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ABSTRACT

Aims. A new mechanism of dust accumulation and planetesimal formation in a gravitationally unstable disk with suppressed magne-
torotational instability is studied and compared with the classical dead zone in a layered disk model.
Methods. We use numerical hydrodynamics simulations in the thin-disk limit (FEOSAD code) to model the formation and long-term
evolution of gravitationally unstable disks, including dust dynamics and growth.
Results. We found that in gravitationally unstable disks with a radially varying strength of gravitational instability a region of low
mass and angular momentum transport forms in the inner several astronomical units. This region is characterized by low effective αGI
and is similar in characteristics to the dead zone in the layered disk model. As the disk forms and evolves, the GI-induced dead zone
accumulates a massive dust ring, which is susceptible to the development of the streaming instability. The model and observationally
inferred dust masses and radii may differ significantly in gravitationally unstable disks with massive inner dust rings.
Conclusions. The early occurrence of the GI-induced dust ring followed by the presumed development of the streaming instability
suggest that this mechanism may form the first generation of planetesimals in the inner terrestrial zone of the disk. The proposed mech-
anism, however, crucially depends on the susceptibility of the disk to gravitational instability and requires that the magnetorotational
instability be suppressed.
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1. Introduction

Protoplanetary disks form during the gravitational collapse of
rotating cloud cores. Both observations and numerical modeling
demonstrate that the resulting gas-dust disks can be character-
ized by a variety of substructures, such as spiral arms, vortices,
and clumps (Tobin et al. 2016; Huang et al. 2018; Varga et al.
2021). Perhaps the most intriguing among these substructures
are rings and gaps, which have been detected via spatially re-
solved sub-millimeter observations of thermal dust emission and
in scattered light in optical/near-infrared wavelengths (e.g. An-
drews et al. 2018; Long et al. 2018; Avenhaus et al. 2018; van
der Marel et al. 2019; Zhang et al. 2021; Parker et al. 2022)

The nature of ring-like structures is not well understood and
many theoretical mechanisms have been proposed to explain
their origin. Among them are planet-induced rings (e.g. Rice
et al. 2006; Picogna & Kley 2015; Dong et al. 2015), which can
be interpreted as signposts of planet formation that took place in
the disk. Snow lines and dust sintering can also assist in form-
ing dust rings by altering the dust size distribution and the cor-
responding dust drift velocities (Zhang et al. 2015; Okuzumi
et al. 2016; Pinilla et al. 2017). Magnetocentrifugal winds can
lead to dust accumulation in rings (Riols et al. 2020a). Differ-
ential dust drift and/or the back reaction of dust on gas com-
bined with dust growth were also reported to induce pile-up of
dust grains in the disk (Drążkowska et al. 2016; Dra̧żkowska
& Alibert 2017; Gonzalez et al. 2017). The baroclinic instabil-
ity induced by dust settling can also act to concentrate dust into
rings (Lorén-Aguilar & Bate 2015). Globally gravitationally sta-
ble disks with enhanced dust-to-gas ratios and low turbulent vis-

cosity can develop dust rings due to the effect known as secular
gravitational instability (Takahashi & Inutsuka 2014). Transient
dust rings can also form after FU-Orionis-type luminosity bursts
and episodes of disk gravitational fragmentation (Vorobyov et al.
2020a). We also note that ring structures observed in the dust
continuum emission may not be directly related to dust concen-
tration but rather to a peculiar radial dust size distribution in the
disk (Akimkin & Pavlyuchenkov 2019).

Another feasible phenomenon that can assist in dust accu-
mulation and ring formation are dead zones, which are disk re-
gions that are characterized by a reduced rate of mass transport.
These features can develop in the regions of magnetized disks
where the magnetorotational instability (hereafter, MRI) is sup-
pressed (e.g., Dzyurkevich et al. 2010; Flock et al. 2015). The
MRI can provide viscosity via turbulence and the resulting gas
surface density profiles of a viscously evolving MRI-active disk
is a monotonically declining function of distance from the star
(Armitage 2022). However, if a dead zone is present, the gas ac-
cumulates in its vicinity due to a reduced rate of mass transport,
which in turn leads to the formation of a dust ring in a local
pressure maximum (e.g., Wünsch et al. 2005; Pinilla et al. 2012;
Dullemond & Penzlin 2018; Kadam et al. 2022).

Dead zones naturally occur in numerical simulations that
consider the ”layered-disk” model originally proposed in Gam-
mie (1996) and further elaborated in Armitage et al. (2001). The
model suggests that an outer part of the disk is fully MRI-active
due to sufficient ionization via cosmic rays penetrating through
the entire vertical disk column. These disk regions are MRI-
turbulent and the corresponding kinematic viscosity can be char-
acterized by αvisc ≈ 10−2 (Bae et al. 2014), following the tur-
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bulent viscosity parametrization of Shakura & Sunyaev (1973).
In the inner part of the disk, a few × (0.1–1.0) au, where the
gas density is higher, only the upper disk layers with a column
density ⪅ 100 g cm−2 are sufficiently ionized by cosmic rays
and hence MRI-active. The rest of the disk vertical column is
MRI-dead. As a result, the effective αvisc-parameter weighted
over the column density of the active and dead layers drops to
αvisc < 10−3, and the mass and angular momentum transport in
the inner disk regions is reduced accordingly. In the innermost
disk regions (< a few × 10−1 au), the rising disk temperature
and associated thermal ionization of alkaline metals makes the
entire vertical column of the disk MRI-active again. The radial
variations in the mass transport efficiency through the inner disk
regions lead to a ’traffic jam’ situation when gas accumulates
near a sharp transition in the αvisc value.

Interestingly, dead zones may be a transient phenomenon.
Heating of the dead zone owing to residual turbulence and PdV
work can raise the gas temperature above 1000 K. Thermal ion-
ization of alkaline metals allows fast MRI growth across most of
the dead zone, followed by rapid transport of the inner disk ma-
terial on to the star, a phenomenon known as an MRI-triggered
burst (Armitage et al. 2001; Zhu et al. 2009; Vorobyov et al.
2020b; Kadam et al. 2020). This process can lead to the com-
plete destruction of the dust ring-like structures that have ear-
lier formed in the dead zone. Although the dead zone regener-
ates soon after the burst, the accumulated dust reservoir is irre-
versibly lost to the star. This may impede planetesimal forma-
tion if the time between outbursts is shorter than the character-
istic time of planetesimal formation via the streaming instability
(Kadam et al. 2022).

In the recent years, both theoretical models and observa-
tional data emerge suggesting that the MRI may be suppressed
throughout most of the disk extent and not only in the inner disk
regions (Lodato et al. 2017; Dullemond & Penzlin 2018; Zhang
et al. 2018; Rosotti et al. 2020; Doi & Kataoka 2021; Villenave
et al. 2022). In particular, nonideal magnetohydrodynamics ef-
fects can suppress the MRI and instead launch magnetocentrifu-
gal winds (Bai & Stone 2013; Gressel et al. 2015). The MRI can
also be suppressed in the limit of enhanced gravitational instabil-
ity in the disk (Riols & Latter 2018). Furthermore, observations
of evolved disks in the T Tauri stage revealed efficient dust set-
tling towards the disk midplane, which would be difficult in the
presence of strong MRI-induced turbulence (Rosotti 2023), but
see also Sect. 7 regarding dust settling in gravitationally unsta-
ble disks. In this situation, disk magnetocentrifugal winds may
act as an alternative mechanism of inward mass transport in the
disk, but their efficiency depends on the poorly constrained disk
characteristics, such as magnetic field geometry and the ioniza-
tion rate (Spruit 1996).

On the other hand, it is known that young and massive pro-
toplanetary disks can be prone to gravitational instability (here-
after, GI), particularly in the early embedded stage of disk evo-
lution (Kratter & Lodato 2016). Continual mass loading from
the infalling envelope acts to replenish the disk mass loss due to
accretion on the star and helps to sustain the disk gravitational
instability (Vorobyov & Basu 2005). As was recently demon-
strated by Vorobyov et al. (2023a), taking disk GI into account
has an effect on disk evolution that is similar to the MRI in the
layered-disk model. GI has a spatially varying efficiency of mass
transport through the disk, being strongest at large radial dis-
tances and diminishing in the innermost disk where temperature
and sheer are too high for GI to be sustained. The effective αGI
parameter, which can be used to describe the efficiency of mass
transport if the disk mass is a small fraction of the stellar mass

(Vorobyov 2010), has a deep minimum in the innermost disk and
is growing further out in the disk. This may lead to the formation
of a dead zone around 1 au, which now has a purely GI origin and
is not related to the layered-disk model. Dust that drifts through
the disk is efficiently trapped in a local pressure maximum form-
ing at the position of the GI-induced dead zone, provided that
the MRI is suppressed and αvisc remains low.

In this work, we consider in detail this scenario of the dead
zone formation for different model disk realizations. We inves-
tigate if the GI-induced dust rings can be favorable sites for
planetesimal formation via the streaming instability (Youdin &
Goodman 2005; Johansen et al. 2011; Yang et al. 2017; Umurhan
et al. 2020). We also calculate the synthetic observables, such as
the intensity of dust radiation at mm-wavebands, and investigate
if they can help us to observationally infer the presence of such
rings.

The paper is organized as follows. In Sect. 2 a description
of the numerical model is provided. In Sect. 3 the properties
of dust rings formed in the layered and GI-controlled disks are
analysed. In Sect. 4 a parameter-space study is conducted. Sect 5
considers the prospects of the streaming instability in our mod-
els. Sect. 6 presents implications for the masses and sizes of dust
disks, while in Sect. 7 we describe the model caveats. Our main
conclusions are summarized in Sect. 8.

2. Protostellar disk model

The current work is based on the numerical hydrodynam-
ics simulations that were carried out using the FEOSAD code.
The numerical model is presented in detail in Vorobyov et al.
(2018), followed by modifications to account for the adaptive
α-parameter (Kadam et al. 2019), updated dust growth scheme
(Molyarova et al. 2021), and consideration of the back-reaction
of dust onto gas in different drag regimes (Stoyanovskaya et al.
2020; Vorobyov et al. 2023a). Here we only describe the main
constituent parts of the numerical model, highlight the details
that are relevant for our study, and present the updates applied to
the model in addition to those described in the aforementioned
papers.

The numerical simulations start from the gravitational col-
lapse of a flattened pre-stellar molecular cloud, followed by the
formation of a central protostar and circumstellar disk. The evo-
lution of the disk was computed for about 0.5 Myr after the for-
mation of the protostar. The equations of hydrodynamics were
solved in the thin-disk limit for the gas and dust components of
the disk. We used the two-dimensional (r, ϕ) polar grid extend-
ing from 0.2 au to 3500 au. The integration of hydrodynamics
equations is carried out using a combination of finite-differences
and finite-volume methods with a time-explicit solution proce-
dure similar in methodology to the ZEUS code (Stone & Nor-
man 1992). The advection of gas and dust is treated using the
third-order-accurate piecewise-parabolic interpolation scheme
of Colella & Woodward (1984). The grid contains 400 × 256
cells, which are logarithmically spaced in the radial direction and
linearly in the azimuthal one. This allows us to treat accurately
the processes in the inner disk region, where the numerical reso-
lution reaches 5×10−3 au near the inner computational boundary.
We note that the numerical resolution on the log-spaced grid de-
teriorates at larger distances but still remains reasonable within
100-200 au, which is the typical extent of the disk in our sim-
ulations. In particular, the resolution is ≈ 0.25 au at 10 au and
≈ 2.5 au at 100 au.

