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It has been shown that entropy differences between certain states of perturbative quantum gravity
can be computed without specifying an ultraviolet completion. This is analogous to the situation
in classical statistical mechanics, where entropy differences are defined but absolute entropy is not.
Unlike in classical statistical mechanics, however, the entropy differences computed in perturbative
quantum gravity do not have a clear physical interpretation. Here we construct a family of pertur-
bative black hole states for which the entropy difference can be interpreted as a relative counting of
states. Conceptually, this paper begins with the algebra of mass fluctuations around a fixed black
hole background, and points out that while this is a type I algebra, it is not a factor and there-
fore has no canonical definition of entropy. As in previous work, coupling the mass fluctuations to
quantum matter embeds the mass algebra within a type II factor, in which entropy differences (but
not absolute entropies) are well defined. It is then shown that for microcanonical wavefunctions of
mass fluctuation, the type II entropy difference equals the logarithm of the dimension of the extra
Hilbert space that is needed to map one microcanonical window to another using gauge-invariant
unitaries. The paper closes with comments on type II entropy difference in a more general class
of states, where the von Neumann entropy difference does not have a physical interpretation, but
“one-shot” entropy differences do.

I. INTRODUCTION

Entropy was first introduced in [1] as an empirical mea-
sure of change in thermodynamic processes. In this set-
ting, it could be said that a system had gained or lost a
certain amount of entropy, but absolute entropy was not
meaningful. With classical statistical mechanics, Boltz-
mann [2] and Gibbs [3] gave a physical interpretation of
entropy exchange in terms of probability distributions of
statistical systems. Due to an ambiguity in the choice of
units on phase space, the Boltzmann-Gibbs theory gave
well defined answers for entropy difference, but absolute
entropies remained out of reach. This lacuna was even-
tually filled by quantum mechanics thanks to von Neu-
mann’s observation that for quantum density matrices,
entropy is unambiguous [4].

Analogously, in general relativity, it was observed in
the 1970s that perturbations of stationary black holes
obey a law similar to the first law of thermodynamics,
with the black hole’s surface gravity playing the role of
temperature, and its horizon area playing the role of en-
tropy [5, 6]. The constant of proportionality between
these quantities was fixed by Hawking’s calculation of a
black hole’s temperature [7, 8], leading to the formula

∆SBH =
∆A

4GN
(1)

in units with kB = ~ = c = 1. In analogy with quantum
statistical mechanics, it was guessed that the absolute
quantity A/4GN should represent the number of quan-
tum gravity microstates making up an ensemble state
represented by the classical black hole. This prediction
has been verified for stationary black holes in many con-

crete models of quantum gravity, including in certain
string theories [9–13], in the AdS3/CFT2 correspondence
[14, 15], and in Euclidean path integral approaches to
holography [16–18].

So far we have described a passage from black hole
thermodynamics (i.e., classical black hole perturbation
theory) to black hole quantum statistical mechanics (i.e.,
black holes in quantum gravity). In the context of ordi-
nary thermodynamics, however, there was an intermedi-
ate theory — classical statistical mechanics — that could
be used to compute and interpret differences in entropy
without requiring absolute entropies to be defined. This
prompts us to ask if there a theory that sits between
classical black hole perturbation theory and microscopic
quantum gravity, and that lets us compute and interpret
entropy differences without needing to know how quan-
tum gravity works.

The theory that naturally sits between classical gen-
eral relativity and microscopic quantum gravity is the
theory of semiclassical quantum gravity, in which gen-
eral relativity is perturbatively coupled to quantum fields
and in which metric fluctuations are quantized using
the ordinary rules of quantum theory. Recently it has
been shown that in certain settings within semiclassical
quantum gravity, a mathematical framework known as
Tomita-Takesaki theory provides an unambiguous defini-
tion of entropy difference [19–24]. This entropy difference
is associated with an abstract mathematical structure
called a type II algebra. The most tantalizing aspect
of this recent work is that when the type II entropy-
difference formula is regulated, it can be interpreted as a
difference between the horizon areas of two black holes,
together with the difference between matter entropies of
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quantum fields in the black hole exteriors. This is a com-
pelling result, but a key question remains: can the type II
entropy difference be given an interpretation in terms of
a relative counting of states? Because every nonzero op-
erator in a type II algebra has infinite rank, it may seem
difficult to formulate the idea that one density matrix is
supported on more states than another. However, the
analogy to classical statistical mechanics provides some
hope that such an interpretation is possible, since in clas-
sical statistical mechanics entropy difference can be inter-
preted as the increased number of states consistent with
one macroscopic configuration relative to another, even
though the number of classical states consistent with any
macroscopic configuration is formally infinite.

