: we simply use the dependence of the
energy upon the pitch ∆ to evaluate the resistance to
inducing a twist in the magnetic order. That is,

ρ = ⟨N⟩ ∂
2E

∂∆2

∣∣∣∣
∆=π

, (4)

where ⟨N⟩ = cos(2ψA) cos(2ψB) is the Néel order param-
eter. We show the spin stiffness in Fig. 2, and find that,
even at saddle point level, the universal jump associated
to the KT transition is visible—though it occurs between
the split transitions, rather than discontinuously—and
broadly agrees with the field-theoretic estimate [17].
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FIG. 2. The spin stiffness ρ as a function of J2/J1 across the
Néel-dimer transition, obtained from the saddle point config-
uration of the MPS ansatz (2) and the bosonised field theory
[16]. There is reasonable agreement between the two meth-
ods, with both exhibiting the jump at J2 = Jc

2 . The black
point is the exact (Bethe-ansatz) value, π/4, at J2 = 0.

The rest of our treatment focuses on this dimerisation
transition, for which later work [10–12] went beyond a
purely KT treatment and showed the importance of WZ
terms in the field theory—they encode the binding of
spins to domain walls between singlet covers. We will
show in the following that the MPS ansatz captures this
physics directly, in the structure of the spin wavefunction.
SO(4) order parameter and continuum limit—The first

step is to construct a local SO(4) order parameter that
treats the Néel and dimer order on an equal footing. In
terms of the MPS, the Néel order parameter is

N = (−1)i⟨σ̂i⟩ = cos(2ψi) cos(2ψi+1)n̂i. (5)

And, whilst the singlet states should formally be distin-
guished by a string order parameter, it suffices here to
use a local singlet order parameter

Di = (−1)i⟨σ̂+
i σ̂

+
i+1 + σ̂−

i σ̂
−
i+1 − σ̂+

i−1σ̂
+
i − σ̂−

i−1σ̂
−
i ⟩ (6)

valid when n̂i ≈ −n̂i+1, where σ̂+ and σ̂− are spin rais-
ing and lowering operators in the basis {|n̂⟩ , |−n̂⟩} (these
are the usual raising and lowering operators if n̂ = ẑ).
For states given by Eq. (2), this is, explicitly,

Di = (−1)i [− sin(2ψi+1) cos(ψi − ψi+2) cos(ψi + ψi+2)

+ sin(2ψi) cos(ψi−1 − ψi+1) cos(ψi−1 + ψi+1)] (7)

Now, if we allow entanglement on either only even or only
odd bonds, we obtain

[even : ψ2i+1 = 0] [odd : ψ2i = 0]

N2i = cos(2ψ2i)n̂2i N2i = cos(2ψ2i+1)n̂2i

N2i−1 = − cos(2ψ2i)n̂2i−1 N2i+1 = − cos(2ψ2i+1)n̂2i+1

D2i = sin(2ψ2i) D2i = − sin(2ψ2i+1)

D2i−1 = sin(2ψ2i) D2i+1 = − sin(2ψ2i+1).
(8)
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Dimer2

FIG. 3. Order Parameter: The parameters of the MPS
ansatz (2) must be patched together in order to construct the
SO(4) order parameter. The angle χ ∈ [−π, π) is introduced
so that between −π and 0 it describes entanglement on even
bonds, and between 0 and π entanglement on the odd bonds;
if χ moves through a singlet cover the spins flip (so we must
restrict to χ ∈ [−π/2, π/2] in the path integral to avoid double
counting).

such that in either case N2 + D2 = 1, and (D,N)
forms an SO(4) multiplet [18]. We introduce a single
angle χ2i (defined on even sites), which interpolates be-
tween the two singlet orders: 2ψ2i+1 = χ2iΘ(χ2i) and
2ψ2i = −χ2iΘ(−χ2i), where Θ(x) is the Heaviside step
function. That is, χ2i > 0 denotes entanglement between
sites 2i and 2i + 1; χ2i < 0 between 2i − 1 and 2i. We
show how χ rotates between the singlet and Néel orders
in Fig. 3.

We note that this order parameter cannot completely
characterise the uniform entanglement saddle-points;
those states directly include significant quantum fluctua-
tions which, in the field theory, are encoded as instantons
between the two singlet covers.