We note that the adopted thin-disk limit is different from
the razor-thin approximation because the vertical scale height
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of the gas disk is calculated using the assumption of local hydro-
static equilibrium in the gravitational field of both star and disk
(Vorobyov & Basu 2009). This quantity is further used in the
calculation of the disk thermal balance by computing the frac-
tion of stellar irradiation absorbed by the disk surface. The stel-
lar mass grows according to the mass accretion rate through the
inner computational boundary and the properties of the protostar
are calculated using the stellar evolution tracks obtained with the
STELLAR code (Yorke & Bodenheimer 2008; Hosokawa et al.
2013).

2.1. FEOSAD code: the gaseous component

The system of equations for the gaseous component consists of
the continuity equation, equations describing the gas dynamics,
and the energy balance equation. The dynamics of gas is deter-
mined by gravity (both central source and disk self-gravity), vis-
cosity, and friction between gas and dust. The energy balance in
the disk depends on viscous heating, radiative heating (including
the radiation of a nascent star and background radiation), radia-
tive cooling, and adiabatic work, which can either heat or cool
the local medium. The pertinent equations in the thin-disk limit
are as follows.

∂Σg

∂t
+ ∇p ·

(
Σgvp

)
= 0, (1)

∂

∂t

(
Σgvp

)
+ ∇p ·

(
Σgvp ⊗ vp

)
= −∇pP + Σg gp +

+ (∇ ·Π)p − Σd,gr f p, (2)

∂e
∂t
+ ∇p ·

(
evp

)
= −P(∇p · vp) − Λ + Γ + (∇v)pp′ : Πpp′ , (3)

where the planar components (r, ϕ) are denoted by the subscripts
p and p′, Σg and e are the gas surface density and the internal
energy per surface area, respectively, vp = vr r̂ + vϕϕ̂ is the gas
velocity in the disk plane, P is the pressure, integrated in the
vertical direction using the ideal equation of state P = (γ − 1)e
with γ = 7/5, f p is the drag force per unit mass between gas and
dust.

The gravitational acceleration in the disk plane gp takes into
account gas and dust self-gravity in the disk and the gravity of
the central star when it is formed. The combined gravitational
potential of gas and dust is found by solving the integral form for
the potential using the convolution method as laid out in Binney
& Tremaine (1987)

Φ(r, ϕ) = (4)

− G
∫ rout

rsc

r′dr′
∫ 2π

0

(
Σg(r′, ϕ′) + Σd,tot(r′, ϕ′)

)
dϕ′√

r′2 + r2 − 2rr′ cos(ϕ′ − ϕ)
,

where rsc and rout are the inner and outer extents of the com-
putational domain, Σd,tot is the total mass of dust, and G is the
gravitational constant. We note that the convolution method does
not necessarily require introducing a smoothing length to avoid
the singularity when r = r′ and ϕ = ϕ′. The details of the
smoothing-free method, test problems, and comparison with the
method that employs an explicit smoothing term are provided in
Appendices B and C.

To compute the viscous stress tensor Π, we parameterise
the kinematic viscosity owing to the MRI turbulence following
Shakura & Sunyaev (1973) as

ν = αvisccsHg, (5)

where cs is the sound speed and Hg is the gas vertical scale
height. Here, αvisc can be either constant in time and space or
variable as described in more detail in Sect. 2.3. Because the
MRI turbulence is likely isotropic, αvisc represents not only the
efficiency of mass and angular transport in the disk plane but also
the efficiency of dust settling in the dust growth model described
in Sect. 2.2. Radiative cooling and heating are denoted by Λ and
Γ, respectively. The latter depends on the irradiation temperature
at the disk surface Tirr accounting for stellar and background
blackbody irradiation, for the exact expressions see Vorobyov
et al. (2018). We set the background temperature Tb.g. = 15 K.

2.2. FEOSAD code: the dust component

The dust component is divided into two populations: (i) small
dust, which are grains with a size1 between amin = 5 × 10−3 µm
and a∗ = 1 µm and (ii) grown dust ranging in size from a∗ to a
maximum amax, the value of which is variable in space and time.
Initially, all dust in the collapsing prestellar cloud is in the small
dust population. Small dust can grow and turn into grown dust
as the disk forms and evolves. It is assumed that dust in both
populations is distributed over size according to a simple power
law:

N(a) = C · a−p, (6)

where N(a) is the number of dust particles per unit dust size, C
is a normalization constant, and p = 3.5 (not to be confused with
p as a planar component index in Equations (1)–(9)). We note
that the power index p is kept constant during the considered
disk evolution period. A more sophisticated approach requires
solving for the Smoluchowski equation for multiple dust bins
and is beyond the scope of the present study.

We solve the continuity equations separately for the grown
and small dust ensembles. However, the momentum equation is
solved only for the grown dust, because small dust is assumed to
be dynamically linked to the gas. The system of hydrodynamics
equations for dust in the zero-pressure limit is written as:

∂Σd,sm

∂t
+ ∇p ·

(
Σd,smvp

)
= −S (amax), (7)

∂Σd,gr

∂t
+ ∇p ·

(
Σd,grup

)
= ∇ ·

(
DΣg∇

(
Σd,gr

Σg

))
+ S (amax), (8)

∂

∂t

(
Σd,grup

)
+ [∇ ·

(
Σd,grup ⊗ up

)
]p = Σd,gr gp +

+Σd,gr f p + S (amax)vp, (9)

where Σd,sm and Σd,gr are the surface densities of small and grown
dust, respectively, and up are the planar components of the grown
dust velocity. Here, D is the turbulent diffusivity of grown dust,
which is related to the kinematic viscosity as D = ν/Sc (Clarke
& Pringle 1988). The Schmidt number Sc is taken to be unity
in this study. We note that in the continuity equation for small

1 Here and further in the text by the size of dust grains we mean its
radius.
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Fig. 1. Graphical representation of the conversion between grown and small dust shown for the case of an+1
max > an

max. The solid blue and orange
lines indicate the dust distribution at the current time step n. The next time step n+1 is denoted by the green dashed line. Three cases are presented
in the three panels from left to right: (i) the case with a continuous distribution at a∗; (ii) discontinuous distribution with a dominance of grown
dust turning into a continuous distribution, (iii) redistribution of the excess of small dust to provide a continuous distribution.

dust the velocity of gas vp is used because small dust is strictly
linked to gas. We provide the justification on the applicability of
the hydrodynamics equations to describing dust dynamics and
on the assumption of coupled dynamics of small dust to gas in
Vorobyov et al. (2022).

The grown dust dynamics is sensitive to the properties of
surrounding gas. The drag force (per unit mass) links dust with
gas and can be written as (Weidenschilling 1977):

f =
1

2md
CD σρg(vp − up)|vp − up|, (10)

where σ is the dust grain cross section, ρg the volume density
of gas, md the mass of a dust grain, and CD the dimensionless
friction parameter. The latter is described in details in Vorobyov
et al. (2023a) and is based on the works of Henderson (1976)
and Stoyanovskaya et al. (2020). The use of the Henderson fric-
tion coefficient allows us to treat the drag force in two different
regimes, depending on the local conditions and dust properties.
More specifically, we consider the Epstein regime, and Stokes
linear and non-linear regimes. To account for the back-reaction
of grown dust on dust, the term Σd,gr f is symmetrically included
in both the gas and dust momentum equations.

Since grown dust in our model has a spectrum of sizes from
a∗ to amax, the values of σ and md have to be weighted over this
spectrum. We note that the span between a∗ to amax may become
as large as several orders of magnitude during the disk evolu-
tion. Since we set p = 3.5, small grains near a∗ will dominate
the value of σ, while large grains near amax will mostly deter-
mine the value of md. On the other hand, we are interested in the
dynamics of dust grains that are the main mass carriers. There-
fore, we use the maximum size of dust grains amax when calcu-
lating the values of σ and md. The friction force f thus derived
would describe the dynamics of the main dust mass carriers. A
more consistent approach requires introducing multiple bins for
the entire size spectrum of grown dust and is outside the scope
of the current work.

The term S (amax) that enters the equations for the dust com-
ponent is the conversion rate between small and grown dust pop-
ulations. We assumed that the distribution of dust particles over
size follows the form given by Equation (6) for both small and
grown populations. Furthermore, the distribution is assumed to
be continuous at a∗. Our scheme is constructed so as to preserve
continuity at a∗ by writing the conversion rate of small to grown
dust in the following form:

S (amax) = −
∆Σd,sm

∆t
, (11)

where

∆Σd,sm = Σ
n+1
d,sm − Σ

n
d,sm =

Σn
d,gr

∫ a∗
amin

a3−pda − Σn
d,sm

∫ an+1
max

a∗
a3−pda∫ an+1

max

amin
a3−pda

,

(12)

where indices n and n + 1 denote the current and next hydrody-
namic steps of integration, respectively, and ∆t is the hydrody-
namic time step. The adopted scheme effectively assumes that
dust growth smooths out any discontinuity in the dust size distri-
bution at a∗ that may appear due to differential drift of small and
grown dust populations. The conversion process between small
and grown dust populations is schematically illustrated in Fig-
ure 1. A more detailed description of the scheme is presented
in Molyarova et al. (2021) and Vorobyov et al. (2022).

The value of S (amax) depends only on the local maximal size
of dust amax, since the values of amin and a∗ are fixed in our
model. In particular, amax is not a constant of space and time but
is evolving with the disk. At the beginning of the simulations all
grains are in the form of small dust, namely, amax = 1.0 µm in the
collapsing prestellar core. During the disk formation and evolu-
tion process the maximal size of dust particles usually increases.
The change in amax within a particular numerical cell can occur
due to collisional growth or via advection of dust through the
cell. The equation describing the dynamical evolution of amax is
as follows:
∂amax

∂t
+ (up · ∇p)amax = D, (13)

where the rate of dust growth due to collisions and coagulation
is computed in the monodisperse approximation (Birnstiel et al.
2012)

D =
ρdurel

ρs
. (14)

This rate includes the total volume density of dust ρd, the dust
material density ρs = 2.24 g cm−3 (Weingartner & Draine 2001),
and the relative velocity of particle-to-particle collisions defined
as urel = (u2

th+u2
turb)1/2, where uth and uturb account for the Brow-

nian and turbulence-induced local motion, respectively. When
calculating the volume density of dust, we take into account dust
settling by calculating the effective scale height of grown dust
Hd via the corresponding gas scale height Hg, αvisc parameter,
and the Stokes number as

Hd = Hg

√
αvisc

αvisc + St
. (15)
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Dust growth in our model is limited by collisional fragmen-
tation and drift. We take into account the fragmentation barrier
by calculating the characteristic fragmentation size as (Birnstiel
et al. 2016):

afrag =
2Σgu2

frag

3πρsαviscc2
s
, (16)

where ufrag is the fragmentation velocity, namely, a threshold
value of the relative velocity of dust particles at which collisions
result in fragmentation rather than coagulation. In the current
study, we adopt ufrag = 3 m s−1 (Blum 2018). If amax becomes
greater than afrag, we stop the growth of dust and set amax = afrag.
We note that if the fragmentation barrier is reached and dust
growth halts (amax = afrag), the local conditions in the disk can
change such that the value of fragmentation barrier decreases
(for instance, if the gas density decreases or temperature rises).
If this occurs, we reduce amax to adjust it to the new value of
afrag. We note that the so-called drift barrier is accounted for self-
consistently via the computation of the grown dust dynamics.

