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Abstract

In the field of 3D Human Pose Estimation (HPE), accu-
rately estimating human pose, especially in scenarios with
occlusions, is a significant challenge. This work identifies
and addresses a gap in the current state of the art in 3D
HPE concerning the scarcity of data and strategies for han-
dling occlusions. We introduce our novel BlendMimic3D
dataset, designed to mimic real-world situations where oc-
clusions occur for seamless integration in 3D HPE algo-
rithms. Additionally, we propose a 3D pose refinement
block, employing a Graph Convolutional Network (GCN) to
enhance pose representation through a graph model. This
GCN block acts as a plug-and-play solution, adaptable to
various 3D HPE frameworks without requiring retraining
them. By training the GCN with occluded data from Blend-
Mimic3D, we demonstrate significant improvements in re-
solving occluded poses, with comparable results for non-
occluded ones. Project web page is available at https:
//blendmimic3d.github.io/BlendMimic3D/.

1. Introduction

Human pose estimation (HPE) from visual data has become
crucial in computer vision, with wide-ranging applications
from sports analysis to enhancing smart retail experiences.
It involves interpreting a person’s position and orientation
from images or videos. Despite the emergence of vari-
ous techniques [5, 25, 30, 35] and datasets [14, 24, 37],
3D HPE remains challenging, particularly with monocu-
lar camera views in occluded scenarios. Under occlusions,
estimating 3D poses becomes even harder, due to the in-
creased ambiguity, and the lack of datasets specifically tar-
geting occluded scenarios makes most state-of-the-art ap-
proach struggle with this type of data.

To fill this gap, we introduce a new synthetic dataset,

Figure 1. BlendMimic3D, our synthetic dataset for 3D HPE occlu-
sion benchmarking, features diverse multi-camera scenarios with
up to three subjects. It includes Blender animations (top left), key-
point visibility (top right), cameras’ parameters, 3D poses (bottom
left) and 2D pose representations (bottom right).

called BlendMimic3D1, illustrated in Figure 1, that aims
to serve as a novel benchmark for HPE with occlusions.
Our dataset, built using Blender [10], comprises a variety of
scenarios mirroring real-world complexities, and purposely
contains several types of occlusions, including self, object-
based and out-of-frame occlusions. This makes Blend-
Mimic3D an invaluable tool for both training HPE models
and benchmarking their performance in occluded scenarios.

Additionally, this work proposes a new pose refine-
ment module2, designed to overcome the limitations of
the current state of the art. Our approach is based on a
graph convolutional network (GCN) [17] that takes into ac-
count spatial and temporal information and is compatible
with various 2D-to-3D HPE backbones, including Video-
Pose3D [30], PoseFormerV2 [40], and D3DP [34]. It works
as a plugin feature that enhances occluded keypoint esti-

1Available at https://github.com/FilipaLino/BlendMimic3D
2Available at https://github.com/FilipaLino/GCN-Pose-Refinement
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mates and does not require training or fine-tuning the HPE
backbone, substantially simplifying its use.

The main contributions are the following:
• BlendMimic3D dataset: a comprehensive, realistic syn-

thetic benchmark dataset focused on occlusions, aiding in
the training and evaluation of HPE models.

• A novel GCN for 3D pose refinement, leveraging spatial-
temporal keypoint relationships. It integrates with most
current monocular 3D HPE methods and is designed to
address occlusions without additional retraining.
Extensive evaluation with two different 2D keypoint de-

tection algorithms [7, 39] and three state-of-the-art 2D-to-
3D algorithms [30, 34, 40], validate the utility of our new
benchmark dataset and the efficacy of our proposed refine-
ment module in estimating poses in occluded conditions.

2. Related Work
Advances in deep learning, especially Convolutional Neural
Networks (CNNs) [26], have significantly improved HPE,
offering enhanced accuracy and speed. Toshev et al.’s Deep-
Pose [36] exemplifies the potential of these methods. In
HPE, three primary body modeling approaches are used:
kinematic (body keypoints) [1, 2, 14–16, 22, 24, 37]; planar
(body contours) [8, 37]; and volumetric (3D meshes) [2, 3,
14, 24, 37]. Our work focuses on the kinematic model due
to its versatility.