Effective action—Now, armed with this joint order pa-
rameter, we can construct the field theory as an MPS
path integral [15],

Z =

∫
DΨe−S[Ψ], S =

∫
dτ ⟨Ψ|∂τΨ⟩+H, (9)

where DΨ = Dn̂DχDξ cos2 χ is the functional Haar mea-
sure over the restricted MPS ansatz [15]. We note that,
despite the enforced staggering of ψi, we are still tak-
ing advantage of the fact that the MPS path integral
captures entanglement in its saddle-points (the singlet
covers). Now, the effective action S has three relevant
contributions: the kinetic and topological terms, which
arise from the Berry phase; and the Hamiltonian term.
Let us start with the action in the form that results from
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assuming ψ2i+1 = 0; the same continuum limits are re-
covered in the opposite case. We have the Berry phase

SB =

∫
dτ ⟨Ψ|∂τΨ⟩ =

∫
dτ
∑
2i

[
iξ̇2i
2

(1− cosχ2i)

+
i

2
cosχ2i

(
ϕ̇2i cos θ2i + ϕ̇2i−1 cos θ2i−1

)
(10)

and the Hamiltonian

H = J1
∑
2i

[
−wx

2i + (1 + wx
2i)n̂2i−1 · n̂2i

+ wz
2iw

z
2i+2n̂2i · n̂2i+1

]
+ J2

∑
2i

wz
2iw

z
2i+2(n̂2i · n̂2i+2 + n̂2i−1 · n̂2i+1), (11)

where wx = sinχ cos ξ, wz = cosχ are components of an
O(3) vector parametrising the entanglement. To proceed,
we apply Haldane’s mapping [19] to the spin degrees of
freedom,

n̂i = (−1)im̂i

√
1− l2i + li, (12)

where m̂ is the slowly-varying Néel field, and l captures
the fast fluctuations of the magnetisation, such that

m̂2
i = 1, m̂i · li = 0, l2i ≪ 1. (13)

We apply this mapping to the Berry phase (10) and
Hamiltonian (11) above, expanding around the saddle
points χ = ±π/2 (the singlet covers), and retaining terms
up to second order in the fluctuations l and ξ, and in the
derivatives of the slow fields m̂ and w. We thus obtain
the action (17) of the SO(4) NLSM with a topological
term and dimerisation potential.

We will give here all of the essential points, and all
of the approximations used (see the supplementary [16]
for full details). We begin with the topological term:
inserting Eq. (12) into Eq. (10), we obtain a term

iΩ =

∫
dτ
∑
2i

i

2
cosχ2i

(
ϕ̇2i cos θ2i − ϕ̇2i−1 cos θ2i−1

)
∼
∫
dτdx

i

4
cosχ (∂τϕ ∂x cos θ − ∂xϕ ∂τ cos θ) (14)

(where θ and ϕ are now the angular co-ordinates of the
Néel field m̂), which is the polar coordinate form of the
SO(4) topological term identified in Ref. [12] (see also
the supplementary [16]),

Ω =
2πk

2π2

∫ 1

0

dζ

∫
dτdx ϵabcdu

a∂ζu
b∂τu

c∂xu
d (15)

where k ∈ Z is odd. The factor of 2π2 in the denominator
is the area of S3, and u(ζ, τ, x) is an arbitrary extension
of the field u(τ, x) = (sinχ, cosχm) ≡ (u0,u) satisfying

u(ζ = 0, τ, x) = (1, 0, 0, 0)

u(ζ = 1, τ, x) = u(τ, x). (16)

In the MPS treatment, the internal structure of the
ansatz constrains domain walls between different singlet
covers to contribute to the overall Berry phase as a free
spin; the topological term imposes this same constraint
in the field theory.

The kinetic terms follow by integrating out the fast
fields, ξ and l. Integrating out ξ is straightforward af-
ter expanding Eq. (11) to quadratic order. To integrate
out l we neglect any terms ∼ cos2 χ l2, but otherwise it
proceeds as in the standard Haldane mapping [19] (see
also the supplementary [16]). We obtain kinetic terms
(∂τw

z)2 and (wz)2(∂τm̂)2, respectively, with the same
prefactor 1/(32J1).

To deal with the Hamiltonian, we simply expand in
the gradients of m̂ and w. We note, however, that fluc-
tuations of m̂ are heavily suppressed on the entangled
bonds—this means that gradients of m̂, like the gradients
of wz, occur over two lattice spacings, not one. Account-
ing for this fact ensures that both terms, (∂xw

z)2 and
(wz)2(∂xm̂)2, appear with the same prefactor, J1 − 2J2.

Finally, we switch to the standard angular co-ordinates
on S3, i.e., we define α = π/2 − χ, in terms of which
(wz)2 = sin2 α and (∂wz)2 ∼ (∂α)2. We have, then,

S = iΩ+

∫
dτdx

[
1

32J1

(
(∂τα)

2 + sin2 α(∂τm̂)2
)

+ (J1 − 2J2)
(
(∂xα)

2 + sin2 α(∂xm̂)2
)
+ V (α)

]
, (17)

where the dimerisation potential is

V (α) = −3J1
2

+
J2
2

− J2
2

cos 2α. (18)

This form of the action, derived directly from an MPS
parametrisation of the spin states (2), makes the physics
of the transition particularly transparent: if J2 < Jc

2 ,
V (α) is irrelevant, the SO(4) symmetry emerges in the
infrared, and the topological term ensures the theory
remains gapless; if J2 > Jc

2 , V (α) is relevant, and the
SO(4) symmetry is broken in favour of dimer order.