2.3. Viscosity model

The hydrodynamic model includes the treatment of turbulent vis-
cosity according to the approach of Shakura & Sunyaev (1973).
The viscosity is parametrized by the αvisc-parameter, which can
be either constant in space and time or adaptive. The latter case
is implemented using the concept of a “layered” disk (Gammie
1996; Armitage et al. 2001). The details on the implementation
are presented in Kadam et al. (2019) based on the work of Bae
et al. (2014). In particular, the model assumes that a surface layer
with column density Σa is sufficiently ionized by cosmic rays to
be MRI active. If the local gas surface density of the disk Σg is
lower than 2 × Σa, the entire vertical column of the disk is MRI
active. In the opposite case, a region below the MRI-active layer
exists where the MRI is suppressed. The mathematical expres-
sion for αvisc in this model is written following Bae et al. (2014)
as:

αvisc =
Σaαa + Σdαd

0.5 × Σg
, (17)

where Σd is the thickness of the MRI-dead layers and Σg =
Σa + Σd is the total surface density of gas. A factor of 0.5 ap-
pears in the denominator due to the fact that Σa is the thickness
of the MRI-active layer from the disk surface to the disk mid-
plane and Σg is the total gas surface density from the upper to
the lower disk surface. The quantities αa and αd are the viscos-
ity parameters applied to the MRI-active and MRI-dead layers
of the disk, respectively. In this study, the thickness of the ac-
tive layer is set equal to Σa = 100 g cm−2 and the corresponding
αa = 10−2. In the MRI-dead layer the viscosity parameter is set
equal to αd = 10−5, reflecting the fact that the MRI-dead layer is
likely to have some nonzero residual transport.

2.4. Initial and boundary conditions

Simulations start from the gravitational collapse of a flattened
prestellar core, consisting of gas and small dust. As the core
contracts gravitationally, it spins up and a centrifugal disk forms
when the in-spiralling gas hits the centrifugal barrier near the
stellar surface. In our case, because of the use of the sink cell,
this would be the inner computational boundary at rsc = 0.2 au.
Subsequently, the disk grows in size and mass owing to infall

from progressively outer layers of the contracting cloud, while
the central star gains mass via accretion through the inner com-
putational boundary. Because of the adopted thin-disk limit, the
matter from the contracting core lands on the the disk outer edge
but this is a reasonable approximation for a collapsing cloud
(Visser et al. 2009). The initial mass of the core in the fiducial
model is Mcore = 0.53M⊙. The core rotation is determined by set-
ting the ratio of rotational-to-gravitational energy β = 2.3×10−3.
The value is within the limits inferred from prestellar cloud cores
(Caselli et al. 2002).

Initially, the gas surface density and angular velocity of the
natal prestellar core are distributed as follows (Basu 1997):

Σg(r) =
r0Σ0,g√
r2 + r2

0

, (18)

Ωg(r) = 2Ω0,g

( r0

r

)2

√

1 +
(

r
r0

)2

− 1

 , (19)

where Σ0,g = 0.385 g cm−2 is the surface density and Ω0,g =

5.1 km s−1 pc−1 is the angular velocity, both defined at the core
centre. The radius of the near-uniform region in the centre of the
core is r0 = 617.2 au. The total dust-to-gas mass ratio ξd2g =
Σd,tot/Σg is set equal to the interstellar medium value 0.01. The
initial values of the small and grown dust surface densities are
Σd,sm(r) = 0.01 × Σg and Σd,gr(r) = 0, respectively. The core
and the subsequently formed disk are heated by the background
radiation with a temperature of Tbg = 20 K, also adopted as the
cloud’s initial temperature. We emphasize that the disk evolution
resulting from the collapse of prestellar cores in our models is
weakly sensitive to the particular choice of the initial surface
density and angular velocity radial distributions for as long as
Mcore and β of the prestellar cores are similar (Vorobyov 2012).

The innermost disk region between the inner disk edge at
rsc = 0.2 au and the star is replaced with a sink cell, which
ensures a free mass exchange (inflow and outflow) across the
sink-disk interface (see Vorobyov et al. 2018, for details). We
emphasize that the size of the sink cell in our simulations is no-
tably smaller than in many other global disk simulations over
timescales of hundreds of thousands of years. The outer bound-
ary condition allows free mass outflow, but mass inflow from
outside the computational domain is prohibited.

3. Primordial rings of viscous and gravitational
origin

In this section, we consider the formation of dust rings in the
layered-disk model, which is characterized by a radially varying
αvisc-parameter. We also compare the dust rings in the layered
disk model with those formed in a GI-controlled disk, in which
αvisc is a constant of time and space and is set equal to a small
value of 10−4. In both cases, disk self-gravity is considered and
it plays a dominant role in the GI-controlled model.

3.1. Ring formation in the layered-disk model

A steady-state protoplanetary disk with a constant α-parameter
has a radial profile of Σg that monotonically increases toward
the star. For typical conditions in a viscous disk, the scaling is
Σg ∝ r−1 (Armitage 2022). This simple scaling may change if
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Fig. 2. Temporal evolution of the azimuthally-averaged disk character-
istics in the model with variable αvisc (left column) and the model with
constant αvisc = 10−4 (right column) from top to bottom: viscous α-
parameter, gas surface density, integrated pressure, grown dust surface
density, and the Stokes number.

we consider a steady-state protoplanetary disk in the layered-
disk model with a radially varying α-parameter described by
Eq. (17). The disk outer regions are usually characterized by
the gas density that is low enough for the entire vertical col-
umn to be sufficiently ionized by cosmic rays for the MRI to
operate. This makes the outer parts of the disk fully MRI-active
with αvisc ≈ 10−2. As the gas density increases closer to the star,
the MRI-dead regions may appear if the local column density of
gas toward the disc midplane Σg/2 exceeds the maximum thick-
ness of the disk MRI-active layer Σa. The thickness of the MRI-
dead region further increases with increasing Σg (or decreasing
distance r), which simultaneously lowers the effective αvisc of
the disk vertical column (see Eq. 17). Nevertheless, αvisc re-
tains a small but non-zero value in the very dense regions due
to the presence of residual viscosity αrd, which is the result of
hydrodynamic turbulence induced by Maxwell stress in the ac-
tive disk layer (Okuzumi & Hirose 2011). Still closer to the star
(r < 0.1 au), the disk temperature rises enough for the thermal
ionization to set in (T ⩾ 1300 K), causing again the MRI ac-
tivation in the entire vertical column and resulting in elevated

values of αvisc in the innermost parts of the disk. As shown in
Appendix A, the corresponding surface density profile becomes
non-monotonic and features a gas density enhancement in the
disk regions with lowest αvisc-values.

The main disk characteristics of the layered disk model are
presented in the left column of Figure 2. The first panel shows
the time evolution of the viscous parameter αvisc, the behav-
ior of which is consistent with the analytical expectations. The
disk outer parts are MRI-active with αvisc = 10−2. The αvisc-
parameter starts decreasing at r < 10 au, manifesting the for-
mation of the dead zone. The deepest regions of the dead zone
with αvisc ⩽ 10−4 are located between 0.3 and 1.0 au. The ra-
dial extent of the dead zone in the early evolutionary stages is
greater owing to the higher density of the disk. The early evolu-
tion is also characterized by notable horizontal spikes with high
values of αvisc ≈ 0.01 in the inner 2 au. These spikes are caused
by the MRI bursts triggered by the thermal ionization of the dead
zone. During these events matter accretes onto the star rapidly on
a short viscous timescale, typically no more than a couple hun-
dred years per event. The burst activity starts almost immediately
after the disk formation and lasts up to t ≃ 200 kyr with a no-
table quiescent phase around 150 kyr. The MRI-triggered bursts
in the layered-disk model were considered in detail in Kadam
et al. (2020).

The radial gas surface density distribution is shown in the
second panel of Figure 2. The disk forms at about t = 0.027 Myr
after the onset of the gravitational contraction of the prestellar
cloud when its spinning-up material hits the centrifugal barrier
near the inner computational boundary. At this time instance, the
gas surface density (but also Σgr and P) features a sharp rise, re-
flecting the accumulation of matter in the disk, which quickly
grows in size accompanied by fast dust growth. After the disk
formation instance, Σg features a strong peak at the position of
the dead zone, in agreement with the analytic expectations pre-
sented in Appendix A. Mass and angular momentum are trans-
ported through the disk by the viscous torques at different rates,
which are proportional to the radially varying values of αvisc.
Fast transport in the outer disk with αvisc = 10−2 is followed by
low transport in the inner disk where αvisc ≲ 10−3. As a result,
a dead zone forms in which viscosity is not capable of carry-
ing matter at a rate that matches that of the outer disk. Owing to
this bottleneck effect the gas accumulates in the vicinity of the
dead zone. In the early stages of disk evolution multiple MRI
bursts occur, which serve as an efficient mechanism of mass re-
moval from the dead zone. We note that at t ⪅ 0.1 Myr the burst
activity is so strong that the dead zone is frequently destroyed
and reformed. After the end of the burst period, t ⩾ 0.2 Myr,
gas shortly re-accumulates in the inner disk region and the dead
zone becomes stable afterwords.

The vertically integrated gas pressure is shown in the third
panel of Figure 2 and features a pressure maximum in the dead
zone. The vertically integrated pressure is directly proportional
to the product of the surface density and temperature, and the
formation of the pressure peak is not unexpected. We note, how-
ever, that in the dead zone αvisc is low, which implies less viscous
energy dissipation and hence lower temperatures, thus lowering
the gas pressure as well. Nevertheless, the pressure bump does
appear in the dead zone, although it is not as expressed as the
surface density peak.

The fourth panel of Figure 2 presents the surface density dis-
tribution of grown dust. There are several local concentrations
in the form of dense dust rings, the positions of which coincide
with the local pressure maxima. The inner ring is located in the
dead zone, while the outer one is at the outer edge of the gas ac-

Article number, page 6 of 21



Vorobyov et al.: First generation of planetesimals

Fig. 3. Temporal evolution of the azimuthally averaged α-parameters.
The top, middle, and bottom panels show αeff , αvisc, and αGI, respec-
tively. The left and right columns present the models with a radially
variable αvisc and spatially constant αvisc = 10−4, respectively.

cumulation region. It is known that grown dust concentrates in
pressure bumps because of particle drift along the direction of in-
creasing pressure (see e.g. Weidenschilling 1977; Armitage et al.
2001). The drift velocity is proportional to the pressure gradient
and the Stokes number St = tstopΩK, where tstop = ρsamax/(ρgcs)
is the stopping time, ρg the gas volume density, and ΩK the Ke-
plerian velocity. The dust drift timescales become shorter than
105 years for St ≥ 10−2 (see, e.g., Vorobyov et al. 2022). As
the bottom panel in Figure 2 demonstrates, the Stokes number
approaches unity in the vicinity of the ring, which implies an ef-
ficient dust drift towards the local pressure maxima in the dead
zone.

3.2. Ring formation in the GI-controlled disk model

The dead zone development in the layered disk model is caused
by a radially varying strength of the MRI in the disk, with high
values of αvisc ≃ 10−2 at r ≥ 5 au and low values (< 10−3)
at r ≤ 5 au down to a fraction of astronomical unit, where the
gas temperature is always high enough to sustain the MRI. How-
ever, numerical studies suggest that the MRI may be suppressed
by the nonideal MHD effects in almost the entire disk, except
for its innermost parts (Bai & Stone 2013; Gressel et al. 2015).
Recent observations of efficient dust settling towards the disk
midplane seem to support this theoretical finding (Zhang et al.
2018; Dullemond & Penzlin 2018; Rosotti et al. 2020; Doi &
Kataoka 2021; Villenave et al. 2022). In this case, the entire disk
is formally a dead zone from the point of view of the layered
disk model and it is not clear if dust can still accumulate in the
inner disk regions.