2.1. From 2D to 3D Transition

When estimating 3D human pose from 2D video inputs, di-
rect 3D estimation [21, 29] is challenging due to the loss
of depth information in 2D representations. Instead, re-
searchers have found it more effective to first extract the
2D pose and then infer the corresponding 3D pose [25, 35].

Lee and Chen [19] were early pioneers in 2D joints pro-
jection into 3D spaces, but the arrival of deep learning later
shifted the focus towards neural network-based methods.
Martinez et al. [25] emphasized the critical role of 2D pose
data in predicting 3D keypoints.

Current methods have adopted two primary paradigms:
bottom-up [6, 11] and top-down [7, 12, 39]. While the for-
mer starts with individual body joint estimations, the latter
begins by detecting persons. Each approach comes with its
set of advantages and challenges, with the trade-off between
accuracy and computational speed being paramount.

2.2. 2D HPE

Single-person estimation primarily employs regression
methods, such as DeepPose [36], and heatmap-based tech-
niques [6, 20]. Multi-person scenarios see the use of
both bottom-up methods, like OpenPose [6], and top-down
strategies like AlphaPose [11]. Hybrid methods, high-
lighted by Miaopeng Li et al. [20], merge these techniques.

Another noteworthy top-down model in this category is
Mask R-CNN by Kaiming He et al. [12], initially designed
for object detection and semantic segmentation, but later in-
corporated HPE. Based on that framework, Detectron2 [39]
was introduced to handle tasks from object detection to 2D
keypoint identification. It uses CNNs to generate heatmaps
for keypoints, with the heatmap’s peak indicating the exact
keypoint location for accurate results. Also following [12],
Chen et al. [7] developed the Cascaded Pyramid Network
(CPN) to improve multi-person pose estimation, focusing
on “hard” keypoints that are occluded or not visible.

Our study employed Detectron2 [39] and CPN [7] for 2D
keypoint detection due to their precision and state-of-the-
art features, with both achieving a high performance on the
COCO [22] benchmark. We also integrated DeepSort [38]
for tracking individuals in multi-person scenarios, basing
3D pose predictions from specific 2D keypoints.

2.3. 3D HPE

Despite advances in 2D HPE, 3D HPE struggles with depth
ambiguities, limited datasets, and complexities associated
with occlusions. Considering monocular RGB images and
videos and a two-stage approach (2D to 3D Lifting), Mar-
tinez et al. [25] set a benchmark in this domain by using a
fully connected residual network to regress 3D joint loca-
tions from 2D ones. Another influential work by Tome et
al. [35] proposed a multi-stage approach where 2D and 3D
poses are processed concurrently.

Additionally, temporal data from videos has been in-
corporated to address depth issues. Pavllo et al. [30] in-
troduced a temporal dilated convolutional model, named
VideoPose3D. While this approach is noted for its simplic-
ity and efficiency, it may encounter difficulties in handling
continuous occlusions.

Motivated by that, Cheng et al. [8] presented a network
that addressing occlusions through temporal frame analysis.
This architecture is particularly effective in scenarios with
occluded body parts, but only accounts for self-occlusions,
since the testing was conducted using data that primarily
featured such occlusions, limiting its applicability.

Zheng et al. [41] introduced PoseFormer, a purely
transformer-based model for 3D HPE from videos. This
model process both spatial and temporal aspects of human
movement. Building on this, Zhao et al. [40] developed
PoseFormerV2, which employs the frequency domain to
boost efficiency and accuracy of 3D HPE. This approach
reduces computational demands and increases robustness to
noisy in 2D joint detections, making it effective in complex
and occluded scenarios.

Shan et al. [34] presented D3DP, an innovative method
for probabilistic 3D HPE. D3DP generates multiple poten-
tial 3D poses from a single 2D observation, using a denoiser
conditioned on 2D keypoints to refine the poses. The hy-



potheses for the 3D poses are reprojected onto the 2D cam-
era plane, and the best hypothesis for each joint is selected
based on reprojection errors. These selections are combined
to form the final pose.