Discussion and outlook—In this letter, we have intro-
duced an MPS ansatz that captures the key physics of the
J1-J2 chain, encompassing ferromagnetic, Néel, spiral,
and dimer orders. Even at saddle-point level, it repro-
duces the essential features of the deconfined Néel-singlet
transition at J2/J1 ≈ 1/6, including the universal jump
in the spin stiffness (Fig. 2) [20].

From this ansatz, we have directly identified a joint
Néel-dimer order parameter, and constructed the field
theory from an MPS path integral [15]. Whilst this is,
mechanically, somewhat similar to the construction of the
field theory of the Heisenberg antiferromagnet (J2 = 0)
as a coherent state path integral, the use of MPS-valued
fields allows us to recover the correct topological term
and NLSM [10–12]. Moreover, the nature of the dimeri-
sation transition is remarkably clear in the MPS field
theory, where the potential term of an explicit entangle-
ment field flows either to weak- or strong-coupling.
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The MPS resums instantons of the coherent state the-
ory and encodes their topological structure locally in the
MPS fields. Whilst this connection has been noted pre-
viously [15, 21], the point here is that we have provided a
constructive link: we have shown how the MPS faithfully
encodes these topological features, and how this leads di-
rectly to the corresponding topological terms in the field
theory.

It is intriguing to speculate that this connection might
be used more generally as a method to resum instan-
tons in favour of a higher bond-dimension MPS path
integral—the topological term, after all, arises indepen-
dently of the Hamiltonian. Moreover, it would be de-
sirable if these methods could be extended to two di-

mensions to capture similar physics in, say, the J-Q
model [14]; whilst generic projected entangled pair states
(PEPS) are not efficiently contractible [22, 23], rendering
the action for a PEPS path integral non-local [15], it may
be possible to circumvent this difficulty using sequential
circuit ansätze [24].

This work was in part supported by the Deutsche
Forschungsgemeinschaft under grants SFB 1143 (project-
id 247310070) and the cluster of excellence ct.qmat
(EXC 2147, project-id 390858490), by the EPSRC under
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Supplementary Material

In this Supplementary Material, we give a more detailed analysis of the saddle points of the MPS ansatz; derive
an estimate for the spin stiffness from abelian bosonisation, which we compare to the estimate from the MPS ansatz;
discuss the dynamical gauge-fixing of the spin coherent states, and show that this makes only a negligible contribution
to the Berry phase; and give a more detailed account of the derivation of the non-linear sigma model from the MPS
path integral, including how the polar co-ordinate and Wess-Zumino forms of the topological term are equivalent.

S-I. SADDLE-POINT ANALYSIS OF THE DIMERISATION TRANSITION

There are three saddle-point equations corresponding to the two-site energy density given in Eq. (3). Two corre-
sponding to derivatives with respect to the entanglement parameters are given by

∂E

∂ψA
= 2J1(cos∆− 1) cos(2(ψA + ψB))− 2(J1 cos∆ + 2J2 cos 2∆ cos2 2ψB) sin 4ψA + 2J2 cos

2 ∆cos 4ψA sin 4ψB = 0,

∂E

∂ψB
= 2J1(cos∆− 1) cos(2(ψA + ψB))− 2(J1 cos∆ + 2J2 cos 2∆ cos2 2ψA) sin 4ψB + 2J2 cos

2 ∆cos 4ψB sin 4ψA = 0,

(S1)

and one from the derivative with respect to the pitch angle is given by

∂E

∂∆
= −J1

2
sin∆ [2 + cos 4ψA + cos 4ψB + 2 sin 2(ψA + ψB)]

−J2 sin 2∆ cos 2ψA cos 2ψB [3 cos 2(ψA − ψB) + cos 2(ψA + ψB)] = 0. (S2)

It is clear that either a ferromagnetic ∆ = 0 or an antiferromagnetic ∆ = π will solve Eq. (S2), regardless of the
values of ψA and ψB (solutions involving an incommensurate pitch angle are more involved, and will not be discussed
here). Let us focus upon the antiferromagnetic regime, where the Néel-dimer transition occurs.

With this value for ∆, the saddle-point equations for the entanglement parameters reduce to

∂E

∂ψA
= −4J1 cos(2(ψA + ψB)) + 2(J1 − 2J2 cos

2 2ψB) sin 4ψA + 2J2 cos 4ψA sin 4ψB = 0,

∂E

∂ψB
= −4J1 cos(2(ψA + ψB)) + 2(J1 − 2J2 cos

2 2ψA) sin 4ψB + 2J2 cos 4ψB sin 4ψA = 0. (S3)

We seek solutions to these reduced saddle-point equations (S3). We first note that the two singlet covers,
(ψA, ψB) = (π/4, 0) and (ψA, ψB) = (0, π/4), are degenerate solutions with ES = −3J1. Deep in the Néel phase, we ex-
pect that the entanglement structure in the ground state will not break any lattice symmetries. Setting ψA = ψB = ψ,
both equations reduce, after some simplification, to

∂E

∂ψ
= −4J1 cos 4ψ + 2(J1 − J2) sin 4ψ = 0. (S4)

The uniform entanglement solution is, therefore,

ψ =
1

4
arctan

(
2J1

J1 − J2

)
, (S5)

with energy

EN = −(J1 − J2)

1 +

√
1 +

(
2J1

J1 − J2

)2
 . (S6)

As a check of the quality of this variational ansatz, we can compare this state’s energy at J2 = 0,
EN = −(1 +

√
5)J1 ≈ −3.23601, to the exact (Bethe ansatz) ground state at this point, −2J1(1− 4 ln 2) ≈ −3.54518.