To examine this case, we carried out the numerical simula-
tion of a model disk with a suppressed MRI. We implemented
this by setting the viscous α-parameter to a small value αvisc =
10−4 throughout the entire disk, implying that the MRI turbu-

lence is significantly weakened as compared to the fully MRI-
active case of αvisc = 10−2. The evolution of the GI-controlled
model is presented in the right column of Figure 2. Interestingly,
the model also demonstrates the accumulation of gas in the in-
ner disk regions, although the accumulation zone is less sharp
compared to the layered disk model. The pressure bump appears
in the disk, the structure of which is smoother compared to the
pressure bump in the layered disk model. The single dust ring
that forms in the GI-controlled disk just 15 kyr after the instance
of disk formation is also notably wider than the corresponding
rings in the layered disk. The Stokes number in the ring vicinity
exceeds 0.1, which assists dust drift towards the local pressure
maximum.

To understand the mechanism of the pressure bump and dust
ring formation in the model with suppressed MRI, we note that
the disk evolution in our models is governed not only by turbu-
lent viscosity but also by disk self-gravity. The latter can lead to
the development of GI in sufficiently massive disks. The result-
ing gravitational torques may dominate the viscous torques in the
early gravitationally unstable stages of disk evolution, especially
when the αvisc parameter is notably lower than 10−2 (Vorobyov
& Basu 2009).

To facilitate the comparison between the layered-disk model
and the GI-controlled model, we quantify the effect of gravity
using the effective αGI-parameter. First, we compute the gravita-
tional stress in the disk plane as follows (Riols & Latter 2018)

Grϕ =
1

4πGr
∂Φ

∂r
∂Φ

∂ϕ
(20)

whereΦ is the gravitational potential in the disk. We note that the
non-zero stress is possible only if both the radial and azimuthal
variations in Φ are present in the disk, which can be caused by
gravitational instability or other global non-axisymmetric per-
turbations of the disk. The effective αGI-parameter due to GI can
then be expressed (by analogy to αvisc, see Kratter & Lodato
(2016)) as

αGI =
Grϕ

P
∣∣∣ d lnΩK

d ln r

∣∣∣ , (21)

where P is the gas pressure at the disk midplane (not to be con-
fused with vertically integrated pressure P used in Eq. (2). To re-
duce the small-scale noise introduced by local variations in Grϕ
and P, we apply a running average to αGI at every grid cell with
a time window of several thousand years. Using αGI as a proxy
for the efficiency of mass and angular momentum transport is
justified for sufficiently massive disks with the disk-to-star mass
ratio ≥ 0.2 (Vorobyov 2010), a condition satisfied by our model.
Finally, we define the effective αeff-parameter as the sum of the
MRI and GI components

αeff = αvisc + αGI. (22)

The resulting radial distribution of αeff as a function of time
is shown in the top row of Figure 3 for the layered and GI-
controlled disk models. The middle and bottom rows show the
corresponding distributions of αvisc and αGI for comparison. We
first consider the layered disk model shown in the left column
of Figure 3. The radial distributions of αeff and αvisc in this
model are qualitatively similar, though displaying some quan-
titative differences. Both α-parameters are highest beyond 10 au
and decline at smaller distances. This form of the α-parameter
distribution leads to the formation of a dead zone in the inner
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Fig. 4. Gas surface density in the GI-controlled model shown at different spatial scales and evolution times. The panels from top to bottom capture
an increasingly larger spatial region, while the columns from left to right present show the disk of a progressively older age. The insets in each of
the panels display the Toomre Q-parameter as a function of radial distance. The dashed pink and green lines correspond to Q = 2 and Q = 1 for
convenience.

disk, as described in Sect. 3.1. The highest values of αeff ≈ 10−1

between 10 and 100 au (red blob) are caused by a strong con-
tribution from αGI owing to strong gravitational instability in
the early disk evolution. We note, however, that the contribu-
tion quickly diminishes and already after 200 kyr the region be-
yond 10 au is dominated by turbulent viscosity due to MRI with
αeff = 10−2. This occurs because strong turbulent viscosity de-
pletes and spreads out the disk, lowering Σg across the disk and
reducing the strength of GI in the layered-disk model. However,
GI does not disappear completely as evidenced by low but yet
non-zero values of αGI. When the contribution from αGI to αeff
is considered, the depth of the dead zone becomes shallower, but
the contrast in the values of αeff between the dead zone and the
rest of the disk is still considerable, exceeding a factor of 10.

We now consider the GI-controlled model with a suppressed
MRI shown in the right column of Figure 3. The radial distribu-

tions of αvisc and αeff in the GI-controlled model are qualitatively
different. While αvisc is low and constant throughout the entire
disk, αeff demonstrates strong radial variations. The highest val-
ues of αeff ∼ 10−2 − 10−1 are found in the outer disk regions
between 10 au and 100 au, and they notably decline in the inner
disk to αeff ≤ 10−3. The overall form of the αeff parameter in the
GI-controlled model suggests the formation of a dead zone in the
inner disk, but the origin of the dead zone is now explained by
the radial variations in αGI, which has the dominant contribution
to αeff . We also note that the values of αeff in the GI-controlled
model at 10–100 au gradually decline with time, reflecting a di-
minishing strength of GI with time, although it lasts longer than
in the layered disk model.

To understand the origin of radial variations in αGI (and
hence in αeff) in the GI-controlled model, we show in Figure 4
the corresponding gas surface density distribution at different
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Fig. 5. Global Fourier amplitudes as a function of time. The top and
bottom panels show the amplitudes for the outer and inner disk regions,
respectively.
.

spatial scales. The disk remains gravitationally unstable and ex-
hibits a developed spiral structure throughout the entire evolution
period covered by our simulation, although the sharpness of the
spiral pattern weakens with time. To describe the propensity of
a disk to develop gravitational instability, the Toomre parameter
is usually used. When the dust component is present in the gas
disk, the Toomre parameter can be defined as follows (Vorobyov
et al. 2018)

Q =
c̃sΩg

πG
(
Σg + Σd,tot

) , (23)

where c̃s = cs
√

1 + ξd2g is the modified sound speed and Σd,tot =
Σd.gr + Σd,sm the total surface density of dust.

The insets in Figure 4 show the radial distributions of the Q-
values for all grid zones at a given radius with the corresponding
spatial scale preserved. The characteristic values below which
the disk tends to develop gravitational instability (Q ≲ 2) and
fragmentation (Q ≲ 1) are shown by the pink and green hori-
zontal dashed lines, respectively. Clearly, the disk satisfies the
Toomre Q ≲ 2 criterion throughout the considered evolution
period. A decrease in the gas density owing to accretion onto
the central star in the course of evolution is compensated by a
matching decrease in the disk temperature owing to the lowering
optical depth of the disk.

We note, however, that the Q-parameter sharply increases in
the innermost disk regions (r ≤ 1.0 − 2.0 au) and also in the
regions beyond the disk extent (r > 100 au). The latter is caused

by a sharp drop in the gas surface density beyond the disk outer
edge, while the former is caused by strongly increasing sheer (as
represented by Ωg) and gas temperature (as represented by c̃s) in
the inner disk. This behaviour of the Q-parameter was also seen
in other numerical hydrodynamics simulations of purely gaseous
disks (Bae et al. 2014). The sharp rise of the Q-parameter at
r < 1.0−2.0 au and the corresponding weakening of gravitational
instability can explain the decrease in αGI seen in Figure 3 in the
inner disk.

We can quantify the effect of a radially varying strength of
gravitational instability in terms of the global Fourier amplitudes
defined as

Cin
m(t) =

1
Md

∣∣∣∣∣∣
∫ 2π

0

∫ 5au

rsc

Σg(r, ϕ, t) eimϕr dr dϕ

∣∣∣∣∣∣ , (24)

Cout
m (t) =

1
Md

∣∣∣∣∣∣
∫ 2π

0

∫ 100au

r5au

Σg(r, ϕ, t) eimϕr dr dϕ

∣∣∣∣∣∣ , (25)

where Md is the disk mass and m is the spiral mode. The Fourier
amplitudes can be regarded as a measure of the perturbation am-
plitude of spiral density waves in the disk compared to the under-
lying axisymmetric density distribution. When the disk surface
density is axisymmetric, the amplitudes of all modes are equal
to zero. With this definition, Cin

m and Cin
m represent the Fourier

amplitudes of the inner (0.2–5.0 au) and outer (5.0–100 au) disk
regions. This spatial division roughly traces a sharp change in
the αeff-values as seen in the GI-controlled model (upper right
panel in Fig. 3).

Figure 5 presents the Fourier amplitudes Cin
m and Cin

m calcu-
lated during a time interval of 20 kyr. The Fourier amplitudes
confirm that the gravitational instability is stronger in the disk
region between 5.0 and 100 au as compared to the disk interior to
5.0 au. The dominant m = 2 mode in the outer disk is almost an
order of magnitude higher than the strongest mode in the inner
disk. The behavior of Fourier amplitudes at other evolutionary
times is similar.

4. Parameter space study

Here, we consider the effects of variations in the initial cloud
core mass and αvisc on the efficiency of dust trapping in the GI-
induced ring. Figure 6 presents the azimuthally averaged disk
characteristics as a function of time for our fiducial model and
two more models: one with almost a factor of two smaller initial
cloud core mass (Mcore = 0.3 M⊙) and the other with a larger
MRI turbulence as represented by a spatially constant value of
αvisc = 10−3. The former is to probe if lower mass cores can still
form disks that are capable of supporting GI and forming GI-
induced dust rings. The latter is to demonstrate the critical effect
of the MRI turbulence in the suppression of GI-induced rings.
The second column in Figure 6 demonstrates that prestellar cores
with mass as low as 0.3 M⊙ can still form disks that sustain GI
and lead to the formation of GI-induced dust rings around 1 au.
The dust ring is somewhat narrower and of lower density, which
results in lower temperatures in the ring vicinity owing to lower
optical depths. The bottom row in Figure 6 displays the αeff-
parameter as the sum of αvisc and αGI. The strongest positive
radial gradient in αeff across the gas disk extent is found for the
fiducial model. This model is also characterized by the strongest
dust ring. The model with a lower Mcore has a weaker gradient of
αeff (especially at later evolution times), owing to a weaker GI in
a less massive disk. This results in a ring with smaller dust-to-gas
mass ratios compared to the fiducial model. Although we have
compared only two simulations with different initial cloud core
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Fig. 6. Space-time plots showing the time-evolution of the azimuthally
averaged disk characteristics. The columns from left to right correspond
to the fiducial model with Mcore = 0.53 M⊙ and αvisc = 10−4, the model
with a lower Mcore = 0.3 M⊙, and the model with higher αvisc = 10−3.
The rows from top to bottom show: the gas surface density, grown dust
surface density, gas temperature in the disk midplane, maximum dust
size, total dust-to-gas mass ratio, and the effective α-parameter.

masses, these two simulations lead to similar results and suggest
that in this range of initial core masses dust trapping remains
similar.

The picture qualitatively changes when the model with a
higher value of αvisc is considered. In this case, the sharp dust
ring around 1 au is replaced with a abroad dust density enhance-
ment in the inner several au. The values of ξd2g can be as high as
0.09, but they are still much lower than the corresponding values
in the other two models with αvisc = 10−4. The disk temperature
in the inner several au rises notably because of more efficient
viscous heating in the disk midplane. This qualitative change in
the dust dynamics can be understood from the radial distribution
of the effective α-parameter. The model with higher αvisc has no
clear radial gradient in αeff . Instead, it has a strong enhancement
in αeff , which is localized in time and space to the initial 0.2 Myr
of disk evolution and to a radial annulus r ≃ 10 − 100 au. This
means that the input of GI to the mass and angular momentum
transport is limited to the intermediate and outer disk regions and
to the initial stages of disk evolution. The rest of the disk extent
and the evolution time is controlled by turbulent viscosity due to
MRI, which is assumed to be constant in time and space. Such a
disk features no compact dead zones. For larger values of αvisc,
the effect is even stronger and the dust accumulation mostly van-
ishes.

