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Abstract

This paper reviews the AIS 2024 Video Quality Assess-
ment (VQA) Challenge, focused on User-Generated Con-
tent (UGC). The aim of this challenge is to gather deep
learning-based methods capable of estimating the percep-
tual quality of UGC videos. The user-generated videos from
the YouTube UGC Dataset include diverse content (sports,
games, lyrics, anime, etc.), quality and resolutions. The
proposed methods must process 30 FHD frames under 1
second. In the challenge, a total of 102 participants regis-
tered, and 15 submitted code and models. The performance
of the top-5 submissions is reviewed and provided here as
a survey of diverse deep models for efficient video quality
assessment of user-generated content.

1. Introduction

Past two decades have seen a massive increase in popularity
and demand for online video streaming applications such as
Netflix and YouTube [24]. This has been made possible due
to improvements in network capacity, improved end-user
devices, and increased computational efficiency, allowing
users to stream and watch content for hours over the internet
everyday [25]. In order to optimize the end-user experience
and provide them with an improved quality of experience,
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Figure 1. Samples from the videos in the YT-UGC Dataset [33].

the service provider must measure the perceptual quality of
the videos being delivered to them.

Image quality assessment (IQA) or video quality assess-
ment (VQA) can be assessed either subjectively or objec-
tively. In subjective quality assessments, the users directly
assess the image/video quality and provide a rating for
that [8, 10, 23, 33]. However, such assessment processes
are time consuming, costly, and often not realistic in real-
world applications. Objective quality models help bridge
this gap by using mathematical/statistical models to predict
the quality as would be subjectively judged by human ob-
servers [19]. In recent years, deep learning techniques have
enabled us to learn objective quality metrics from visual
content and the corresponding ratings. Depending on the
availability of a reference, QA models can broadly be clas-
sified into Full-Reference and No-Reference (Blind) [1].

This challenge deals with the design of deep learning-
based methods for blind video quality metrics, targeting
user-generated content. Given a short video of an arbitrary
resolution, the method will predict the overall quality.

In this context, user-generated content refers to content
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that is captured by users using consumer-grade devices,
such as (primarily) smartphones, tablets, GoPros, etc. (see
Fig. 1), and often shared via platforms such as Instagram,
YouTube, TikTok, etc [23, 33, 34]. Unlike professionally
generated content, they are usually captured under very
challenging conditions, and hence, these can suffer from
many artifacts (camera capture impairments, lightning con-
ditions, formats (resolution, fps), etc.).

Recent works focus on designing NR models using deep
learning approaches on large-scale datasets to tackle this
problem [34, 36, 39]. Deep learning methods are better
able to capture and model various factors such as content,
distortion, compression, and blur artifacts while also taking
into account the temporal aspect for video quality predic-
tion. However, these demand large amounts of annotated
data, this has led to the creation of larger, more realistic
datasets such as KonVid-1k [10], YouTube YT-UGC [33],
and more recently, KonViD-150k VQA Database [7].

2. UGC Video Quality Challenge
2.1. Dataset

The challenge uses the YouTube User-Generated-Content
(YT-UGC) dataset [33] that consists of around 1000 video
clips with a duration of 20 seconds.

The dataset includes several perceptual artifacts such as
blockiness, blur, banding, noise, and jerkiness. In addition,
the dataset has a wide range of content types with 15 dis-
tinct categories, including animation, gaming, cover songs,
music videos, and vlogs, among others.

Moreover, a wide range of resolutions is considered in
the dataset, including 360p, 480p, 720p, 1080p, and 2160p.

The clips are annotated with subjective ratings in the 5-
point categorical Absolute Rating (ACR) Scale. All videos
were rated by more than 100 subjects using crowdsourc-
ing. The Mean Opinion Score (MOS) is obtained on a rat-
ing scale of 1 to 5, where 1 is the lowest perceived quality
(bad) and 5 is the highest perceived quality (excellent).

For this AIS UGC Video Quality Assessment Challenge,
the dataset is split into two sets, training and test. The
larger portion of the dataset consisting of 900 clips is used
for training, while the test set includes 126 clips, selected
carefully considering a balanced range of resolution, con-
tent type, and distortion. We show samples in Fig. 1.

2.2. Model Design Rules

• The VQA models should be able to process FHD and HD
clips of 30 frames under 1 second. Frame sampling is
allowed, as long as the runtime per frame is still ≤ 33 ms.
This was measured on an NVIDIA A100 GPU (or similar
modern GPUs e.g. RTX 3090 Ti).

• We use standard correlation metrics of model scores with
subjective (MOS) ratings (SRCC, PCC, KCC).

• Participants were allowed to use any pre-trained and ex-
isting solutions.

• The organizers validate the efficiency and reproducibility
of the methods.

3. Challenge Results

3.1. Baselines

We consider two Baseline models for benchmarking which
are discussed next.

NDNetGaming [31] is a CNN-based quality metric that
is designed to assess gaming video quality. NDNetGaming
is designed to predict quality in an interpretable range of
one to five, where one is the lowest quality, and five is the
highest quality score. NDNetGaming uses DenseNet-121
as the backbone and is pre-trained on a large-scale gam-
ing video dataset annotated with VMAF and fine-tuned by
a public gaming video dataset. Since NDNetGaming was
tailored for images, we used a sampling rate of 5 frames per
second and averaged the resultant quality estimation.

