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Through use of the Pauli-Villars regulator procedure we construct a second- plus fourth-order-
derivative theory of gravity that serves as an ultraviolet completion of standard second-order-
derivative quantum Einstein gravity that is ghost-free, unitary and power counting renormalizable.
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I. THE PAULI-VILLARS REGULATOR PROCEDURE

In order to regulate Feynman diagrams Pauli and Villars [1] suggested that one augment a propagating field

(generically φ1) with a mirror field (φ2) that obeys all the same field equations as φ1 but with a different mass and

that is quantized with an indefinite (ghost state) metric. Taking the two fields together yields the free two-field action

and quantization conditions

I1 + I2 =
1

2

∫

d4x
[

∂µφ1∂
µφ1 −M

2
1φ

2
1

]

+
1

2

∫

d4x
[

∂µφ2∂
µφ2 −M

2
2φ

2
2

]

,

[φ1(x̄, t), φ̇1(x̄
′, t)] = iδ3(x̄− x̄′), [φ2(x̄, t), φ̇2(x̄

′, t)] = −iδ3(x̄ − x̄′), (1.1)

and serves to replace a 1/(k2 −M2
1 + iǫ) propagator by

D(k) =
1

k2 −M2
1 + iǫ

−
1

k2 −M2
2 + iǫ

. (1.2)

If the φ1 field propagator leads to a Feynman diagram that diverges as log[Λ2/M2
1 ], then the joint φ1, φ2 propagator

D(k) leads to a cut-off independent log[M2
2 /M

2
1 ]. Prior to the Pauli-Villars paper the concept of an indefinite metric

had been discussed by Dirac [2] and Pauli [3] as a potential mechanism for controlling divergences in quantum

field theory. While Pauli and Villars acknowledged in their paper that their use of an indefinite metric was only a

mathematical device, they indicated that they did not want to rule out the possibility that it might be physical.

http://arxiv.org/abs/2404.16148v1
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To get further insight into this D(k) propagator Pais and Uhlenbeck [4] noted that this same D(k) could be derived

from a single field φ that obeyed a second- plus fourth-order theory action and equation of motion of the form

IS =
1

2

∫

d4x

[

∂µ∂νφ∂
µ∂νφ− (M2

1 +M2
2 )∂µφ∂

µφ+M2
1M

2
2φ

2

]

, (∂2t − ∇̄
2 +M2

1 )(∂
2
t − ∇̄

2 +M2
2 )φ(x) = 0. (1.3)

For (1.3) the associated propagator obeys

(∂2t − ∇̄
2 +M2

1 )(∂
2
t − ∇̄

2 +M2
2 )D(x) = −δ4(x),

D(x) = −

∫

d4k

(2π)4
e−ik·x

(k2 −M2
1 + iǫ)(k2 −M2

2 + iǫ)
= −

∫

d4k

(2π)4
e−ik·x

(M2
1 −M

2
2 )

[

1

(k2 −M2
1 + iǫ)

−
1

(k2 −M2
2 + iǫ)

]

,

(1.4)

to thus have the same structure as given in (1.2). For the IS action the energy-momentum tensor Tµν , the canonical

momenta πµ and πµλ, and the equal-time commutators appropriate to the higher-derivative theory are given by [5]

Tµν = πµφ,ν + π λ
µ φ,ν,λ − ηµνL,

πµ =
∂L

∂φ,µ
− ∂λ

(

∂L

∂φ,µ,λ

)

= −∂λ∂
µ∂λφ− (M2

1 +M2
2 )∂

µφ, πµλ =
∂L

∂φ,µ,λ
= ∂µ∂λφ,

T00 = 1
2π

2
00 + π0φ̇+ 1

2 (M
2
1 +M2

2 )φ̇
2 − 1

2M
2
1M

2
2φ

2 − 1
2πijπ

ij + 1
2 (M

2
1 +M2

2 )φ,iφ
,i

=
1

2
φ̈2 − 1

2 (M
2
1 +M2

2 )φ̇
2 −

...
φ φ̇− [∂i∂

iφ̇]φ̇− 1
2M

2
1M

2
2φ

2 − 1
2∂i∂jφ∂

i∂jφ+ 1
2 (M

2
1 +M2

2 )∂iφ∂
iφ,

[φ(0̄, t), φ̇(x̄, t)] = 0, [φ(0̄, t), φ̈(x̄, t)] = 0, [φ(0̄, t),
...
φ (x̄, t]) = −iδ3(x). (1.5)