The effect of varying αvisc can be understood as follows. The
dust drift velocity in the disk is composed of two components:
the gradiental drift that depends on the local pressure gradient
and the advective drift that depends on the value of α-parameter
(Birnstiel et al. 2016). As was shown in Vorobyov et al. (2023a),
an increase in αvisc acts to increase the advective drift velocity,
which is generally pointed towards the star in GI-unstable disks,
while the gradiental drift velocity is weakly affected. The dust
particles are now less efficiently trapped by the local pressure
bumps, and more dust now drifts across the inner disk and onto
the star. The net result is the reduction in the dust accumulation
efficiency in the disk. For αvisc = 10−2, dust drift is dominated
by advection with the gas flow (Vorobyov et al. 2023a).

Our interpretation is confirmed with the analysis of the dust
mass budget in the system shown in Figure 7. In particular, the
fractions of the dust mass contained in the disk, envelope, and
also drifted through the inner sink cell are plotted as a func-
tion of time in the models considered. We do not follow the fate
of the latter component, simply assuming that this fraction is
sublimated and the resulting refractory species land on the star.
Clearly, the fiducial model is most efficient in retaining dust in
the disk, while the model with higher αvisc loses most of its ini-
tial dust budget to the star. This trend is in agreement with our
preceding analysis and with the strength of the dust rings found
in the models.

5. Prospects for the streaming instability

Dust rings such as those formed in the layered disk and GI-
controlled models may be favorable sites for planetesimal for-
mation via the process known as the streaming instability (e.g.,
Youdin & Goodman 2005; Yang et al. 2017; Carrera & Simon
2022). Since the dust ring in the GI-controlled model forms
as early as 15 kyr after the disk formation instance, the result-
ing generation of planetesimals may represent the first building
blocks of planets. Direct modeling of the streaming instability
is difficult in the current work, since it requires a higher spatial
resolution, and also dust and gas dynamics in the vertical direc-
tion (neglected in our thin-disk models). However, we can take
the criteria obtained with proper high resolution modeling and
apply them to our model disk to find out if it can be prone to
develop the streaming instability. In particular, we take the fol-
lowing criteria presented in Yang et al. (2017):

log ξd2g ⩾ 0.10
(
log St

)2
+ 0.20 log St − 1.76 (St < 0.1), (26)

log ξd2g ⩾ 0.30
(
log St

)2
+ 0.59 log St − 1.57 (St > 0.1). (27)

These conditions are complemented by the requirement that the
volume density of grown dust in the disk midplane ρd.gr. be equal
to or greater than that of gas ρg (Youdin & Goodman 2005)

ζ =
ρd.gr

ρg
≥ 1.0. (28)

Here, the volume densities of grown dust and gas are calculated
using the corresponding local vertical scale heights Hd and Hg.
This condition requires efficient dust settling in the disk. Al-
though dust settling is not directly modeled with FEOSAD, we
can predict its efficiency from the known model parameters us-
ing Equation (15) and assuming a Gaussian distribution of gas
and dust in the vertical direction. Depending on the local condi-
tions in the disk, these criteria may or may not be fulfilled.

In Figure 8 we present the time evolution of the azimuthally
averaged surface density of grown dust in the three considered
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Fig. 7. Fractions of the total dust mass budget contained in the disk (blue), envelope (green), and drifted to the star (orange). The panels from left
to right correspond to the fiducial model with Mcore = 0.53 M⊙ and αvisc = 10−4, the model with a lower Mcore = 0.3 M⊙, and the model with higher
αvisc = 10−3.

Fig. 8. Surface density of grown dust with the disk regions susceptible to
the streaming instability identified by the black curves. The rows from
top to bottom correspond to the fiducial model, model with a lower
mass of the prestellar core, and model with a higher value of the viscous
parameter. The left column shows the time-dependent evolution of the
azimuthally averaged Σd,gr, while the right column presents the two-
dimensional distribution of Σd,gr in the inner 10 × 10 au box at the end
of simulations.

models and also the spatial distribution of Σd,gr of the inner disk
regions comprising the dust ring, taken at the end of simulations.
The black curves delineate the disk zones in which the condi-
tions for the development of the streaming instability are satis-
fied. Clearly, the dust rings in the fiducial and lower Mcore models
are prone to develop the streaming instability starting from the
ring formation instance and during the entire considered evolu-
tion period. However, the model with higher αvisc fails to fulfil
the streaming instability criteria, namely, the condition on the ef-
ficient dust settling (Eq. 28). An increase in αvisc to 10−3 implies
a reduced efficiency of dust settling, which impedes the devel-

Fig. 9. Streaming instability phase space. The top panel shows the ra-
tio of the surface densities of grown dust to gas as a function of the
Stokes number. The pink and dashed black lines depict the critical val-
ues for the development of the streaming instability according to Yang
et al. (2017) and Li & Youdin (2021). The data of the fiducial model
are overlaid with filled circles, with blue ones fulfilling in addition the
criterion on the ratio of volume densities (see Eq.28). The bottom panel
shows panel displaces the ratio of the volume densities of grown dust to
gas as a function of St. The solid black line indicates the critical values
for the streaming instability according to Eq. (30). The fiducial model
data are overlaid with the grey circles.

opment of the streaming instability under our assumptions. In a
follow-up paper we will study the consequences of the streaming
instability on the dust ring appearance and estimate the efficiency
of planetesimal formation in the GI-controlled dust rings.

To verify that the conditions for the streaming instability are
fulfilled in our fiducial model, we plot in the top panel of Fig-
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ure 9 the critical values of ξd2g as a function of St according to
Yang et al. (2017), as laid out by Equations (26) and (27). The
corresponding values are shown with the pink curve, with the
region above this cure being prone to develop the streaming in-
stability.

In addition, we also consider the more recent criterion for the
streaming instability put forward in Li & Youdin (2021)

log
(
ξd2g

Π

)
= A

(
log St

)2
+ B log St +C (29)

where

A = 0.1, B = 0.32, C = −0.24 if St < 0.015,
A = 0.13, B = 0.1, C = −1.07 if St > 0.015.

Here, Π = 0.05 is the radial pressure gradient. We note that the
value of Π may vary in the disk, but we take it equal to 0.05 for
our model data for consistency with the work of Li & Youdin
(2021). The corresponding critical values for the streaming in-
stability are plotted with the black dashed curve. The condition
on the streaming instability provided by Li & Youdin (2021) is
milder than that of Yang et al. (2017).

The data of the fiducial model are overlaid on the top panel of
Figure 9, with each filled circle corresponding to the azimuthally
averaged ξd2g and St for radial annuli of our numerical grid that
are located inside 150 au (the approximate disk extent). The en-
tire disk evolution is considered with a time sampling of 500 yr.
The difference between the grey and blue circles is that the latter
also fulfill the condition on the ratio of volume densities in the
disk midplane, as laid out by Equation (28). As the top panel in
Figure 9 indicates, a certain fraction of the model data fulfils the
imposed criteria and the streaming instability can indeed develop
in our model disk

Furthermore, we consider the updated criterion also provided
in Li & Youdin (2021) but formulated in terms of the ratio ζcrit
of the dust and gas volume densities in the disk midplane

log ζcrit = A′
(
log St

)2
+ B′ log St +C′, (30)

with

A′ = 0, B′ = 0, C′ = 2.5 if St < 0.015,
A′ = 0.48, B′ = 0.87, C′ = −0.11 if St > 0.015.

The corresponding values in the ζ vs. St phase space are plotted
in the bottom panel of Figure 9 with the black solid line showing
the critical values for the development of the streaming instabil-
ity. This new criterion is also fulfilled in our fiducial model.

To better quantify the feasibility of planetesimal formation in
the fiducial model, we calculated the dust mass in the disk that is
prone to the development of the streaming instability, Md,gr(SI).
In addition, we also calculated the aria of the disk that encom-
passes the disk regions prone to develop the streaming instabil-
ity, Area(SI). Each value is normalized either to the total mass
of grown dust or to the disk area, assuming, for simplicity, that
the disk radius is 150 au (see Sect 6). While the disk area within
which the streaming instability can operate is only a minor frac-
tion of the total area occupied by the disk, the corresponding dust
mass that is prone to the streaming instability is a large fraction
of the total dust mass in the disk, reflecting efficient dust drift
and accumulation in the GI-induced dead zone.

Streaming instability condition Area(SI) Md,gr(SI)
Yang et al. (2017), eqs. (26), (27), (28) 0.0268% 87.9%

Li & Youdin (2021), eqs. (29), (28) 0.0269% 87.91%
Li & Youdin (2021), eq. (30) 0.0288% 88.21%

Table 1. Middle column is the total disk area where the conditions
for the streaming instability are satisfied relative to the total area of the
disk. Right column – the total mass of grown dust contained within the
disk region prone to the streaming instability relative to the total mass
of grown dust in the disk. All data are for the fiducial model.

Fig. 10. Space-time plots showing the evolution of dust radiation inten-
sity (top row), optical depth (middle row), and cumulative flux (bottom
panel) at 3 mm. Columns from left to right correspond to the fiducial
model, model with a lower Mcore, and model with higher αvisc. The
white contours in the top and bottom rows delineate the radial loca-
tions, within which 95% of the total flux is contained. The white curves
in the middple row highlight the regions with the optical depth > 1.0.
The units for radiation intensity and flux are erg cm−2 s−1 Hz−1 sr−1 and
erg cm−2 s−1 Hz−1, respectively.

6. Implications for dust disk sizes and masses

Disk masses and radii play a key role in many physical processes
responsible for mass and angular momentum transport, dust drift
and growth, and planet formation. Yet, their observational esti-
mates are associated with uncertainties, which may significantly
alter the true disk masses and radii and lead to wrong conclu-
sions (e.g., Dunham et al. 2014). We demonstrate this using our
model disk as an example. The distribution and properties of dust
in the fiducial model are known from simulations and we use
them to calculate the underlying disk mass and size. We com-
pare these “true” values with those derived using the methods
and techniques applied when analysing the observations of real
protoplanetary disks as described below.

We adopt a simplified model to calculate the radial distri-
bution of the dust radiation intensity assuming a local plane-
parallel disk geometry and dust temperature that is constant (or
weakly changing) in the vertical direction. We note that in our
model we make no distinction between the gas and dust temper-
atures, which is justified for the bulk of the disk midplane at the
solar metallicity (Vorobyov et al. 2020c), where most of the dust
mass is supposed to reside due to vertical settling. We also note
that in the plane of the disk, the temperature was computed self-
consistently using the vertically integrated gas pressure and gas
density in each computational cell as Tmp = µP/(ΣgR), where
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µ = 2.33 is the mean molecular weight and R is the universal
gas constant. A formal solution of the radiative transfer equation
in the plane-parallel limit can be written as

Iν(r, ϕ) = Bν(Tmp)(1 − e−τν ), (31)

where Iν is the radiation intensity at a given position (r, ϕ) in the
disk, Bν(Tmp) is the Planck function, and τν = κν(Σd,sm + Σd,gr) is
the total optical depth of the small and grown dust populations.
The frequency dependent absorption opacity κν (per gram of dust
mass) for the small and grown dust populations with size range
from 5 × 10−3 µm to amax, respectively, were found using the
OpacityTool of Woitke et al. (2016) based on the Mie theory
assuming pure silicate grains of spherical shape. The spatially
resolved fluxes Fν(r, ϕ) for the assumed distance d to the source,
together with Iν(r, ϕ), represent our mock observations. For a
particular wavelength, we choose 3 mm, which corresponds to
Band 3 on ALMA.