We additionally used MobileNet v2 as the second base-
line model, which allows us to compare the efficiency
of proposed models with a lightweight CNN image en-
coder architecture. We first process each frame using Mo-
bileNet [22]. Next, we average the encoded features for all
the frames obtaining a single deep encoded representation,
and finally, we predict the quality using a single linear layer.
Thus, no frame sampling is applied to the MobileNet result.
This represents a naive solution for benchmarking purposes.
The baselines are highlighted in blue in Tab. 1.

3.2. Architectures and main ideas

1. Frame Sampling: Given a clip of N frames, most meth-
ods apply temporal (down)sampling i.e. process 1 (or 2)
frames of every 30. This allows to increase efficiency
without harming performance. Note that this is the rea-
son why we report clip-based metrics instead of frame-
based metrics. For instance, a model can virtually pro-
cess a 30-frame clip in 100 ms, yet it does not imply a
330 FPS performance.

2. Spatial Downsampling: Besides pooling in the tempo-
ral domain, most approaches resize the frames to lower
resolutions (e.g. 512px) to reduce memory requirements
and operations.

3. Ensembles: The best solutions such as COVER [9]
and TVQE use multiple image processing models to ex-
tract diverse features [34]. Each model is trained to fo-
cus on predicting specific properties such as aesthetics
or compression. Although combining multiple models
might increase training and inference complexity, this
approach provides the best performance while being sur-
prisingly efficient.



Team Method SROCC KROCC PLCC # Params. [M] Runtime [ms] MACs [G]
30-FHD 60-HD 30-FHD 60-HD

FudanVIP COVER [9] 0.914 0.741 0.912 61.02 79.37 78.66 NA NA
TVQE TVQE 0.915 0.741 0.918 8254 299.18 294.93 1127.35 1263.53
Q-Align Q-Align [40] 0.908 0.734 0.912 8198 526.55 429.4 991.17 991.17
SJTU MMLab SimpleVQA+ [27] 0.906 0.728 0.911 207.7 222.96 394.51 140.17 280.35
AVT AVT 0.877 0.690 0.878 168 90.57 81.90 NA NA
BVI-VQA FasterVQA [38] 0.817 0.638 0.751 28.13 52.49 55.87 NA NA

Baseline NDNet [31] 0.718 0.502 0.715 6.95 52.95 24.21 597.47 265.99
Baseline MobNet NA NA NA 2.22 157.74 138.65 397.31 353.60

Table 1. AIS 2024 UGC Video Quality Assessment Challenge Benchmark. We report runtime and MACs operations for a complete
30-frame FHD clip, and 60-frame HD clip. “NA” indicates the results are not available or could not be calculated.

Method SROCC KROCC PLCC RMSE

BRISQUE [17] 0.4398 0.2934 0.4525 0.5608
GM-LOG [41] 0.3501 0.2336 0.3424 0.5904

VIDEVAL [28] 0.7946 0.5959 0.7691 0.4024
RAPIQUE [29] 0.7483 0.5556 0.7482 0.4177

FAVER [45] 0.7897 0.5832 0.7898 0.3861
NIQE [18] 0.2479 0.1689 0.3146 0.5976

HIGRADE [13] 0.7639 0.5524 0.7507 0.4156
FRIQUEE [5] 0.7182 0.5268 0.7091 0.4439
CORNIA [42] 0.5988 0.4113 0.5905 0.5064
TLVQM [12] 0.6690 0.4833 0.6412 0.4831

CLIPIQA+ [32] 0.5374 0.3734 0.5801 0.5128
FasterVQA [38] 0.5345 0.3716 0.5438 0.5284
FASTVQA [37] 0.6493 0.4676 0.6792 0.4621

DOVER [39] 0.7359 0.5391 0.7653 0.4053
FasterVQA* 0.6937 0.4965 0.6909 0.4552
FASTVQA* 0.8617 0.6716 0.8669 0.3139

DOVER* 0.8761 0.6865 0.8753 0.3144

FasterVQA* (Sec. 4.6) 0.8170 0.6380 0.7510 -
AVT (Sec. 4.5) 0.8775 0.6909 0.8785 -

SimpleVQA+ [27] 0.9060 0.7280 0.9110 -
Q-Align [40] 0.9080 0.7340 0.9120 -

TVQE (Sec. 4.2) 0.9150 0.7410 0.9182 -
COVER [9] 0.9143 0.7413 0.9122 0.2519

Table 2. Extended comparison with classical and previous state-
of-the-art methods. We report some numbers from [9]. “*” indi-
cates models were fine-tuned using the AIS Challenge dataset.

3.3. Efficiency Study

In Tab. 1 we present the summary of quantitative results
and efficiency metrics for each method. The efficiency met-
rics are calculated using: https://github.com/mv-
lab/VideoAI-Speedrun. The runtime is the average
of 10 independent runs (after GPU warmup).