The purpose of this paper is to explain a setting in
which type II entropy difference admits a physical inter-
pretation as a relative counting of semiclassical states.
The main result is that for a Hilbert space describing
mass fluctuations of a static black hole coupled to quan-
tum fields, the type II entropy difference between wave-
functions describing microcanonical windows of mass
fluctuation has the following interpretation. If HK2

and
HK1

are the subspaces of the mass Hilbert space on which
two such wavefunctions are supported, ∆S is the (as-
sumed nonnegative) difference in their type II entropies,
and HQFT is the full Hilbert space of quantum fields, then
for any integer n ≥ e∆S, the microcanonical semiclassi-
cal Hilbert space HQFT ⊗ HK2

can be embedded in the
Hilbert space HQFT ⊗HK1

⊗Cn using a unitary embed-
ding map that is constructed from operators in the type
II algebra. For n < e∆S , no such embedding is possible.

Section II describes a framework for quantizing black
hole mass in perturbative quantum gravity, and explains
that there is no canonical formula for entropy or entropy
difference. Section III gives a brief review of the work on
gravity and the crossed product that was developed in
[19–24], and explains its relevance to the current setting.
Section IV gives a derivation of the main result. Sec-
tion V discusses extensions of the main result to a more
general class of states, and connections to the smooth
entropy formalism developed in [25, 26].

II. NO PREFERRED ALGEBRAIC ENTROPY

FOR A FLUCTUATING MASS

Consider an asymptotically flat Schwarzschild space-
time of mass M0. In a full theory of quantum gravity,
this spacetime will be described by a state in a Hilbert
space HQG. In the semiclassical limit, one can consider
the Hilbert space Hfluc of perturbative fluctuations about
the Schwarzschild spacetime. This Hilbert space is un-
derstood to embed within the full Hilbert space of quan-
tum gravity, Hfluc ⊆ HQG, in the sense of quantum error
correcting codes [27].

Treating Hfluc at the quantum level is difficult, but
some progress can be made by restricting our attention to
the subspace Hmass of fluctuations to Schwarzschild black

holes of mass close to M0. Because the Schwarzschild so-
lution has two exteriors, there are two masses that could
be described at the quantum level; we will take Hmass

to describe the fluctuations of the mass of the right ex-
terior, and we will treat it as a Hilbert space of square-
integrable wavefunctions, Hmass

∼= L2(R). The “position

variable” on this space is δM̂, which is the operator that
encodes the mass fluctuation. It has a conjugate “mo-

mentum” which we choose to call θ̂ due to the conjugate
relationship between black hole mass and boost angle for
eternal black holes [28].

The algebra of bounded operators on Hmass is denoted
B(Hmass). It is an example of a von Neumann algebra.1

The algebra B(Hmass) is generated by all bounded func-

tions of δM̂ and θ̂. It has a natural subalgebra, Amass,
which is the algebra consisting of all bounded functions

of δM̂ . This is an abelian von Neumann algebra — see
e.g. [30, theorem 4.71].

Let K be a compact subset of the real line. The indica-
tor function that is equal to one in K and zero elsewhere
is denoted χK . This is a bounded function, so the oper-

ator χK(δM̂) is in Amass, and is simply the projection
operator onto the K-eigenspaces of the Hermitian opera-

tor δM̂ . We will write χK(δM̂) = ΠK . Naively, we might
hope to be able to say that at the quantum level, the
number of black hole microstates contained in the mass
window K is

dim(K) = tr(ΠK). (2)

But the operator ΠK has infinite trace, as is clearly seen
in the equation

tr(ΠK) =

∫
dx 〈x|ΠK |x〉 =

∫

K

dx δ(0). (3)

To get around a formal infinity in the counting of
states, it is necessary to renormalize. A method for ac-
complishing this using the mathematics of von Neumann
algebras was proposed in [31] and elaborated in [29]. The
idea is to define an abstract trace τ , which maps from an
ideal Amass,τ ⊆ Amass of “trace-class operators” into the
complex numbers C. The trace τ is defined to be linear
and cyclic. In order to be a good candidate for a physi-
cal renormalized trace, it must also be “faithful, normal,
and semifinite” — these conditions are explained in [29,
section 6]. Given a faithful, normal, and semifinite trace
τ for Amass, it is possible to define density matrices as
the positive operators ρ ∈ Amass that have finite trace,
τ(ρ) < ∞. The entropy of a density matrix is defined to
be

