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Nonstabilizerness, also known as magic, is a crucial resource for quantum computation. The
growth in complexity of quantum processing units (QPUs) demands robust and scalable techniques
for characterizing this resource. We introduce the notion of set magic: a set of states has this
property if at least one state in the set is a non-stabilizer state. We show that certain two-state
overlap inequalities, recently introduced as witnesses of basis-independent coherence, are also wit-
nesses of multi-qubit set magic. We also show it is possible to certify the presence of magic across
multiple QPUs without the need for entanglement between them and reducing the demands on each
individual QPU.

Introduction.– The certification of quantum devices is a
crucial task [1]. One fundamental characteristic of quan-
tum computing hardware is the ability to generate non-
classical resources: quantum coherence [2, 3], quantum
entanglement [4, 5], nonstabilizerness [6], Hilbert space
dimension [7], quantum contextuality [8] are all neces-
sary resources for quantum information processing. The
growth in complexity of near-term noisy devices [9–11]
demands scalable and robust methods for witnessing non-
classical properties.

In this Letter, we propose a technique for certifying the
presence of nonstabilizerness in a network of quantum
processing units (QPUs), without the need to entangle
resources between separate units. Our protocol is effi-
cient, robust, and based on estimating two-state overlaps
ri,j = Tr(ρiρj) (also known as fidelity, if one of the states
is pure), as sketched in Fig. 1. Interestingly, despite not
entangling different units, we can use this scheme to cer-
tify nonstabilizerness among various QPUs. We envision
many use cases. First, certifying the presence of non-
stabilizer resources in a single QPU. Secondly, certifying
the presence of nonstabilizerness generated by multiple
QPUs in a network; for example, a referee collects over-
lap statistics from different QPUs and, after processing
these values (i.e., calculating linear functionals of over-
laps), can infer that at least some QPUs generated non-
stabilizer resources. Finally, certifying nonstabilizerness
present in n-qubit systems and not realizable by systems
with fewer qubits.

Many tools for certifying nonstabilizerness exist. How-
ever, as the majority is aimed at the task of resource
quantification – in the formal resource theoretic sense [12]
– rather than the simpler one of witnessing, most proto-
cols have strict requirements. Most commonly, there is a
need for: (i) full tomographic information of quantum
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Figure 1. An experimentalist uses a quantum processing
unit (QPU) to evaluate two-state overlaps ri,j = Tr(ρiρj)
for a given set of states either generated by that same QPU
or by a state-preparation device of a third party. With this
information, and using the scheme we propose, they can
benchmark nonclassical resources: nonstabilizerness, coher-
ence, and Hilbert space dimension. This certification is ag-
nostic to the procedure used by the QPU to compute the
overlaps.

states [13], (ii) purity of states (or specific subclasses
of states) [14–16], (iii) additional entanglement genera-
tion [17, 18], or (iv) vertex characterization of the stabi-
lizer polytope [19–23]. We avoid all these requirements.
Our certification scheme depends on two promises of the
device-generated statistics: (a) the data is described by
two-state overlaps and (b) the device consists of a multi-
qubit system. For certain witnesses, it will be possible to
relax the last requirement.

Our method is based on showing that some inequali-
ties, initially introduced as coherence witnesses [24, 25],
can also be used as witnesses of nonstabilizerness. The
basis-independent nature of such inequalities implies the
existence of a relational notion of nonstabilizerness de-
fined for an ensemble of states, that we term set magic.
The idea of viewing ensemble-based resources has re-
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cently been widely studied within quantum resource the-
ories [26–31]. This novel foundational understanding is
at the core of the application we envision, allowing us to
distribute a quantum certification protocol among vari-
ous parties in a network of QPUs.

Background: Stabilizer subtheory.– In this work, we
will focus on the stabilizer subtheory of n-qubit systems.
We say that a pure quantum state |ψ⟩ is a stabilizer state
when it is the eigenvector with eigenvalue +1 for all ele-
ments of a maximal abelian subgroup of the Pauli group
Pn. The Pauli group is formed by all possible n-qubit
Pauli operators, multiplied by phases ±1 and ±i. The
dynamics of this subtheory is described in terms of Clif-
ford operations, defined to be those that preserve the
Pauli group under conjugation, i.e., CPnC† = Pn.

For many different architectures, it is relatively easy to
perform Clifford operations and prepare stabilizer states.
This subtheory is crucial to applications in fault-tolerant
magic-state injection schemes and quantum error correc-
tion, and much work has been done to understand its
geometrical properties. Ref. [32] showed that stabilizer
states have a fixed overlap structure. Recall that any two
pure states |ψ⟩, |ϕ⟩ ∈ H can be orthogonal (|⟨ψ|ϕ⟩| = 0),
parallel (|⟨ψ|ϕ⟩| = 1) or oblique (0 < |⟨ψ|ϕ⟩| < 1). When
two pure stabilizer states are oblique, their two-state
overlap obeys the following result.

Theorem 1 (Adapted from Ref. [32]). Given two oblique
n-qubit pure stabilizer states |ψ⟩ and |ϕ⟩ their overlap is
given by |⟨ϕ|ψ⟩|2 = 2−k for some k ∈ {1, 2, . . . , n}.

The convex hull of all n-qubit pure stabilizer states, for
each fixed value of n ≥ 1, forms a polytope that we will
refer to as STAB. Any state outside of STAB is termed
in the literature magic or nonstabilizer. Note that Theo-
rem 1 presents a simple method for witnessing magic of
pure states using overlaps. Any deviation from the values
1/2k witnesses the presence of such a resource. Beyond
that, purity allows efficient schemes to quantify nonstabi-
lizerness. Refs. [14, 16] provide quantifying protocols that
are close to being optimally efficient. However, without
the assumption of purity (which is never perfectly at-
tained experimentally), any overlap is possible by states
inside of STAB, and the task of witnessing magic be-
comes non-trivial. The test we propose, although based
on two-state overlaps, does not require purity of states.

Background: Coherence witnesses based on two-state
overlaps.– Initially motivated by benchmarking various
resources in linear optical devices – Hilbert space di-
mension [33], quantum coherence [33], indistinguishabil-
ity [34, 35] – Refs. [24, 25] proposed an inequality formal-
ism based solely on linear functionals of two-state over-
laps, defined by ri,j = Tr(ρiρj) for any two states ρi and
ρj over the same Hilbert space.

Consider edge-weighted graphs (G, r) where G =
(V (G), E(G)) is a graph [36], and r : E(G) → [0, 1] is a
function. We refer to fully connected finite simple graphs
G as event graphs [37], as introduced in Ref. [25]. Any
(re)e∈E(G) is merely a tuple of numbers. We will be inter-

ested in the problem of deciding when the numbers ri,j
in these tuples are realizable by quantum states, thus
equating to Tr(ρiρj); this is an instance of a quantum re-
alization problem [38]. More formally, let D(H) represent
the set of all quantum states with respect to a system H
and consider a finite state ensemble ρ ≡ {ρi}i ⊂ D(H).
Denote r(ρ) ≡ r({ρi}i) := (Tr(ρiρj)){i,j}∈E(G); we will
refer to r(ρ) as a quantum realization for a given edge-
weight r. Tuples r ∈ [0, 1]|E(G)| can have any number of
quantum realizations, including none at all [25].

We proceed to discuss the notion of coherence for a
state ensemble [24, 26], that differs from the commonly
described basis-dependent view on coherence [2, 3] and
its witnesses [39–41]. It also differs from the basis-
independent coherence discussed in Refs. [42–44] de-
fined with respect to a single state ρ instead of sets ρ.
When there exists some unitary U such that a set of
states ρ satisfy UρU† = σ with σ some set of diago-
nal density matrices, we say that the state ensemble ρ
is set-incoherent [45]. Otherwise, we say that it is set-
coherent [26]. Set coherence is a basis-independent prop-
erty of a set of states. Importantly, for any event graph
G, it is possible to bound two-state overlaps r realized by
incoherent ensembles: in such cases, incoherent states in
the ensemble satisfy σ ∋ σ =

∑
λ∈Λ σλλ|λ⟩⟨λ|, for some

H with d = dim(H) and some basis Λ = {|λ⟩}dλ=1.
For any fixed event graph G, the set of all possible

edge-weights r realizable by some set-incoherent ensem-
ble σ forms a full-dimensional convex polytope, denoted
by C(G) [25]. Some convex polytopes C(G) have been
completely characterized for certain event graphs G. The
facet-defining inequalities for C(Cm), with Cm the cycle
graph of m-nodes, were presented in Ref. [24] and are the
so-called m-cycle inequalities

cm(r) := −re +
∑
e′ ̸=e

re′ ≤ m− 2, for each e ∈ E(Cm).

(1)
For any convex-linear functional h(r), we denote h(r(ρ))
its value attained by some quantum realization r(ρ). Vi-
olations cm(r(ρ)) > m−2 witness the impossibility of the
overlaps to be realized by incoherent ensembles of states,
i.e., they witness set coherence of any such ensemble ρ.
We resolve two open questions from Ref. [24]. First, in
Appendix A, using semidefinite programming (SDP) re-
laxation tools [46], we obtain tight maximal violations of
such inequalities up to m = 7, and lower bounds up to
m = 20. Secondly, in Appendix B, we provide a proof of
the following theorem.

