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Abstract

When neural networks are confronted with unfamiliar data that deviate from their
training set, this signifies a domain shift. While these networks output predictions
on their inputs, they typically fail to account for their level of familiarity with these
novel observations. This challenge becomes even more pronounced in resource-
constrained settings, such as embedded systems or edge devices. To address
such challenges, we aim to recalibrate a neural network’s decision boundaries in
relation to its cognizance of the data it observes, introducing an approach we coin
as certainty distillation. While prevailing works navigate unsupervised domain
adaptation (UDA) with the goal of curtailing model entropy, they unintentionally
birth models that grapple with calibration inaccuracies - a dilemma we term the over-
certainty phenomenon. In this paper, we probe the drawbacks of this traditional
learning model. As a solution to the issue, we propose a UDA algorithm that not
only augments accuracy but also assures model calibration, all while maintaining
suitability for environments with limited computational resources.

1 Introduction

When encountering new environments, humans naturally adopt a cautious approach, assimilating
the novelty to guide their decision-making. This inherent ability to assess unfamiliarity and adjust
certainty has not been entirely emulated in artificial neural networks. Unlike humans who might
exhibit hesitation in unknown situations, many unsupervised domain adaptation (UDA) algorithms
lack an explicit mechanism to modulate certainty in response to the novelty or unfamiliarity of their
inputs.

Deep learning has never been a stranger to the challenges of uncertainty. Over the past few years, the
miscalibration problem of modern neural networks has gained substantial attention, as highlighted
by works such as [1], [2], [3], and [4]. However, there is an observed void in the landscape of
unsupervised domain adaptation techniques, with most of them neglecting model calibration during
adaptation processes. In this paper, we introduce the over-certainty phenomenon which harms model
calibration, and propose an algorithm that extends the notion of unfamiliarity - analogous to what
humans experience - to UDA.

A prevailing strategy among UDA algorithms is the minimization of entropy, either as an explicit
target or as an inherent by-product of their methodology. And while this might bolster accuracy
metrics, our research indicates a concerning trend: excessive entropy reduction can be detrimental to
model calibration. What makes this trend more problematic is that it occurs within the context of a
new domain, where epistemic uncertainty should typically be greater.

To further frame our discussion, UDA is used when a model, trained on a source domain, is presented
with the challenges of a different yet analogous target domain. The nuances between these domains,
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Figure 1: This chart shows adapting a MobileNet to the level 5-intensity contrast domain via three
modern UDA algorithms. Minimizing entropy is a common objective in recent work. However, this
can have consequences on model calibration.

commonly termed as domain shift, can introduce significant disruptions in model performance.
UDA, in its essence, aspires to adapt the insights harvested from the source domain and apply them
proficiently to the target domain, bypassing the need for labeled data in the latter. Thus, within the
context of this domain shift, it can be especially problematic to be too certain.

With the purpose of addressing these intertwined challenges, we introduce certainty distillation. This
UDA technique seeks to augment accuracy, improve model calibration, and maintain compatibility
to resource-constrained devices. By interweaving calibration into the core learning process, we
produce a UDA algorithm that jointly improves accuracy and epistemic uncertainty. Furthermore,
we introduce a hyperparameter of our algorithm which provides a trade-off between adaptation
performance and resource consumption. To summarize, our contributions are:

• The identification of the over-certainty phenomenon in modern UDA algorithms. We
provide thorough empirical evidence which corroborates our claims. Furthermore, we
provide plausible explanations as to why this happens.

• Certainty Distillation, a new UDA algorithm that achieves SOTA calibration in all of the
four datasets and SOTA accuracy uplifts in the majority of domain shifts. Additionally, our
algorithm provides favorable memory-consumption vs. performance trade-offs.

2 Related Work and State-Of-The-Arts

We divide our literature survey into three sections. The first section covers methodologies catered
towards updating a neural network on unlabeled data. For the sake of brevity, we will refer to
unlabeled data as “observations." This section gives an overview of the work done to improve
networks on the fly. We start by introducing earlier work, such as dictionary learning techniques, and
lead our way into recent developments. The second section covers how we measure neural network
calibration and certainty. The third section covers OOD detection.