TVQE and Q-Align [40] use novel LLM-based VQA ap-
proaches, thus the number of parameters is considerably
high (8 Billion). These approaches leverage video descrip-
tions and visual information to provide accurate ratings. Al-
though the number of parameters and operations is consid-

Team Method # Params. Runtime MACs
[M] [ms] [G]

FudanVIP COVER [9] 61.02 79.37 NA
TVQE TVQE 8254 705.30 1127.35
Q-Align Q-Align [40] 8198 1707.06 991.17
SJTU MMLab SimpleVQA+ [27] 207.7 245.512 140.175

Baseline NDNet [31] 6.95 209.43 479.06
Baseline MobNet 2.22 347.51 1585.32

Table 3. High-Resolution Efficiency study using as input a clip
of 30 frames of 4K resolution 3840×2160. We report the runtime
and MACs for the complete clip of 30 frames.

erably high, the models can process 30 frames under a sec-
ond, even at high resolution (FHD, 4K).

As we show in Tab. 1 and Tab. 3, all the proposed meth-
ods can process 30 FHD frames in under 1 second, and
60 HD frames in under 0.5 seconds. Moreover, most ap-
proaches can process 30 4K frames under 1 second.

Discussion on frame-wise metrics We report clip-based
metrics. Since each method uses different frame sampling
techniques, it is difficult to calculate FPS or frame-wise
metrics. We instead focus on 30-frame and 60-frame clips.

We can appreciate in Tab. 1 that COVER [9], TVQE and
Q-Align [40] have almost constant runtime (or operations)
independently of the input resolution or number of frames.
The reason is the constant temporal-spatial downsampling
on the input video i.e. FHD, HD, and 4K frames are always
downsampled to the same resolution and fed into the model.

Related Challenges This challenge is one of the AIS
2024 Workshop associated challenges on: Event-based
Eye-Tracking [35], Video Quality Assessment of user-
generated content [3], Real-time compressed image super-
resolution [2], Mobile Video SR, and Depth Upscaling.
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4. Challenge Methods and Teams
In the following sections we describe the best challenge so-
lutions. Note that the method descriptions were provided by
each team as their contribution to this survey.

4.1. A Comprehensive Video Quality Evaluator

Team FudanVIP

Chenlong He 1, Qi Zheng 1, Ruoxi Zhu 1, Zhengzhong Tu 2

1 State Key Laboratory of Integrated Chips and Systems,
Fudan University, China

2 University of Texas at Austin, America

Contact: zhengzhong.tu@utexas.edu

The team introduces COVER [9], a comprehensive video
quality evaluator, a novel framework designed to evaluate
video quality holistically — from a technical, aesthetic, and
semantic perspective. Specifically, COVER leverages three
parallel branches: (1) a Swin Transformer [15] backbone
implemented on spatially sampled crops to predict techni-
cal quality; (2) a ConvNet [16] employed on subsampled
frames to derive aesthetic quality; (3) a CLIP[21] image en-
coder executed on resized frames to obtain semantic qual-
ity. We further propose a simplified cross-gating block to
interact with the three branches before feeding into the pre-
dicting head. The final quality score is attained using a
weighted sum of each sub-score, making a multi-faceted,
explainable metric. Our experimental results demonstrate
that COVER exceeds the state-of-the-art models in multiple
UGC video quality datasets while it is capable of processing
1080p videos in real-time.

4.1.1 Method

The network architecture of our proposed COmprehensive
Video quality EvaluatoR (COVER) is illustrated in Fig.2.
This network accepts videos that have been subjected to
temporal-spatial sampling as its input. Its architecture is di-
vided into three branches: a CLIP-based semantic branch,
an aesthetic branch and a technical branch, each consisting
of a feature extraction module and a quality regression mod-
ule. Notably, aesthetic and technical branches additionally
incorporate a feature fusion module to integrate features
from the semantic branch. The input video is processed
through these branches to generate three scores, reflecting
the video’s quality across the respective dimensions. The
final score is the average of scores from three dimensions.

4.1.2 Temporal and Spatial Sampling

As shown in Fig. 2, before serving as input to each branch’s
feature extraction module, the input videos first undergo

temporal-spatio sampling. To enhance the real-time perfor-
mance of the network, temporal sampling is designed to be
very sparse. In the temporal sampling process for the input
video, the semantic branch samples one frame out of ev-
ery thirty frames, while the aesthetic and technical branches
sample two frames out of every thirty frames.

For spatial sampling, the semantic and aesthetic
branches resize the video resolution to 512x512 and
224x224, respectively. The technical branch, however, em-
ploys a fragment operation, where a frame from the video
is divided into 7x7 sub-blocks. These sub-blocks are then
randomly sampled and reassembled into a frame with a res-
olution of 224x224.

4.1.3 Feature Extraction

Several studies have demonstrated the effectiveness of
CLIP [21], a foundation model, in both IQA [32] and
VQA [39] tasks. By extracting semantic information from
images and videos, CLIP can accurately assess their sub-
jective quality. However, the aforementioned studies did
not address the more challenging task of UGC-VQA. This
motivates us to employ the Image Encoder of CLIP as the
backbone of the feature extraction module for the semantic
branch. The pretrained weights (ViT-L/14) on OpenAI is
imported and frozen.

For the technical branch, the Swin Transformer [15] is
utilized as the backbone of the feature extraction module. A
CNN network, specifically the ConvNet [16], is used as the
backbone of the feature extraction module for the aesthetic
branch. These two branches are initialized with weights
pretrained on the LSVQ [44] from DOVER [39], and it will
be fine-tuned during subsequent training.