Figure 10 presents the synthetic intensities and optical depths
at 3 mm for the three models considered. In addition, the bottom
panel displays the cumulative flux in the radial direction as a
fraction of the entire flux contained within 500 au. We note that
the logarithmic scale in the radial direction distorts the view and
exaggerates the inner regions, which are hard to resolve other-
wise. The distance is set equal to d = 500 pc.

The dust ring in the fiducial and lower Mcore models is char-
acterized by high optical depths and the corresponding inten-
sity of radiation is dominated by the Planck function. On both
sides of the ring, the disk becomes optically thin, so that Iν also
drops substantially. At t ≤ 0.2 Myr in the fiducial model and at
t ≤ 0.1 Myr for the lower Mcore, the flux coming from the dust
ring contributes only about 10% to the cumulative flux owing
to the small surface area of the ring compared to the rest of the
disk. Most of the flux is coming from the disk regions outside
the dust ring at this evolutionary stage. At later stages, as more
dust drifts from the disk towards the inner ring, the contribu-
tion of the latter to the total flux increases to 25-30%. Only after
t = 0.5 Myr the dust ring in the model with low Mcore begins
to dominate the cumulative flux. The higher αvisc model is also
characterized by optically thick inner regions up to about 10 au.
However, the spatial distribution of Iν is much smoother than in
the other two models. The inner several astronomical units also
provide a minor contribution to the total flux (about 10%), which
is dominated by the intermediate and outer disk regions. We also
note that disks in all models feature a sharp outer edge in the
spatial distribution of Iν.

We further calculate the dust disk radii and masses from our
mock observations using the basic assumptions, which are usu-
ally applied when inferring the dust disk masses and radii. In
particular, we assume that the dust disk size Robs

dust is defined by
the radial extent, within which 95% of total flux Fν is contained.
To calculate the dust disk mass Mobs

dust, we follow the usual pro-
cedure and use an optically thin approximation (e.g., Tobin et al.
2020; Kóspál et al. 2021)

Mobs
dust =

d2F95%
ν

Bν(Td)κasm
ν

, (32)

F95%
ν is the flux contained within the disk extent defined by Robs

dust,
Bν(Td) the Planck function at the assumed isothermal dust tem-
perature Td, and κasm

ν the assumed dust absorption opacity at
3 mm (per unit mass of dust) set equal to 1.0 cm2 g−1 (Beck-
with et al. 1990). The dust temperature is estimated from the

Fig. 11. Time evolution of the dust disk masses and radii derived from
the model dust distribution (first and second panels, Mmod

dust and Rmod
dust ) and

from the mock observations (third and bottom panels, Mobs
dust and Robs

dust)
in the three models considered.

following equation (Tobin et al. 2020)

Td = 43 K
(

Ltot

1.0 L⊙

)0.25

, (33)

where Ltot is the total (accretion plus photospheric) luminosity
of the star in our model. We note that when calculating the syn-
thetic disk mass we use the assumed dust temperature Td and
opacity κasm

ν rather than those known from our model data (Tmp
and κν). Indeed, when deriving disk masses from observations,
disk temperature and opacity are often not known and in this
case assumptions like above are utilized.

We further compare the synthetic observables with the disk
radii and masses derived directly from the spatial distribution of
dust in our model. In particular, for the dust disk radius Rmod

dust we
take the radial extent, within which 95% of the total dust mass is
localized. The corresponding dust mass constitutes the mass of
the dust disk Mmod

dust .
In Figure 11 we present the synthetic dust disk masses and

radii derived using the mock observations and compare them
with the corresponding model values as a function of time for
the three models considered. Our algorithm for the calculation
of Mmod

dust and Rmod
dust is applicable to the disk-only stage. In the

embedded stage, it may erroneously capture dust in the infalling
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envelope. This is the reason why the model disk radii initially
start from unrealistically large values. Figure 7 indicates that the
disk-only stage begins after t ≈ 0.1−0.15 Myr, depending on the
model, and this should be taken into account when interpreting
the model data.

The first and second panels shows the dust disk mass and
radius, Mmod

dust and Rmod
dust respectively, directly derived from the

model dust distribution. The formation of the GI-induced dead
zone in the fiducial and lower Mcore models effectively traps
about half of the total dust mass reservoir, which was initially
contained in the corresponding prestellar cloud cores. This effect
is also evident in Figure 7. The dust disk radius in these models
shrinks with time from about 100 au to just several astronomical
units, reflecting inward dust drift and efficient trapping of dust in
the dead zone. On the other hand, the higher αvisc model features
a gradually declining Mmod

dust owing to the continuing dust drift
across the inner disk regions and through the sink cell. Although
the dust mass decreases, the dust disk size in this model evolves
slowly with time.

The synthetic dust disk masses Mobs
dust and radii Robs

dust presented
in the third and bottom panels of Figure 11 show a qualitatively
different behavior. Most of the dust content in the disks of the
fiducial and lower Mcore models is trapped in a narrow optically
thick ring around 1 au with the optical depth as high as hun-
dreds at 3 mm (see Fig. 10). This results in a serious underesti-
mate of the dust disk mass derived from mock observations by
about two orders of magnitude. A qualitatively similar effect is
seen in the model with higher αvisc but of a lesser proportion.
The fiducial and lower Mcore models are in general character-
ized by much lager radii derived from the mock observations
than directly from the model dust distribution. On the contrary,
the higher αvisc model features lower Robs

dust compared to the cor-
responding values of Rmod

dust . We conclude that the real and ob-
servationally inferred dust disk masses and radii may differ sig-
nificantly, in agreement with our earlier numerical experiments
(Dunham et al. 2014). The apparent deficit of dust mass needed
to explain the formation of the observed planetary systems, as
inferred from observations of Class II disks in particular, rein-
forces our findings that a substantial dust mass reservoir may be
hidden from our view (Manara et al. 2018; Miotello et al. 2023)

7. Discussion and model caveats

The dust pile-up followed by the presumed development of the
streaming instability occurs in the GI-controlled disk soon after
the disk formation instance. Planetesimals that may be formed
through this process will represent the first building blocks of
planets in the terrestrial zone of the disk. These planetesimals
may further grow via an oligarchic growth and/or pebble accre-
tion. The early onset of the streaming instability suggested by
our numerical simulations is in agreement with the changes in
the planet formation paradigm, shifting the onset of planet for-
mation to the Class I and even Class 0 phases (Vorobyov 2011;
Greaves & Rice 2011; ALMA Partnership et al. 2015). We note,
however, that the onset of planetesimal formation in the dust ring
should inevitably change its appearance, as a substantial fraction
of dust may be converted to planetesimals. The optical depth and
temperature of the corresponding disk region will drop. All these
effect we plan to explore self-consistently in a follow-up study.

Our proposed mechanism for the dust ring formation cru-
cially depends on the existence of a gravitationally unstable
phase in the evolution of young protoplanetary disks. Many nu-
merical studies have demonstrated that GI can be triggered in

sufficiently massive protoplanetary disks, ≥ 0.1M⊙ (see a review
by Kratter & Lodato 2016). The conditions are particularly fa-
vorable in the embedded stage of disk evolution, when continual
mass loading from the infalling envelope helps to sustain and
enhance the GI in the disk (Vorobyov & Basu 2005). Magnetic
fields do not impede the development of GI (Machida et al. 2014;
Zhao et al. 2018).

From the observational point of view, however, GI remains
elusive. The direct manifestation of GI – a spiral pattern – is in-
deed observed in several protoplanetary disks (Pérez et al. 2016;
Parker et al. 2022), but its origin is debated and may be caused
not only by GI (Meru et al. 2017), but also by an embedded
planet (Dong & Fung 2017).

Furthermore, our model may appear to contradict strong dust
settling inferred for many protoplanetary disks (e.g., Rosotti
2023). Indeed, αGI is substantial beyond several astronomical
units (> 10−3), see Figure 3, and this can hinder dust settling
towards the midplane owing to substantial gravitoturbulent ver-
tical stirring (Riols et al. 2020b). This contradiction may be
lifted twofold. First, we note that αGI determines the efficiency
of gravitational torques as a means of mass and angular mo-
mentum transport in the disk midplane (see Eq. 21). The ver-
tical Reynolds stress tensor, which defines the strength of ver-
tical mixing in a GI-controlled disk, may be weaker than the
gravitational stress tensor in the disk midplane (Baehr & Zhu
2021). The effect of GI is then anisotropic, which may assist dust
settling. Second, protoplanetary disks with efficient dust settling
may be already in the evolution stage that is past the gravitation-
ally unstable phase. Indeed, recent observations of young disks
in the Class 0 and I stages found little dust settling (Lin et al.
2023).

In our work, we have considered a limited set of disk models.
Our disks are fairly massive (> 0.1 M⊙) and readily support GI,
but if disks are systematically less massive than 0.1M⊙, the GI-
induced mechanism of the dead zone formation may not work.
Fortunately, recent measurements of disk masses in FU Orionis-
type objects, most of which are likely to belong to the Class I
stage (Quanz et al. 2007; Vorobyov & Basu 2015), found that
half of the sample has massive disks, ≥ 0.1 M⊙ (Kóspál et al.
2021). This observational finding reinforces the feasibility of the
GI-induced mechanism for the formation of dead zones.

We also note that the position of the inner edge of the disk
at 0.2 au (radius of the sink cell) does not correspond to the
true inner disk edge, which is usually located at several stellar
radii. This may affect the location of the dust ring in our models.
However, resolving the inner disk edge is only possible in one-
dimensional disk models, which cannot self-consistently simu-
late gravitational instability (e.g., Steiner et al. 2021), and is be-
yond the capacity of multidimensional codes that follow disk
formation and evolution on Myr-scales like FEOSAD. In the fu-
ture works, we will add a possibility of dust trapping at the water
snow line (Dra̧żkowska & Alibert 2017) and consider the poten-
tially important effects of magnetic disk winds.

Finally, we want to comment on the gravity force calcula-
tions that were utilized in FEOSAD (see Appendices B and C for
details). Many studies of two-dimensional self-gravitating thin
disks include a smoothing length ϵ when calculating the gravita-
tional potential (e.g., Baruteau & Masset 2008; Huré & Pierens
2005; Müller et al. 2012; Rendon Restrepo & Barge 2023). It is
often claimed that the introduction of the smoothing length to
the gravitational potential is necessary 1) to avoid the problem
of singularity and 2) to better reproduce the three-dimensional
potential on the underlying two-dimensional grid. However, as
was noted in Binney & Tremaine (1987), the problem of singu-
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larity in the context of self-gravitating disks (but not for planets
embedded in the disk) can be avoided by calculating analyti-
cally the contribution of the material in the singularity cell to the
total gravitational potential. As we demonstrated on test prob-
lems with an analytic solution in Appendix B, our ϵ-free method
is only slightly inferior to the best-choice ϵ-correction method.
The accuracy of the latter method, however, is quite sensitive to
the proper choice of ϵ (see Figs. B.1 and B.2), which is often
made proportional to the disk vertical scale height H. There is
no universal recipe as to what the coefficient of proportionality
between ϵ and H is to take and different studies advocate differ-
ent values (e.g., Huré & Pierens 2005; Baruteau & Masset 2008;
Müller et al. 2012). In Appendix C we carried out test runs with
explicit smoothing of the gravitational potential and found that
the disk evolution in the fiducial model (no smoothing) is sim-
ilar to that obtained with the ϵ-smoothing method proposed in
Baruteau & Masset (2008). We conclude that using the ϵ-free
method for computing the gravitational potential in the thin-disk
simulations is justified considering all the limitations of the two-
dimensional approach in general.