2.1 Self-Taught Learning and UDA

The phrase “self-taught learning" was coined by [5]. In this work, the authors utilize observations
to find an optimal sparse representation of said observations. More precisely, the authors utilize
observations to find a set of basis vectors and corresponding activations. By doing this, the authors
create a methodology for finding a sparse representation of inputs. Upon finding the basis vectors,
the authors then solve for the activations using the training set. Finally, this sparse representation is
used to train their model in lieu of the ordinary training set.

Work in this field has extended to a variety of approaches. For example, [6] formulate a similar
methodology for utilizing the observations made from edge devices. Specifically, they propose a
methodology using SVMs to find so-called “domain invariant features.” These are features that
maximize the margin across various domains. Other examples include the use of pseudo-labeling
to exploit the existing model’s predictions as target labels [7]. Pseudolabeling can be thought of
under the guise of Knowledge distillation (KD) [8, 9]. KD is a transfer learning paradigm where a
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large neural network, known as the teacher, transfers “knowledge” to a smaller “student” network.
Succinctly, the student is trained to match the output of the teacher when given the same input as the
teacher [10]. Another technique is ensembling various source-specific networks [11, 12].

More recent advancements include TENT [13], EATA/ETA [14], and T3A [15]. The TENT algorithm
focuses on test-time entropy minimization. In other words, the algorithm works by using gradient
descent to minimize:

LTENT = −
∑
y∈C

fΘ(y|x) log fΘ(y|x) (1)

to update the model’s batch-normalization parameters. ETA2 advances on TENT by making sure that
observations are reliable and non-redundant before they are used for updating the batch-normalization
parameters. To do this, they compute a sample adaptive weight, S(x), for each observation before
minimizing entropy:

LETA = −S(x)
∑
y∈C

fΘ(y|x) log fΘ(y|x) (2)

Where S(x) is a function of the entropy of the model towards the batch sample (i.e., the reliability)
and the similarity to what it has seen before (i.e., non-redundancy).

The T3A algorithm [15] differs from the previous two as it focuses on updating the prototypes [16] of
each class during test time:

St
k =

{
St−1
k ∪ {fθ(x)}, if ŷ = yk

St−1
k , else.

(3)

ck =
1

|Sk|
∑
z∈Sk

z (4)

where ck represents the centroid of the prototypes of a class k. To inference, T3A computes:

argmaxyk
γc(Y = yk|fθ(x)) =

exp(z · ck)∑
j exp(z · cj)

(5)

where z is the output of the feature extractor.3 Unlike TENT or ETA, T3A does not use back
propagation. However, similar to ETA, this algorithm filters less reliable samples during equation
3 by only keeping the M most reliable (low-entropy) prototypes for each class. Therefore, the
algorithm stores C ·M prototypes, where C is the number of classes.

2.2 Neural Network Calibration

Neural network calibration has been of intense interest in recent years. The accuracy of the confidence
of a neural network is extremely important—as confidence values, reflecting the probability assigned
to a prediction, are used in a variety of domains. For example, the authors of BranchyNet [17]
utilize neural network confidence values to allow an early exit for faster inference, banking on high
confidence at intermediate layers. Conversely, [18] remarks on the lack of certainty calibration in
most deep networks, where certainty encompasses not just confidence but also the model’s overall
assurance in its predictions. In our work, we measure certainty as H−1 = (Entropy2)

−1. The most
remarkable observation they found was that most models are either too confident or not confident
enough, possibly due to overfitting during training.

The authors of [19] explore this concept further. They measure a model’s expected calibration error
(ECE) with respect to changes (rotation, translation, etc) in the test set. ECE is defined as:

2While the authors of EATA/ETA introduce two similar algorithms, for our paper, we focus on ETA.
3We define the feature extractor as all the layers of the backbone before the final dense layer. The final dense

layer, which has a size that is a function of the number of classes, is what we refer to as the classifier.
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Figure 2: A potential cause of the over-certainy phenomenon is that prior work aims at increasing
certainty towards observations despite the domain shift (corruption intensity) increasing. Our algo-
rithm, certainty distillation, achieves state-of-the-art accuracy and calibration on TinyImageNet-C.
The results are averaged over 15 unique domain shifts; variances across the domains are shown by
the error bars.