Theorem 2. The maximal quantum values of cm(r), for
any m ≥ 3 are attainable with sets ψ ⊆ D(C2) of pure
single-qubit states.

We also show that all facet-defining overlap inequalities
for C(G), for any event graph G, are maximally violated
by sets of pure states, meaning that, in particular, pure
states maximally violate cm(r) ≤ m− 2.
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Another relevant family of inequalities, defined recur-
sively, is the following:

hm(r) = hm−1(r) + r1m −
m−1∑
i=2

rim ≤ 1 . (2)

The sequence above starts with h3(r) = r12+ r13− r23 ≡
c3(r) and defines novel inequalities for any integer m > 3.
Each hm inequality was shown in Ref. [25] to be facet-
defining for the polytope C(Km), where Km is the com-
plete graph with m nodes. It has been shown for up to
12-qubit systems that hm(r) ≤ 1 cannot be violated by
sets ρ ⊆ D(Cd) where d ≤ m − 2 [47]. Numerically, we
can see maximal quantum violations for m states ρ with
dimension d ≥ m− 1.

Generalizing magic to state ensembles.– We start the
presentation of our main results by introducing the no-
tion of set magic.

Definition 1 (Set magic). Let ρ ⊆ D(H) be a finite set of
states and d = dim(H) <∞. We say ρ is set-magic when
there exists no unitary U : H → H such that UρU† = ρ′

is a set of states within the stabilizer polytope.

Set magic implies magic of some element in the set.
Notably, the converse is not true, as we will see in a mo-
ment. The definition above is a straightforward trans-
lation of set coherence [26] to the context of magic as a
quantum resource. Later, we will show that, under cer-
tain conditions, it is possible to bound the number of
states ρ ∈ ρ that are outside of STAB, instead of merely
witnessing that some are.

Set magic and set coherence are different notions. A
simple way to see this is that various sets of stabilizer
states ρ

STAB
(e.g., {|0⟩, |+⟩, |+i⟩}) are set coherent, with-

out being set magic. We can present another (more sub-
tle) difference between the two notions. Given any basis-
dependent coherent pure state |ψ⟩, with respect to some
basis of reference {|i⟩}i, we have that {|ψ⟩, |i⟩} must be
set-coherent. In general, given a magic state |ϕ⟩ and
a stabilizer state |s⟩ ∈ STAB, we have that {|ϕ⟩, |s⟩}
will not necessarily be set-magic. For example, the set
{|0⟩, |T ⟩}, with |T ⟩ := 1√

2
(|0⟩+eiπ/4|1⟩), can be taken to

a set of states inside STAB:

T †{|0⟩⟨0|, |T ⟩⟨T |}T 7→ {|0⟩⟨0|, |+⟩⟨+|} ⊂ STAB , (3)

where T := diag(1, eiπ/4). Hence, this pair is not set-
magic, although it clearly has nonstabilizerness in the
usual sense.

Nonstabilizerness in QPUs.– In any certification pro-
tocol, the assumptions behind the test play a central
role. In our case, we assume: (a) multi-qubit systems
and (b) the ability to estimate two-state overlaps. The
exact way in which this estimation is obtained may be un-
known. Common techniques involve performing SWAP
tests, Bell measurements, or generating specific prepare-
and-measure statistics. Minimizing sample and measure-
ment complexity is desired for scalability, although not

essential for the certification per se. Commonly, a mini-
mal requirement is using a number of samples and mea-
surements smaller than the one needed to make (ideal)
quantum state tomography [48–52], which is of order
O(d2T /ε

2), where ε is a fixed precision with respect to
distance functions and dT is the dimension of the whole
Hilbert space considered. For single QPUs with n qubits
and associated Hilbert space H = (C2)⊗n, a network of
s ∈ N units has space H⊗s, implying dT = dim(H⊗s) =
2sn.

As shown in Appendix C, event-graph inequalities can-
not witness nonstabilizerness in general. This is some-
what unsurprising, as they were not proposed for such a
task. However, we show that some event-graph inequal-
ities are witnesses of both nonstabilizerness and coher-
ence, starting with the cycle inequalities.

Theorem 3. Every cycle inequality violation cm(r) >
m− 2 is a robust witness of nonstabilizerness for any set
ρ of multi-qubit states such that r = r(ρ).

We defer the proof of this result to Appendix B but
its underlying idea is extremely simple: After showing
that pure states maximize any facet-defining inequality
functional, we can use Theorem 1 to look only at some
specific overlaps that, in principle, could violate the in-
equalities. We then show that any stabilizer realization
satisfies c3(r(ψSTAB

)) ≤ 1 and use induction to show that
the same must hold for all integers m ≥ 3. Importantly,
Theorem 3 holds for any set of multi-qubit states and not
only for pure states.

Here, it is important to pause and clarify precisely the
nature of the certifications allowed by Theorem 3. Sup-
pose we have a network with s distinct units. Then,
one possible task is to certify that each individual QPU
can produce or has produced magic. This is illustrated
in Fig. 2(a). Alternatively, we might be interested only
in certifying that the network as a whole can generate
magic somewhere across its parties. In this case, we can
distribute the state preparation and overlap estimation
across different units (see Fig. 2(b)), reducing the num-
ber of overlaps that need to be evaluated in each QPU.
Compared to other protocols [17, 18] ours has the advan-
tage that it foregoes the need to entangle the different
parties in the network to carry out this certification.

To make things even clearer, suppose that the certifica-
tion of each unit in Fig. 2(a) requires the evaluation of m
overlaps. In total, the individual certification of all units
will require a total of sm overlaps to be estimated. If we
instead consider the distributed certification depicted in
Fig. 2(b), the evaluation of m overlaps suffices to certify
the entire network for the presence of set magic.

We take this opportunity to highlight two notable fea-
tures of our work. First, suppose a single QPU in the
network is capable of generating non-stabilizer resources.
The argute reader will note that, rather than taking the
distributed approach, by simply evaluating the overlaps
on the proper QPU, one not only certifies the entire net-
work for the presence “somewhere”, but further certifies
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Figure 2. Certifying nonstabilizerness of quantum computing
networks. (a) One can use our inequality witnesses for each
device individually. (b) In case it is not necessary to certify
that all devices have nonstabilizerness, but that some do, it
is possible to reduce the time usage by distributing the over-
lap computation. We use c3(r) as an example, but the same
remains valid for cm(r) violations.

the special unit. However, doing so requires prior knowl-
edge of which QPU is capable of generating nonstabi-
lizerness. If that is not the case, running the overlaps
on a single (randomly chosen) QPU has a probability of
success of 1/s whilst the distributed certification always
succeeds. Secondly, we will see below that, in some cases,
this same procedure can enable an even stronger certifi-
cation, allowing us to guarantee that all but one QPU
have produced non-stabilizer results.

We explained how to certify the production of magic
(somewhere) in a given quantum hardware. Alterna-
tively, Theorem 3 can also be used for a second (subtly
different) task. Suppose we are supplied with an ensem-
ble of m unknown states provided by third parties and
are asked the question: Is the set magic? Then, we can
use our network to answer this question by distributing
the estimation of the overlaps among any number of the
available QPUs. We inevitably need to evaluate m over-
laps to accomplish this task, regardless of how we choose
to distribute this evaluation. Again, unlike previous pro-
tocols [17, 18], this has the added advantage of avoiding
additional entanglement when certifying the presence of
magic.

Note the two tasks are fundamentally different. Cru-
cially, in the first, we want to certify that magic can be
produced within our hardware. In contrast, in the sec-
ond, we aim to witness the presence of magic in a set of
states supplied by (any number of) third parties. In Ap-
pendix D, we make a comprehensive comparison between
our scheme and other protocols.

From the known connection of event-graph inequali-
ties to contextuality [8, 25], the astute reader may ques-
tion if such a result is in tension with or trivially follows
from known results [8]. In Appendix C, we discuss how
our work connects with contextuality theory and resolve
these two points arguing that neither do our results triv-
ially follow from known connections between contextual-

ity and magic [53–55], nor are they in tension with them.
Witnessing nonstabilizerness in higher-dimensional

systems.– Cycle inequalities certify the presence of non-
stabilizerness but, as stated above, they are always
maximally violated by sets ρ ⊆ D(C2) of single-qubit
states. This feature implies that such a certification
scheme is not capable of capturing genuine properties of
multi-qubit nonstabilizer resources, i.e., magic states in
D(C2n).

To address the possibility of witnessing nonstabiliz-
erness that necessitates having access to higher Hilbert
space dimensions, we study inequalities that witness both
of these properties. The simplest example of such in-
equalities is h4(r) ≤ 1 which requires two-qubit sys-
tems (or single qutrits) to have a violation, as shown
in Ref. [47]. We complement this result by showing that
violations of h4(r) ≤ 1 also witness nonstabilizerness.

Theorem 4. The inequality h4(r) ≤ 1 cannot be violated
by quantum realizations r = r(ρ

STAB
) of sets of stabilizer

states ρ
STAB

.