2.4. Graph Convolutional Network

Graph-based approaches, such as GCNs [17], can be used
to address occlusions in 3D HPE by representing the body
as a graph, where each node represents a body keypoint and
each edge represents the relationship between two joints.
A notable application is the Dynamic Graph Convolutional
Network (DGCN) introduced by Zhongwei Qiu et al. [31],
that can model relationships between 2D joints over time.
Wenbo Hu et al. [13] proposed representing a 3D human
skeleton as a directed graph, to capture hierarchical orders
among the joints.

Following the DGCN approach, to further enrich the
3D HPE domain, Cai et al. [5] proposed a graph-based
approach leveraging spatial-temporal relationships. They
formulated 2D pose sequences as graphs and designed a
network to capture multi-scale features and temporal con-
straints. Later, Yu Cheng et al. [9] presented a novel frame-
work for estimating 3D multi-person poses from monocular
videos with two directed GCNs, one dedicated to joints and
the other to bones, which together estimate the full pose.
This framework integrates GCNs and Temporal Convolu-
tional Networks (TCNs) [18] to handle challenges like oc-
clusions and inaccuracies in person detection. They also
include directed graph-based joint and bone GCNs.

Our proposal employs a GCN model, which is designed
to represent the 3D human pose as an enhanced, undirected
graph, inspired by the method in [5]. We have tailored our
model to specifically refine 3D pose predictions, particu-
larly effective in scenarios with occlusions. This is achieved
by expanding joint relationships, with training conducted on
a variety of cases involving occlusions.

2.5. HPE Datasets

The evolution of HPE approaches has underscored the im-
portance of comprehensive datasets, especially in the con-
text of occlusions. For 2D HPE, datasets like MPII [1],
COCO [22], and PoseTrack [15] offer diverse scenarios
ranging from static images to dynamic videos, capturing
real-world complexities. These datasets facilitate the devel-
opment of models that generalize to multiple environments.

Well-known 3D HPE datasets, such as Human3.6M [14],
SURREAL [37], and AMASS [24], typically require so-
phisticated equipment like motion capture systems for ac-
curate pose recording. While these datasets offer high pre-
cision, they often face challenges in diversity and real-
world applicability. For multi-person scenarios, datasets
like CMU Panoptic [16], 3DPW[2] and AGORA [28] be-
come crucial as they capture more complex interactions and

Table 1. 3D HPE Datasets. Data type ‘R’ and ‘S’ denote ‘Real’
and ‘Synthetic’. † non-self occlusions (object-based, multi-person,
and out-of-frame). ‡ annotations of keypoint visibility.

Data No. of Action Single- Multi- Occlusions
Dataset Type Frames Tags Person Person Complex† Labels‡

Human3.6M [14] R 3.6M ✓ ✓ ✕ ✕ ✕
CMU Panoptic [16] R 1.5M ✕ ✓ ✓ ✕ ✕
SURREAL [37] S 6M ✕ ✓ ✕ ✕ ✕
3DPW [2] R 51K ✕ ✓ ✓ ✓ ✕
AGORA [28] S 17K ✕ ✕ ✓ ✓ ✕
BEDLAM [3] S 380K ✕ ✓ ✓ ✓ ✕
BlendMimic3D S 136K ✓ ✓ ✓ ✓ ✓

dynamics, including occlusions. Table 1 illustrates the di-
versity and focus of some of these datasets.

Following the discussion on existing datasets, the intro-
duction of the BEDLAM dataset [3] represents a significant
advancement. As a synthetic dataset designed for 3D hu-
man pose and shape (HPS) estimation, BEDLAM demon-
strated that neural networks trained solely on synthetic data
can achieve state-of-the-art accuracy in 3D HPS estimation
from real images.

While both the COCO [22] and Human3.6M [14]
datasets have been instrumental in advancing state-of-the-
art algorithms, they present limitations. COCO’s human-
curated nature is prone to errors, whereas Human3.6M, al-
though providing high-precision pose data, lacks in repre-
senting occluded scenarios. Wandt et al. [33] showed that
state-of-the-art 3D HPE models significantly underperform
when faced with synthetic occlusions.

Addressing the challenges in 3D HPE occlusion han-
dling highlighted by Wandt et al., we introduce Blend-
Mimic3D. Inspired by Human3.6M and leveraging BED-
LAM’s synthetic capabilities, BlendMimic3D offers ad-
vanced occlusion management across various levels. It
sets a new benchmark in occlusion-aware 3D HPE with
action-oriented labeled activities and occlusions, marking
keypoints’ visibility per frame as shown in Table 1.