ECE =

N∑
i=1

|Bi|
N

|accuracy(Bi)− confidence(Bi)| (6)

They notice models calibrated on the validation set tend to be well calibrated on the test set, but are
not properly calibrated to shifted data. Recent work has investigated this phenomenon. [1] approaches
the issue through a method known as temperature scaling while [20] approaches this problem by
regularizing the logit norm. More classical solutions to this problem exist as well; [21] and [22]
consider label smoothing to address this issue.

2.3 Detecting Out of Distribution Data

There has been intense interest in recent years in the problem of determining if, and to what degree
an observation is similar to what a model was trained on. The authors of [23] observe that if an
autoencoder were trained to reconstruct inliers, it would have a greater reconstruction error when
reconstructing OOD data. [24] and [25] approach this issue by observing that the discriminator of
a GAN learns whether or not a given input is an inlier. Many other works delve into this domain;
OpenMax [26] analyzes mean activation vectors (MAV), and [26] investigates the optimal recognition
error. Other examples include [27, 28, 29, 30, 31]. Literature such as [32] aims at determining under
what conditions OOD detection is possible.

3 Proposed Approach

3.1 The Over-Certainty Phenomenon (OCP)

In this work, we present evidence for what we dub the over-certainty phenomenon (OCP) of con-
temporary UDA approaches. This phenomenon is that UDA algorithms tend to miscalibrate their
underlying backbone networks by causing their predictions to be excessively certain. Modern UDA
algorithms often strive to decrease test-time entropy. However, as shown in Fig. 1, this entropy
reduction may increase ECE because the models become overly certain on their predictions.

This phenomenon of existing algorithms causing models to become overly certain presents itself
across many other datasets. For example, in Table 1a, T3A reduces entropy by a factor of about 4 in
the Art, Clipart and Product domains. As before, it causes ECE to worsen compared to the baseline.
In addition to the results we show in this paper, we provide extensive evidence on this phenomenon
in the Appendix. We do not claim that UDA algorithms should always strive to increase backbone
uncertainty; poor calibration can also be caused by under-certainty. In fact, there exist cases where
reducing entropy compared to baseline improves calibration. However, we find that the resulting
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calibration is still sub-optimal. Despite these complexities, our investigation reveals a consistent
pattern: the over-certainty phenomenon causes sub-optimal model calibration, a significant concern
for safety, robustness, and reliability.

3.2 Towards Better Calibration in UDA: Discussion on SOTA Algorithms

We identify two plausible causes of the OCP, the first issue is that modern UDA algorithms aim at
minimizing backbone entropy too aggressively. In the case of TENT and ETA, their loss functions,
equations (1) and (2), explicitly aim at reducing a model’s entropy. Regarding TENT, there is no
regularization of this process. In the case of ETA, the algorithm uses a reliability score, S(x), which
aims at weighing observations differently but does not regularize the distributions of the pseudo-labels.
T3A does not explicitly reduce entropy as it does not use a loss function, but the authors claim this as
an effect of using their algorithm. In fact, they show in certain datasets T3A reduces entropy more
than TENT does.

Another issue is how existing methods evaluate observation reliability, the suitability of a model’s
prediction for use for adaptation. Previous works, ETA and T3A, tap into the power of model
certainty, using it to weigh the influence of observations. ETA assesses reliability by ensuring that
observations meet a certain entropy threshold; similarly, T3A uses entropy to sort the importance
of class prototypes. However, there are drawbacks in using entropy as a proxy for reliability in this
manner [20]. To illustrate our point, we give a toy example of how using entropy can lead to a
misleading conclusion:

Example 1 Suppose that we analyze the classifier while classifying between two classes with class
centroids, c0 and c1. This is done by taking the output of the feature extractor, f(x) = z, and
computing the dot product between the centroids and z.

g = [z · c0, z · c1] (7)

Consider gs and gt1, gt2 as vectors representing the inner products related to a specific training
sample and observation, respectively. Specifically, gs corresponds to the inner products with the
training sample where f(xs) = zs, and gt1, gt2 correspond to the inner products with the observation
where f(xt) = zt. For the sake of an example, let’s assume:

gs = [8.0, 7.29]; gt1 = [.9199, .00019]; gt2 = [6.1, 6.5];

If we take the softmax of these vectors and compute the entropy, we get Entropy2(SM(g)) for gs, gt1
and gt2, as 0.92 bits, 0.86 bits and 0.97 bits, respectively.