In terms of two sets of oscillator creation and annihilation operators the field φ can be expressed as

φ(x̄, t) =

∫

d3k

(2π)3/2

[

a1(k̄)e
−iω1t+ik̄·x̄ + a†1(k̄)e

iω1t−ik̄·x̄ + a2(k̄)e
−iω2t+ik̄·x̄ + a†2(k̄)e

iω2t−ik̄·x̄
]

, (1.6)

where ω1 = +(k̄2 +M2
1 )

1/2, ω2 = +(k̄2 +M2
2 )

1/2. Given (1.6) and the commutators and energy-momentum tensor

given in (1.5) we obtain a two-oscillator model of the form

HS = (M2
1 −M

2
2 )

∫

d3k

[

(k̄2 +M2
1 )

[

a†1(k̄)a1(k̄) + a1(k̄)a
†
1(k̄)

]

− (k̄2 +M2
2 )

[

a†2(k̄)a2(k̄) + a2(k̄)a
†
2(k̄)

]

]

,

[a1(k̄), a
†
1(k̄

′)] = [2(M2
1 −M

2
2 )(k̄

2 +M2
1 )

1/2]−1δ3(k̄ − k̄′),

[a2(k̄), a
†
2(k̄

′)] = −[2(M2
1 −M

2
2 )(k̄

2 +M2
2 )

1/2]−1δ3(k̄ − k̄′),



3

[a1(k̄), a2(k̄
′)] = 0, [a1(k̄), a

†
2(k̄

′)] = 0, [a†1(k̄), a2(k̄
′)] = 0, [a†1(k̄), a

†
2(k̄

′)] = 0. (1.7)

We note that withM2
1−M

2
2 > 0 for definitiveness, we see negative signs in bothHS and the [a2(k̄), a

†
2(k̄

′)] commutator.

These negative signs signal two potential problems: states with negative norm (ghost states) and states with negative

energy (the Ostrogradski instability that is characteristic of higher-derivative theories). However, these two problems

cannot occur simultaneously as they occur in different Hilbert spaces. Specifically, one can define a Hilbert space built

on a vacuum that a2(k̄) annihilates, or one can define a Hilbert space built on a vacuum that a†2(k̄) annihilates. In the

first Hilbert space energies are positive but there are states of negative Dirac norm (〈Ω|a2(k̄)a
†
2(k̄)|Ω〉 < 0), while in

the second Hilbert space norms are positive but there are states of negative energy. The first Hilbert space corresponds

to the standard Feynman iǫ prescription given in (1.2) and (1.4) in which positive frequency modes propagate forward

in time but the M2 sector poles are enclosed in a way that leads to negative residues (closing in the lower half plane

in the complex k0 plane). The second Hilbert space corresponds to an iǫ prescription of the form

D′(k) =
1

k2 −M2
1 + iǫ

−
1

k2 −M2
2 − iǫ

(1.8)

in which negative energy states of energies up to minus infinity propagate forward in time, but the way that the

M2 sector poles are enclosed leads to positive residues (closing in the upper half plane). Since it is not physically

possible to have an energy spectrum that is unbounded from below, we shall work in the Hilbert space in which

the energy spectrum is bounded from below. In this Hilbert space there is the issue of negative Dirac norms, but,

as we shall describe below, this problem has been resolved by Bender and Mannheim [5, 6] using the techniques of

Bender’s PT -symmetry program [7, 8]. Interestingly the technique involves a continuation of the quantum fields into

the complex plane that is the reverse of the one that Pauli used in order to construct a negative definite Hilbert

space norm. Specifically, in [3] Pauli continued a positive definite norm into a negative definite norm, while in [5, 6]

a negative definite norm is continued into a positive definite one.