3. BlendMimic3D Dataset
As the need for HPE grows, so does the demand for de-
tailed datasets to train and test models. The efficacy of these
datasets is judged by their accuracy, completeness, and va-
riety. Creating 3D HPE datasets is complex and usually
requires special tools such as MoCap systems and wear-
able devices, resulting in datasets created in controlled set-
tings. As argued by Wandt et al. [33], despite the progress
achieved with Human3.6M [14] dataset, there remains a no-
table gap that synthetic datasets can address.

Using Blender [10], a popular open-source 3D computer
graphics software, we introduce a synthetic dataset tailored
to address challenges such as self, object-based and out-
of-frame occlusions. To ensure its adaptability and rele-
vance, we designed it to comprise a diverse set of scenarios,



Figure 2. Visual representation of different scenes from BlendMimic3D datasets. From left to right: synthetic subjects, SS1, SS2 and SS3.

Figure 3. Left: Camera distribution with the world coordinate
system at the origin, with subject SS1 of BlendMimic3D dataset.
Right: Visualization of 3D character armature, highlighting the
specific keypoints used for coordinate extraction.

from simple environments resembling Human3.6M [14], to
more complex ones with numerous occlusions and multi-
person contexts. Figure 2 illustrates examples of frames
from videos in our dataset, showcasing the range of settings
and multi-person contexts of BlendMimic3D. More detailed
examples are available in the supplementary material.

In the process of crafting BlendMimic3D, four cameras
were positioned within the virtual environment, as depicted
in Figure 3 (Left). A skeletal framework, shown in Fig-
ure 3 (Right), was attached to a 3D character model, en-
abling animation of our synthetic subjects. Utilizing re-
sources from Mixamo3 [4], the characters were animated
to simulate a range of actions, such as “Arguing”, “Greet-
ing”, or “Picking Objects”. From each camera’s perspec-
tive, videos were generated utilizing Blender’s rendering
engine. The resulting dataset comprises:
1. 3 scenarios, from a simple environment to more complex

and realistic ones;
2. 3 subjects, each one performing several different actions;
3. Single and multi-person settings, with up to 3 subjects;
4. A total of 128 videos with an average duration of 35 sec-

3https://www.mixamo.com/#/

onds (1050 frames).
Metadata is available for all videos, including the param-
eters used for camera calibration, 2D and 3D positions of
keypoints, as well as a binary array depicting which key-
points were occluded in each frame. All this extracted data
is illustrated in Figure 1.

BlendMimic3D is organized in the same manner as the
Human3.6M dataset, with videos categorized by subject
and action. The dataset includes synthetic subjects desig-
nated as SS1, SS2 and SS3. While SS1 focuses on self-
occlusions, SS2 addresses object and out-of-frame occlu-
sions. Each of these subjects covers 14 distinct actions.
SS3, set in a smart store environment, manages both occlu-
sions and multi-person scenarios. It offers two variations
of the same action—one in a single-person context and the
other in a multi-person setting. Just like with Human3.6M,
each synthetic action is captured in four videos, each with a
different perspective.

4. Pose Refinement with GCN
Our proposed methodology is a pose refinement stage, illus-
trated in Figure 4, where we introduce our Graph Convolu-
tional Network (GCN) as a plugin to enhance the estimated
3D poses. Our GCN is trained on BlendMimic3D dataset,
which provides a diverse range of occlusion scenarios. This
allows the network to learn and adapt to various occlusion
types, refining the pose estimation for occluded joints.

The GCN not only considers spatial relationships be-
tween body joints but also temporal continuity across
frames. It conceptualizes the human body as a graph struc-
ture, where nodes are body keypoints and edges represent
joint connections. Unlike traditional models that primarily
link a keypoint to its immediate neighbors [13], our model,
inspired by the work of Cai et al. [5] and Yu Cheng et
al. [9], establishes broader connections across consecutive
frames, as depicted in Figure 5. This extended connectiv-

https://www.mixamo.com/#/


Figure 4. Overview of the proposed framework. After any cho-
sen 3D HPE algorithm, our Graph Convolutional Network (GCN)
refines the estimated 3D poses by integrating spatial and temporal
insights, leading to enhanced and precise 3D pose estimation, par-
ticularly effective in handling occlusions.