We defer the proof of this result to Appendix E.
Robustness and scalability.– These inequalities,

cm(r) ≤ m − 2 and h4(r) ≤ 1, are our main nonstabi-
lizerness witnesses. By default, they are both robust to
incoherent noise and scalable. Robustness follows from
the fact that they remain valid witnesses if, rather than
pure states, we consider any set of states. Specifically,
any state inside STAB cannot violate these inequalities.
On the other hand, scalability follows from the fact that
(i) two-state overlaps are well-defined independently
of any Hilbert space dimension, and (ii) quantum
computers can efficiently estimate overlaps [56]. We
refer to a protocol as scalable, or efficient, if one does
not require exponentially increasing computational time,
number of measurements, or samples. Additionally, in
our case, it is clear that scalability will also depend on
the trade-off between dimension and number of overlaps
estimated in a given inequality, for instance estimating
h2n(r) is certainly not efficient.

Full set magic.– We have seen that our inequality wit-
nesses certify the presence of set magic for ρ. This in-
dicates that some state(s) in the set must lie outside of
the STAB polytope. It is therefore natural to ask if it is
possible to certify a lower bound on the number of states
that must always lie outside of STAB. Clearly, for any set
ρ, at least one state ρref can always be unitarily mapped
inside the STAB. With this in mind, we introduce the
following notion.

Definition 2 (Full set magic). Let ρ ⊆ D(H) be a finite
set of states, d = dim(H) < ∞. We say that the set ρ
is fully set magic if, for every unitary U : H → H, all
states (but one) lie outside of the stabilizer polytope.

There exist sets of states with full set magic. Let
H = C2 and consider any triplet {ρ1, ρ2, ρ3} of states.
It can be shown numerically that c3(r(ρ)) ≤ 1.21 if at
most one state in ρ is outside of STAB. Recall that the
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Figure 3. Full set magic certification. Fixing a certain target
dimensionality (in this case single-qubit systems), one can
certify all elements in a network from the same inequality
values. Equivalently, one can certify various qubits in the
same quantum computer running a parallel computation of
the inequality values.

maximal value of c3 achieved with generic quantum states
is 1.25. Note that, for analyzing full set magic, we fix the
dimension. Therefore, there may be multi-qubit systems
realizing values larger than c3(r) = 1.21 while having
only one magic state. In Appendix F, we present nu-
merical bounds for witnessing full set magic using other
cycle inequalities and show numerical evidence that only
odd cycle inequalities can witness full set magic. We
also discuss concrete implementations of our certification
scheme.

Discussion and further directions.– We have intro-
duced novel witnesses of nonstabilizerness applicable to
a single QPU and networks of QPUs. Our witnesses are
robust in the sense of applying to pure and mixed states
of any kind. They are also scalable, meaning they are
independent of the system’s dimension. This scalability,
however, depends on the number of overlaps required to
estimate a certain inequality.

Various of the tools put forward either have their own
technical interest or present novel theoretical opportuni-
ties. For instance, set magic and full set magic can be fur-
ther investigated within the resource-theory framework.
In this Letter, set magic arises naturally from using uni-
tary invariants as our witnesses. There are several open

questions on the possible operational importance of these
results for quantum computation. Is it possible to con-
nect set magic to the hardness of classically simulating
a stabilizer circuit given a specific set of input states?
Does a suitable quantifier for set magic exist? Framing
simulation within a unitary-invariant framework could
better pinpoint the resources responsible for the expo-
nential overhead of classical simulation and even lead to
a unified view of different simulation schemes [57].

In another direction, exploring if a similar effect to
full set magic exists when considering the notion of set
coherence could be of interest [24, 26]. Moreover, for
composite systems, large violations of the inequality
h4(r) ≤ 1 may also require the presence of entanglement.
We believe this is an intriguing aspect that merits
further investigation. Finally, we showed certain classes
of inequalities that witness magic, but we do not claim
that these are the best ones. It is certainly possible that
finding other overlap inequalities (or even going beyond
two-state overlap to higher-order multivariate trace
invariants) can result in better witnesses, simplifying
experimental implementations.
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Appendix A: Quantum bounds for non-stabilizer
witnesses

1. Lower bounds

Let f : D(H)|V (G)| → R be a convex-multilinear func-
tional defined with respect to some facet-defining inequal-
ity of C(G), for some G, i.e., f(·) ≡ h(r(·)). In its generic
form, f is given by,

f(ρ) =
∑

u,v∈V (G)

αuvTr (ρuρv) , (A1)

where αuv ∈ Z for all u, v. We are interested in
evaluating the quantum bound of this functional, i.e.,
max{ρx}N

x=1
f , over all possible quantum realizations,

where N = |V (G)|.
To determine lower bounds for the quantum bound, we

employ a seesaw of SDP. Indeed, by fixing all the states

except one, the problem of maximizing the bound over
the remaining state is an SDP.

2. Upper bounds: hierarchy of semidefinite
programming relaxations

A way to evaluate upper bounds for this quantity is
to adapt the Navascues-Vértesi (NV) hierarchy [58] to
this particular problem. In a similar spirit, we make a
list of operators S = {1, {ρx}} and choose a degree of
relaxation k. A relaxation of degree k consists of keeping
all products of at most k operators from the list. The
moment matrix is then constructed,

Γij = Tr
[
SiSj

]
, (A2)

where Si ∈ S. For a good introduction and review of SDP
techniques in quantum information science see Ref. [46].

One samples a linearly independent basis of such mo-
ment matrices {Γ(1), . . . ,Γ(m)}. The relaxation then con-
sists of finding an affine combination Γ =

∑m
j=1 cjΓ

(j) ∈
f , with Γ ≥ 0, as follows,

max
c⃗∈Rm

f(Γ)

s.t. Γ ≥ 0,
m∑
j=1

cj = 1.

(A3)

3. Maximal quantum violation of m-cycle
inequalities

a. Qubit model

The optimal solution of the maximization problem for
cm(r) is a set of states {|ψx⟩}mx=1 of the form

|ψx⟩ = cos
(
θ(m)
x

)
|0⟩+ sin

(
θ(m)
x

)
|1⟩. (A4)

where

θ(m)
x =

{
π
2 − (x−1)π

2m if m is odd,
π
2 + (x−1)π

2m if m is even.
(A5)

This family of optimal states is found explicitly using
the SDP seesaw. Using the hierarchy, we could prove
that the quantum bound is tight (to 10−5 precision) for
this family of states up to m = 8. For larger values of
m, m ≤ 20, we have checked the lower bounds match the
analytical formula up to the same precision. For m > 20,
we conjecture that this is the optimal quantum solution.

b. Asymptotic behaviour

Let us denote the set of optimal quantum states as
ψmax. The maximum quantum violation is then given
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Figure 4. Asymptotic behavior of C/Q for the optimal
solution of the cyclic inequalities. (color online) Here,
C ≡ m−2, which is the optimal value attainable by cm(r) with
incoherent quantum realizations r = r(ρinc). Q represents the
optimal value obtainable using any quantum state, attained
with ρ = ψmax given by Eq. (A4). We present their fraction
as a (continuous) function of m.

by

cm(r(ψmax)) = (m−1) cos2
( π

2m

)
−cos2

((
1− 1

m

)
π

2

)
.

(A6)
On the other hand, the optimal incoherent quantum re-
alization is cm(r(ψinc)) = m − 2. The fraction between
these two quantities goes to 1 as m grows.

Proposition 1. The limit of the ratio
cm(r(ψinc))/cm(r(ψmax)) when m→ ∞ is 1.

Proof. To see this, write

cm(r(ψinc))

cm(r(ψmax))
=

m− 2

(m− 1) cos2( π
2m )− cos2( 12 (1−

1
m )π)

(A7)
The term cos2( 12 (1 − 1

m )π) is bounded, therefore the
limit reduces to

lim
m→∞

cm(r(ψinc))

cm(r(ψmax))
= lim
m→∞

m− 2

(m− 1) cos2( π
2m )

=

lim
m→∞

m− 2

m− 1
= 1.

Fig. 4 shows the ratio as a function of m, denoted,
for simplicity, as C/Q. The numerics above suggest that
pure single-qubit states always provide the optimal vio-
lation. In the following, we prove this to be true.

c. Qubit optimality

Proof of Theorem 2. Let Cm be the m-cycle event graph
and r an edge-weight. We show later (see Lemma 6 of
Appendix B) that, for any quantum realization r = r(ρ),
there exists some pure state quantum realization r =
r(ψ) for which cm(r(ρ)) ≤ cm(r(ψ)). Therefore, for op-
timal violations, we can focus on pure state realizations.
Let r = r(ψ) be any pure state quantum realization for
an edge-weight r of the event graph Cm. Then, con-
sider the unitary sending ψ = {|ψ1⟩, |ψ2⟩, . . . , |ψm⟩} to
ψ̃ = {|0⟩, |ψ̃2⟩, . . . , |ψ̃m⟩}. In this case, any overlap ri,i+1

with respect to elements in ψ̃ in the cycle will be equal
to cos2(θi+1 − θi). The angle θi is the angle between the
vectors |ψ̃i⟩ with the reference state |0⟩, and can have any
value θi ∈ [0, π), for all i = 1, . . . ,m. The above implies
that we can write any cm(r(ψ)) as

cm(r(ψ)) =− r1,2 + r2,3 + · · ·+ rm−1,m + rm,1

=− cos2(θ2) + cos2(θ3 − θ2)

+ · · ·+ cos2(θm − θm−1) + cos2(θm).