Sτ (ρ) = −τ

(
ρ

τ(ρ)
log

ρ

τ(ρ)

)
. (4)

1 See [29] for a thorough exposition of the physical properties of
such algebras.
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It is easy to find a faithful, normal, and semifinite trace
for Amass. A simple one is provided by integration with
respect to the Lebesgue measure:

τ0(f(δM̂)) =

∫
dx f(x). (5)

The corresponding trace-class ideal Amass,τ0 is just the
space of Lebesgue-integrable functions L1(R). The trou-
ble is that there are too many faithful, normal and semifi-
nite traces on Amass, and none is any better than the rest
for defining entropy! In fact, for any positive function
µ(x), the functional

τµ(f(δM)) =

∫
dxµ(x)f(x) (6)

is a faithful, normal, semifinite trace [32, page 322].2 The
formal statement is that because Amass is an abelian alge-
bra, it is type I (see [32, proposition V.1.23]), but because
it has nontrivial center, it is not a factor (see [29, section
3]), leading to a large ambiguity in the appropriate defi-
nition of a trace.

The ambiguity in the trace τµ makes it hard to come up
with anything we might canonically define as the entropy
of a density matrix for mass fluctuations. Even if we
were to insist on a measure we particularly like, such as
the Lebesgue measure, our resulting formula for entropy
would have no physical interpretation. To remedy this,
we will briefly review in the next section how coupling
the black hole mass to quantum fields yields a preferred
family of renormalized traces and show that this family
of traces, when pulled back to Amass, corresponds to the
family of traces τµ where µ(x) is proportional to ex. The
advantage of this is that we will then be able to show
in section IV that entropy differences of microcanonical
mass wavefunctions actually do have an interpretation
in terms of relative state-counting in the semiclassical
algebra.

III. GRAVITY AND THE CROSSED PRODUCT

Consider now a Hilbert space HQFT of quantum fields
on the background of an eternal Schwarzschild black
hole, such that this Hilbert space includes the Hartle-
Hawking state |Ψ〉 which is in equilibrium with respect
to Schwarzschild time evolution [33].3 Consider the von
Neumann algebra AQFT generated by fields in the right

2 A classic theorem [32, theorem V.2.31] implies that every faithful,
normal, semifinite trace on Amass is realized in this way.

3 This setting is particularly natural for Schwarzschild-AdS black
holes. For asymptotically flat black holes it may be more natural
instead to consider the Hilbert space containing the Unruh state.
All of the calculations in this section were carried out for the
Unruh background in [24].

exterior of the black hole. Naively, the Hilbert space of
quantum fields coupled to mass fluctuations is

H = HQFT ⊗Hmass, (7)

and the corresponding algebra of operators is

A = AQFT ⊗ B(Hmass). (8)

In physical states, however, there is a relationship be-
tween the fluctuation of the mass and the fluctuation of
the stress-energy tensor of the quantum fields. If ξa is the
Schwarzschild time vector field that is future-directed in
the right exterior, then the physical constraint is enforced
by the operator equation

Mright exterior −Mleft exterior =

∫

Σ

Tabξ
adΣb, (9)

where Σ is any Cauchy slice of the full Schwarzschild
spacetime, and Tab is an appropriately renormalized
stress-energy tensor for quantum fields. The physical op-
erators in the theory are the ones that commute with the
constraint

C = Mright exterior −Mleft exterior −

∫

Σ

Tabξ
adΣb. (10)

Equation (8) must therefore be modified to obtain a phys-
ical algebra of operators by restricting to the subalgebra

Â =

{
a ∈ A | [δM̂ −

∫

Σ

Tabξ
adΣb, a] = 0

}
. (11)

The integral
∫
Σ Tabξ

adΣb is proportional to the modular
Hamiltonian of the Hartle-Hawking state |Ψ〉 [33]. The

algebra Â is called a crossed product.
Crucially, it was shown in [31, 34] (see also [22, ap-

pendix B]) that the crossed product is a type II von Neu-
mann factor. As explained in [29, section 6], a type II
von Neumann factor has a single, R+-parametrized fam-
ily of renormalized traces, all of which are related by a
single constant ambiguity in scaling. One member of this
family is [22, appendix B]

τ(â) = 2π〈Ψ|〈0|θe
δM̂/2âeδM̂/2|0〉θ|Ψ〉, (12)

where |Ψ〉 is the Hartle-Hawking state and |0〉θ is the

zero eigenstate of the “momentum” operator θ̂. All other
faithful, normal, semifinite traces are of the form cτ for
c > 0.