Figure 5. Illustration of the graph dynamics for the right elbow
keypoint, with neighboring nodes categorized into six classes: (1)
Center (red). (2) Physically-connected node closer to the spine
(blue). (3) Physically-connected farther from the spine (green).
(4) Symmetric node (pink). (5) Time-forward node (orange). (6)
Time-backward (yellow).

ity is crucial for accurately inferring occluded or ambiguous
keypoints in challenging environments.

Drawing on the formulation by Kipf and Welling [17],
their GCN approach refines spectral graph convolutions to
enhance efficiency and scalability. Given a graph G with
an adjacency matrix A, the propagation rule in their GCN
model for each layer is expressed as

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
, (1)

where H(l) is the activation matrix for the l-th layer. H(0)

denotes the input feature matrix, with each row represent-
ing a feature vector for every node. W (l), often referred to
as the kernel, is the weight matrix for the l-th layer. σ is
an activation function, typically the ReLU. The augmented
adjacency matrix, Ã = A + I , includes self-connections,

and D̃ is its corresponding diagonal node degree matrix.
Kipf and Welling’s strategy uses the normalized adja-

cency matrix to spread node features across the graph. Nor-
malization by the degree matrix D̃ ensures stable gradients
and effective training. In (1), the kernel W (l), is shared by
all 1-hop neighboring nodes, suggesting a consistent treat-
ment of these immediate neighbors.

To enhance this approach, we expanded from merely
considering 1-hop neighbors, recognizing the need for dis-
tinct kernels tailored to different neighboring nodes based
on their semantics. Following (1), we devised a spatial-
temporal undirected graph G = (V, E , A). In this graph,
V ∈ RT×J signifies the vertices set corresponding to T
consecutive frames (one for each, past, present, and future),
with J joints in each frame. E represents the nodes’ con-
nections. The adjacency matrix A ∈ RP×P , considering
P = TJ , that aij = 0 if (i, j) ̸∈ E and aij = 1 if (i, j) ∈ E .
This adjacency matrix captures both spatial and temporal
dynamics across frames.

By classifying neighboring nodes and understanding
their semantic relationships (as illustrated in Figure 5),
we apply distinct kernels for each class of neighborhood.
Drawing from [5], consider an input signal X ∈ RP×C

that represents C-dimensional features of P vertices on the
graph. The convolved signal matrix Z ∈ RP×C , is given
by the graph convolution, articulated as

Z =
∑
k

D
− 1

2

k AkD
− 1

2

k XWk, (2)

in which k indexes the neighbor class, Wk denotes the filter
matrix for the k-th type of 1-hop neighboring nodes. In
relation to the normalized Ã = A + IP from equation (1),
expression (2) decomposes it into k sub-matrices with Ã =∑

k Ak. Here, Dii
k =

∑
j A

ij
k represents the degree matrix

that normalizes Ak.
Our model combines graph convolution operation from

(2) and 3D convolutions. The primary architecture, depicted
in Figure 6, merges both spatial and temporal graph con-
volutions. The input, a tensor representing 3D keypoints,
undergoes normalization for stability. This input tensor has
dimensions (N,C,T,V,M), with N as the batch size, C as the
number of features, T as the temporal dimension (input se-
quence length), V as the graph nodes for each frame, and M
as the number of instances in a frame.

The core of the model comprises several spatial-temporal
graph convolutional (ST-GCN) layers, depicted in Figure 6 ,



Figure 6. Graph-based 3D human pose refinement architecture
with detailed architecture of the Spatial-Temporal Graph Convo-
lutional (ST-GCN) layer.

designed for feature extraction and refinement. A non-local
block is also incorporated, capturing long-range dependen-
cies and relationships between different input parts. The
resulting features are then passed through a fully connected
layer producing the final refined 3D pose.