Now, the uniform entanglement state’s energy crosses that of the singlet state, ES = EN , at precisely J2/J1 = 1/6.
This is not, however, where the MPS ansatz (3) predicts the transition to occur. Rather, there is another saddle-point
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solution to Eqs. (S3) which interpolates between the uniform and singlet solutions: the transition splits in twain, the
entanglement parameters evolve continuously (though not differentiably) as a function of J2/J1, and the energy is
continuously differentiable throughout.

There are two degenerate such solutions, obtained via mathematica, interpolating to either of the singlet covers.
The first is

ψA =
1

2
arcsin

1

2

(
1− 6J2 − 4J2

2 − 10J3
2 + 3J4

2 + 4J2
√
3J4

2 − 4J3
2 + 14J2

2 + 4J2 − 1

(J2 − 1)3J2

)1/2
 ,

ψB = −1

2
arctan

3J2 − 1

1 + J2

(
1− 2J2 − 16J2

2 + 2J3
2 − J4

2 + 4J2
√

3J4
2 − 4J3

2 + 14J2
2 + 4J2 − 1

−1 + 6J2 + 4J2
2 + 10J3

2 − 3J4
2 − 4J2

√
3J4

2 − 4J3
2 + 14J2

2 + 4J2 − 1

)1/2
 , (S7)

where we have set J1 = 1, and the second interchanges ψA and ψB . These transition solutions are only valid
(ψA, ψB ∈ R) between the two transition points, J (−)

2 and J (+)
2 , where their energy crosses EN and ES , respectively.

Over this region, however, the transition solutions are the lowest energy saddle-point states.
The upper transition point, explicitly, is J (+)

2 = 3 − 2
√
2 > 1/6. The analytic expression for the lower transition

point, whilst it can be expressed using radicals, is much lengthier – the most concise way of stating it is that J (−)
2 is

the (unique) positive real root of 3x4 − 4x3 + 14x2 + 4x− 1, which gives J (−)
2 ≈ 0.1619 < 1/6.

S-II. ABELIAN BOSONISATION AND SPIN STIFFNESS

An alternative estimate of the spin stiffness may be obtained from a bosonised field theory. We begin with the
linearised J1 − J2 Hamiltonian from Ref. [8],

Ĥ =

∫
dx

2π
: iJ1

∑
η

η ψ̂†
η∂xψ̂η +

2J1
2π

∑
ηη′

ρ̂ηρ̂η′ − 4J2
2π

∑
ηη′

ηη′ρ̂ηρ̂η′ +
J1 − 6J2

2π

∑
η

(
ψ̂†
η∂xψ̂

†
η

)(
ψ̂−η∂xψ̂−η

)
: , (S8)

where ψ̂R, ψ̂L are chiral fermion fields, the indices η = (+,−) correspond to (R,L), the dots : ... : denote normal
ordering (necessary because the linearisation introduces a Dirac sea of negative energy fermion states), and ρ̂η is
the density of η-fermions. The final term is the umklapp term which induces the quantum phase transition in this
formulation. Note that some of the coefficients have extra factors of 2π compared to Ref. [8], because we are following
the conventions of Ref. [25].

To these chiral fermions we associate chiral boson fields ϕ̂η, in terms of which the fermion densities are given by
ρ̂η = ∂xϕ̂η, and the fermion fields by vertex operators ψ̂η ∼ eiηϕ̂η . These chiral bosons have the algebra[

ϕ̂η(x), ∂xϕ̂η′(x′)
]
= 2πiηδηη′δ(x− x′). (S9)

Defining the total density and current fields,

ϕ̂ =
ϕ̂R + ϕ̂L

2
, θ̂ =

ϕ̂R − ϕ̂L
2

, (S10)

such that ϕ̂ is canonically conjugate to 1
π∂xθ̂(x

′), i.e.,[
ϕ̂(x),

1

π
∂xθ̂(x

′)

]
= iδ(x− x′), (S11)

the Hamiltonian becomes

Ĥ =

∫
dx

2π
:

(
J1 +

4J1
π

)
(∂xϕ̂)

2 +

(
J1 −

8J2
π

)
(∂xθ̂)

2 +
J1 − 6J2
2πa2

cos 4ϕ̂ : , (S12)

where we have explicitly reinstated the lattice spacing in the umklapp term. Now, the bare value of the fermion
charge stiffness is just the coefficient of the current fluctuations (∂xθ̂)

2. However, unlike the saddle-point of the MPS
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ansatz, the bosonised field theory includes ultraviolet contributions from arbitrarily high momentum; we thus identify
the physical value of the spin stiffness with the renormalised (infrared) charge stiffness.