Notice that if we consider the entropy of these three vectors as a proxy for reliability, we would
consider xt1 to be more reliable than xt2, despite xt2 having considerably greater average inner
product with the class centroids. It is far more likely that the values of gt1 occurred due to spurious
feature correlations between xt1 and the class centroids. In fact, in the scenario above, xt1 would be
deemed to be more reliable than the genuine source domain observation xs. Furthermore, there is
no consideration of the source domain’s certainty. By only evaluating the target domain’s certainty
without juxtaposing it against the source domain certainty, there is a lack of reference in terms of
assessing the reliability of the observation.

3.3 The Certainty Distillation Algorithm

To ameliorate the over-certainty phenomenon, we introduce certainty distillation (CD) (Algorithm
2). The CD algorithm employs a novel adaptation technique to strategically manipulate model
certainty to the unknown to improve calibration. CD refines the model’s certainty levels, aligning
them more closely with its actual accuracy, by selectively adjusting the temperature parameter during
the distillation process. This is achieved without directly altering ground truth labels, instead focusing
on the tempering of logits through temperature adjustments. The algorithm employs a two-model
approach, using a teacher model to guide the calibration of a student model, with an emphasis on
preventing over-certainty and achieving better model calibration.

This process involves iterative adjustments of the student model’s predictions, guided by the compar-
ative analysis of entropy and logit norms, thereby fostering a more accurate and reliable predictive
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model. The inputs Nte, Ns, H0, and X correspond with the teacher model, the student model, the
student’s average entropy on the training set, and unlabeled observations, respectively. An important
detail of our methodology is the student and teacher are two copies of the same model. The H0

parameter is the backbone’s average entropy on the training set. It is used as a reference point; the
idea is to compare the model’s certainty on X with respect to the certainty of what it was trained
on. The input κ is the median l2 norm of the training-set logits; this gives us a context in terms of
logit norms. The Compute_T (Algorithm 1) returns a temperature for each observation, Tvec, with
respect to observation entropy and relative logit-norm. Parameters Tmin, Tmax, and Hmax are used
to scale the resulting temperatures; for our experiments we use 1.2, 5.0, and log2(C) respectively
unless stated otherwise. Lastly, the λ parameter is the learning rate for SGD, which we set to 0.001
for all experiments.

Algorithm 1 Compute_τ
Input: Nte(X), H0, HmaxTmin, Tmax, κ
Output: Tvec

1: zlogits = Nte(X)
2: Hvec = Entropy2(zlogits) {entropy for each sample}
3: scaled_Hvec = sigmoid(Hvec −H0)
4: Init. Tvec

5: for ei ∈ scaled_Hvec do
6: ti = Tmin +

(
ei

Hmax

)
· (Tmax − Tmin)

7: τi = [1 + 2
5
(1.5− 1.5 · sigmoid( |zlogits|2

κ
))] · ti

8: Store Tvec ← τi
9: end for

10: return Tvec

To optimize memory efficiency, we freeze a large subset, β, of the weights of our student so that we
only have to store the weights of the teacher network plus the weights which we choose not to freeze.
The Freeze_b_Layers(Ns, β) function works by freezing the parameters of Ns. For notational
purposes, we define β as the percentage of the backbone model that is frozen. We found empirically
that freezing last (i.e., the layers closest to the output) b layers works the best. We select b so that
β percent of our backbone model is frozen. Therefore the b value will vary across backbones for a
target β value. In other words, to select b, one should compute the number of parameters in each
layer and select b layers such that target percentage of network parameters, β is frozen.

Figure 3: Memory consumption trade-off. Results were produced by varying the β and M parameters
of CD and T3A and allowing the models to adapt using EfficientNet. We found domain-to-domain
σmax = 52.07MB for the memory consumption of T3A with respect to M .