4.1.4 Feature Fusion

CLIP’s image encoder is endowed with robust capabili-
ties in representing image semantics by its numerous train-
ing samples. Thus, the abundant information contained
in CLIP’s output features may inherently correlate with
the features of the other branches. To fully harness the
representative features generated by the semantic branch
and let it modulate the other branches, we propose a fea-
ture fusion block. More specifically, we modify the cross-
gating block [30], and name it Simple Cross-Gating Block
(SCGB), for feature fusion between the semantic-aesthetic
and semantic-technical feature pairs. As illustrated in
Fig. 2, The fused features from the aesthetic and technical
branches, along with the features from the semantic branch,
are then fed into their respective quality regression modules.

The detailed architecture of SCGB is depicted in Fig. 2.
The input of the block are two tensors X and Y . X is the
feature from the technical or aethetic branch, while Y is

zhengzhong.tu@utexas.edu
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Figure 2. The architecture of our proposed COmprehensive Video quality EvaluatoR (COVER). COVER processes a video clip in three
parallel branches: 1) a semantic branch that extracts high-level object-semantics-related information using a pre-trained CLIP image
Encoder; 2) an aesthetic branch that leverages a ConvNet run on subsampled image thumbnails to analyze their looking; 3) a technical
branch utilizing Swin Transformer to execute on fragments. We also devise a simplified cross-gating block (SCGB) to fuse multi-branch
features together, yielding the final quality score.

from the CLIP-based semantic branch. After the input chan-
nel projections are applied, the projected CLIP features are
fed to a gating pathway to yield the gating weights, which
are then multiplied by the features from the other branch.
Finally, the output projection and residual connection are
applied.

4.1.5 Quality Regression

The features from each branch are individually fed into
a multi-layer perceptron (MLP) Header to predict quality
scores, i.e., QS , QA, and QT , as shown in Fig. 2, and the
final predicted quality, QP = (QS + QA + QT )/3. To
enforce that each branch can independently capture the fea-
tures of its focused dimension and accurately predict video
quality, we adopted the limited view biased supervision
scheme [39], which minimizes the relative loss between
predictions in each branch with the overall opinion MOS,
as formulated below:

Lall =Lrel(QS ,MOS) + Lrel(QA,MOS)
+Lrel(QT ,MOS)

(1)

4.1.6 Inference Time

VQA models are highly practical tools potentially deployed
on large-scale video streaming platforms to process millions
of video streams every day. Therefore, the actual inference
cost per video is highly significant to the system’s total per-
formance and revenue. We have imbued efficient modu-
lar design in every aspect of the COVER model, leading
to highly efficient inference speed. We benchmarked the
model inference time required by COVER on a video clip of
30 frames of 1080p resolution using a TITAN RTX graphic
card. As shown in Table 4, COVER’s semantic, aesthetic,
and technical branch demands 191, 96, and 23 milliseconds

to complete, together adding up to a total inference time
of 311 milliseconds. In other words, this inference latency
translates to a highly efficient VQA metric that attains state-
of-the-art performance with explainable properties and in-
ferences at 96 fps, almost 3x faster than real-time process-
ing speed.

Table 4. Inference time of COVER on a 30-frame chunk of a
1080p video on a TITAN RTX GPU card. The total 311 ms infer-
ence time translates to 96 fps, 3x faster than real-time processing.

Branch Semantic Aesthetic Technical All

Time (ms) 191 96 23 311

Implementation details The hyper-parameter settings
within COVER for its various components are outlined as
follows: i) the backbone of the feature extraction module
for semantic branch is the Image Encoder from CLIP [21]
of type ViT-L/14; ii) the feature extraction backbone of aes-
thetic branch is a ConvNet [16], structured into 4 stages.
The configuration of each stage, defined by the number of
blocks and feature dimensions, is as follows: (3, 96), (192,
3), (384, 9), and (768, 3); iii) the feature extraction back-
bone of technical branch is a Swin Transformer [15], which
also comprises 4 stages. Within each stage, the number of
heads is set to 3, 6, 12, and 24, respectively, with the num-
ber of projection output channels being 96; iv) the SCGB
module operates with input and output feature dimensions
both set to 768, and its dropout layer has a drop ratio of 0.1;
v) the input feature dimension for the MLP Header module
is 768. It includes two dropout layers, both with a drop ratio
of 0.5.

The training process for our model is structured into
three distinct stages:



1. Initial Training of Technical and Aesthetic Branches:
Initially, we train the entire network for both the techni-
cal and aesthetic branches. During this stage, the weights
of both backbones and MLP Headers for all branches are
fine-tuned.

2. Integrating Semantic Branch and Further Fine-
tuning: Building on the best weights obtained from
stage 1, we integrate the semantic branch into model.
Then MLP Headers of all branches, along with back-
bones of both technical and aesthetic branches are fine-
tuned.

3. Incorporation of SCGB and Final Fine-tuning: Based
on the optimal weights from stage 2, we add two SCGBs
to model. Subsequent fine-tuning of both SCGBs along
with all MLP Headers is conducted.
Given the specific validation set of YouTube-UGC, our

multi-stage training approach maintains the same data split
across each step, allowing for incremental improvements in
training effectiveness.