Note that this is independent of any dimensionality con-
straint. Nevertheless, each overlap in the tuple (re)e∈Cm

attaining the values above can also be obtained by the
set of states

|q1⟩ = |0⟩,
|q2⟩ = cos(θ2)|0⟩+ sin(θ2)|1⟩ ,
|q3⟩ = cos(θ3)|0⟩+ sin(θ3)|1⟩ ,

...
|qm⟩ = cos(θm)|0⟩+ sin(θm)|1⟩ ,

that is, within the space C2. Hence, using just the single-
qubit states q = {|qx⟩}mx=1, we have that cm(r(ψ)) =
cm(r(q)). In other words, any value attained by cm(r)
with pure quantum states of any dimension is also at-
tained by using just single-qubit states. In particular,
this will also be valid for the maximal values of cm(r).
This concludes the proof.

4. Maximum quantum violation of h4(r) ≤ 1

Again, using the methods described in this Appendix,
we can show tight bounds for the maximal quantum re-
alizations violating h4(r) ≤ 1, for sets ρ ⊆ D(Cd) with
d = 3, 4.

Note that h4 (as any event-graph functional) satisfies
h4(r(ρ)) = h4(r(UρU

†)) for any unitary U and UρU† ≡
{UρiU†}mi=1. This implies that any maximal quantum
violation can be attained using Hilbert spaces of at most
dimension d = 4. We find a tight bound of 1 + 1/3, up
to 10−5 precision, for both d = 3, 4, proving that qutrits
are sufficient to achieve the maximum quantum violation
of h4.
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Appendix B: Proof of Theorem 3

Before proving Theorem 3, we present some novel tech-
nical results that are of general interest to the event-
graph formalism introduced in Ref. [25].

Following the same notation used in the main text,
for any given event graph G, with edges E(G) and ver-
tices V (G), we denote the polytope of all edge-weights
r : E(G) → [0, 1] realizable by set-incoherent tuples as
C(G). The Hamming weight of a string (or, equivalently,
a tuple) s of 0/1-assignments equals the number of 1 as-
signments in the string (or tuple) and is denoted |s|H.

Lemma 5. Let G = Cm be the m-cycle graph. Fix m ≥ 3
and some ẽ ∈ E(Cm). If we denote

Cẽ := {r ∈ C(Cm) : rẽ = 1},

we have that Cẽ = {1} × C(Cm−1).

This lemma shows that if we define the cross-section Cẽ
of the polytope C(Cm) along the direction rẽ = 1, the re-
sulting polytope is isomorphic to C(Cm−1). This implies
that given any facet-defining inequality of C(Cm), if we
force an edge to be equal to one, the resulting inequality
will be a facet-defining inequality of C(Cm−1), or a trivial
inequality.

Proof of Lemma 5. Because C(Cm) is a convex polytope,
the same is true for Cẽ. Let ext(P ) denote the set of
extremal points of any convex polytope P , and hence P =
ConvHull[ext(P )]. Let us assume, wlog, an ordering
r = (re)e∈E(Cm) = (rẽ, re1 , . . . , rem−1

). We have,

ext(Cẽ) = {(1, s) ∈ Rm : s ∈ ext(C(Cm−1))}.

(⊆) Let r̃ ∈ ext(Cẽ). By construction, we must
have that r̃ ≡ (1, s̃) ∈ ext(C(Cm)), with s̃ a determin-
istic assignment for which |s̃|H ̸= m − 2. Therefore,
s̃ ∈ ext(C(Cm−1)).

(⊇) This direction follows trivially.
Hence, we have that

Cẽ = {1} × C(Cm−1), (B1)

where {1} is the singleton polytope, as we wanted.

This simple result will be instrumental for constructing
the inductive step used in the proof of Theorem 3.

We now make the notion of a quantum realization
within the context of the event graph formalism pre-
cise. We can associate nodes of the graph to quan-
tum states V (G) ∋ v

ℓ7→ ρv ∈ ρ via some vertex ρ-
labeling ℓ : V (G) → ρ. Once such labeling ℓ is fixed,
we associate edge-weights re ≡ ru,v to two-state overlaps

E(G) ∋ e = {u, v} ℓ7→ {ρu, ρv}
⟨·,·⟩HS7→ Tr(ρuρv) [59], with

⟨X,Y ⟩HS = Tr(X†Y ) the Hilbert-Schmidt inner prod-
uct.

The cardinality of ρ is not necessarily equal to that of
V (G), e.g., the same state can be associated to all vertices

by the labeling ℓ(v) = ρ, ∀v ∈ V (G). Each vertex label-
ing ℓ is isomorphic to a tuple (ℓ(v))v∈V (G) ∈ D(H)|V (G)|.
Given some ρ-labeling ℓ, we can see r as a function that
outputs a tuple of two-state overlaps rℓ(ρ) for an input
set ρ. For instance, take ρ = {|ψ⟩⟨ψ|} ∪ {σ1, σ2} and
ℓ(v) = |ψ⟩⟨ψ| for all v ∈ V (G), as above. Since all vertices
of V (G) have been assigned the same state, the associated
rℓ(ρ) is rℓ(ρ) = (1, 1, . . . , 1). When it is clear from the
context which labeling ℓ is being used, we simply write
r(ρ).

Recall that, any edge-weight r : E(G) → [0, 1] for an
event graph G, is said to have a quantum realization [38,
60] if there exists ρ = {ρi}i∈V (G) such that r = r(ρ) ≡
(Tr(ρiρj)){i,j}∈E(G). We denote |X| the cardinality of a
set X. We say that a quantum state ρ ∈ D(H) is pure
when Tr(ρ2) = 1, in which case we denote it as a rank-1
projector ρ = |ψ⟩⟨ψ| ≡ ψ.

Lemma 6. Let h : R|E(G)| → R be any convex-linear
functional, acting over elements r ∈ [0, 1]|E(G)|, for any
event graph G. Then, for any quantum realization r =
r(ρ) with states {ρi}i, there exists a pure state quantum
realization r = r(ψ) with states {|ψi⟩}i, such that

h(r(ρ)) ≤ h(r(ψ)). (B2)

Moreover, ψ ⊆ ConvHull(ρ).

Proof. Each ρi ∈ ρ is a convex combination of pure states
{ψ(i)

ωi }ωi∈Ωi
for some ensemble of pure states Ωi. Noticing

that h(r) are, by construction, linear functionals over the
overlaps,

∀i, ρi =
∑
ω

λ(i)ω |ψ(i)
ω ⟩⟨ψ(i)

ω | ⇒

h(r({ρi}i)) =
∑

ω1,...,ωm

λ(1)ω1
. . . λ(m)

ωm
h(r({ψ(i)

ωi
}i)).

To conclude the above, one needs to introduce some re-
dundant values of 1 =

∑
ωi
λ
(i)
ωi . The equation then fol-

lows from linearity with respect to r, and hence multilin-
earity with respect to the states.

We can collectively write s = (ω1, . . . , ωm) and de-
fine qs = λ

(1)
ω1 . . . λ

(m)
ωm . Because each set of weights

{λ(i)ωi }ωi∈Ωi
correspond to convex weights, i.e.,

∑
ωi
λ
(i)
ωi =

1 with 0 ≤ λωi ≤ 1, we get that {qs}s is also a set of con-
vex weights. With this simplified notation we have that
h(r({ρi}i)) =

∑
s qsh(r({ψ

(i)
s }i)) with

∑
s qs = 1 and

0 ≤ qs ≤ 1. In other words, the linear functional h real-
ized by overlaps between general quantum states can be
written as the convex combination of the same functional
realized by overlaps between pure states. Choosing now a
particular s⋆ such that ∀s, h(r({ψ(i)

s⋆ }i)) ≥ h(r({ψ(i)
s }i))

we see that

h(r({ρi}i)) =
∑
s

qsh(r({ψ(i)
s }i)) ≤

∑
s

qsh(r({ψ(i)
s⋆ }i)).

Since
∑
s qs = 1 we have that h(r({ρi}i)) ≤

h(r({ψ(i)
s⋆ }i)).
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Theorem 7. Let h(r) be any linear-functional over r =
(re)e∈E(G) for any event graph G and Q(G), defined by

Q(G) := {r : E(G) → [0, 1] : ∃ρ, r = r(ρ)},

be the set of quantum realizable edge-weights. Then, there
always exists a pure state quantum realization r = r(ψ)
such that

h(r(ψ)) = max
r∈Q(G)

h(r). (B3)

The same holds if we restrict realizations to some convex
and compact subset S ⊆ D(H) of all states, so that the
quantum realizations are such that r = r(ρ

S
), with ρ

S
⊆

S.

Proof. For any such h, Lemma 6 shows that to every
quantum realization r = r(ρ), there exists a larger pure
state realization within the convex hull of ρ. Therefore,
the maximum attainable value, among all quantum real-
izations r ∈ Q(G), must be pure-state realizable, other-
wise this would contradict Lemma 6. The argument is
the same if S is used instead.

This Theorem implies the immediate corollary.

Corollary 1. The maximal quantum violation of any
facet-defining inequality of C(G), for any event graph G,
is attained by pure states.