The need to continue into the complex plane is due to the fact that the Dirac norm 〈Ω|a2(k̄)a
†
2(k̄)|Ω〉 is not just

negative, it turns out that it is infinite [5, 6, 9–12], and thus cannot be the appropriate inner product for the quantum
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theory since while the residues of the some of the poles in (1.4) may be negative, all of the residues, including the

ones that are positive, are finite [13]. It is the infiniteness of the Dirac norm that actually saves the theory, since the

very fact that the Dirac norm is infinite entails that the Hamiltonian is not self-adjoint, and thus not Hermitian. But

all the k0 plane poles in the propagator lie on the real k0 axis, and thus despite the lack of Hermiticity the energy

eigenvalues are nonetheless real. Now while Hermiticity implies reality of eigenvalues, there is no converse theorem

that says that if a Hamiltonian is not Hermitian then it must have at least one complex eigenvalue. Hermiticity is

only sufficient for reality but not necessary. A necessary condition has been identified in the literature, namely that

the Hamiltonian possess an antilinear symmetry [14, 15]. And in such a case one should take the left eigenvector bra

〈L| to be the conjugate of a right eigenvector ket |R〉 with respect to the antilinear symmetry operator rather than

the Hermitian conjugate [16]. To resolve the infinity problem we need to continue the fields into a domain in the

complex plane (known as a Stokes wedge) in which the Hamiltonian then is self-adjoint (we show below that such a

domain does exist). In general [15] the antilinear symmetry should be CPT (C is charge conjugation, P is parity,

and T is time reversal). But with the gravitational field being C even the required inner product should be 〈Ω[PT ]|Ω〉

where 〈Ω[PT ]| = PT |Ω〉 [17], just as in the PT program of Bender and collaborators [7, 8].

The essential point here is that one cannot determine the structure of a q-number Hilbert space by looking at a

c-number quantity such as a propagator. Rather, first one has construct the underlying Hilbert space, and only then

construct the propagator as a matrix element of a time ordered product of fields in the appropriate vacuum. With

i〈Ω|T (φ(x)φ(0))|Ω〉 obeying

(∂2t − ∇̄
2 +M2

1 )(∂
2
t − ∇̄

2 +M2
2 )i〈Ω|T (φ(x)φ(0))|Ω〉 = −〈Ω|Ω〉δ

4(x), (1.9)

the very fact that 〈Ω|Ω〉 is infinite means that the propagator cannot be represented by i〈Ω|T (φ(x)φ(0))|Ω〉. Rather,

it has to be of the form −i〈Ω[PT ]|T (φ̄(x)φ̄(0))|Ω〉, as based on the continuation φ̄ = −iφ of φ into the complex plane.

Thus the fact that the second- plus fourth-order theory is thought to have unitarity violating states of negative norm

is due to a misidentification of what quantum field theory matrix element the propagator is to represent. It is in this
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way that the Pauli-Villars regulator can be physical, as can then also be the original program of Dirac and Pauli.

Now as well as regulate logarithmically divergent Feynman diagrams the Pauli-Villars regulator can also regulate

quadratically divergent ones as well and reduce them to renormalizable logarithmic divergences. Such quadratic

divergences occur when the standard second-order Einstein gravity theory is quantized, and so we now show how we

can now use a Pauli-Villars-based gravity theory to control them in a way that is unitary and ghost free.

II. QUANTUM EINSTEIN GRAVITY

While the Pauli-Villars propagator reduces a 1/k2 behavior at asymptotic k2 to the more convergent 1/k4, and

while radiative corrections to Einstein gravity do generate (Planck-scale) higher-derivative counter terms, they leave

the asymptotic behavior as 1/k2, to thus render the theory nonrenormalizable. Thus if we want the Pauli-Villars

propagator to be a physical component of a quantum gravity theory that is to control the asymptotic behavior we must

introduce higher-derivative terms right at the beginning in the fundamental Lagrangian. To this end we augment the

Einstein Ricci scalar action with a term that is quadratic in the Ricci scalar. This gives a much studied [18] quantum

gravity action of the generic form

IGRAV =

∫

d4x(−g)1/2
[

6M2Rα
α + (Rα

α)
2
]

. (2.1)

On adding on a matter source with energy-momentum tensor Tµν , variation of this action with respect to the metric

generates a gravitational equation of motion of the form

−6M2Gµν + V µν = −
1

2
T µν . (2.2)

Here Gµν is the Einstein tensor and Vµν may be found in [19] and also [20, 21], with these terms being of the form

Gµν = Rµν −
1

2
gµνgαβRαβ , V µν = 2gµν∇β∇

βRα
α − 2∇ν∇µRα

α − 2Rα
αR

µν +
1

2
gµν(Rα

α)
2. (2.3)

