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We consider a linearly-dispersing quantum impurity interacting through a contact density-density
term with a one-dimensional (1D) superfluid described by the Tomonaga-Luttinger liquid theory.
Using a linked cluster expansion we characterize the impurity dynamics by calculating approximate
expressions for the single-particle Green’s function and for the time evolution of the density profile.
We show the existence of two different dynamical regimes: (i) a quasiparticle regime, dominated by
the presence of a finite lifetime for the host impurity, and (ii) an infrared-dominated regime, where
the impurity causes a Anderson’s orthogonality catastrophe of the 1D bath. We discuss the possible
experimental consequences of these findings for cold atoms experiments.

An outstanding question of many-body physics is the
characterization of impurity dynamics inside quantum
phases of matter [1–3]. The most notable description of
the behavior of a distinguishable impurity in a quantum
many-body system is the quasiparticle (QP) paradigm,
predicting that the propagation of the impurity preserves
its coherence over a finite lifetime and the mass of the im-
purity is renormalized. Such a model has been successful
in understanding several phenomena, ranging from the
polaron problem [4, 5], that can be realized in cold-atom
systems by coupling an impurity atom to the Bogoliubov
excitations of a Bose-Einstein condensate [6, 7], and the
description of low-energy excitations in interacting elec-
tron gases captured by Fermi liquid theory [8].

However, several analyses have addressed the possi-
bility of a breakdown of QP behavior in the realm of
1D many-body quantum systems [9–15], thus question-
ing the naive expectation that QP dynamics occurs in
all dimensions. In particular, a free impurity interacting
with a 1D bath was predicted to propagate subdiffusively
[11] within the system, and the mechanism behind such
phenomenon was identified with a manifestation of the
Anderson’s orthogonality catastrophe (AOC) [16, 17], i.e.,
a reordering of the bath through the impurity-induced
generation of a divergent number of low-energy excita-
tions. Since experimental evidence on impurity dynam-
ics in 1D has been accumulating [18–21], a thorough
analytical understanding of possible novel dynamical be-
havior in such settings as well as the observables, such
as the density profiles, directly reachable in experiments
is required. Indeed contrarily to the single particle cor-
relation function such quantities were mostly probed nu-
merically. In addition, in all the previous analyses the
quadratic dispersion of the impurity, due to the empty
impurity band, was instrumental in the physical prop-
erties. On the other hand one can expect that at finite
filling of the impurity band one recovers both a linear
spectrum and negative energy states, and thus the more
conventional Tomonaga-Luttinger liquid (TLL) features
[22] for both species. This makes it particularly inter-
esting to explore the physics of an impurity that would

have a linear dispersion relation ϵi(k) = vi|k|, but with-
out neagtive energy states (single particle). Such linear
spectra are also directly relevant in a category of mate-
rials such as, e.g., graphene.
In this work, we study the problem of a quantum im-

purity with such a linear dispersion relation interacting
with a 1D quantum system described by a TLL Hamil-
tonian via a density-density term. We compute both the
single particle correlation function and the density profile
of the impurity as a function of time. We show that the
linear dispersion relation of the impurity leads to novel
physics compared to the quadratic one. In particular,
although AOC is still present when the velocity of the
impurity is lower than the one of the bath, it does not
lead anymore to a subdiffusive behavior. In the opposite
regime, a conventional QP regime is recovered.
We consider the model Hamiltonian Ĥ = Ĥimp +

ĤTLL + Ĥint, comprising (i) the Hamiltonian of the

bosonic impurity: Ĥimp =
∑
k ϵkd̂

†
kd̂k, where the impu-

rity dispersion relation satisfies ϵ−k = ϵk, (ii) the Hamil-
tonian of the bath, taken to be the one of a TLL [22]:

ĤTLL =
vs
2π

∫
dx

[
K(∂xθ̂)

2 +
1

K

(
∂xϕ̂

)2
]
, (1)

where the fields ϕ̂(x), θ̂(x) satisfy the commutation

relation [ϕ̂(x), ∂x′ θ̂(x′)] = iπδ(x − x′), and (iii) the
density-density interaction term between the TLL and
the bosonic impurity:

Ĥint = − g

π

∫
dx (∂xϕ̂) d̂

†(x)d̂(x), (2)

having introduced d̂(x) = 1√
L

∑
k e

ikxd̂k.