The details of the ST-GCN layers are shown in Figure 6.
Each layer begins with an operation that applies a graph
convolution, incorporating the spatial structure and connec-
tions defined by an adjacency matrix. Following the graph
convolution, the output undergoes a temporal 3D convolu-
tion, capturing the temporal relationships across frames. A
residual connection is employed to facilitate faster conver-
gence and mitigate the vanishing gradient problem. The fi-
nal output of each ST-GCN layer passes through a ReLU
function for a non-linear transformation. The combination
of these operations ensures that our model understands the
spatial-temporal dynamics of human actions, enabling ac-
curate 3D pose estimation even in challenging scenarios.

5. Experimental Setup

Our architecture provides an end-to-end solution for 3D
pose estimation from video, handling occlusions—a com-
mon real-world challenge. Our tests on standard bench-
marks show it outperforms existing top methods, especially
in occluded scenarios, while also maintaining strong perfor-
mance in standard situations. The experimental framework
was implemented using Pytorch [27], an Intel(R) Core(TM)
i7-8700K CPU @ 3.70GHz and two NVIDIA GeForce
GTX 1080 Ti.

5.1. Datasets and Evaluation Metrics

Datasets. A primary dataset in our study is Hu-
man3.6M [14], which serves as the training foundation for
several 3D HPE algorithms [5, 8, 9, 30, 34, 40, 41]. Hu-
man3.6M furnishes 3.6 million human poses and corre-
sponding images. Captured in controlled indoor environ-
ments, it documents 15 unique actions, with two versions
each, from four viewpoints. It is important to note that, due
to privacy concerns, data from only 7 subjects is available:
S1, S5, S6, S7, S8, S9, S11, totaling 840 videos. For per-
formance evaluation, we sourced all available subjects from
Human3.6M [14]. These were combined with our synthetic
subjects from BlendMimic3D: SS1, SS2 and SS3.

In line with established practices in 3D HPE research, as
seen in previous works [5, 8, 9, 30, 34, 40, 41], we have se-
lected a specific set of subjects for our training and testing
phases. For the training of our GCN, we utilize the 3D pose
predictions from 6 subjects of Human3.6M, S1, S5, S6, S7,
S8 and S11, along with our synthetic subjects SS1, and SS2.
We then evaluate the performance of our model on two dif-
ferent subjects, S9 and SS3. Both 3D pose predictions and
3D refined poses are represented in the camera’s coordinate
system and a single model is used to train all camera views
for all actions.
Evaluation metrics. Our 3D human pose estimation
evaluation harnesses the Mean Per-Joint Positional Error
(MPJPE) [42], a metric that calculates the average ℓ2-norm
difference between estimated and true 3D poses, repre-
sented by the equation

MPJPE =
1

N

N∑
i=1

∥Ji − J∗
i ∥2 , (3)

where N represents the joint count, and Ji and J∗
i denote

the true and estimated positions of the ith joint, respectively.

5.2. Implementation Details

2D HPE. This stage focuses on accurately capturing the
skeletal structure in two dimensions, which lays the foun-
dation for the subsequent 3D pose estimation. To identify
subjects in video frames and extract their 2D keypoints,
we use two detection algorithms in our 2D HPE process:
CPN [7] and Detectron2 [39]. For keypoints detection us-
ing Detectron2 [39], we utilize a pretrained model that uses
Mask R-CNN [12] with ResNet-101-FPN [23] as back-
bone. Regarding CPN [7], which is an extension of FPN



Figure 7. Overview of the proposed preprocessing strategy for
2D HPE. It begins with (1) employing a detection algorithm for
pinpointing subjects and capturing their 2D keypoints, followed
by (2) a tracking mechanism to maintain focus on a target subject,
supplying a sequence of 2D poses.

as suggested by [30], we employ the 2D keypoint predic-
tions provided from their fine-tuned CPN model for the Hu-
man3.6M dataset. For our synthetic 2D pose predictions,
we re-implement CPN, using a ResNet-101 backbone with
a 384×288 resolution. This model uses externally provided
bounding boxes generated by Detectron2.