The mass fluctuation algebra Amass is a subalgebra of

the gauge-invariant algebra Â. The canonical family of

traces on Â, when pulled back to Amass, give

cτ(f(δM̂ )) = c

∫
dx exf(x). (13)

They are therefore all proportional to rescalings of the
Lebesgue measure by the smooth function ex, as was
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claimed in section II. Given any wavefunction g(x) for the
mass fluctuation, one constructs a corresponding state

|g〉mass =

∫
dx g(x)|x〉mass, (14)

and defines the corresponding density matrix ρg with re-
spect to the trace τ as the operator ρg in Amass satisfying

τ(ρgf(δM̂)) = 〈g|f(δM̂)|g〉mass (15)

for every operator f(δM̂) ∈ Amass. A straightforward
calculation shows that ρg is unique and is given by

ρg = |g(δM̂)|2e−δM̂ . (16)

For any such density matrix one can formally define and
compute the entropy

−τ(ρg log ρg) =

∫
dxx|g(x)|2 −

∫
dx |g(x)|2 log |g(x)|2

= 〈δM̂〉g + Sg. (17)

Because the normalization of τ is ambiguous up to rescal-
ing, entropy is only defined up to a constant, and the
mathematically meaningful quantity that can be com-
puted is

−τ(ρg2 log ρg2) + τ(ρg1 log ρg1)

= (〈δM̂〉g2 − 〈δM̂〉g1) + (Sg2 − Sg1). (18)

This is more or less what was done in [19–24], except that
there entropy differences were computed for states of the
form |Φ〉QFT ⊗ |g〉mass in the full matter-mass Hilbert
space. The case being considered here is the special
case where the quantum field theory state is fixed to the
Hartle-Hawking state |Ψ〉, and only the mass wavefunc-
tion changes.

IV. OPERATIONAL ENTROPY DIFFERENCES

FOR MICROCANONICAL STATES

Let K be a compact subset of the real line, and consider
the microcanonical wavefunction

|K〉mass =

∫
K
dx ex/2|x〉mass√∫

K
dx ex

. (19)

The weighting ex/2 is chosen so that the associated den-
sity matrix in the type II algebra, given by equation (16),
will be proportional to a projection operator — this is
what it should mean for a state to be microcanonical.
For two such sets K1 and K2, equation (18) gives the
type II entropy difference as

SII(K2)− SII(K1) = log

∫
K2

dx ex∫
K1

dx ex
. (20)

Because of our choice of microcanonical wavefunction,
this is equal to the logarithm of a ratio of traces of pro-
jection operators in Amass:

SII(K2)− SII(K1) = log
τ(ΠK2

)

τ(ΠK1
)
. (21)

This fact will allow us to give the entropy difference a
relative state-counting interpretation. Without loss of
generality, let us assume τ(ΠK2

) ≥ τ(ΠK1
). Let us write

the ratio as an integer n plus a remainder term that is
less than one:

τ(ΠK2
)

τ(ΠK1
)
= n+ r. (22)

In any type II factor, it is a theorem — see e.g. [35,
proposition 1.3.5] or [29, page 32]— that the support of
ΠK2

can be decomposed into n orthogonal Hilbert spaces
that are “equivalent” to the image of ΠK1

, plus a piece
corresponding to the remainder term. Concretely, this

means that there exist projectors Π̃1, . . . Π̃n, Π̃r ∈ Â with

ΠK2
= Π̃1 + · · ·+ Π̃n + Π̃r, (23)

with each of the first n projectors equivalent to ΠK1
in

the sense that there exists a partial isometry Vj ∈ Â with

VjΠK1
V †
j = Π̃j , V †

j Π̃jVj = ΠK1
. (24)

In the special case r = 0 this is the whole story; for

0 < r < 1, the remainder piece Π̃r can be embedded
within an (n+ 1)-st projector equivalent to ΠK1

:

Π̃r ( Π̃n+1 = Vn+1ΠK1
V †
n+1, V †

n+1Π̃n+1Vn+1 = ΠK1
.