If we now linearize about flat spacetime with background metric ηµν and fluctuation metric gµν = ηµν + hµν , to first

perturbative order we obtain

δGµν =
1

2
(∂α∂

αhµν − ∂µ∂
αhαν − ∂ν∂

αhαµ + ∂µ∂νh)−
1

2
ηµν

(

∂α∂
αh− ∂α∂βhαβ

)

,
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δVµν = [2ηµν∂α∂
α − 2∂µ∂ν ][∂β∂

βh− ∂λ∂κh
λκ], (2.4)

where h = ηµνhµν . Since all the hµν fluctuation components diverge at the same rate, we only need to look at one of

them in order to see the general pattern, with the trace h being the most convenient. Thus taking the trace of the

fluctuation equation around a flat background we obtain

[M2 + ∂β∂
β ]
(

∂λ∂
λh− ∂κ∂λh

κλ
)

= −
1

12
ηµνδTµν . (2.5)

In the convenient transverse gauge where ∂µh
µν = 0, the propagator for h is given by

D(h, k2) = −
1

(k2 + iǫ)(k2 −M2 + iǫ)
=

1

M2

(

1

k2 + iǫ
−

1

k2 −M2 + iǫ

)

. (2.6)

As we see, in this case the 1/k2 graviton propagator for h that would be associated with the Einstein tensor δGµν

alone is replaced by a far more convergent D(h, k2) = [1/k2 − 1/(k2 −M2)]/M2 propagator. And now the leading

behavior at large momenta is −1/k4. If we identify this propagator with i〈Ω|T (h(x)h(0))|Ω, and assume that 〈Ω|Ω〉

is finite the Feynman rules that would then ensue render the theory renormalizable [22]. But since, as we show below,

〈Ω|Ω〉 is not finite the proof of renormalizability has a flaw in it. Fortunately, the flaw is not fatal, and we rectify it

below, with 〈Ω[PT ]|Ω〉 being finite and ghost free [17] and the well-behaved −i〈Ω[PT ]|T (h̄(x)h̄(0))|Ω〉 with h̄ = −ih

obeying the same Feynman rules, so that renormalizability is obtained.

We recognize D(h, k2) as being of the same form as the scalar field propagator that was given in (1.4), with φ being

replaced by h and with M2
1 =M2, M2

2 = 0. We can thus give h an equivalent effective action of the form

Ih =
1

2

∫

d4x

[

∂µ∂νh∂
µ∂νh−M2∂µh∂

µh

]

. (2.7)

Ih thus shares the same vacuum normalization and negative norm challenges as the scalar field action given in (1.3).

To see whether this theory can be considered to be an ultraviolet completion of Einstein gravity, we need to be able

to find a consistent Hilbert space formulation that will realize this propagator, and this we now do.
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III. THE INAPPROPRIATE HILBERT SPACE

Since Ih only involves one degree of freedom we can treat it as a scalar field φ and use the action given in (1.3). To

be general we shall keep both M2
1 and M2

2 arbitrary. To construct the appropriate Hilbert space we need to utilize

the techniques presented in [5, 6, 9–12]. To this end we introduce operators

z(k̄, t) = a1(k̄)e
−iω1(k̄)t + a†1(k̄)e

iω1(k̄)t + a2(k̄)e
−iω2(k̄)t + a†2(k̄)

iω2(k̄)t,

pz(k̄, t) = iω1(k̄)ω
2
2(k̄)[a1(k̄)e

−iω1(k̄)t − a†1(k̄)e
iω1(k̄)t] + iω2

1(k̄)ω2(k̄)[a2(k̄)e
−iω2(k̄)t − a†2(k̄)e

iω2(k̄)t],

x(k̄, t) = −iω1(k̄)[a1(k̄)e
−iω1(k̄)t − a†1(k̄)e

iω1(k̄)t]− iω2(k̄)[a2(k̄)e
−iω2(k̄)t − a†2(k̄)

iω2(k̄)t],

px(k̄, t) = −ω
2
1(k̄)[a1(k̄)e

−iω1(k̄)t + a†1(k̄)e
iω1(k̄)t]− ω2

2(k̄)[a2(k̄)e
−iω2(k̄)t + a†2(k̄)

iω2(k̄)t]. (3.1)