Proof. Since C(G) is a convex polytope, any facet-defining
inequality from C(G) is described by convex-linear func-
tionals h(r), together with some b ∈ R satisfying h(r) ≤
b.

This Corollary proves (and generalizes) a conjecture
from Ref. [24], that the maximal bounds violating the
c3(r) ≤ 1 inequality using pure states were also valid for
mixed states in general, and for any dimension. While
here we will use these results to prove Theorem 3, they
are important by themselves for the event-graph ap-
proach and the theory of coherence witnesses.

Finally, we prove Theorem 3 of the main text.

Proof of Theorem 3. Due to Theorem 7, we can restrict
ourselves to pure stabilizer states. Consider first the 3-
cycle inequality. We have

r1,2 + r1,3 − r2,3 ≤ 1.

From Theorem 1, we see that if all states in the graph
are oblique to their neighbors there can be no violation
since r1,2 + r1,3 − r2,3 ≤ r1,2 + r1,3 ≤ 1

2k
+ 1

2k′ ≤ 1 for
all k, k′ = 1, . . . , n. The same holds if we allow some
edge-weights to be zero. If we allow any edge-weight in
the inequality to be equal to one, it is simple to see that
we cannot have a violation, as we would have two nodes
corresponding to the same stabilizer state, implying that
the remaining pair of overlaps is equal. This shows the
result for c3(r).

To show that the same is true for any m-cycle inequal-
ity we proceed by induction. Assume that an m-cycle
inequality cannot be violated by quantum realizations
r = r(ρ

STAB
), with ρ

STAB
⊆ STAB. For any (m + 1)-

cycle inequality we have that, ∀e ∈ E(Cm+1),

−re +
∑

e′ ∈ E(Cm+1)
e′ ̸= e

re′ ≤
∑

e′ ∈ E(Cm+1)
e′ ̸= e

re′ ≤
m

2

for any set of pure stabilizer states oblique or orthogonal
to their neighbors in the graph. Since m/2 ≤ m − 2 for
all m ≥ 4 it remains to show that if two (or more) neigh-
boring stabilizer states are equal we still cannot have a
violation.

From Lemma 5, if any edge-weight is equal to one,
this implies that the cycle inequality from C(Cm+1) be-
comes an inequality from C(Cm), which, by hypothesis,
cannot be violated with the stabilizer subtheory, i.e., by
any quantum realization r = r(ρ

STAB
). We conclude

that if the stabilizer subtheory cannot violate inequali-
ties from C(Cm) it will also not violate the inequalities
from C(Cm+1). As we know this is true for the cycle
inequalities C(C3), by induction, this property must be
satisfied by all facet-defining inequalities for the event
graph polytopes C(Cm) for any m.

Appendix C: Known facts regarding the relation
between contextuality and magic

In this Appendix, we will prove the existence of an
event-graph inequality that is both facet-defining and vi-
olated by sets of stabilizer states. To do so, we use some
results within the field of Kochen-Specker noncontextu-
ality [8]. We then extend these considerations to gener-
alized noncontextuality [61].

To provide some context, recall that magic-state in-
jection is the leading model for experimentally realizing
fault-tolerant quantum computation. While it involves
only stabilizer operations at every step of the computa-
tion, the injection of magic states elevates the model to
quantum universality. Ref. [55] showed that contextual-
ity is a necessary resource for universal quantum compu-
tation via magic-state injection. The scope of this result
depends on whether the model involves even-prime di-
mensional qudits (i.e. qubits) or odd-prime qudits. For
the latter case, a state is non-contextual if and only if it
belongs to the set of states unable to unlock any compu-
tational speed-up. This set forms a polytope, denoted as
PSIM, meaning that the subtheory within this polytope
is efficiently simulable with classical computation. This
polytope strictly contains the set of stabilizer states but
is not equivalent to it.

Therefore, for odd-prime dimensions, Kochen-Specker
noncontextuality inequalities serve as witnesses of non-
stabilizerness. However, for even-dimensional systems,



12

the same does not hold, as we now show. We start by con-
structing the relevant event graph. First, we construct
the so-called exclusivity graph Gexc [62, 63]. We take this
graph to be the complement graph [64] of the Shrikhande
graph [65]. See Ref. [66, Fig. 2, pg. 10] for a representa-
tion of Gexc. We follow closely the discussion of the proof
of KS-contextuality discussed in Ref. [66]. Secondly, we
take the suspension graph [63, Def. 2.23, pg. 36] ∇Gexc
by a new node ⋆. This new graph will be our event graph
G = ∇Gexc. It was shown in Ref. [25] that any inequal-
ity from an exclusivity graph Gext is mapped to some
facet defining inequality of the event graph G = ∇Gexc.
Therefore, the inequality∑

v∈V (Gexc)

r⋆,v ≤ 3

is both a noncontextuality inequality (within the Cabello-
Severini-Winter framework [62]) and a facet-defining
event-graph inequality, when a specific mapping takes
place (see Ref. [25] for details). This inequality corre-
sponds to Mermin’s Bell inequality [67] and can be vio-
lated by letting the vertices v ∈ V (Gexc) be given by the
stabilizer (separable) states

|0,+,+⟩, |1,−,+⟩, |1,+,−⟩, |0,−,−⟩
|+, 0,+⟩, |−, 1,+⟩, |−, 0,−⟩, |+, 1,−⟩ (C1)
|+,+, 0⟩, |−,−, 0⟩, |−,+, 1⟩, |+,−, 1⟩
|1, 1, 1⟩, |0, 0, 1⟩, |0, 1, 0⟩, |1, 0, 0⟩.

and ⋆ by the Greenberger–Horne–Zeilinger (GHZ) state
|GHZ⟩ = 1√

2
(|0, 0, 0⟩+ |1, 1, 1⟩). In this way,∑

v∈V (Gexc)

r⋆,v =
∑

v∈V (Gexc)

|⟨GHZ|v⟩|2 = 4 > 3.

The above shows that there are event-graph inequali-
ties that can be violated by stabilizer states.

Let us now discuss the relationship between general-
ized noncontextuality [61] and magic. It was shown in
Refs. [53, 54] that odd-dimensional stabilizer subtheory
allows for a generalized noncontextual model. In this
case, any violation of a noncontextuality inequality at-
testing to the failure of generalized contextuality will also
be a witness of having states (transformations, measure-
ment effects) outside the stabilizer subtheory. However,
similarly to the case of KS-noncontextuality, for even-
dimensional systems, no such noncontextual model for
the stabilizer subtheory exists. Therefore, in general,
even dimensional stabilizer subtheory can violate gen-
eralized noncontextuality inequalities. Finding which in-
equalities are not violated by such stabilizer subtheory
becomes a case-by-case study.

In summary, the connection between event graph in-
equalities and noncontextuality inequalities does not im-
ply that any event graph inequality will immediately be
a nonstabilizerness witness and therefore does not render
our results trivial. On the other hand, it also does not

make our results immediately incorrect. The fact that
our inequality witnesses (which can also be interpreted
as noncontextuality inequalities) cannot be violated by
stabilizer states does not imply that they do not violate
some noncontextuality inequality. As it is in general,
for a given KS-measurement scenario (or equivalently,
a generalized prepare-and-measure noncontextuality sce-
nario), it is only if one satisfies all the noncontextuality
inequalities that a noncontextual model exists.

Appendix D: Comparison with other schemes

In this Appendix, we make a comprehensive review of
existing methods for witnessing the nonstabilizerness of
quantum states. Clearly, any quantification scheme also
constitutes a witness, thus, for a broader comparison, we
were careful to include such methods as well.

1. Methods that require additional entanglement
generation

We start by presenting two witnessing schemes that
require additional entanglement; they use multifractal
flatness [18] and spectral flatness [17]. First, define the
inverse participation ratio,

Iq(|ψ⟩) :=
∑
b∈Fn

2

|⟨b|ψ⟩|2q =
∑
b∈Fn

2

rqb,ψ . (D1)

We note that, to calculate Iq(|ψ⟩) for any fixed q, one
needs to evaluate d = 2n overlaps. The multifractal flat-
ness is defined as

Fmulti(|ψ⟩) := I3(|ψ⟩)− (I2(|ψ⟩))2 . (D2)

This quantity witnesses nonstabilizerness whenever we
obtain Fmulti(C|ψ⟩) > 0, where C is an n-qubit Clif-
ford operation. Since both calculating and measuring
this quantity require O(d = 2n) overlaps, this witnessing
process is inefficient. We remark that, when averaged
over the Clifford orbit of the state |ψ⟩, this witness pro-
vides information about the stabilizer Rényi entropy M2

which we will discuss in more detail later on.
Three key aspects of this witness stand in stark con-

trast to our scheme. First, it is device-dependent. Sec-
ondly, it is only applicable to pure states. Finally, it re-
quires additional entangling gates to be applied over the
state |ψ⟩, stemming from the Clifford unitary, C, needed
for Fmulti(C|ψ⟩) > 0 to properly witness nonstabilizer-
ness of |ψ⟩.