We introduce the usual Luttinger liquid parameters u and K, where u is the analogue of the Fermi velocity and K
is dimensionless. In the Hamiltonian (S12), uK is the coefficient of (∂xθ̂)2, and u/K is the coefficient of (∂xϕ̂)2.

To obtain the flow equations, consider the (imaginary time) partition function,

Z =

∫
DϕDθ e−S[ϕ,θ], S =

∫
dτdx

[
− i

π
(∂τϕ)(∂xθ) +H

]
, (S13)

and integrate out the conjugate field θ, leaving the effective sine-Gordon action

S =

∫
dxdτ

1

2πK

(
1

u
(∂τϕ)

2 + u(∂xϕ)
2

)
+

g

2πa2
cos 4ϕ. (S14)

The Wilsonian renormalisation procedure of dividing the field into fast modes ϕ> and slow modes ϕ<, and successively
integrating out the ϕ>, may now be performed. Following Ref. [26], we have the flow equations

dK

dl
= −AK2g2,

dg

dl
= (2− 4K)g, (S15)

for some constant A > 0. We can read off the critical value Kc = 1/2, below which g always flows to strong coupling.
The Luttinger velocity u does not flow under renormalisation – the action (S14) is Lorentz covariant, and u is its light
speed.

In principle, we should now compute the infrared values of the couplings. In fact, this is not necessary – for all
J2 < Jc

2 , the isotropic J1−J2 model lies at a transition between the easy-plane spin-fluid and easy-axis Néel state (see
Fig. 2 of Ref. [8]). It follows, then, that the bare values of K and g must lie on the separatrix between the strong and
weak-coupling phases, and so K(l → ∞) → Kc = 1/2, g(l → ∞) → 0. The transition to the dimer state is marked
by the bare value of K falling below Kc = 1/2, which happens at J2 > Jc

2 = 3π−4
32 ≈ 1/6, whereupon K(l → ∞) → 0;

this universal discontinuity in the infrared behaviour of K is the quantum analogue of the universal jump in the spin
stiffness in classical Kosterlitz-Thouless transitions.

With these considerations, the bosonisation estimate for the spin stiffness of the J1 − J2 model is

ρ = uK(l → ∞) =

{
1
2

√(
J1 +

4J1

π

) (
J1 − 8J2

π

)
J2 < Jc

2 ≈ J1/6,

0 J2 > Jc
2 ≈ J1/6.

(S16)

We show a comparison of the spin stiffness estimates obtained from the MPS ansatz and bosonisation in Fig. 2 of the
main text. The two methods are in reasonable agreement with each other, though neither is exact. Moreover, the
MPS estimate is considerably easier to obtain, both conceptually and computationally.

S-III. GAUGE FIXING

The spin coherent states used in the parametrisation of the MPS ansatz (2) have apparent U(1) gauge freedom
corresponding to rotations of the tangent space basis of the point on S2 specified by n̂. Making this gauge freedom
explicit, we have

|+n̂⟩ = eiµ/2
(
cos

θ

2
|↑⟩+ sin

θ

2
eiϕ |↓⟩

)
|−n̂⟩ = e−iµ/2

(
sin

θ

2
|↑⟩ − cos

θ

2
eiϕ |↓⟩

)
, (S17)

where the unit vector parametrising the states is n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). We also define

θ̂ =
∂θn̂

|∂θn̂|
= (cos θ cosϕ, cos θ sinϕ,− sin θ), ϕ̂ =

∂ϕn̂

|∂ϕn̂|
= (− sinϕ, cosϕ, 0), (S18)

which provide a basis for the tangent space such that {n̂, θ̂, ϕ̂} forms a right-handed set. We denote the complex
combinations of the tangent space vectors by Θ = θ̂ + iϕ̂ and Θ∗ = θ̂ − iϕ̂. These combinations show up in the
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matrix elements of the Pauli matrices with respect to the coherent states,

⟨n̂|σ |n̂⟩ = n̂

⟨n̂|σ |−n̂⟩ = −eiµΘ∗

⟨−n̂|σ |n̂⟩ = −e−iµΘ

⟨−n̂|σ |−n̂⟩ = −n̂, (S19)

where σ = (σx, σy, σz) is the vector of Pauli matrices. Identifying Θ = Θ′ = θ̂′ + iϕ̂′ = −eiµΘ∗, we see that µ in
Eq. (S17) is the angle of rotation between θ̂, ϕ̂ and θ̂′, ϕ̂′.