Given the commutation relations that appear in (1.7) it follows that

[z(k̄, t), pz(k̄
′, t)] = iδ3(k̄ − k̄′), [x(k̄, t), px(k̄

′, t)] = iδ3(k̄ − k̄′),

[z(k̄, t), x(k̄′, t)] = 0, [z(k̄, t), px(k̄
′, t)] = 0, [pz(k̄, t), x(k̄

′, t)] = 0, [pz(k̄, t), px(k̄
′, t)] = 0, (3.2)

Thus for each k̄ we rewrite the commutation algebra in the standard position and momentum algebra form that is

familiar in quantum mechanics. Similarly, we can rewrite the Hamiltonian given in (1.7) in the equivalent form

HS =

∫

d3k

[

p2x(k̄, t)

2
+ pz(k̄, t)x(k̄, t) +

1

2

[

ω2
1(k̄) + ω2

2(k̄)
]

x2(k̄, t)−
1

2
ω2
1(k̄)ω

2
2(k̄)z

2(k̄, t)

]

=

∫

d3kHPU(k̄). (3.3)

The quantum field theory HS is diagonal in the k̄ basis, and for each k̄ we recognize the quantum-mechanical Pais-

Uhlenbeck (PU) Hamiltonian HPU(k̄) that was derived in [23, 24] and discussed in detail in [5, 6].

We have chosen the particular basis for the commutation algebra that is given in (3.2) because we can represent it

in a differential form

[

z(k̄, t),−i
∂

∂z(k̄′, t)

]

= δ3(k̄ − k̄′),

[

x(k̄, t),−i
∂

∂x(k̄′, t)

]

= δ3(k̄ − k̄′) (3.4)

that will enable us to construct wave functions and explore their asymptotic behavior. With the vacuum obeying
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a1(k̄)|Ω〉 = 0, a2(k̄)|Ω〉 = 0 for each k̄, from (3.4) we obtain

〈z(k̄), x(k̄)|a1(k̄)|Ω〉 =
1

2(M2
1 −M

2
2 )

[

−ω2
2(k̄)z(k̄) + i

∂

∂x(k̄)
+ iω1(k̄)x(k̄) +

1

ω1(k̄)

∂

∂z(k̄)

]

〈z(k̄), x(k̄)|Ω〉 = 0,

〈z(k̄), x(k̄)|a2(k̄)|Ω〉 =
1

2(M2
1 −M

2
2 )

[

ω2
1(k̄)z(k̄)− i

∂

∂x(k̄)
− iω2(k̄)x(k̄)−

1

ω2(k̄)

∂

∂z(k̄)

]

〈z(k̄), x(k̄)|Ω〉 = 0, (3.5)

for each k̄. From (3.5) we identify the ground state wave function ψ0(z(k̄), x(k̄)) = 〈z(k̄), x(k̄)|Ω〉 to be of the form

ψ0(z(k̄), x(k̄)) = exp[ 12 [ω1(k̄) + ω2(k̄)]ω1(k̄)ω2(k̄)z
2(k̄) + iω1(k̄)ω2(k̄)z(k̄)x(k̄)−

1
2 [ω1(k̄) + ω2(k̄)]x

2(k̄)]. (3.6)

Consequently, the Dirac norm of the vacuum of the full HS is given by

〈Ω|Ω〉 = Πk̄

∫ ∞

−∞

dz(k̄)

∫ ∞

−∞

dx(k̄)〈Ω|z(k̄), x(k̄)〉〈z(k̄), x(k̄)|Ω〉

= Πk̄

∫ ∞

−∞

dz(k̄)

∫ ∞

−∞

dx(k̄)ψ∗
0(z(k̄), x(k̄))ψ0(z(k̄), x(k̄)). (3.7)

With each ψ0(z(k̄), x(k̄)) diverging at large z(k̄), we thus establish that the Dirac norm of the field theory vacuum

is infinite. Since the ψ0(z(k̄), x(k̄)) would not diverge if we continued each z(k̄) into the complex plane according to

z(k̄) → −iz(k̄) = y(k̄) (and accordingly pz(k̄) → ipz(k̄) = q(k̄) for the canonical conjugate) we would then secure

finiteness. As we now, this will also provide us with an inner product that is positive.