Throughout different training stages, only the specific
training set of YouTube-UGC is used. For training strate-
gies. we employ the ADAM optimizer with an initial learn-
ing rate of 1 × 10−3 and a cosine learning rate decay strat-
egy with a decay weight of 0.05, over a total of 20 epochs.
However, the batch size varies across different stages, being
set to 10, 8, and 24 respectively. Our network, implemented
in the Pytorch framework and running on an A6000 GPU
card, approximately requires one day to complete the entire
training process.

4.2. TVQE: Tencent Video Quality Evaluator

Team TVQE

Haiqiang Wang 1, Xiangguang Chen 1, Wenhui Meng 1,
Xiang Pan 1, Huiying Shi 2, Han Zhu 2, Xiaozhong Xu 1,

Lei Sun 1, Zhenzhong Chen 2, Shan Liu 1

1 Tencent
2 Wuhan University

TVQE is a hybrid model trained for VQA tasks. The
proposed method fully takes into account several aspects
of video quality subjective assessment: 1. Humans make
judgments with attention to both global semantic and local
visual information; 2. Subjective evaluation experiments
usually require observers to learn and judge in discrete text-
defined levels. Therefore, it combines three networks, i.e.,
IQA network, DOVER [39], and Q-Align [40] model, to ex-
tract visual information and semantic information and pre-
dicts the subjective quality more accurately via weighted
fusion operation. The framework of the proposed method is
shown in Fig.3.

First, considering that humans have a strong perception
of visual information in the spatial dimension when mak-

Variant Fusion Ratio SROCC PLCC

DOVER (v0) - 0.822 0.830
DOVER (v1) - 0.881 0.887

Q-Align5 (v0) - 0.842 0.838
Q-Align5 (v1) - 0.895 0.885
Q-Align5 (v2) - 0.908 0.871

DOVER+Q-Align5 7:8 0.913 0.915

Table 5. Performance of Different TVQE Variants. DOVER (v0)
represents the pre-trained model, and (v1) the fine-tuned model.
Q-Align5 (v0) represents the pre-trained model, (v1) represents
the results by finetuning Visual Abstractor, and (v2) represents the
results by finetuning the last 5 transformer layers in Visual En-
coder and Visual Abstractor.

ing the judgment, we introduce a feature pyramid aggrega-
tion mechanism on the backbone, i.e., the ConvNeXt, to ex-
tract visual representations of the key frame. The pyramid
structure facilitates the full utilization of the extracted infor-
mation as well as better exploitation of the shallow visual
features. Then, considering the influence of video content
on subjective assessment, we use the DOVER model [39]
with 3D convolution to assess video quality through aes-
thetic and technical branches.

Finally, we adopt a large multi-modality model, i.e., Q-
align [40], to fit the fact that subjective judgment is usu-
ally in discrete text-defined levels. The purpose is to stimu-
late the behavior of the human annotation process by tuning
LLMs (Large Language Models).

These three models were trained independently on the
official YT-UGC dataset [33] following the challenge splits.
During the inference stage, the final predicted score could
be obtained by heuristically fusing the prediction results of
these models.

Ablation Study Table 5 gives the ablation study of sub-
mitted solution. We finetuned the SOTA DOVER and Q-
align model on the give YT-UGC dataset. We take a small
split from the training set as the second validation set for
model selection.

For the DOVER architecture, it could be seen that the
SROCC value increases from 0.822 to 0.881 after carefully
finetuning parts of the original network. For the Q-align
architecture, we tried different finetune strategy. Empiri-
cally, we found that finetuning the last 5 layers of the visual
encoder and the visual abstractor block gives the best per-
formance gain, i.e., 0.07 in terms of SROCC.

Then, thanks to the ensemble strategy, the performance
is further boosted by 0.005 in terms of SROCC and 0.44 in
terms of PLCC, respectively.
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Figure 3. The architecture of the TVQE method.

Inference The processing time for 30 frames with 4K res-
olution on the NVIDIA RTX 3090 GPU is 0.8 seconds,
which meets the required 30 FPS. Thus, the inference run-
time with other lower resolutions (e.g., 2K and 1K resolu-
tions) can also satisfy the 30-frames under 1s requirement.

Implementation details
• Framework: Pytorch (version 2.0.1)
• Optimizer and Learning Rate: AdamW with initial

learning rate 2e-5
• GPU: NVIDIA Tesla A100 (40G)
• Datasets: YT-UGC dataset (challenge split)
• Training Time: approximately 10 hours.
• Training Strategies: Initialization with the public pre-

trained model, and training for several epochs.

4.3. Q-Align: Aligning video quality with text de-
scriptions based on LMM

Team Q-Align

Zicheng Zhang 1, Haoning Wu 2, Yingjie Zhou 1, Chunyi
Li 1, Xiaohong Liu 1, Weisi Lin 2, Guangtao Zhai 1

1 Shanghai Jiao Tong University
2 Nanyang Technological University

Contact: zzc1998@sjtu.edu.cn

We convert the traditional mean opinion scores (MOS)

and the corresponding video into question-answer pairs to
teach LMM VQA knowledge. Then we acquire the proba-
bilities of the video quality from LMM response and obtain
the final quality values via weighted average.