This redefinition of the tangent space at n̂ allows us to rewrite the expectation value of the Hamiltonian so that the
explicit dependence is only upon n̂ and not upon Θ. Taking the expectation value of the Hamiltonian that results
from setting ψ2i+1 = 0 (as in the main text), we have

H = J1
∑
2i

[
n̂2i−1 · n̂2i + cosχ2i cosχ2i+2n̂2i · n̂2i+1

+
1

2
sinχ2i

(
e−iξ2i−iµ2i−1−iµ2iΘ2i−1 ·Θ2i + eiξ2i+iµ2i−1+iµ2iΘ∗

2i−1 ·Θ∗
2i

)]
+ J2

∑
2i

cosχ2i cosχ2i+2(n̂2i · n̂2i+2 + n̂2i−1 · n̂2i+1). (S20)

We now perform a series of manipulations that remove the explicit appearance of Θ and Θ∗ from this expression.
First we note that the appearance of µ2i−1−µ2i in Eq,(S20) reveals that it is in fact not a local gauge invariance when
taking account of entangled configurations. We may absorb µ2i and µ2i−1 into ξ2i, and note that it parametrises the
relative phase between |↑↓⟩ and |↓↑⟩ across a bond—and so determines the degree of singlet or triplet correlation.

Next, we fix ξ to its optimum value. This can be found by maximising the singlet content across each bond.
Geometrically, this optimisation corresponds to a rotation such that θ̂′

2i−1 = θ̂′
2i ∝ n̂2i−1 × n̂2i, in which case

ϕ̂2i−1 · ϕ̂2i = n̂2i−1 · n̂2i, and we obtain the form (11) for the energy given in the main text. A similar construction
is clearly possible if we instead began with ψ2i = 0.

It is instructive to view this simplification of Eq. (S20) from a complementary perspective. The change of tangent
space basis is equivalent to identifying a rotated polar axis ẑ′

2i = ẑ′
2i−1 = θ̂2i−1 = θ̂′

2i ∝ n̂2i−1× n̂2i, and the coherent
states have a simple expression in terms of spin-up and down states (| ↑ẑ′⟩ and | ↓ẑ′⟩, respectively) relative to this
polar axis: |n̂2i⟩ = (e−iϕ′

2i/2| ↑ẑ′⟩+ e−ϕ′
2i/2| ↓ẑ′⟩)/

√
2. In this case, the expectation values of the spin operators that

comprise the middle line in Eq. (S20) simplify to ⟨n̂|σ| − n̂⟩ · ⟨−n̂′|σ|n̂′⟩ = 1+ n̂ · n̂′. Crucially, the overlap between
coherent states also simplifies to ⟨n̂|n̂′⟩ =

√
(1 + n̂ · n̂′)/2. The complex phase factor that is found in calculating this

overlap from the coherent states, as defined in Eq. (S17), is absent, having been absorbed into ξ2i.
It is this phase factor (with a phase angle proportional to the solid angle between n̂, n̂′ and ẑ) that ultimately

generates the coherent state contribution to the Berry phase. It is transferred, therefore, to a Berry phase arising from
the dynamical fixing of the rotation ξ2i ≡ ξ2i(n̂2i−1(t)× n̂2i(t)) (see the first term in Eq. (S23) below). In particular,
we note that fixing ξ2i to its optimal value in this way does not alter the topological contribution to the Berry phase.

S-IV. DERIVATION OF THE NON-LINEAR SIGMA MODEL

The central result of this letter is to show how the non-linear sigma model action and the Wess-Zumino topological
term describing the long-wavelength physics of the J1-J2 chain can be connected to the spin wavefunction via the
MPS ansatz. Although we have given all of the essential steps in the main text, we include a more detailed derivation
here. As mentioned in the main text, in order to map the dynamics of the MPS ansatz to the field theory, we need
to temporarily restrict the entanglement to only half of the bonds (though the possibility of entanglement appearing
on the other set of bonds is restored in the continuum limit, in the sense that both singlet covers are accessible).

Again, we express the action in imaginary time, and, as in the main text, we begin with the form that results from
assuming ψ2i+1 = 0. That is,

S =

∫ β

0

dτ ⟨Ψ|∂τΨ⟩+H, (S21)
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where

H = J1
∑
2i

(
−wx

2i + (1 + wx
2i)n̂2i−1 · n̂2i + wz

2iw
z
2i+2n̂2i · n̂2i+1

)
+ J2

∑
2i

wz
2iw

z
2i+2(n̂2i−1 · n̂2i+1 + n̂2i · n̂2i+2),

(S22)

and

⟨Ψ|∂τΨ⟩ =
∑
2i

[
iξ̇2i
2

(1− cosχ2i) +
i

2
cosχ2i

(
ϕ̇2i cos θ2i + ϕ̇2i−1 cos θ2i−1

)]

=
∑
2i

[
iξ̇2i
2

(1− cosχ2i) +
i

2
cosχ2i

(
A(n̂2i) · ˙̂n2i +A(n̂2i−1) · ˙̂n2i−1

)]
, (S23)

where A(n̂) = − cos θ
sin θ ϕ̂ is a vector potential which generates the spin Berry phase.