An interesting interpretation as to how our model improves accuracy is through the works of [33]
and [34]. Although the former’s work concerns itself in the semi-supervised learning setting, we
found their observations to be relevant. That is, they introduce the noisy student, a network that has
been noised by dropout and stochastic-depth. They find that their noisy student can even learn to
outperform the teacher which initially produced the pseudo-labels. For the latter work, they establish
that label smoothing mitigates label noise, which is a desirable property with respect to unsupervised
adaptation. Specifically, they find that label smoothing can be thought of as a regularizer. This
motivates us to smooth more aggressively when we notice that an observation might be less reliable.
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Algorithm 2 Certainty_Distillation
Input: Nte, Ns, H0, X, κ
Parameter: Tmin, Tmax, Hmax, β, λ
Output: N+

s

1: Ns = Freeze_b_Layers(Ns, β)
2: Tvec = Compute_τ(Nte(X), H0, κ, Hmax, Tmin, Tmax)
3: Tavg = avg(Tvec)
4: Init loss
5: for xi ∈ X and τi ∈ Tvec do
6: ssi = SoftMaxT=1(Ns(xi))
7: sti = SoftMaxT=τi(Nt(xi))
8: lCD = T 2

avg ·BCE(ssi, sti)
9: Store loss← lCD

10: end for
11: LCD = avg(loss)
12: N ′

s ← θs − λ∇LCD(θs)
13: N+

s = Temperature_Scale(N′s, Tavg)
14: return N+

s

Algorithm Art Clipart Product Real World

No Adaptation 0.9902 0.9992 0.5663 0.0113

CD (ours) 2.2642 2.3637 1.5137 0.0892

T3A 0.2527 0.2638 0.1424 0.0837

ETA 0.7716 0.6305 0.4086 0.0118

TENT 0.7820 0.6328 0.4164 0.0077

(a) Shannon Entropy on Home Office.

Algorithm Art Clipart Product Real World

No Adaptation 0.3133 0.2818 0.1940 0.0024

CD (ours) 0.1107 0.0715 0.0599 0.0072

T3A 0.4330 0.3666 0.2245 0.0427

ETA 0.3341 0.3219 0.2136 0.0023

TENT 0.3281 0.3049 0.2065 0.0025

(b) ECE on Home Office (lower is better).

Table 1: Our investigation reveals a pattern of existing UDA algorithms achieving sub-optimal
calibration. We suspect this is caused by excessive entropy minimization. Experiment done using the
EfficientNetβ=0% backbone on the Home Office dataset. Note that ECE values less than 0.01 are
considered already well calibrated [1].

The τ parameter returned by Algorithm 1 plays a pivotal role, we name it the certainty regularizer.
It regulates the “sharpness" of predicted probabilities and smoothens the predictions produced by
the teacher. By preventing the model from becoming inappropriately certain in its predictions, we
produce a model that is better calibrated — its prediction certainty more closely aligns with its true
accuracy. In CD, we do not label smooth directly, but instead adjust the temperature parameter of our
teacher during the distillation process. To show how CD regularizes observations appropriately, we
continue from example 1:

Example 2 Given the same gt1, gt2 and gs from example 1, we input these into our Compute_τ
algorithm. We set H0 = H(gs), κ = |gs|2, Tmin = 1.2 and Tmax = 4.0. Our algorithm first
computes a scaled entropy, scaledHg with respect to the source domain entropy for gs, gt1 and gt2,
as 0.50, 0.49, and 0.27, respectively.

In step 6 of Compute_τ , this entropy is transformed into a preliminary regularizer, ti. Afterwards,
step 7 adjusts ti by considering logit norm with respect to the source-domain logit norm.

τgs = 2.39; τgt2 = 2.43; τgt1 = 2.57

Notice that, unlike purely entropy-based methods, the Compute_τ algorithm correctly assigns
greater regularization to the less reliable samples. Namely, step 7 ensures that samples that are
low-entropy due to degenerate reasons are properly regularized by considering logit norm. Further-
more, unique from existing algorithms, our regularizer directly addresses model certainty. The impact
of Compute_τ is analyzed in Fig. 4.
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4 Experiments

4.1 Experimental Setting

In order to evaluate CD, we conduct a series of experiments using three different backbone models
across five datasets. Our primary evaluation metrics will be model accuracy and ECEbins=15 on the
observations, allowing us to examine both the predictive performance and the calibration quality of
the models. By using varied domains and different backbone architectures, we aim to demonstrate
the robustness and adaptability of our algorithm in handling diverse and challenging unsupervised
domain adaptation scenarios. All experiments are run four times using random_seed = 0, 1, 2, 3,
respectively. Run-to-run variances are very low; the ones which we do not show in the main paper
are reported in the appendix. Note that the β parameter presented is only relevant to CD; all other
algorithms used the vanilla version of the respective backbones.