Q-Align [40] is based on large multi-modality mod-
els (LMMs). During the training stage, we divide the
quality labels into specific rating categories. Given that
the human-assigned ratings are evenly spaced, we utilize
equally spaced intervals for transforming scores into these
categories. We achieve this by evenly dividing the range
from the maximum score (M) to the minimum score (m)
into five separate intervals, assigning scores within each in-
terval to corresponding categories:

L(s) = li if m+
i− 1

5
×(M−m) < s ≤ m+

i

5
×(M−m)

(2)
where the set li|5i=1 = {bad, poor, fair, good, excellent}
denotes the established textual rating categories as de-
fined by the ITU. We convert the videos into sequences
of keyframes, which are sampled as the first frame of
every second. Then we form the question-answer pairs
like ‘How would you rate the quality of the video?
|keyframe1||keyframe2| ... The quality of the video is
bad/poor/fair/good/excellent’ to fine-tune the LMM.

After training, we can prompt LMM with the
same question-answer structure and obtain the responded
[SCORE TOKEN] from the ‘The quality of the video is
[SCORE TOKEN]’. The [SCORE TOKEN] can then be

zzc1998@sjtu.edu.cn
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of keyframes with 1 fps rate

-How would you rate the quality of the video?
-The quality of the video is excellent.

-How would you rate the quality of the video?
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Log Probabilities from [SCORE_TOKEN] 
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logit 18.11 17.56 10.23 6.61 1.90

token excellent good fair poor bad
logit 6e-01 3e-01 2e-04 6e-06 5e-08

Close-set Probabilities

Weighted Average

Figure 4. The framework of Q-Align [40], where we feed quality question-answer pairs to train LMMs and obtain the 5-level quality
probabilities during the inference stage.

converted to the log probabilities of {bad, poor, fair, good,
excellent}. Finally, we conduct a close-set softmax on log
probabilities to get the probabilities pli for each level (pli
for all li sum as 1):

pli =
eXli∑5
j=1 e

Xlj

(3)

and the final predicted scores of LMMs can be derived as

SLMM =

5∑
i=1

pliG(li) = i× eXli∑5
j=1 e

Xlj

(4)

During the efficiency test, we find the Q-Align takes up
about 8,179M parameters and 991G MACs. Q-Align deals
with every 30fps video clip for about 533ms on GPU 3090.

Implementation details We use the PyTorch framework.
In experiments, we set batch sizes as 64 and the learning
rate is set as 2e− 5. We select mPLUG-Owl-2 as the LMM
model. We only train the model on the training set of YT-
UGC. We train for 2 epochs for all variants, which takes up
about 50 minutes. We conduct training on 4*NVIDIA A100
80G GPUs, and report inference latency on one RTX3090
24G GPU. For videos, we sample at rate 1fps. The sampled
frames are padded to square and then resized to 448× 448.

4.4. Blind Video Quality Assessment Models
through Spatial and Temporal Quality-Aware
Features

Team SJTU MMLab

Wei Sun, Yuqin Cao, Yanwei Jiang, Jun Jia, Zhichao
Zhang, Zijian Chen, Weixia Zhang, Xiongkuo Min

Shanghai Jiao Tong University

Contact: suguwei@sjtu.edu.cn

The proposed BVQA model is based on SimpleVQA+
[26, 27], comprising the Swin Transformer-B [15] for spa-
tial feature extraction from key frames, and a temporal path-
way of SlowFast for temporal feature extraction from video
chunks. Then, we concatenate these features and fuse them
into the final quality score via a two-layer MLP. The model
is shown in Fig. 5.

We trained SimpleVQA+ on the LSVQ dataset[43]. We
utilize LSVQ [43] and YT-UGC dataset [34] for train-
ing. During the pre-processing process, we sample one key
frame from one-second video chunks (i.e. 1 fps) for the spa-
tial feature extraction module. The resolution of key frames
is further resized to 384 × 384 for training. For the tempo-
ral feature extraction module, the resolution of the videos
is resized to 224 × 224. We then split the whole video into

suguwei@sjtu.edu.cn
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Figure 5. The framework of SimpleVQA+ [26, 27] proposed by Team SJTU MMLab.

several one-second length video chunks to extract the cor-
responding temporal features.

We train the proposed model on 2 Nvidia RTX 3090
GPUs with a batch size 6 for 30 epochs (≈ 3hrs). The
learning rate is set as 10−5. During the inference phase,
we feed the video into two models which are trained on the
LSVQ and YT-UGC datasets respectively, to obtain predic-
tion scores. Then, we average two scores to obtain the final
prediction score. Our proposed model is trained efficiently
and can take advantage of other quality-aware pre-trained
features, which can help decrease the risk of overfitting.

4.5. Frankenstone – a video quality prediction
model combining other models and features

Team AVT

Steve Göring

Audiovisual Technology Group; Technische Universität
Ilmenau; Germany

Contact: steve.goering@tu-ilmenau.de

The Frankenstone model uses several other mod-
els/features as a baseline and combines them with a ran-
dom forest regression, similar to [6]. Four main groups are
used as features, for each feature value mean aggregation is
performed. For example, NVENCC is used to extract meta-
data and encoding properties (such as bitrate for a specific
encoding setting). Furthermore, the DOVER model [39]
score and two of its atomic features are used in the Franken-
stone model.