Another function that can be used to witness nonstabi-
lizerness is the entanglement spectrum flatness FA(|ψ⟩).
We consider a pure state |ψ⟩ [68] and some n-qubit Clif-
ford operation C such that C|ψ⟩ is sufficiently entangled.
In some cases, shallow Clifford evolutions are enough. We
then choose an arbitrary bipartition HA ⊗HB ≃ C⊗n of
the n-qubit system and calculate ρA := TrB(C|ψ⟩⟨ψ|C†).
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The entanglement spectrum flatness of this bipartition is
given by

FA(C|ψ⟩) := Tr(ρ3A)− (Tr(ρ2A))
2. (D3)

If we obtain that FA(C|ψ⟩) > 0, |ψ⟩ must be a magic
state, and therefore FA(C|ψ⟩) > 0 acts as a witness of
nonstabilizerness. This witness can be efficiently mea-
sured (in terms of the number of measurements and sam-
ples of ρA required) using simple quantum circuits [69–
71].

Let us discuss more explicitly the advantages and
drawbacks of these techniques when compared to the
scheme we propose in the main text. Entanglement
spectrum flatness has the advantage that it can witness
almost any magic state (in the sense of Haar random
states). In contrast, in our inequality-based witness, cer-
tifications should target certain overlap values that be-
come increasingly rare for large systems to randomly ac-
cess. This happens since the two-state overlap between
Haar random n-qubit states behaves as ri,j ∼ 1/2n.
Moreover, both flatness results from above can approx-
imate values of nonstabilizer monotones; thus, they can
ultimately be used for quantification (a task strictly more
powerful than witnessing). At the moment, our protocol
has no known link with quantification tools, although we
believe this to be an interesting direction for future re-
search.

On the other hand, unlike our scheme, both of these
methods are device-dependent and applicable only to
pure states. Additionally, let us assume that we would
like to certify the generation of magic in some QPU of
a network. Fig. 2(b) in the main text illustrates how
to handle this task within our protocol. Notably, as ex-
plained therein, the certification can be distributed re-
quiring fewer resources than if we were to certify each
QPU individually [Fig. 2(a)]. Contrastingly, with either
of the two witnesses presented here, distributing the cer-
tification requires us to entangle the degrees of freedom
of the multiple QPUs in the network we are interested
in certifying, due to the Clifford operations that must be
applied.

2. Methods that require full information of the
STAB polytope, or full information of the quantum

state

The vast majority of quantification schemes require
full information on the stabilizer polytope. Beyond that,
they often also require full (tomographic) information of
the quantum state. The following monotones require
complete knowledge of the underlying state and of the
STAB polytope: stabilizer fidelity [20], stabilizer ex-
tent [20], stabilizer rank [20–22], stabilizer nullity [72].
Some that are also well-defined for generic mixed states,
having the same drawbacks, are mana [23, 73], all varia-
tions of the robustness of magic [74], relative entropy [23],

min- and max-relative entropies [19], and the dyadic neg-
ativity [74].

It is interesting to remark that the stabilizer extent
ξ(|Ψ⟩) has the extremely useful property of being multi-
plicative,

ξ(|Ψ⟩) := ξ(|ψ1⟩ ⊗ · · · ⊗ |ψm⟩) =
m∏
j=1

ξ(|ψj⟩) ,

provided that all states |ψj⟩ are 1-, 2- or 3-qubit states,
i.e., that ψ ⊆ D(C2s) with s ∈ {1, 2, 3} [20].

This implies that an alternative strategy to witness-
ing magic is to make 1-, 2-, or 3-qubit state tomography
of all states |ψj⟩, use that information to calculate their
stabilizer extent, and then multiply the results. Com-
pared to our scheme, beyond being significantly device-
dependent and demanding great control of the system
(since one must perform full tomography), our scheme
requires a smaller number of measurements and samples
(since overlap estimation is experimentally less demand-
ing than performing full tomography, even for single-
qubit systems). It has been shown that the stabilizer
extent is not multiplicative in general [75]. It is also
clear that, for larger systems, our witnessing technique
will outperform any strategy that demands full-state to-
mography.

The stabilizer nullity can be extended to treat uni-
taries [76]. In this form, it gives a lower bound to the
number of T gates required to apply a certain unitary.
A similar property holds for other magic monotones.
Bounding the number of T gates is not possible with
our formalism, as this is a profoundly basis-dependent
characterization.

It is noteworthy that several of the quantifiers men-
tioned above have been associated with the perspective of
witnessing as can be seen in Ref. [74]. Therein some wit-
nesses for single-qubit magic states were proposed. Ad-
ditionally, the authors also show curious lower and upper
bounds on the scaling of magic monotones as the number
of qubits n grows.

3. Methods that are not valid for generic mixed
states

To the best of our knowledge, various quantifiers have
not been generalized beyond pure states; examples of
these include stabilizer fidelity, stabilizer rank, and sta-
bilizer nullity. On the other hand, the stabilizer extent
has a mixed state version [74].

Recall that if one assumes purity of states and multi-
qubit systems, a trivial witness is to measure a single
overlap of the state with respect to the |0n⟩ state, in
which case deviations from 1/2n will witness nonstabi-
lizerness. Because of that, it is only quantification that
proves to be a non-trivial task in the case of multi-qubit
pure states. Therefore, in this section, we focus on quan-
tification methods that are in some way efficient to cal-
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culate, or measure, at the cost of being defined only for
pure states (or specific classes of mixed states). The sta-
bilizer entropies are the most relevant monotones in this
category. The first such entropy introduced was the sta-
bilizer Rényi entropy [77]. While this quantity cannot
be efficiently measured in general, it can be efficiently
computed. Ref. [78] investigated when such functions
can be considered monotones and provided an explicit
case study where stabilizer entropies could be computed
efficiently. Ref. [16] introduced novel stabilizer entropies
that can also be efficiently measured, but are still defined
only for pure states.

It is simple to see for the case of stabilizer Rényi en-
tropies why the quantifiers do not hold for generic mixed
states. Let us consider, for instance, the stabilizer 2-
Rényi entropy defined for mixed states ρ ∈ D(C2) as

M̃2(ρ) := − log2

(∑
P (Tr(Pρ))4

2Tr(ρ2)

)
(D4)

where and the sum is taken over the +1 elements of the
single-qubit Pauli group {1, X, Y, Z}. Crucially, M̃ is
not a monotone to any mixed state ρ, but only those
with a specific form, given by ρ = 1

2 + 1
2

∑
P∈G ϕPP

where G is a subset of the single-qubit Pauli group, and
ϕP ∈ {−1, 1} [77]. For instance, considering the magic
state

|F ⟩⟨F | = 1

2

(
1 +

1√
3
(X + Y + Z)

)
and mixed states ρν = Eν(|F ⟩⟨F |) = (1− ν)|F ⟩⟨F |+ ν 1

2 ,
the monotone as a function of ν becomes

M̃2(ρν) = − log2

{
1 + 3

[
(1− ν)/

√
3
]4

1 + 3
[
(1− ν)/

√
3
]2
}
. (D5)

Since M̃2(ρν) > 0 for any ν > 0, it is not a faithful mono-
tone (or witness), since it would signal the presence of
nonstabilizerness for states arbitrarily close to the maxi-
mally mixed state.

Despite not being defined for mixed states, these mono-
tones are extremely promising ways of efficiently esti-
mating nonstabilizerness. For instance, Ref. [14, 79] es-
timated magic in a cloud-available quantum computer.
Ref. [16] showed that there are stabilizer entropies that
can be efficiently measured, with the required number of
measurements (or post-processing) being independent of
system size. Finally, Ref. [14] introduced a novel mono-
tone, which the authors termed “Bell magic”, that besides
efficiently estimated on a quantum computer via Bell
measurements also generalizes to certain sets of mixed
states. Bell magic was recently measured in Ref. [80].

4. Methods that are semi-device independent

Due to the connection between magic, the negativ-
ity of quasiprobability distributions and noncontextuality

(both Kochen–Specker and generalized), under certain
considerations, any test of such notions of classicality
will also be a test capable of witnessing nonstabilizer-
ness. This was already discussed in Appendix C. Here,
we comment on the device- or semi-device-independence
of these tests.

Our witnesses are inequality-based and semi-device in-
dependent in the sense that (i) the test is made based
only on statistics arising from two-state overlaps and
(ii) we assume (in most cases) that the underlying sys-
tem is a multi-qubit system. These restrictions are the
“semi” for our approach. Inequalities that can be used to
witness noncontextuality are significantly more device-
independent, in the sense that they are not necessarily
overlap-based (or correlation-based), while they will nec-
essarily require some prior information about the Hilbert
space considered: even, odd, odd-prime, or composite
system dimensionality structures.

One subtle point needs to be made: Violations of non-
contextuality inequalities per se do not suffice to ex-
perimentally witness the failure of noncontextual expla-
nations of the data. One must also test that the ex-
perimental requirements relative to the notions of KS-
noncontextuality or generalized noncontextuality are op-
erationally met. Similarly to Bell inequality violations,
merely violating them does not attest to the failure of a
local explanation of the data; some minimal requirements
need to be met (such as space-like separation between
parties, no-signaling, etc.). In our case, the requirement
is that the data is described by two-state overlaps, while
in noncontextuality inequalities other requirements are
needed, and should be taken into consideration, even if
one is only interested in witnessing nonstabilizerness due
to contextuality.