To handle dynamic scenes with multiple people, we inte-
grate the DeepSort [38] algorithm, modified to track a spe-
cific individual with a unique ID. Our method assumes that
the individual remains in the frame throughout the monitor-
ing in a multi-person environment. In order to maintain the
tracking continuity, especially when the target ID is tem-
porarily lost, we select the closest bounding box based on
centroid distance, prioritizing those with high confidence
scores. Also, to improve detection performance, our ap-
proach resizes subsequent frames according to the previ-
ous tracked bounding box and implementing an region of
interest (ROI) cropping strategy focused on the target ID.
This entire preprocessing approach, encompassing both de-
tection and tracking phases, is illustrated in Figure 7.
2D-to-3D Pose Conversion We extracted 2D keypoints
as inputs for our 2D-to-3D pose lifting module and as-
sessed the performance of various algorithms in handling
occlusions with our BlendMimic3D dataset. These algo-
rithms include VideoPose3D [30], PoseFormerV2 [40], and
D3DP [34], for which we utilized their available pretrained
models. For all three algorithms, we used an input sequence
length of 243 frames. Specifically, for PoseFormerV2, we
inputted 27 frames into the spatial encoder along with 27
DCT coefficients. For D3DP, we configured the model to

Figure 8. Evaluation of our GCN pose refinement block
against previous methods: VideoPose3D (VP3D) and Pose-
FormerV2 (PFV2), showcasing performance on CPN-based de-
tections across Human3.6M and BlendMimic3D test sets.

use 1 hypothesis and one iteration.
GCN Pose Refinement Our GCN model is trained for 40
epochs with a mini-batch size of 256, using the AMS-
Grad [32] optimizer and an initial learning rate of 0.001.
The learning rate is reduced by 0.1 every 5 epochs and
shrinks by a factor of 0.95 after each epoch, with a more sig-
nificant reduction of 0.5 every 5 epochs. Training batches
are created by a generator based on pre-split subject IDs
for training and testing groups, as detailed in Section 5.1.
The model is updated through backpropagation based on
these batches. We follow the training losses of [5], includ-
ing 3D pose loss (MPJPE), derivative loss (measuring the
Euclidean distance of the first derivative between predicted
and ground truth velocities), and symmetry loss (focusing
on the accuracy of left and right bone pairs). Test data is
solely used for evaluation.

6. Experimental Results

6.1. Quantitative results

Our analysis on Human3.6M and BlendMimic3D datasets,
using CPN-based and Detectron2-based 2D detections,
demonstrates the positive impact of the GCN pose refine-
ment block in handling occlusions, as evidenced by MPJPE
improvements particularly on the occlusion-heavy Blend-
Mimic3D dataset. Figure 8 visually summarizes the en-
hancements and trade-offs introduced by our GCN across
VideoPose3D and PoseFormerV2.

Figure 8 shows that the results with our GCN achieve a



Table 2. Evaluation of our GCN pose refinement block against
previous methods, with CPN and Detectron2, on BlendMimic3D
test set. Best results are highlighted in green.

3D HPE Model –MPJPE (Avg [mm])
2D HPE VP3D [30] + GCN PFV2 [40] + GCN D3DP [34] + GCN
CPN [7] 175.0 112.7 148.6 107.5 100.7 95.3
Detectron2 [39] 198.0 127.7 155.0 106.9 99.9 95.3

comparable error on the non-occluded Human3.6M dataset.
However, the baseline approaches exhibit worse MPJPE
in occluded scenarios (BlendMimic3D dataset), while our
GCN reduces this error escalation. The proposed approach
leads to a notable decrease of more than 30% on the average
errors with occlusions.

Unlike PoseFormerV2 (PFV2) and VideoPose3D
(VP3D), D3DP incorporates mechanisms that can handle
occlusions, utilizing a diffusion process to add noise
and a denoiser conditioned on 2D keypoints, leading
to a variety of hypotheses that can capture the possible
variations in pose. GCN integration addresses the occlusion
management challenges in both VP3D and PFV2 models,
as demonstrated in Table 2. This table also highlights the
GCN’s broader impact, including its application to D3DP,
within the BlendMimic3D test set.

Table 2 underscores the GCN’s versatility, showing con-
sistent performance enhancements across different 2D de-
tection methods (CPN and Detectron2). It also shows im-
provements in D3DP’s performance, affirming the GCN’s
value even in models already equipped for occlusion man-
agement. Detailed results, categorized by action for each
model, can be found in the supplementary material.