8. Conclusions

In this work, we studied in detail a new mechanism of the dead
zone formation in the inner regions of protoplanetary disks,
which occurs during the initial gravitationally unstable stages
of disk evolution if the MRI turbulence is suppressed across the
disk extent. We considered the efficiency of dust accumulation
in these GI-induced dead zones using the FEOSAD code, which
computes the formation and long-term evolution of gravitation-
ally unstable gas-dust disks in the thin-disk limit. Our main find-
ings can be summarized as follows.

– Gravitationally unstable disks are characterized by a radi-
ally varying strength of gravitational instability. The effects
of this variation, when quantified in terms of αGI, are simi-
lar to the classical layered disk model. Namely, a region of
low mass and angular momentum transport forms in the in-
ner several astronomical units of the disk, where GI is sup-
pressed. This region is similar in characteristics to the dead
zone that usually forms in the layered disk model.

– Grown dust that drifts from the outer disk regions efficiently
accumulates in the GI-induced dead zone, leading to the for-
mation of a massive dust ring around 1 au. The dust ring is
susceptible to the development of the streaming instability.

– The dust ring and the streaming instability occur as early as
15 kyr after the disk formation instance. Hence, this mecha-
nism may form the first generation of planetesimals, which
may constitute the first building blocks for planets in the in-
ner terrestrial zone of the disk.

– For the GI-induced dead zones and dust rings to form, the
MRI has to be suppressed across the disk extent. Increas-
ing αvisc due to MRI to 10−3 results in a much shallower
dead zone, weaker and more diffuse dust ring, and suppres-
sion of the streaming instability. We note that MRI sup-
pression in disks with enhanced GI is possible according to
three-dimensional sheared-box simulations of Riols & Latter
(2018).

– In the gravitationally unstable disks the dust masses and radii
calculated directly from the model dust distribution and from
mock observations following the usual assumptions about
the dust temperature, optical depth, and dust opacity differ
significantly. In particular, the dust disk masses derived from

mock observations are seriously underestimated. The corre-
sponding dust radii may be larger or smaller than the true
underlying radial dust distribution.
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Fig. A.1. Gas surface density and αvisc radial profiles. Top. The red
dotted and blue solid lines show the actual and fitted αvisc values in
the layered disk model with a dead zone, while the orange dashed line
corresponds to an MRI-active disk with a constant αvisc. Bottom. The
corresponding radial profiles of the gas surface density obtained from
the actual hydrodynamic simulation (red dotted line), from solution of
the steady-state Eq. (A.1) with radially varying αvisc (blue solid line),
and from Eq. (A.1) with a spatially constant αvisc (orange dashed line).

Appendix A: Steady-state viscous disk model

To explain the accumulation of matter in the layered disk model
presented in Sect. 2.3, it is useful to consider the disk radial
structure in the steady-state limit ∂/∂t → 0. In this case, for
an axisymmetric, geometrically thin but optically thick viscous
disk, we can write (see, e.g., Pringle 1981; Hartmann 1998; Ar-
mitage 2022)

νΣg =
Ṁ
3π

1 − √
R∗
r

 , (A.1)

where R∗ is the radius of the central star, Ṁ = −2πrΣgvr the mass
transport rate through the disk, and vr the radial component of
gas velocity (negative because of the flow towards the star).

The equation of continuity for gas

∂Σg

∂t
+

1
r
∂

∂r

(
rΣgvr

)
= 0, (A.2)

in the steady-state limit (∂Σg/∂t = 0) reduces to the following
form

1
2π
∂Ṁ
∂r
= 0. (A.3)

Equation (A.3) indicates that in a steady-state axisymmetric disk
the rate of mass transport across the disk does not depend on
the distance to the star r. Therefore, for a fixed Ṁ, the radial
distribution of the gas surface density in a steady-state disk is
exclusively determined by the kinematic viscosity ν.

Table A.1. Coefficients of Eq. (A.4)

zone, [au] A b C
0.2 ⩽ r ⩽ 0.6 7.45 × 10−8 -7.3 8 ×10−5

0.6 < r ⩽ 5 1.64 × 10−5 4 8 × 10−5

r > 5 10−2 0 0

We now consider an optically thick disk, in which the gas
temperature is determined according to the law T (r) ∝ r−3/4

(Hartmann 1998). With an assumption of hydrostatic equilib-
rium in the vertical direction, the local scale height of the
gaseous disk can be expressed in terms of the local speed of
sound, as Hg = cs/ΩK. We further set the radial profile of
αvisc such that there is a dead zone with a suppressed MRI at
0.2 ⩽ r ⩽ 5 au and the rest of the disk is MRI-active. The αvisc
value in the active region is fixed at 10−2, in accordance with the
model described in Sect. 2.3. In the dead zone, we use the αvisc
profile, which is similar to that found in the layered disk model
at t = 375 kyr. Particularly, the following function is used to
describe the αvisc radial profile in the dead zone

αvisc = A · rb +C. (A.4)

The dead zone area is divided into 2 parts: the regions of decreas-
ing and increasing αvisc with distance r. The transition occurs at
the point where b changes sign and absolute value. The coeffi-
cient C is used to smooth the distribution, and the factor A is
chosen so as to eliminate discontinuities at the transition bound-
aries. The values of coefficients A, b, and C adopted in the work
are given in Table A.1.

The top panel of Figure A.1 displays the fitted αvisc (solid
blue line) along with the actual αvisc values taken from the
simulation (red dotted line). The value of Ṁ is set equal to
7 × 10−8 M⊙ yr−1, which is consistent with the model ac-
cretion rates onto the protostar, found to be in the range of
(7 − 9) × 10−8 M⊙ yr−1 at the corresponding evolutionary time.
For comparison, the orange dashed line represents the case of
a fully MPH-active disk. The blue line in the bottom panel
shows the surface density profiles of gas calculated according
to Equation (A.1) for given temperature and viscosity distribu-
tions, while the red dotted curve presents the actual gas surface
density obtained in our numerical simulations. In the model of a
fully MPH-active disk, the surface density profile corresponds to
a monotonically decreasing function of radial distance r. At the
same time, in the model with the presence of a dead zone, there
is an accumulation of matter, which qualitatively (and quantita-
tively with a factor of two) agrees with the distribution obtained
in hydrodynamic simulations in Sect. 2.3.

Appendix B: Gravitational potential calculation

The gravitational potential of the disk in the polar coordinates
(r, ϕ) can be written as

Φ(r, ϕ) = (B.1)

− G
∫ rout

rsc

r′dr′
∫ 2π

0

Σtot(r′, ϕ′)dϕ′√
r′2 + r2 − 2rr′ cos(ϕ − ϕ′)

,

where Σ is the total (gas plus dust) mass. The direct summation
of the resulting double sum on the discretized N × N polar grid
is time consuming as it takes (2N)4 operations. As pointed out in
Binney & Tremaine (1987), this equation can be transformed to a
more manageable form by the following substitution of variables

u = ln r; S = r3/2Σ; V = r1/2Φ.

Article number, page 17 of 21



A&A proofs: manuscript no. main

The resulting equation reads as

V(u, ϕ) = (B.2)

− G
∫ uout

usc

du′
∫ 2π

0

2−1/2S (u′, ϕ′)dϕ′√
cosh(u − u′) − cos(ϕ − ϕ′)

,

and can be solved using the convolution theorem, which involves
a series of fast Fourier transforms. For details we refer the reader
to Binney & Tremaine (1987) and Vorobyov et al. (2023b), but
note here that this method requires 2N[6 log2(2N)+ 1] additions
and multiplications to be compared to (2N)2 operations for a
direct evaluation of Eq (B.1), which becomes computationally
favourable already for N > 16.

The usual complication complication with evaluating inte-
grals (B.1) or (B.2) arises when the primed and non-primed co-
ordinates become equal, because the denominator in this case
becomes equal to zero and the sum diverges. In many practical
applications, the potential is smoothed by introducing a smooth-
ing length ϵ, so that Eq. (B.1) would read as

Φ(r, ϕ) = (B.3)

− G
∫ rout

rsc

r′dr′
∫ 2π

0

Σtot(r′, ϕ′)dϕ′√
r′2 + r2 − 2rr′ cos(ϕ − ϕ′) + ϵ2

.

After applying the coordinate transformation introduced above,
this equation becomes

V(u, ϕ) = −G
∫ uout

usc

du′ (B.4)

×

∫ 2π

0

2−1/2S (u′, ϕ′)dϕ′√
cosh(u − u′) − cos(ϕ − ϕ′) + 0.5ϵ2e−(u+u′)

,

As noted by Baruteau & Masset (2008), the introduction of the
smoothing length breaks the convolution property of the expres-
sion in the denominator of Eq. (B.4). However, this property can
be restored, if a specific form of the ϵ dependence that is pro-
portional to the disk radius is used, ϵ ∝ r ∝ eu. Since the disk
vertical scale height H happens to be also proportional to the
radial distance in protoplanetary disks, this makes it useful to re-
late ϵ to H. We note that the introduction of the smoothing length
violates the Newton’s law of gravity, but it has an advantage of
avoiding the problem of singularity.

This approach has been further developed to better repro-
duce the three-dimensional potential on the underlying two-
dimensional grid by properly adjusting the value of ϵ (e.g., Ren-
don Restrepo & Barge 2023). Unfortunately, no universal recipe
has been developed and various studies provide different recom-
mendations and prescriptions (see, e.g., Huré & Pierens 2009,
for a review). Even when applied to different simulation envi-
ronments, the values of ϵ may differ. For instance Müller et al.
(2012), advocated to set ϵ = 0.7H when considering the planet
dynamics in the disk, but choose ϵ = 1.2H when simulating
a self-gravitating disk. The problem of non-convergence in the
value of ϵ may be inherit to this method because it depends on
the subtleties of the local three-dimensional gas distributions,
which change from model to model, and throughout the disk
evolution sequence.

Considering the uncertainties with the smoothing length ap-
proach, it is important to note that the use of the smoothing fac-
tor can be avoided altogether when evaluating Eq. (B.2) for self-
gravitating disks. As noted by Binney & Tremaine (1987), the
contribution of the material in the singularity cell to the total
gravitational potential can be evaluated if we assume S (u′, ϕ′) =

const and approximate cosh(u−u′)−cos(ϕ−ϕ′) as 0.5(u−u′)2−

0.5(ϕ − ϕ′)2. The resulting contribution to the reduced potential
then reads

V(0, 0) = −2 G S
[

1
∆ϕ

sinh−1
(
∆ϕ

∆u

)
+

1
∆u

sinh−1
(
∆u
∆ϕ

)]
, (B.5)

where ∆u and ∆ϕ are the cell sizes in the u- and ϕ-coordinate
directions, and S is the reduced surface density in this cell. This
method can also be extended to two-dimensional Cartesian grids,
in which case the gravitational potential in the singularity cell is
evaluated as

Φ(0, 0) = −2 G Σ
[
∆x sinh−1

(
∆y
∆x

)
+ ∆y sinh−1

(
∆x
∆y

)]
, (B.6)

where ∆x and ∆y are the the corresponding cell sizes on the
Cartesian mesh. For more complex cases of three-dimensional
potentials, with and without an assumption of the constant den-
sity inside the singularity cell, we refer the reader to Macmillan
(1985) and Stücker et al. (2020).