Appendix E: Proof of Theorem 4

In this Appendix, we start by building a series of re-
sults that are used to facilitate the proof of Theorem 4.

The inequality h4(r) ≤ 1 is facet-defining for C(K4),
where K4 is the complete graph of four vertices. This
inequality is given by

h4(r) = r1,2 + r1,3 + r1,4 − r2,3 − r2,4 − r3,4 ≤ 1. (E1)

We now demonstrate the following lemma.

Lemma 8. Let G = Km. If r = r(ψ) such that the
ψ-labeling ℓ : V (G) → ψ assigns the same pure state to
adjacent vertices (any pair of vertices sharing an edge),
then hm(r(ψ)) ≤ 1.

Proof. Without loss of generality, we may consider
r1,k⋆ = 1 for some k⋆ ̸= 1. Let r = r(ψ) be any pure
state realization satisfying this constraint. In this case,
we must have that |ψ1⟩ = |ψk⋆⟩. Therefore, r1,k = rk⋆,k
for all k = {2, . . . ,m}\{k⋆}. The inequality hm(r) ≤ 1 is
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then written as

hm(r) =

m∑
k=2

r1,k −
m−1∑
i=2

m∑
j>i

ri,j

= 1 +

m∑
k = 2
k ̸= k⋆

rk⋆,k −
m−1∑
i=2

m∑
j>i

ri,j

= 1−
m−1∑
i = 2
i ̸= k⋆


m∑

j > i
j ̸= k⋆

ri,j

 ≤ 1

where we have used the fact that every element rk⋆,k is
present in the sum

∑m−1
i=2

∑m
j>i ri,j .

Recall that Q(G) is the set of all quantum realizable
edge-weights given an event graph G. Any stabilizer re-
alization is (evidently) a quantum realization. In the
remainder of this Appendix, we will focus on situations
concerning stabilizer realizations.

Let us now show that, assuming an edge-weight is non-
zero then its stabilizer realization has a lower bound.

Lemma 9. Take three (arbitrary) n-qubit stabilizer
states |ψ1⟩, |ψ2⟩, and |ψ3⟩ such that r1,2 = 1/2N2 ,
r1,3 = 1/2N3 and r2,3 ̸= 0. Then, r2,3 ≥ 1/2N2+N3 where
N2, N3 ∈ {0, . . . , n}.

Proof. Without loss of generality, we can take |ψ1⟩ =
|0n⟩. Let us start by considering the case where both
N2, N3 ̸= 0 or, equivalently, where r1,2, r1,3 ̸= 1. Since
r1,2 = 1/2N2 , we have that |ψ2⟩ is of the form

|ψ2⟩ =
1

2N2/2

|0n⟩+
2N2−1∑
j=1

iαj |aj⟩


where αj ∈ Z4 and aj ∈ Fn2\{0n}. Similarly, r1,3 = 1/2N3

implies that the state |ψ3⟩ is of the form

|ψ3⟩ =
1

2N3/2

|0n⟩+
2N3−1∑
j=1

iβj |bj⟩

 ,

where βj ∈ Z4 and bj ∈ Fn2\{0n}. From this, we see that

r2,3 =
1

2N2+N3

∣∣∣∣∣∣1 +
∑
j,j′

iαj−βj′ ⟨bj′ |aj⟩

∣∣∣∣∣∣
2

.

If r2,3 ̸= 0, it is clear from the expression above that
r2,3 ≥ 1/(2N2+N3).

Finally, we note that, if either Ni = 0, we have the
corresponding state |ψi⟩ = |0n⟩. In that case, it is clear
that r2,3 = 1/2Nj , with j ̸= i, which complies with the
lower bound established above.

Next, we demonstrate a result concerning realizations
containing orthogonal states. This is the most important
stepping stone to the proof of Theorem 4 because realiza-
tions involving null edge-weights are significantly harder
to analyze with respect to inequality violations.

Lemma 10. Let G = K4 and consider a quantum re-
alization r = r(ρ

STAB
) ∈ Q(K4), where STAB denotes

the set of n-qubit stabilizer states. If such a realization
assigns to any two vertices two orthogonal states, then
h4(r) ≤ 1.

Proof. Consider the set of four (pure) n-qubit stabilizer
states: {|ψ1⟩ , |ψ2⟩ , |ψ3⟩ , |ψ4⟩}, where |ψi⟩ is the stabi-
lizer state associated with the ith vertex. The following
observations follow trivially from Lemma 8 when consid-
ering realizations with stabilizer states: (i) If four or more
overlaps are zero, Eq. (E1) cannot be violated; (ii) If |ψ1⟩
is orthogonal to any of the other states, again no viola-
tion of Eq. (E1) is possible; (iii) To achieve a violation,
at least two of the overlaps r1,j must equal 1/2 and the
remaining overlap with positive contribution must obey
r1,k > r2,3 + r2,4 + r3,4 with k ̸= j.

Throughout, we take r1,2 = 1/2 and |ψ2⟩ = |0n⟩
which imposes that |ψ1⟩ = (|0n⟩ + iα |s⟩)/

√
2, where

α ∈ Z4, s ∈ Fn2\{0n}, and |s⟩ denotes the corresponding
computational-basis state. Moreover, we can set α = 0
because there is always a Clifford unitary that trans-
forms (|0n⟩+iα |s⟩)/

√
2 into (|0n⟩+|s⟩)/

√
2 while leaving

the state |0n⟩ unchanged. Thus, for simplicity, we take
|ψ1⟩ = (|0n⟩+ |s⟩)/

√
2. All of this is done wlog.

If we have three overlaps equal to zero, the only way
for a violation to occur is that: (i) r2,3 = r2,4 = r3,4 = 0,
(ii) r1,3 = 1/2, and (iii) r1,4 > 0. Note that the roles
of r1,3 and r1,4 could be switched, leading exactly to the
same conclusion. We will now show that these three con-
ditions are incompatible. A generic stabilizer state takes
the form:

|ψj⟩ =
1√
|Wj |

∑
w∈Wj

iαw |w⟩ (E2)

where Wj ⊆ Fn2 and |Wj | = 2Nj , for some Nj ∈ {0, n}.
For the state to be a stabilizer state, Wj and αw must
possess specific properties; these are irrelevant for the
purposes of our proof and we will therefore omit them,
but the interested reader is pointed to Appendix A of
Ref. [81] or Theorem 9 of Ref. [32] for details.

Since, r2,3 = 0, for the state |ψ3⟩, 0n cannot belong to
W3. Combining this observation with condition (ii), and
given that |ψ1⟩ = (|0n⟩+ |s⟩)/

√
2, it clear that |ψ3⟩ = |s⟩.

Because r2,4 = r3,4 = 0, the remaining state |ψ4⟩ must
be a linear combination of computational-basis states so
that 0n, s /∈ W4. This necessarily means that r1,4 = 0,
violating condition (iii).

If exactly two of the overlaps {r2,3, r2,4, r3,4} are zero,
Fig. 5(a) illustrates the nine possible combinations of
edge-weight assignments that could potentially lead to
violations. Fortunately, symmetry constraints illustrated
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(a) (b)

Figure 5. Vertex assignments with null edge-weights.
The figure illustrates the cases where (a) exactly two overlaps
are zero and (b) there is exactly one null overlap. Dashed-
red lines indicate edges of the graph with an assigned weight
equal to zero, dotted-blue lines represent the edges assigned
with the value 1/2, while solid-black lines depict edges with
positive (but arbitrary) edge-weight.

therein mean that we can restrict ourselves to only two
different sub-cases.

Subcase1.–We consider the case depicted in the second
row of the second column of Fig. 5(a): r1,2 = r1,3 = 1/2
and r2,3 = r2,4 = 0. Every scenario in the top two rows
is equivalent to this one.

For a violation to occur r1,4 > r3,4. The fact that r1,3 =
1/2 and r2,3 = 0 implies that |ψ3⟩ = |s⟩ . The state placed
at the fourth vertex can admit the form in Eq. (E2).
Because r2,4 = 0 then 0n /∈ W4; contrarily, since r3,4 ̸= 0,
s ∈ W4. Immediately, this means that r1,4 = 1/2N4+1

while r3,4 = 1/2N4 , which means that r3,4 > r1,4, and
therefore no violation can occur.

Subcase2.– We now consider the cases in the bottom
row of Fig. 5(a) which are all equivalent between them-
selves, but non-equivalent to the six cases in the top two
rows. We take the edge-weight assignment on the first
column: r1,2 = r1,4 = 1/2 and r2,3 = r3,4 = 0. This
means that, for a violation to occur r1,3 > r2,4. The con-
dition that r1,4 = 1/2 enforces one of the following three
forms for |ψ4⟩ :

|ψ4⟩ =


|0n⟩
|s⟩
|0n⟩+iβ |s⟩√

2
, β ∈ {1, 3} .

Lemma 8 informs us that the first option will lead to no
violation; moreover, the second option leads to r2,4 = 0
taking us back to the three-null-overlaps situation which
we already proved leads to no violation. This leaves us
with the last option, that is: |ψ4⟩ = (|0n⟩ + iβ |s⟩)

√
2,

with β ∈ {1, 3}. Immediately, we see that r2,4 = 1/2,
and therefore it is impossible to meet that condition that
r1,3 > r2,4, so that no violation is possible in this case
either.