4.2 Datasets

The following publicly available UDA datasets are used in our experiments; we selected these because
they are commonly used in existing works and provide a variety of domain shifts. In total, we evaluate
our algorithm over 26 domain shifts. Furthermore, 15 of our domain shifts have 5 levels of corruption
attributed to them. Dataset preprocessing steps are written in more detail in the appendix. For
some datasets, we tested using the “leave one out” (LOO) paradigm; for example, in PACS, to test
generalization to pictures, we first trained our backbone networks on art, cartoon, sketch before
adapting. For TIN-C, we first trained on a source/corruption-free domain and adapted to some domain
shift.

1. PACS [35] has 4 domains: pictures, art, cartoon, sketch with 7 classes. Tested using LOO.

2. HomeOffice [36] has 4 domains: art, clipart, product, real with 65 classes. Tested using
LOO.

3. Digits is a combination of 3 “numbers” datasets: USPS [37], MNIST [38], and SVHN [39].
There are 10 classes. Tested using LOO by training on the source domains’ training sets and
adapting to target domain’s test set. For this experiment, we set Tmin and Tmax parameters
to 1.05 and 4.0 respectively.

4. TinyImageNet-C (TIN-C) [40], has 15 domains with 200 classes. Backbones are trained on
corruption-free (source) training set, adapted to and evaluated on corrupted (target) domains.
For each target domain, there are 5 tiers of corruption.

4.3 Back Bones and Training Details

We test all but the Digits dataset on two popular low-resource classifiers, EfficientNetB0 [41] and
MobileNet [42] pre-trained for ImageNet [43]. We flatten the output of both networks and add a final
dense layer with an output shape equivalent to the number of classes.

We evaluate the Digits dataset using SmallCNN, a custom lightweight network tailored to handle
grayscale images, serving as a representative of more compact and straightforward architectures for
less complex datasets. SmallCNN encompasses a variety of essential building blocks, including
2D convolutional layers equipped with different filters, batch normalization, ReLU activation, and
max-pooling layers. The network also integrates dense layers and a final classifier layer to make
predictions for the given number of classes. The specific details and orderings of the layers in
SmallCNN are elaborated on in the appendix. Note that all three models use batch normalization
layers.

4.4 State-Of-The-Art Approaches for Comparison

We compare against TENT, T3A and ETA, the three most recent UDA algorithms, and also a baseline
with no adaptation, (No Adapt). For ETA, we set E_0 = 0.4 · ln (C), as this was their recommended
value, and ϵ = {0.6, 0.1, 0.4, 0.125} for each enumerated dataset, respectively. These ϵ values were
empirically chosen to help their performance. For T3A, we set the number of supports to retain,
M = ∞, as this provides the lowest calibration error. We do a single iteration of adaptation for
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Table 2: Average accuracy, ECE, and entropy on the Digits dataset using the SmallCNNβ=0%

backbone. Domain-to-domain σ2
max = [0.22, 0.18, 0.20] for accuracy, ECE and entropy, respectively

Algorithm Accuracy ECE Entropy

No Adaptation 0.5894 0.3014 0.4386

CD (ours) 0.6475 0.1685 1.2195

T3A 0.6247 0.2713 1.8729

ETA 0.6463 0.2698 0.3561

TENT 0.6445 0.2617 0.3980

all algorithms unless stated otherwise. We use a batchsize = 50 for CD and use the authors’
recommended batch sizes for the rest.

4.5 Results

We present our accuracy and ECE measurements on the four aforementioned datasets. To show
evidence of the over-certainty phenomenon, we also report prediction entropy. More comprehensive
figures can be found in the appendix. We also investigate the impact of parameter β, the amount of
the student frozen for the CD algorithm, and compare it to the impact of parameter M of the T3A
algorithm in Fig. 3. Doing this allows us to investigate the trade-offs between domain adaptability
and resource consumption. Furthermore, we perform an ablation study on our algorithm. We measure
the impact of our Compute_τ function, which produces our certainty regularizer τ .