IV. THE APPROPRIATE HILBERT SPACE

Since ψ0(z(k̄), x(k̄)) converges at large x(k̄) we have no need to continue x(k̄) into the complex plane, i.e., we only

need to continue one of the two oscillators (viz. z(k̄)) and not the other. To implement the continuation we make the

similarity transformation φ(x̄, t)→ SφS−1 = −iφ(x̄, t) = φ̄(x̄, t), where S = exp[π
∫

d3xπ0(x̄, t)φ(x̄, t)/2], and expand

φ̄(x̄, t) in a complete basis of plane waves as [25]

φ̄(x) =

∫

d3k

(2π)3/2

[

−ia1(k̄)e
−iω1(k̄)t+ik̄·x̄ + a2(k̄)e

−iω2(k̄)t+ik̄·x̄ − iâ1(k̄)e
iω1(k̄)t−ik̄·x̄ + â2(k̄)e

iω2(k̄)t−ik̄·x̄
]

. (4.1)

Given (4.1), the transformed Hamiltonian H̄S and transformed commutators now take the form [5]

H̄S = (M2
1 −M

2
2 )

∫

d3k

[

(k̄2 +M2
1 )

[

â1(k̄)a1(k̄) + a1(k̄)â1(k̄)
]

+ (k̄2 +M2
2 )

[

â2(k̄)a2(k̄) + a2(k̄)â2(k̄)
]

]

,
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[ ˙̄φ(x̄, t), φ̄(0)] = 0, [ ¨̄φ(x̄, t), φ̄(0)] = 0, [
...
φ̄ (x̄, t), φ̄(0)] = iδ3(x),

[a1(k̄), â1(k̄
′)] = [2(M2

1 −M
2
2 )(k̄

2 +M2
1 )

1/2]−1δ3(k̄ − k̄′),

[a2(k̄), â2(k̄
′)] = [2(M2

1 −M
2
2 )(k̄

2 +M2
2 )

1/2]−1δ3(k̄ − k̄′),

[a1(k̄), a2(k̄
′)] = 0, [a1(k̄), â2(k̄

′)] = 0, [â1(k̄), a2(k̄
′)] = 0, [â1(k̄), â2(k̄

′)] = 0, (4.2)

The algebra of the creation and annihilation operators as given in (4.2) provides a faithful representation of the field

commutation relations. With all relative signs in (4.2) being positive (we take M2
1 > M2

2 ), there are no states of

negative norm or of negative energy, and the theory is now fully viable. As such, this discussion extends to field theory

the previously published discussion of the quantum-mechanical PU two-oscillator model that was given in [5, 6].

To complete the field theory discussion we replace (3.1), (3.2) and (3.3) by

y(k̄, t) = −ia1(k̄)e
−iω1(k̄)t + a2(k̄)e

−iω2(k̄)t − iâ1(k̄)e
iω1(k̄)t + â2(k̄)e

iω2(k̄)t,

x(k̄, t) = −iω1(k̄)a1(k̄)e
−iω1(k̄)t + ω2(k̄)a2(k̄)e

−iω2(k̄)t + iω1(k̄)â1(k̄)e
iω1(k̄)t − ω2(k̄)â2(k̄)e

iω2(k̄)t,

px(k̄, t) = −ω
2
1(k̄)a1(k̄)e

−iω1(k̄)t − iω2
2(k̄)a2(k̄)e

−iω2(k̄)t − ω2
1(k̄)â1(k̄)e

iω1(k̄)t − iω2
2(k̄)â2(k̄)e

iω2(k̄)t,

q(k̄, t) = ω1(k̄)ω2(k̄)[−ω2(k̄)a1(k̄)e
−iω1(k̄)t − iω1(k̄)a2(k̄)e

−iω2(k̄)t + ω2(k̄)â1(k̄)e
iω1(k̄)t + iω1(k̄)â2(k̄)e

iω2(k̄)t],

[y(k̄, t), q(k̄′, t)] = iδ3(k̄ − k̄′), [x(k̄, t), px(k̄
′, t)] = iδ3(k̄ − k̄′),

H̄S =

∫

d3k

[

p2x(k̄, t)

2
− iq(k̄, t)x(k̄, t) +

1

2

[

ω2
1(k̄) + ω2

2(k̄)
]

x2(k̄, t) +
1

2
ω2
1(k̄)ω

2
2(k̄)y

2(k̄, t)

]

=

∫

d3kH̄PU(k̄).