Finally, it remains to assess the case where only a single
null overlap exists. Fig. 5(b) illustrates the three possible
edge-weight assignments that may lead to violations. We
note that the top two cases are equivalent, meaning that,
again, we have to focus only on two subcases.

Subcase1.–We consider r1,2 = r1,4 = 1/2 and r2,3 = 0
(second row of Fig. 5(b)). For a violation to occur, the
following must hold r1,3 > r2,4+r3,4. We note that r1,4 =

1/2 and r2,4 ̸= 0 implies that |ψ4⟩ = (|0⟩ + iβ |s⟩)/
√
2,

with β = {1, 3}. This fixes r2,4 = 1/2 which immediately
means that the condition r1,3 > r2,4 + r3,4 can never be
met, and therefore no violation can occur.

Subcase2.–We consider r1,2 = r1,3 = 1/2 and r2,3 = 0.
This means that for a violation to hold, we must have
r1,4 > r2,4 + r3,4. The fact that r1,3 = 1/2 and r2,3 = 0
implies that |ψ3⟩ = |s⟩ . The state in the fourth vertex
can assume the general form given by Eq. (E2) where
both 0n and s must belong to the set W4 (otherwise, we
fall back into the cases with two or three null overlaps).
Automatically this means that r2,4 = r3,4 = 1/2N4 . On
the other hand, r1,4 can be (at most) r1,4 = 1/2N4−1,
which means that the condition r1,4 > r2,4 + r3,4 cannot
be met, and therefore no violation can occur.

This concludes the assessment of all possible cases.
Therefore, if any overlap ri,j is zero, no violation of the
inequality (E1) is possible.

Finally, we have all the tools needed to prove Theo-
rem 4 of the main text.

Proof of Theorem 4. Consider a set of four (pure) n-
qubit stabilizer states: {|ψ1⟩ , |ψ2⟩ , |ψ3⟩ , |ψ4⟩}. Recall
that, if we want to find a violation of Eq. (E1), no two
states can be the same (Lemma 8) so that: |ψi⟩ ≠ |ψj⟩
for i ̸= j. Therefore, to obtain h4 > 1 the following con-
ditions must hold: (i) there are at least two r1,j = 1/2 ,
(ii) the remaining overlap r1,k with k ̸= j must obey:
r1,k > r2,3 + r2,4 + r3,4 .

Without loss of generality, take |ψ1⟩ = |0n⟩ and assume
that r1,2 = r1,4 = 1/2 . Under these assumptions, for a
violation to occur we must have r1,3 > r2,3 + r2,4 + r3,4 .

Because r1,2 = 1/2 this means that |ψ2⟩ = (|0n⟩ +
|s⟩)/

√
2 where s ∈ Fn2\{0n}. Evidently, something simi-

lar can be said for |ψ4⟩ : |ψ4⟩ = (|0n⟩+ iα |w⟩)/
√
2, with

w ∈ Fn2\{0n} and α ∈ Z4. This will impose a constraint
on the overlap r2,4 :

r2,4 =


1, if w = s ∧ α = 0

0, if w = s ∧ α = 2

1/2, if w = s ∧ α = {1, 3}
1/4, if w ̸= s

. (E3)

Lemmas 8 and 10 guarantee, respectively, that the first
and second options give no violation and we can thus
focus on the other two.

Taking r2,4 = 1/2 we have: r1,3 > 1/2 + r2,3 + r3,4,
which is impossible to verify since at most r1,3 can be
1/2.
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Taking r2,4 = 1/4 we get the condition r1,3 > 1/4 +
r2,3 + r3,4. In order for this to hold, r1,3 must be equal
to 1/2 which implies that the corresponding state must
take the form |ψ3⟩ = (|0n⟩+iβ |t⟩)/

√
2. Immediately, this

will imply that the values for r2,3 and r3,4 are bounded
as r2,4 in Eq. (E3). Since we know realizations with null
overlaps to yield no violation (Lemma 10), it is clear that
the condition r1,3 > 1/4 + r2,3 + r3,4 can never be met,
because r1,3 can be at most 1/2.

Theorem 7 guarantees that this holds also for mixed
stabilizer states. This concludes the proof.

We conclude this Appendix by generalizing Thereom 4
for d-dimensional qudits.

Theorem 11. There exists no quantum realization r =
r(ρ

STAB(d)
) ∈ Q(K4), where STAB(d) denotes the set

of stabilizer states of n d-dimensional qudits, such that
h4(r) > 1, for any integer value n ≥ 1.

Proof. The overlap |⟨ψ|ϕ⟩|2 of any two non-orthogonal
stabilizer states, |ψ⟩ and |ϕ⟩ , of n qudits of dimension d
can assume value 1/dN with 0 ≤ N ≤ n , see Lemma 2
of Ref. [82] on the overlap between pure stabilizer states.

Again, Lemma 8 guarantees that, if any state is re-
peated, there is no violation of the inequality, so we as-
sume all states to be different. The positive terms in
h4(r) lead to r1,2 + r1,3 + r1,4 = 3/d , in the best case.
For d = 3 this leads to a value of at most 1 and for d > 3
the value will be smaller than one. As a consequence, it
is immediately realized that no violation of the inequality
is possible.

Appendix F: Full set magic and overlap estimation

In this Appendix, we present numerical evidence for
the ability of odd cycle inequalities to witness full set
magic. As can bee seen from Table I, letting ρ =

{ρi}mi=1 ⊆ D(C2) be the set of states such that cm(r(ρ)) >
m − 2, we have that at least m − 2 states of ρ must be
magic states. Depending on how large the violation is,
we have that, other than one reference state that can al-
ways be unitarily sent inside STAB, all other states must
be magic. The second column from Table I is obtained
as follows. We assume that there are at least two states
in a set {|ψi⟩}mi=1 that are single-qubit stabilizer states.
Without loss of generality, we can take {|0⟩, |+⟩}. All
the remaining m−2 states are generic single-qubit states
of the form |ψi⟩ = cos(θi)|0⟩ + eiϕi sin(θi)|1⟩. For all
possible combinations of m − 2 generic states with the
two chosen stabilizer states (or, equivalently, all possi-
ble edge ψ-labelings of the graph Cm permuting the two
STAB states), we maximize cm with respect to the vari-
ables θ = {θi}i and ϕ = {ϕi}i.

Let us take c4 as an example. The set of quantum
states is {|0⟩, |+⟩, |ψ1⟩, |ψ2⟩} and two possible maximiza-

tions are cm(r(ℓ1(ψ))) = −r0,+ + r+,1 + r1,2 + r2,0 and
cm(r(ℓ2(ψ))) = −r0,1 + r1,+ + r+,2 + r2,0. The tool used
for the maximization was NMaximize of Wolfram Math-
ematica and all available solvers were tested, with the
final result presented as the one that found the largest
value. Note that, as before, even though we are maximiz-
ing for pure states, the results presented in Table I hold
for generic mixed states. The last column corresponds
to the situation wherein the set is allowed to be full set
magic, i.e., all states but one are magic.

Interestingly, for even cycle inequalities, we cannot wit-
ness full set magic since m− 2 magic states are sufficient
to maximally violate the inequality. Moreover, we can
see that the gap between set magic and full set magic
decreases as m increases.

We take this opportunity to discuss different strate-
gies for evaluating two-state overlaps. One option is to
consider prepare-and-measure estimation. In this case,
a preparation stage prepares states |ψi⟩ = Ui|0⟩, while
a measurement stage acts as a projection onto ⟨ψj | =

⟨0|U†
j . Assuming we are in the regime of full set magic,

each overlap inequality will certify the nonstabilizerness
of all the preparations Ui and all measurements Uj .

Another possibility is to use the SWAP-test [83] which,
despite using a nonstabilizer gate (the Fredkin gate), can
unambiguously witness nonstabilizerness of the quantum
states that are sent by a third party (sender). If we want
to avoid the use of auxiliary qubits and nonstabilizer op-
erations to estimate the overlaps, we can instead use Bell
measurements [14].

Finally, in the context of linear-optical implementa-
tions, we can use the Hong-Ou-Mandel effect [84]. Any
linear-optical interferometer that is insensitive to internal
degrees of freedom of the photons (e.g. polarization, fre-
quency, time of arrival) has outcomes determined only by
unitary-invariant properties of the spectral functions de-
scribing them [33, 85]. This means the Hong-Ou-Mandel
effect, or interferometry in more complex multimode in-
terferometers, can be used to directly estimate those in-
variant properties. Such a test could be used to certify
the nonstabilizerness of these states.

m cm cmax
m

3 1.2071 1.2500
4 2.4142 2.4142
5 3.5061 3.5225
6 4.5981 4.5981
7 5.6468 5.6534
8 6.6955 6.6955
9 7.7254 7.7286

Table I. Full set magic bounds. The first column shows
the cycle inequality considered and the second column shows
that optimal value considering quantum realizations of sets
of states ρ ⊆ D(C2) where at least two states ρi, ρj ∈ STAB.
The last column presents the optimal tight values found in
Appendix A. Interestingly, even cycles cannot witness full set
magic, but odd cycles can.
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