Figure 4: Our ablation study highlights the effectiveness of the Computeτ algorithm compared to a
fixed τ optimized for minimal ECE on the source-domain training set. The rightmost figure displays
the τ values generated by Compute_τ , with error bars indicating domain-to-domain variance.

4.6 CD Reduces Calibration Error

Due to our algorithm addressing the over-certainty phenomenon, we significantly improve calibration
performance; CD had the lowest average ECE in all tested datasets and in nearly all individual
domain shifts. We recognize that reducing entropy did improve calibration compared to baseline in
some cases in Tables 2 and 3, but the resulting calibration was still sub-optimal. Fig 4 empirically
validates our finding that an adaptive certainty regularizer aids in reducing ECE.

4.7 CD Augments Accuracy

In addition to strong calibration performance, CD provides consistent accuracy uplifts while not
necessitating any transformations on observations. According to Fig. 2 our algorithm gives significant
accuracy improvements on a variety of domain shifts without requiring any alterations to initial
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Table 3: Average accuracy, ECE, and entropy on the PACS dataset using the MobiletNetβ=0%

backbone. Domain-to-domain σ2
max = [0.01, 0.02, 0.12] for accuracy, ECE and entropy respectively.

Algorithm Accuracy ECE Entropy

No Adaptation 0.8410 0.1110 0.1768

CD (ours) 0.8482 0.0754 0.3660

T3A 0.8567 0.1160 0.0960

ETA 0.8541 0.1011 0.1692

TENT 0.8483 0.1079 0.1618

source-domain training. Across nearly all domain shifts, backbone models, and corruption intensities
within TIN-C, CD has the highest accuracy and lowest ECE. Furthermore, it performs competitively
against the existing state of the art in the remaining datasets while addressing calibration.

4.8 CD is Suitable for Low Resource Scenarios

Our experiments with SmallCNN in Table 2 show our algorithm’s relevance for low-resource scenarios.
We achieve strong accuracy while maintaining low calibration error. In our experiments using
EfficientNet, we were able to freeze the majority of the parameters of our backbone while still
achieving significant performance improvements in both accuracy and ECE. Furthermore, our
methodology does not require computing distance metrics between our source domain and target
domain - which would increase computational complexity. The model weights which are trainable
are what predominantly consume memory for our algorithm. Therefore, the memory overhead of CD,
PCD, is controlled by β and is at most the trainable parameters of the backbone model. The memory
overhead of T3A, PT3A, is a function of their hyperparameter M and the size of the final classifier.
More formally, if we define fω, cω as the number of parameters in the feature extractor and classifier
respectively:

PT3A = M · cω (8)
PCD = (1− β) · (fω + cω) (9)

PETA = PTENT = NumBNParams (10)

In Fig. 3 we show that our method is memory efficient while maintaining competitive calibration and
accuracy. In fact, we can achieve significant performance uplifts using ≤ 1MB of extra memory.

5 Discussion

In this work, we identify the over-certainty phenomenon of state-of-the-art UDA methodologies
which cause harm to model calibration. To ameliorate this issue, we introduce a certainty regularizer,
τ , which adapts the sharpness of self-labels and persuades overall model entropy. The resulting
algorithm, CD, jointly improves model accuracy and reduces calibration error while remaining
memory efficient. Another merit of our methodology is its compatibility with the majority of
backbone networks. CD does not require batch normalization layers like TENT and ETA do. This
model agnostic approach permits greater freedom when choosing a suitable backbone. Furthermore,
CD is compatible with existing prototypical learning approaches such as T3A and the work done by
[16]. In the interest of reproducibility, we provide the code for our algorithm in the supplementary
materials.
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A Appendix

A.1 Experimental Setup Details

We use TensorFlow 2.9 [44] with Nvidia CUDNN version 11.3 on an RTX 3080 16GB laptop GPU
with 32GB of system memory.

1. PACS [35] has 4 domains: pictures, art, cartoon, sketch with 7 classes. All images are
resized to (227, 227, 3) and scaled between [0, 255]. Tested using LOO.