A. Haldane’s mapping and continuum limit

To derive the continuum limit of this action, we adapt Haldane’s mapping [19], and write

n̂i = (−1)im̂i

√
1− l2i + li, m̂2

i = 1, m̂i · li = 0, l2i ≪ 1. (S24)

where m̂i is the slowly-varying Néel field, and li is the transverse canting field which captures any fast fluctuations
of n̂i. Now, to second-order in l, we have

n̂i · n̂j ∼ (−1)i+jm̂i · m̂j + li · lj −
1

2
(−1)i+j(l2i + l2j ) + (−1)jli · m̂j + (−1)im̂i · lj +O(l3). (S25)

We will, shortly, approximate the differences of the slow m̂-field by derivatives. We cannot take the continuum limit
of the fast l-field, though the cross-terms turn out to be negligible in the Hamiltonian [19]. At this order, then (and
dropping the cross terms), the Hamiltonian becomes

H =
∑
2i

−J1wx
2i − J1(1 + wx

2i)m̂2i−1 · m̂2i − J1w
z
2iw

z
2i+2m̂2i · m̂2i+1 + J2w

z
2iw

z
2i+2(m̂2i−1 · m̂2i+1 + m̂2i · m̂2i+2)

+
∑
2i

[
J1(1 + wx

2i)

(
l22i−1

2
+ l2i−1 · l2i +

l22i
2

)
+ J1w

z
2iw

z
2i+2

(
l22i
2

+ l2i · l2i+1 +
l22i+1

2

)
+ J2w

z
2iw

z
2i+2

(
−
l22i−1

2
+ l2i−1 · l2i+1 −

l22i+1

2
− l22i

2
+ l2i · l2i+2 −

l22i+2

2

)]
. (S26)

The first line in the above contains only the slow fields, and so we can proceed to the continuum limit. There is
a subtlety, however, regarding the appropriate continuum limit for the Néel field—there is a much higher stiffness
against gradients of m̂ on the entangled bonds. Essentially, this causes the magnetisation to fluctuate on a scale of
two lattice spacings—the same scale as for the entanglement.

More explicitly, let us, temporarily, transform to sum and differences of the Néel fields across the entangled bonds,

m
(+)
2i =

m̂2i−1 + m̂2i

2
, m

(−)
2i = m̂2i−1 − m̂2i. (S27)

But, since the entangled bonds are stiff, we have, approximately,

m̂2i−1 ≈ m
(+)
2i , m̂2i ≈ m

(+)
2i , m

(−)
2i ≈ 0, |m(+)

2i |2 ≈ 1. (S28)

This implies the following continuum limits:

wz
2iw

z
2i+2 ∼ (wz)2 + 2wz∂2xw

z 7→ (wz)2 − 2(∂xw
z)2

m̂2i−1 · m̂2i ∼ m
(+)
2i ·m(+)

2i ∼ 1,

m̂2i · m̂2i+1 ∼ m
(+)
2i ·m(+)

2i+2 ∼ 1− 2(∂xm
(+))2 ∼ 1− 2(∂xm̂)2

m̂2i−1 · m̂2i+1 ∼ m̂2i · m̂2i+2 ∼ m
(+)
2i ·m(+)

2i+2 ∼ 1− 2(∂xm
(+))2 ∼ 1− 2(∂xm̂)2, (S29)
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where we convert from ∂2x(·) 7→ −(∂x·)2 using integration by parts, and the lattice spacing has been set to unity. Then
the part of Eq. (S26) that contains only the slow fields becomes

... ∼
∫
dx

[
−J1

2
− J1w

x −
(
J1
2

− J2

)
w2

z + (J1 − 2J2)
(
(∂xw

z)2 + w2
z(∂xm̂)2

)]
. (S30)

B. Berry phase and kinetic terms

We now turn to the Berry phase terms. Again, applying Eq. (S24), we have

⟨Ψ|∂τΨ⟩ ∼
∫
dx

2

[
i

2
∂τξ(1− cosχ) +

i

2
cosχ (∂τϕ∂x cos θ − ∂xϕ∂τ cos θ)

]
+
∑
2i

i

2
cosχ2i

[
(m̂2i × ∂τm̂2i) · l2i + (m̂2i−1 × ∂τm̂2i−1) · l2i−1

]
, (S31)

where θ and ϕ are the standard spherical co-ordinates for m̂. The second term in the above is the SO(4) topological
term, which we will discuss shortly. It remains only to obtain the kinetic terms, for which we need to integrate out
the remaining fast fields, ξ and l. We start with ξ, for which the corresponding part of the action is

Sξ =

∫
dτdx

[
i

4
(1− cosχ)(∂τξ)− J1 sinχ cos ξ

]
∼
∫
dτdx

[
+
i

4
(∂τ cosχ)ξ − J1| sinχ|+

J1
2
| sinχ|ξ2

]
=

∫
dτdx

[
J1
2
| sinχ|

(
ξ +

i

4J1| sinχ|
(∂τ cosχ)