(25)
As explained in [29, section 5], all nontrivial projectors
in a type II factor have infinite rank, so the existence of a
partial isometry relating any two projectors is not special;
what is special is that the partial isometry relating the
projectors lives within the type II factor. In the context
of black hole physics, this means that the microcanonical
window of black hole mass on which ΠK2

is supported
can be broken up into n pieces that are isomorphic to the
support of ΠK1

with the isomorphism implemented by a

gauge-invariant operator, plus a remainder term. There
is also a theorem ([35, proposition 1.3.5]) stating that
ΠK2

cannot be decomposed into any different number
m of projectors equivalent to ΠK1

— the integer n, plus
the remainder term, is unambiguously determined by the
renormalized trace. It is important to note that because
the operators Vj act on the full semiclassical Hilbert space

HQFT ⊗ Hmass, the projections Π̃j can act nontrivially
on the quantum matter degrees of freedom, even though
ΠK2

and ΠK1
act only on Hmass.

This result can be put in a more suggestive form by
introducing an auxiliary finite-dimensional Hilbert space
CN , with N = n for r = 0, and N = n+ 1 for r > 0. In
the case r = 0, the operator

U =

N∑

j=1

Vj ⊗ 〈j| (26)
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provides a unitary equivalence between HQFT ⊗ HK1
⊗

CN and HQFT ⊗ HK2
, with HK ≡ ΠKHmass. In the

case r > 0, U provides a unitary equivalence between
HQFT ⊗ HK1

⊗ CN and a slightly enlarged Hilbert
space containing HQFT ⊗HK2

. In either case, the micro-
canonical Hilbert space HQFT ⊗ HK2

can be embedded
in the finitely-augmented microcanonical Hilbert space
HQFT ⊗ HK1

⊗ CN using only operators in the type II
gauge-invariant algebra, and N is the smallest integer for
which such an embedding is possible. This is the sense
in which the type II entropy difference for microcanoni-
cal mass wavefunctions represents a relative counting of
states.

V. MORE GENERAL STATES

So far, we have explained a relative state-counting
interpretation for type II entropy differences between
states of the form |K〉mass (cf. equation (19)). What
about more general states? For a general (i.e. non-
microcanonical) state in a finite-dimensional Hilbert
space, the size of the support is not quantified by the
von Neumann entropy, but by the max-entropy,

Smax(ρ) = log rank ρ. (27)

The natural generalization of this quantity to the type II
setting is

Smax(ρ) = log τ(ρ0). (28)

The states (19) were chosen specifically because their
von Neumann entropy differences and max entropy differ-
ences are equal. For a general mass wavefunction |g〉mass,
it is easy to see from equation (16) that the type II max-
entropy is log τ(Πsupp(g)). For compactly supported mass
wavefunctions this is finite, and the type II max-entropy
difference has the same operational interpretation as the
von Neumann entropy had for the microcanonical states
(19).

For wavefunctions that are not compactly supported,
the max-entropy can be infinite, and the interpretation of
max-entropy difference in terms of relative state counting
is less useful. There is however still a useful quantity for
understanding approximate relative state counting in the

form of the smooth max-entropy:4

Sε
max(ρ) = inf

τ(|ρ̂−ρ|)≤ǫ
Smax(ρ̂). (29)

Hölder’s inequality holds for any renormalized trace [36],
and implies that for any operator O in the type II algebra
with operator norm ‖O‖∞, the difference in expectation
values between ρ̂ and ρ satisfies

|τ(ρO) − tr(ρ̂O)| ≤ τ(|ρ̂− ρ|) ‖O‖∞. (30)

Operators ρ̂ appearing in the infimum in equation (29)
therefore approximate ρ in an operational sense, and the
smooth max-entropy may be thought of as measuring the
max-entropy of the “important” part of ρ.

It is easy to see from equation (16) that for a generic
mass wavefunction |g〉mass, the infimum in equation (29)
will be attained by a truncation of ρg onto a subspace
of the mass Hilbert space with finite renormalized trace.
Given two such density matrices ρg1 and ρg2 with (as-
sumed positive) smooth max-entropy difference

Sε
max(ρg2)− Sε

max(ρg1) = ∆Sε
max, (31)

and letting Π̂g1 and Π̂g2 be the projectors onto the trun-
cated subspaces, our previous considerations for micro-
canonical states imply that there is gauge-invariant uni-

tary embedding of HQFT⊗Π̂g2H into HQFT⊗Π̂g1Hmass⊗

Cn if and only if n ≥ e∆Sε

max .
In the full semiclassical Hilbert space HQFT ⊗ Hmass,

the states we have described are ones for which the quan-
tum field theory is fixed to be the Hartle-Hawking state
|Ψ〉, and only the mass wavefunction changes. Entropy
differences in the more general setting where the state of
the quantum fields can change are governed by the for-
mulas of [19–24]. It would be interesting to understand
the physics of smooth max-entropy differences for such
states, and to relate this to previous work on smooth
entropies in quantum gravity [37–40].
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