In addition, signal-based features, e.g. SI, TI, colorful-
ness, average luminance, for a subset of the frames are ex-
tracted, and on the same subset also VILA model [11] pre-
dictions (image appeal) are performed.

https://github.com/VQAssessment/DOVER
https : / / github . com / google - research / google -

research/tree/master/vila

The subset of processed frames is done in two steps, the
first samples for each second of the video the first frame.
The second step takes the sampled frames and reduces them
with more importance to the end of the video. That means
for a 20 s 30 fps video, 20 frames are sampled, and then out
of them, the following 5 frames are used: [0, 6, 11, 15, 18].

All features are extracted in separate threads to make the
model faster. Afterwards, the Frankenstone model com-
bines the mentioned features and scores using a Random
Forest Regression model. AVT uses DOVER [39] for user-
generated video quality prediction, and VILA for per-frame
image appeal [11] prediction. Only the YouTube UGC [33]
training data was used.

In Fig. 6 an overview of the model structure is provided.
The video is fed into the model and then several features
are calculated in threads (parallel computation), dover and
nvencc features (height, aspect ratio, bitrate for a specific
encoding) are calculated for the full video, while pixel (SI,
TI, colorfulness, average luminance, sharpness, nima ap-
peal/quality [14], TI calculations to the first frame, SSIM
pairwise and to the first frame) and vila features are only
calculated for a subset of the video frames (because other-
wise, the model would not hit the runtime requirements).
The extracted features are combined using a random forest
regression (during model development with a varying num-
ber of trees, the submitted model uses 300 trees).

The runtime of the model has been evaluated ex-
emplarily with various videos, in the following the
Sports 2160P-210c.mkv (30 fps, UHD-1, 20s dura-
tion) video is used. The 24 time measurements result in an
average runtime of ≈ 19.616 s, with a standard derivation
of ≈ 0.138 s. However, this may vary, depending on a warm
start of the model (and corresponding file-system caches).
The model may not be fast enough for smaller videos, be-
cause the data must be transferred to the GPU first.

dover does also frame sub-sampling

steve.goering@tu-ilmenau.de
https://github.com/VQAssessment/DOVER
https://github.com/google-research/google-research/tree/master/vila
https://github.com/google-research/google-research/tree/master/vila
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Figure 6. Overview of the frankenstone model proposed by Team AVT.

Implementation details
• Framework: For feature extraction mainly Tensorflow is

used, however, some of the included models rely on Py-
Torch, and the final score is predicted with a random for-
est regression model (part of Tensorflow Decision Forests
package).

• Optimizer and Learning Rate: A random forest model
with a variable number of trees (10, 20, 100, and 300)
have been used, there was no improvement using more
trees, the final model has 300 trees.

• GPU: NVIDIA GeForce RTX 3090 Ti (24 GB)
• Datasets: Youtube UGC training data, no augmentation.
• Training Time: Extraction of features for each video ≈

20 s max, thus 892 training videos, ≈ 12 h extraction time
(was performed with 3-4 parallel processes to reduce the
time, overall on one PC), training the random forest re-
gression model takes < 1min (part of the Tensorflow De-
cision Forests package).

• Efficiency Optimization Strategies: Performing feature
extraction in parallel threads.

4.6. Ranking-based training strategy in siamese
manner

Team BVI-VQA

Zihao Qi, Chen Feng

Visual Information Laboratory, University of Bristol

Contact: zihao.qi@bristol.ac.uk

The team uses FasterVQA [38] as backbone, training in
a siamese manner. During training, the siamese network
takes a pair of videos as input and tries to predict which one
is in better quality. This training strategy, following a simi-
lar methodology proposed in previous works [4, 20], makes
it possible to train our model on multiple datasets with var-
ious scoring scale (YouTube-UGC [33], LIVE-VQC [23],
KoNVid-1k). After trained in siamese manner, the Faster-
VQA model is then fine-tuned on YouTube-UGC.

Method SROC

FasterVQA with Siamese Training 0.818
Pre-trained FasterVQA 0.813
Pre-trained SimpleVQA 0.792

Table 6. Ablation study on the testing set by Team BVI-VQA.

Based on the intuition to train our model over multi-
ple datasets, we proposed a ranking-based training strategy
to train an existing SOTA network, FasterVQA [38], in a
siamese manner.

A common challenge when training on multiple datasets
is: different datasets usually have inconsistent scoring scale
and crowdsourcing protocol. To solve this problem, we
trained our model using a siamese structure, consisting of
two FasterVQA networks sharing the same weights. At
each time, the siamese network takes a random pair of
videos from the same dataset as input and learns to pre-
dict which one is of the better quality (with higher MOS
ground-truth value). Because the network does not directly
take MOS as training labels, it avoids the problem that MOS
from different datasets may have different scoring scale.
This ranking-based training strategy shares a similar insight
as previous works [4, 20]. Pre-trained model from Faster-
VQA has been used to initialize the training. After trained
20 epoches over 3 datasets (YouTube-UGC [33], LIVE-
VQC [23], KoNVid-1k) in siamese manner, the model is
then finetuned on YouTube-UGC. The training framework
is illustrated in Fig. 7.