)2

+
1

32J1| sinχ|
(∂τ cosχ)

2 − J1| sinχ|

]
, (S32)

which, after completing the Gaussian integrals over the transformed ξ-field, and approximating | sinχ| ≈ 1 in the
coefficient of the entanglement field, contributes∫

dτdx

[
−J1| sinχ|+

1

32J1
(∂τ cosχ)

2

]
(S33)

to the total action.
We now turn to the fast fluctuations of the magnetisation, l. Since we are expanding around the singlet covers, we

neglect the terms ∼ cos2 χ l2 in Eq. (S26). We thus obtain:

Sl =

∫
dτ
∑
q

i

2
cosχ (m̂× ∂τm̂)q · l−q + J1ωqf(χ)lq · l−q

=

∫
dτ
∑
q

[
J1ωqf(χ)

(
lq +

i

4J1ωqf(χ)
cosχ (m̂× ∂τm̂)q

)
·
(
l−q +

i

4J1ωqf(χ)
cosχ (m̂× ∂τm̂)−q

)
+

1

16J1ωqf(χ)
cos2 χ (m̂× ∂τm̂)q · (m̂× ∂τm̂)−q

]
, (S34)

where f(χ) = 1+ | sinχ| and ωq = 1
2 (1+cos q), and we have assumed that χ varies much more slowly than l, such that

its momentum-dependence can be neglected when taking the Fourier transform of l. Then, completing the integrals
of the transformed l-field, approximating | sinχ| ≈ 1 in the coefficient, and replacing ωq by its zero momentum value
(again, justified because the variation of l is much faster than that of m̂), we have∫

dτdx
1

32J1
cos2 χ(∂τm̂)2, (S35)

where we have made use of the identity (m̂× ∂m̂)2 = (∂m̂)2.
Finally, we switch to the standard angular co-ordinates on S3. As in the main text, we define α = −χ + π/2, in

terms of which (wz)2 = sin2 α and (∂wz)2 ∼ (∂α)2. The full action, then, becomes

S = iΩ+

∫
dτdx

[
1

32J1

(
(∂τα)

2 + sin2 α(∂τm̂)2
)
+ (J1 − 2J2)

(
(∂xα)

2 + sin2 α(∂xm̂)2
)
+ V (α)

]
, (S36)
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with the dimerisation potential

V (α) = −J1
2

− J1| cosα| −
(
J1
2

− J2

)
sin2 α ≈ −3J1

2
+
J2
2

− J2
2

cos 2α (S37)

(the approximation preserves V (α) to second order around the singlet covers α = 0 or π). If V (α) is relevant, we
are in the dimer phase; if V (α) is irrelevant we are in the critical phase, with the SO(4) symmetry of the joint-order
parameter emergent in the infrared, and the topological term protecting the gaplessness.

C. Manipulating the topological term

Finally, let us show how the polar co-ordinate form of the topological term (14) is equivalent to the standard
formulation of the Wess-Zumino (WZ) term.

We write the WZ term (15) with an anti-symmetrisation over the derivatives, ∂ζ ...∂τ ...∂x... = 1
6ϵµνρ∂µ...∂ν ...∂ρ...,

and insert u = (sinχ, cosχm), with m = (sin θ cosϕ, sin θ sinϕ, cos θ), into Eq. (15). The topological term becomes

Ω = −2πk

2π2

∫ 1

0

dζ

∫
dτdx cos2 χ sin θ

∣∣∣∣∣∣
∂ζχ ∂τχ ∂xχ
∂ζθ ∂τθ ∂xθ
∂ζϕ ∂τϕ ∂xϕ

∣∣∣∣∣∣
= −2πk

2π2

∫ 1

0

dζ

∫
dτdx

∣∣∣∣∣∣
∂ζf ∂τf ∂xf
0 ∂τ cos θ ∂x cos θ
0 ∂τϕ ∂xϕ

∣∣∣∣∣∣
=

2πk

2π2

∫ 1

0

dζ

∫
dτdx (∂ζf) (∂xϕ∂τ cos θ − ∂τϕ∂x cos θ)

=
2πk

2π2

∫
dτdx f(χ) · (∂xϕ∂τ cos θ − ∂τϕ∂x cos θ) , (S38)

where we have assumed without loss of generality that only χ depends upon the extension coordinate ζ, such that
∂ζϕ = ∂ζθ = 0 (the extension is arbitrary, up to the boundary conditions), and defined

f(χ) =

∫ 1

0

dζ ∂ζf =

∫ χ

π/2

dχ′ cos2 χ′ =
1

4
(2χ− π + sin 2χ) . (S39)

Now, the form given in Eq. (14) contains a factor of (cosχ)/2 in the integrand instead of f(χ)/π. However, since this
is a topological term, deformations of f(χ) that preserve the values at the poles of the sphere give the same integral.
Here, f(χ = 0) = −π/4, and f(χ = π) = π/4. Therefore, replacing f 7→ −π

4 cosχ gives the same integral and recovers
Eq. (14).
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