We now consider in more detail the ϵ-free method outlined
above. Although we avoid introducing an explicit ϵ-factor in
Eq. B.2, we still smooth the potential over the size of the sin-
gularity cell by means of the simplified calculation of the po-
tential in this cell. The assumption of S = const translates to
Σ ∝ r−3/2, which is in reasonable agreement with the expected
surface density profile in gravitationally unstable disks that are
self-regulated around Toomre Q = 1 (Rice & Armitage 2009;
Vorobyov et al. 2018). Furthermore, since the cell size on our
logarithmically spaced grid scales linearly with distance r, the
implicit smoothing that is inherent to our method also scales
near linearly with H, as advocated by, e.g., Baruteau & Mas-
set (2008) and Müller et al. (2012). Indeed, ∆r/r = 0.025 for our
grid, while H/r is a weakly varying function of radius and takes
values of 0.05 at 1.0 au and 0.1 at 100 au (for our fiducial model
at t = 0.5 Myr). This means that ∆r ∝ 0.25−0.5H in our models
and the inherent smoothing is proportional to the vertical scale
height, as is often assumed in the explicit ϵ-correction models
(e.g., Baruteau & Masset 2008; Müller et al. 2012).

Appendix B.1: Exponentially declining disk

Now, we proceed with analytic test problems. Figure B.1 com-
pares the numerically derived gravitational accelerations with
the analytic solution for a disk with an exponential surface den-
sity distribution of the form Σ = Σ0 exp(−r/r0). The analytic
solution in this case is given by the following equation (Binney
& Tremaine 1987)

Φ(r) = −πG Σ0r (I0(y)K1(y) − I1(y)K0(y)) , (B.7)

where y = r/(2r0), and In and Kn are the modified Bessel func-
tions of the first and second kind. A similar test case was used
by Huré & Pierens (2005). We choose Σ0 = 10 and r0 = 0.1.
The size of the disk and the gravitational constant are set equal
to unity. A square grid of N×N cells is generated, where N takes
values of 128 or 256. We note that we intentionally use the Carte-
sian grid and not the polar grid for this test problem, because for
the polar grid we would have to carve out a gap in the inner-
most disk to avoid the divergence of u = ln r at the center of the
polar coordinates. The analytic solution, however, does not take
that gap into account. In all aspects, the potential solver on the
Cartesian mesh is similar to that on the polar mesh, except that it
uses Eq. (B.6) rather than Eq (B.5) to account for the singularity
when the primed and non-primed indices coincide.

Article number, page 18 of 21



Vorobyov et al.: First generation of planetesimals

Fig. B.1. Relative error to the gravitational acceleration. The curves
show solutions with and without the ϵ-correction as indicated in the leg-
end. The solid and dashed styles correspond to numerical resolutions of
128 × 128 and 256 × 256 grid zones, respectively.

The relative errors defined as (gx − gx,a)/gx,a, where gx and
gx,a are the numerical and analytic accelerations along the x-
axis, respectively, indicate that the best solution is found for
the model with a smoothing length ϵ = 0.25∆x, where ∆x is
the size of the grid cell. However, the solution that employed
smoothing lengths quickly deteriorates as ϵ deviates from the
best value, signaling the strong sensitivity of the method to the
proper choice of smoothing. Our method that does not use ex-
plicit smoothing yields a fairly good agreement with the ana-
lytic solution and is only slightly inferior to the best-fit case of
the ϵ-approach. The trend shown in Fig. B.1 is remarkably in-
dependent of the numerical resolution, and only the accuracy of
both methods improves, as we increase the number of grid cells.
To emphasize the importance of calculating the contribution of
the material in the singularity cell to the total potential in our
method, we artificial set Φ(0, 0) = 0 (see Eq. B.6). The result-
ing relative error is shown by the cyan line. Clearly, the correct
calculation of Φ(0, 0) is crucial for our method. We note that the
numerical solutions in all methods diverge near the disk outer
edge because the analytic solution is obtained for a disk of infi-
nite size.

Appendix B.2: Constant density disk

Here, we compare the numerical solutions of the gravitational
acceleration in models with and without explicit smoothing of
the potential using a disk with constant surface density Σ and
fixed inner and outer radii, rin and rout, respectively. The solution
for such a disk can be found analytically (e.g. Durand 1964),
which has been used as a test case for gravitational potential
models in (Baruteau & Masset 2008) and Pierens & Huré (2005).
The analytic expression for the gravitational acceleration in the
disk plane gr(r) is

gr(r) = 4GΣ
(

E(r/rout) + K(r/rout)
r/rout

+ K(rin/r) − E(rin/r)
)
,

(B.8)

Fig. B.2. Gravitational acceleration of a constant density disk in mod-
els without and with gravitational potential smoothing. The top panel
presents the comparison of our method without explicit smoothing with
the analytic solution for different number of grid cells and also without
considering the contribution of the singularity cell (V(0, 0) = 0). The
bottom panel plots the numerical solutions with explicit smoothing for
different choices of the ϵ-value.

where K and E are the complete elliptic integrals of the first and
second kinds, respectively. The expression applies to rin < r <
rout.

Figure B.2 presents the results of our numerical experiments.
This time, we use physical units and set rin = 0.1 au, rout =
100 au, and Σ = 100 g cm−2. The polar grid (r, ϕ) with N × N
grid cells is initialized. The gravitational acceleration of the Σ =
const disk with a central hole changes sign near the inner edge
of the disk and using the relative error is not appropriate in this
case. Therefore, we plot the absolute values of the gravitational
acceleration gr along the r-coordinate direction.

The top panel shows our method without explicit smoothing
of the potential. The numerical solution converges towards the
analytic one as the numerical resolution increases from N = 256
to N = 1028 grid cells per coordinate direction. If we neglect
the contribution of the material in the singularity cell to the to-
tal gravitational potential, setting V(0, 0) = 0 (see Eq. B.5), the
solution expectedly deteriorates. The bottom panels displays the
comparison of our method with that using explicit smoothing
of the potential. Different combinations of ϵ are considered ac-
cording to suggestions put forward in Baruteau & Masset (2008),
namely, ϵ = 0.3H, and in Müller et al. (2012), namely, ϵ = 1.2H.
The proportionality between the disk scale height H and the
radial distance r is chosen as typical of the fiducial model,
H = 0.03 − 0.05r. Clearly, the choice of ϵ = 1.2H poorly fits
the analytic solution. Smaller smoothing lengths can fit the ana-
lytic solution better, with ϵ = 0.21H providing almost a perfect
fit. However, small deviations from the best-fit value of ϵ quickly
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Fig. C.1. Gas surface density in the fiducial model (top row) and in the
models with different smoothing of the gravitational potential (middle
and bottom rows). The columns from left to right correspond to evo-
lution times: t = 495 kyr, t = 550 kyr, and t = 600 kyr The insets in
each of the panels display the Toomre Q-parameter as a function of ra-
dial distance. The dashed pink and green lines correspond to Q = 2 and
Q = 1 for convenience. The white lines show the azimuthally averaged
values.

deteriorate the solution. Our model, though being slightly infe-
rior to the best-fit ϵ-smoothing method, is nevertheless free from
uncertainties in choosing the proper value of ϵ. This conclusion,
however, applies to razor-thin disks. In the case of disks with
finite vertical structure, its validity has to be proven by com-
paring the vertically averaged gravity force of three-dimensional
density distributions with the gravity force obtained in the two-
dimensional approach with and without the smoothing length
(Huré & Pierens 2009; Huré & Hersant 2011; Huré & Trova
2015). Such a focused study lies beyond this work.

Appendix C: Comparison of disk evolution with and
without ϵ-smoothing

In this section, we compare the fiducial model with two addi-
tional models that employ the explicit smoothing of the grav-
itational potential but otherwise are identical. Because numer-
ical simulations of the entire considered disk evolution period
are computationally costly, we continue simulations from t =
0.5 Myr but with different approaches to calculating the grav-
itational potential. In particular, we consider the smoothing pa-
rameters suggested in Baruteau & Masset (2008), namely, we set
ϵ = 0.3H and H = 0.03r. In the second model, we set ϵ = 1.2H
and H = 0.05r, as advocated by Müller et al. (2012). In both
cases, the adopted relation between the gas scale height H and
radial distance r is close to what is found in the fiducial model
inside 100 au.

Figure C.1 presents three snapshots of the gas disk in
the considered models at three evolution times: 0.495 Myr,
0.55 Myr, and 0.6 Myr. In addition, the insets show the radial
distribution of the Toomre Q-parameter in each model and each
considered time instance. All values along the azimuth at a given
distance r are plotted. Clearly, our fiducial model without ex-
plicit smoothing and the model with ϵ-smoothing as suggested

Fig. C.2. Time evolution of the azimuthally averaged α parameters. The
top and bottom panels show αGI and αeff , respectively. Columns from
left to right correspond to the fiducial model and to the models with
different smoothing of the gravitational potential.

by Baruteau & Masset (2008) show similar behavior. In both the
Toomre parameter is mostly confined in the Q = 1 − 2 limits
and the disks show a weak spiral pattern, as expected from the
gravitational stability analysis (Toomre 1964; Polyachenko et al.
1997).

However, the model with stronger smoothing (ϵ = 1.2H and
H = 0.05r) deviates notably and quickly arrives at the gas dis-
tribution that is almost axisymmteric. Curiously, the Toomre pa-
rameter stays in similar limits (Q ∼ 1 − 2), only featuring a
narrower spread. In particular, the azimuthally average Q-value
at t = 0.55 Myr and 40 au is 1.47. The disk gravitational sta-
bility to local non-axisymmetric perturbations should occur at
Q >

√
3 ≈ 1.73 (Polyachenko et al. 1997), but this model fea-

tures Q-parameters that are lower than the threshold value. We
also checked the ratio of the disk to stellar mass and it is greater
than 0.1, a value that is often referred to as a threshold for the de-
velopment of GI in full three-dimensional simulations (Cossins
et al. 2009; Kratter & Lodato 2016). This line of evidence in-
dicates that the model with ϵ = 1.2H and H = 0.05r should be
gravitationally unstable but strong smoothing of the gravitational
potential appears to prevent its growth.

Figure C.2 presents the space-time plots of αGI and αeff in
the three models considered. The spatial and temporal behav-
ior of both parameters are similar in the fiducial model and in
the model with weaker smoothing (ϵ = 0.3H and H = 0.03r).
The latter model may feature slightly lower α-values, but the
strong spatial gradient is present in both model. The model with
stronger smoothing (ϵ = 1.2H and H = 0.05r) has much smaller
α values. The entire disk in this model is formally a global dead
zone from the point of view of the α-parameter.

Finally, Figure C.3 presents the zoomed-in view on the disk
inner region encompassing the dust ring in each model consid-
ered. The regions that are prone to develop the streaming in-
stability are also shown. The evolution of the dust ring and the
SI-prone disk regions are similar in the fiducial model and in the
model with weaker smoothing (ϵ = 0.3H and H = 0.03r). The
evolution of the dust ring in the model with stronger smooth-
ing (ϵ = 1.2H and H = 0.05r) deviates notably from the other
two models. The dust ring shrinks with time, although it is still
susceptible to the streaming instability.

With all these tests performed, we conclude that our method
of calculating the gravitational potential is closest to that pro-
posed in Baruteau & Masset (2008). We note here that the use
of the smoothing factor is often considered as a means of better
reproducing the three-dimensional potential of a self-gravitating
disk when projected on the two-dimensional grid. It is, however,
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Fig. C.3. Time evolution of the dust ring in models without and with ex-
plicit smoothing of the gravitational potential. The rows from top to bot-
tom show the dust ring in the fiducial model without explicit smoothing,
and in models with weaker and stronger smoothing. The black curves
outline the regions prone to develop the streaming instability according
to Eqs. (26) and (27).

not clear if using correction factors that modify the Newton’s
law of gravity can provide a universal solution to this problem.
We leave a more detailed consideration of our method for a fu-
ture focused study, which will compare realistic nonaxisymmet-
ric potentials on two- and three-dimensional grids.
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