Implementation details
• Framework: PyTorch.
• Optimizer and Learning Rate: AdamW using learning

rate 1e-4 and weight decay 0.05.
• GPU: NVIDIA RTX 3090.
• Datasets: YouTube-UGC, LIVE-VQC, KoNVid-1k.
• Training Time: 12h.

zihao.qi@bristol.ac.uk
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development of a no-reference deep cnn for gaming video
quality prediction. Multimedia Tools and Applications, pages
1–23, 2022. 2, 3

[32] Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Ex-
ploring clip for assessing the look and feel of images. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
pages 2555–2563, 2023. 3, 4

[33] Yilin Wang, Sasi Inguva, and Balu Adsumilli. Youtube ugc
dataset for video compression research. In 2019 IEEE 21st
International Workshop on Multimedia Signal Processing
(MMSP), pages 1–5. IEEE, 2019. 1, 2, 6, 9, 10

[34] Yilin Wang, Junjie Ke, Hossein Talebi, Joong Gon Yim,
Neil Birkbeck, Balu Adsumilli, Peyman Milanfar, and Feng

Yang. Rich features for perceptual quality assessment of
ugc videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13435–
13444, 2021. 2, 8

[35] Zuowen Wang, Chang Gao, Zongwei Wu, Marcos V. Conde,
Radu Timofte, Shih-Chii Liu, Qinyu Chen, et al. Event-
Based Eye Tracking. AIS 2024 Challenge Survey. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 2024. 3

[36] Wen Wen, Mu Li, Yabin Zhang, Yiting Liao, Junlin Li, Li
Zhang, and Kede Ma. Modular Blind Video Quality Assess-
ment, 2024. 2

[37] Haoning Wu, Chaofeng Chen, Jingwen Hou, Liang Liao,
Annan Wang, Wenxiu Sun, Qiong Yan, and Weisi Lin. Fast-
vqa: Efficient end-to-end video quality assessment with frag-
ment sampling. In European conference on computer vision,
pages 538–554. Springer, 2022. 3

[38] Haoning Wu, Chaofeng Chen, Liang Liao, Jingwen Hou,
Wenxiu Sun, Qiong Yan, Jinwei Gu, and Weisi Lin. Neigh-
bourhood representative sampling for efficient end-to-end
video quality assessment. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023. 3, 10

[39] Haoning Wu, Erli Zhang, Liang Liao, Chaofeng Chen, Jing-
wen Hou Hou, Annan Wang, Wenxiu Sun Sun, Qiong Yan,
and Weisi Lin. Exploring video quality assessment on user
generated contents from aesthetic and technical perspectives.
In International Conference on Computer Vision (ICCV),
2023. 2, 3, 4, 5, 6, 9

[40] Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng
Chen, Liang Liao, Chunyi Li, Yixuan Gao, Annan Wang,
Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching lmms for
visual scoring via discrete text-defined levels. arXiv preprint
arXiv:2312.17090, 2023. 3, 6, 7, 8

[41] Wufeng Xue, Xuanqin Mou, Lei Zhang, Alan C Bovik, and
Xiangchu Feng. Blind image quality assessment using joint
statistics of gradient magnitude and laplacian features. IEEE
Trans. Image Process., 23(11):4850–4862, 2014. 3

[42] Peng Ye, Jayant Kumar, Le Kang, and David Doermann. Un-
supervised feature learning framework for no-reference im-
age quality assessment. In Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), pages 1098–1105, 2012. 3

[43] Z Ying, M Mandal, D Ghadiyaram, and AC Bovik. Live
large-scale social video quality (lsvq) database. Online:
https://github. com/baidut/PatchVQ, 2020. 8

[44] Zhenqiang Ying, Maniratnam Mandal, Deepti Ghadiyaram,
and Alan Bovik. Patch-vq:’patching up’the video qual-
ity problem. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 14019–
14029, 2021. 4

[45] Qi Zheng, Zhengzhong Tu, Pavan C Madhusudana, Xi-
aoyang Zeng, Alan C Bovik, and Yibo Fan. Faver: Blind
quality prediction of variable frame rate videos. Signal Pro-
cessing: Image Communication, 122:117101, 2024. 3

https://www.statista.com/forecasts/1207843/ott-video-users-worldwide/
https://www.statista.com/forecasts/1207843/ott-video-users-worldwide/
https://www.statista.com/forecasts/1207843/ott-video-users-worldwide/
https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/

	. Introduction
	. UGC Video Quality Challenge
	. Dataset
	. Model Design Rules

	. Challenge Results
	. Baselines
	. Architectures and main ideas
	. Efficiency Study

	. Challenge Methods and Teams
	. A Comprehensive Video Quality Evaluator
	Method
	Temporal and Spatial Sampling
	Feature Extraction
	Feature Fusion
	Quality Regression
	Inference Time

	. TVQE: Tencent Video Quality Evaluator
	. Q-Align: Aligning video quality with text descriptions based on LMM
	. Blind Video Quality Assessment Models through Spatial and Temporal Quality-Aware Features
	. Frankenstone – a video quality prediction model combining other models and features
	. Ranking-based training strategy in siamese manner