(4.3)

The factor of i present in H̄S shows that it is not is not Hermitian. Nonetheless, it still has all eigenvalues real since

it is PT symmetric [6, 11] and since its real eigenvalues anyway cannot change under a similarity transformation.

Now when a Hamiltonian is not Hermitian the action of it to the right and the action of it to the left are not related by

Hermitian conjugation. Thus in general one must distinguish between right- and left-eigenstates (the left-eigenstates

are the same as the PT conjugated right-eigenstates), both for the vacuum and the states that can be excited out of

it, and one must use the left-right inner product. This inner product obeys 〈L(t)|R(t)〉 = 〈L(0)|eiHte−iHt|R(0)〉 =

〈L(0)|R(0)〉, to thus nicely be time independent in the non-Hermitian case. In the left-right basis we represent the
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equal-time [y(k̄), q(k̄′)] = i and [x(k̄), px(k̄
′)] = i commutators by q(k̄′) = −i

−−−→
∂y(k̄

′), px(k̄
′) = −i

−−−→
∂x(k̄

′) when acting to

the right, and by q(k̄) = i
←−−−
∂y(k̄

′), px(k̄
′) = i

←−−−
∂x(k̄

′) when acting to the left. This leads to right and left ground state

wave functions of the form [5]

ψR
0 (y(k̄), x(k̄)) = exp[− 1

2 (ω1(k̄) + ω2(k̄))ω1(k̄)ω2(k̄)y
2(k̄)− ω1(k̄)ω2(k̄)y(k̄)x(k̄)−

1
2 (ω1(k̄) + ω2(k̄))x

2(k̄)],

ψL
0 (y(k̄), x(k̄)) = exp[− 1

2 (ω1(k̄) + ω2(k̄))ω1(k̄)ω2(k̄)y
2(k̄) + ω1(k̄)ω2(k̄)y(k̄)x(k̄)−

1
2 (ω1(k̄) + ω2(k̄))x

2(k̄)]. (4.4)

Given these wave functions the vacuum normalization for each k̄ is given by [5]

〈ΩL(k̄)|ΩR(k̄)〉 =

∫ ∞

−∞

dy(k̄)

∫ ∞

−∞

dx(k̄)〈ΩL|y(k̄), x(k̄)〉〈y(k̄), x(k̄)|ΩR〉

=

∫ ∞

−∞

dy(k̄)

∫ ∞

−∞

dx(k̄)ψL
0 (y(k̄), x(k̄))ψ

R
0 (y(k̄), x(k̄)) =

π

(ω1(k̄)ω2(k̄))1/2(ω1(k̄) + ω2(k̄))
. (4.5)

Thus, just as we want, the left-right inner product normalization is finite. On normalizing each 〈ΩL(k̄)|ΩR(k̄)〉 to one

we find that

〈ΩL|ΩR〉 = Πk̄〈Ω
L(k̄)|ΩR(k̄)〉 = Πk̄1 = 1. (4.6)

We thus confirm that the left-right vacuum normalization is both finite and positive. We thus establish the consistency

and physical viability of the similarity-transformed higher-derivative scalar field theory. And we note that even though

all the norms are positive, the insertion into −i〈ΩL|T [φ̄(x)φ̄(0)]|ΩR〉 (corresponding to +i〈ΩL|T [φ(x)φ(0)]|ΩR〉) of

φ̄(x) with its explicit i factors as given in (4.1) generates [5] the relative minus sign in −[1/(k2 −M2
1 ) − 1/(k2 −

M2
2 )]/(M

2
1 − M2

2 ) [26]. Thus with one similarity transform into an appropriate Stokes wedge we solve both the

vacuum normalization problem and the negative-norm problem.

In the gravity case with h̄ = −ih the propagator is given by −i〈ΩL|T [h̄(x)h̄(0)]|ΩR〉 (corresponding to

+i〈ΩL|T [h(x)h(0)]|ΩR〉). And with the propagator still being given by (2.6) as it satisfies (∂2t − ∇̄
2 + M2)(∂2t −

∇̄2)[−i〈ΩL|T [h̄(x)h̄(0)]|ΩR〉] = −δ4(x), all the steps needed to prove renormalizability are now valid. Consequently,

the theory can now be offered as a fully consistent, unitary and renormalizable theory of quantum gravity, one whose

low energy (k2 ≪M2) limit is based on the standard 1/k2 propagator of quantum Einstein gravity [27], [28].
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