2. HomeOffice [36] has 4 domains: art, clipart, product, real with 65 classes. All images are
resized to (128, 128, 3) and scaled between [0, 255]. Tested using LOO.

3. Digits is a combination of 3 “numbers” datasets: USPS [37], MNIST [38], and SVHN [39].
The images are resized to (32, 32, 1) and scaled between [0, 255]. There are 10 classes.
Tested using LOO by training on the source domains’ training sets and adapting to target
domain’s test set. For this experiment, we set Tmin and Tmax parameters to 1.05 and 4.0
respectively.

4. TinyImageNet-C (TIN-C) [40], has 15 domains with 200 classes. All images are resized to
(256, 256, 3) and scaled between [0, 255]. Backbones are trained on corruption-free (source)
training set, adapted to and evaluated on corrupted (target) domains. For each target domain,
there are 5 tiers of corruption.

We do most initial training on the source domain using RMS_Prop(lr = 2e− 4) [45] to minimize
cross-entropy loss for epochs = {15, 15, 5, 25} for each enumerated dataset, respectively. Small-
CNN is compiled and initially trained with the Adam optimizer [46] in lieu of RMSProp.

Note that MobileNet expects inputs to be prepossessed in a unique manner. We use Tensorflow’s
off-the-shelf pre-processing layer for MobileNet at the input.

A.2 Results using EffecientNetβ=98% on TinyImageNet-C
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A.3 Results using MobileNetβ=0% on TinyImageNet-C
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A.4 Other Experiments

Algorithm Accuracy ECE Entropy
No Adaptation 0.6646 0.1979 0.6418

CDβ=98% 0.6686 0.0692 1.5162
CDβ=0% 0.6720 0.0622 1.5576

T3A 0.6863 0.2667 0.1857
ETA 0.6778 0.2180 0.4556

TENT 0.6837 0.2105 0.4597
Table 4: Average accuracy, ECE and entropy on the Home Office dataset using the EfficientNet
backbone. Domain-to-domain σ2

max = [0.06, 0.03, 1.11] for accuracy, ECE and entropy respectively.

Algorithm Accuracy ECE Entropy
No Adaptation 0.5669 0.2424 0.8235

CD 0.5748 0.06378 1.8699
T3A 0.6169 0.3351 0.1819
ETA 0.5776 0.2395 0.7928

TENT 0.5791 0.2412 0.7761
Table 5: Average accuracy, ECE and entropy on the Home Office dataset using the MobileNetβ=0%

backbone. Domain-to-domain σ2
max = [0.01, 0.09, 1.11] for accuracy, ECE and entropy respectively.

Algorithm Accuracy ECE Entropy
No Adaptation 0.8730 0.1054 0.0812

CD (ours) 0.8794 0.0789 0.1565
T3A 0.8973 0.0844 0.0645
ETA 0.8827 0.0975 0.0723

TENT 0.8795 0.1007 0.0719
Table 6: Average accuracy, ECE and entropy on the PACS dataset using the EfficientNetβ=98%

backbone. Domain-to-domain σ2
max = [0.06, 0.03, 0.22] for accuracy, ECE and entropy respectively.

A.5 Run-to-Run Variances

• For the Digits dataset: σ2
max = [4.39e− 05, 5.51e− 04, 3.85e− 03] for accuracy, ECE and

entropy, respectively across all trials using SmallCNN.
• For Home Office using using the EffecientNetβ=0% backbone: and σ2

max = [0.05, 1.12e−
5, 1.66e− 5] for entropy and ECE respectively.

• For Home Office using the EffecientNetβ=98% backbone: σ2
max = [1.18e − 7, 1.46e −

5, 1.61e− 7] for accuracy, ECE and entropy across all trials.
• For Home Office using the MobileNetβ=0% backbone: σ2

max = [5.13e−5, 3.81e−5, 9.54e−
7] for accuracy, ECE and entropy across all trials.

• For the PACS dataset using EfficientNetβ=98% backbone: σ2
max = [1.21e − 05, 1.02e −

13, 2.09e− 03] for accuracy, ECE and entropy, respectively across all trials.
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A.6 SmallCNN

Figure 5: SmallCNN’s architecture has 319,498 parameters.
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