This evaluation highlights BlendMimic3D’s role in over-
coming the self-occlusion bias of datasets like Human3.6M,
emphasizing its importance for enhancing 3D HPE robust-
ness through diverse occlusions. It showcases synthetic
data’s role in model development and affirms our GCN’s ad-
vancement in occlusion management, setting a new bench-
mark for occlusion handling in 3D HPE systems.

6.2. Qualitative results

To test our approach in a real-world scenario featuring oc-
clusions, Figure 9 showcases qualitative results. It com-
pares the 3D human pose estimation from VideoPose3D
with and without our refined pose, both derived from the
same input video. As shown in Figure 9, the GCN approach
improves the estimation results, particularly for occluded

Figure 9. Example showcasing three frames from a real “in the
wild” video with the corresponding 3D HPE using VideoPose3D,
on Detectron2 detections, with and without the proposed GCN.

legs. This suggests that our GCN is effective in handling
occlusions – a critical benefit for real-world applications
where such occlusions are frequent.

7. Conclusion
This work introduces BlendMimic3D, a new benchmark de-
signed to train and evaluate 3D HPE with occlusions. Un-
like traditional datasets such as COCO and Human3.6M,
with controlled settings and limited occlusion variations,
our BlendMimic3D replicates real-world complexities. A
standout feature of BlendMimic3D is its expandability and
ease of modification4 , requiring only Blender for animation
generation. Additionally, we propose a GCN pose refine-
ment block, that can be plugged in with state-of-the-art 3D
HPE algorithms to improve their performance for occluded
poses, requiring no further training of the HPE backbone.
This ensures that performance improvements in occluded
conditions do not compromise accuracy in standard, non-
occluded settings. Future efforts will aim to fully preserve
performance in these scenarios upon integrating the GCN.
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Figure 10. Subject SS3 engaging in the “Focus multi” action. This
figure showcases the same frame from different perspectives: (top
left) Camera 0; (top right) Camera 1; (bottom left) Camera 2; (bot-
tom right) Camera 3.

8. BlendMimic3D examples

For illustration purposes, Figure 10 presents all four cam-
era views of the same frame from the “Focus multi” action
in our synthetic test set, featuring subject SS3. This partic-
ular action is designed to simulate a multi-person scenario
within a supermarket setting, where three subjects interact
amidst objects, creating occlusions.

9. Detailed Evaluation of GCN

Table 3 presents an evaluation of the GCN pose refinement
block’s performance across actions in the BlendMimic3D
test set. Covering both CPN-based and Detectron2-based
detections, the table demonstrates MPJPE improvements
through the incorporation of the GCN into established 3D

HPE models. Highlighted results demonstrate improve-
ments in the accuracy of pose estimation in scenarios with
occlusions.



Table 3. Evaluation of our GCN pose refinement block against previous methods. This evaluation includes performance on both CPN-
based and Detectron2-based detections, utilizing the BlendMimic3D test set. For each 3D HPE algorithm and corresponding 2D detector,
the highest scores achieved, both independently and in combination with the GCN, are highlighted in green.

Model 2D HPE TakesItem [mm] TakesItem multi [mm] Focus [mm] Focus multi [mm] Avg [mm]
VideoPose3D [30] CPN [7] 167.5 170.8 178.3 183.4 175.0
+ GCN CPN [7] 106.9 109.7 112.0 122.4 112.7
VideoPose3D [30] Detectron2 [39] 188.8 194.6 201.8 206.7 198.0
+ GCN Detectron2 [39] 117.9 119.7 130.7 142.6 127.7
PoseFormerV2 [40] CPN [7] 152.6 157.8 141.5 142.2 148.6
+ GCN CPN [7] 106.4 108.7 105.3 109.7 107.5
PoseFormerV2 [40] Detectron2 [39] 157.8 164.9 142.5 154.8 155.0
+ GCN Detectron2 [39] 103.7 106.2 99.3 118.3 106.9
D3DP [34] CPN [7] 94.7 95.9 100.3 112.1 100.7
+ GCN CPN [7] 91.8 93.3 96.3 99.9 95.3
D3DP[34] Detectron2 [39] 88.4 95.0 101.7 114.6 99.9
+ GCN Detectron2 [39] 88.8 94.6 98.8 99.3 95.3
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