In order to quantify the propagation properties of the
impurity inside the 1D quantum bath, we introduce the
notation |0⟩ to denote the vacuum state for both the im-
purity and the TLL sound modes and evaluate the single-
particle Green’s function:

G(y, t;x, 0) = ⟨0| d̂(y)e−iĤtd̂†(x) |0⟩ , (3)
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which quantifies how drastically the bath gets affected by
the propagation of the impurity and the density profile:

n(x, t) = ⟨0| d̂(0)eiĤtd̂†(x)d̂(x)e−iĤtd̂†(0) |0⟩ . (4)

A convenient framework for the calculation of time-
dependent correlation functions is the Keldysh formal-
ism [23], where the object of interest is the Keldysh ac-
tion S[ψ,ψ∗], appearing in the Keldysh partition function
Z = Tr[ρ̂(t)] =

∫
D[ψ,ψ∗]eiS[ψ,ψ

∗] and dependent on the
retarded and advanced fields ψ = (ϕq,±, φk,±) associated
to the degrees of freedom in the problem. The action con-
sists of 3 terms, identified as the impurity action Simp,
the action of the TLL bath STLL and the action Sint de-
scribing the interaction between the latter two. In the fol-
lowing, we introduce the so called classical and quantum
component fields (ψcl, ψqu), respectively obtained from
the retarded and advanced fields ψ± with identical set of
quantum numbers via the rotation ψcl = (ψ+ +ψ−)/

√
2,

ψqu = (ψ+ − ψ−)/
√
2, where quantum number labels

have been omitted for simplicity.
The Keldysh action for the system of noninteracting

bosonic modes modelling the bath reads:

STLL =
∑
q ̸=0

∫
dω

2π

∑
α,β=cl,qu

ϕ∗q,α(ω)G−1
α,βϕq,β(ω), (5)

G−1 =

(
0 ω − ωq − iδ

ω − ωq + iδ 2iδF (ω)

)
. (6)

F (ω) = 1+2nB(ω) is simply related to the Bose-Einstein
distribution nB(ω) and ωq = vs|q|. The Keldysh action
for the bosonic impurity has a ŝımilar structure:

Simp =
∑
k

∫
dϵ

2π

∑
α,β=cl,qu

φ∗
k,α(ϵ)G−1

α,βφk,β(ϵ), (7)

G−1 =

(
0 ϵ− ϵk − iδ

ϵ− ϵk + iδ 2iδF (ϵ)

)
. (8)

F (ϵ) = 1 when the initial density matrix is the vacuum
state |0⟩ ⟨0| for the impurity modes. Finally, the interac-
tion term takes the form:

Sint =

∫
dt [−Hint (ϕ+(t), φ+(t)) +Hint (ϕ−(t), φ−(t))]

= −g
√
K

L

∑
k

∑
p ̸=0

V (p)

∫ +∞

−∞
dt

{
φ∗
k,+(t)φk+p,+(t)

[
ϕ∗p,+(t) + ϕ−p,+(t)

]
+

− φ∗
k,−(t)φk+p,−(t)

[
ϕ∗p,−(t) + ϕ−p,−(t)

]}
,

(9)

where V (p) =
√

L|p|
2π e

−α |p|
2 .

In order to compute the single-particle Green’s func-
tion (3), we reexpress it in the Keldysh formalism as:

⟨0| d̂(y)e−iĤtd̂†(x) |0⟩ =
1

L

∑
k1,k2

ei(k2y−k1x)⟨φk2,+(t)φ∗
k1,+(0)⟩, (10)

where the average is taken over the action obtained by
summing (5), (7), (9), together with the vacuum condi-
tions F (ω) = 1 in the expression of STLL and F (ϵ) = 1
in Simp. A second-order perturbative expansion in the
interaction Sint followed by a reexponentiation of the re-
sult, in the spirit of the linked-cluster expansion [24],
leads to the final expression:

G(y, t;x, 0) ≈
∫

dk

2π
eik(y−x)−iϵkt−

∫
duR(u;k) 1−iut−e−iut

u2 ,

(11)

where R(u; k) = g2K
(2π)2

∫
dp|p|e−α|p|δ(u− ϵk+p − ωp + ϵk)

(see SM S1).
Although the previous expressions were generic, we

specialize from now on to the case of a linear disper-
sion relation for the impurity, namely ϵi(k) = vi|k|. In
such case, the interaction-dependent term in the expo-
nent of the integrand in (11) becomes easily treatable
and allows for the estimate of the long-time behavior of
the momentum-space Green’s function (see SM S2):

G(k, t; k, 0) ≈ e−ivi|k|t−
∫
duR(u;k) 1−iut−e−iut

u2 , (12)

that can be read off from (11).
One can distinguish two regimes, depending on

whether vi > vs or vi < vs. The numerical evalua-
tion of |G(k, t; k, 0)| in the two regimes shows that the
asymptotic behavior of the momentum-space Green’s
function is dramatically different. This can be traced
back to the fact that the impurity energy difference
δϵk,q := vi|k| − vi|k + q| intersects the phonon disper-
sion relation ωq = vs|q| only at q = 0 when vi < vs, thus
only causing the quasiresonant generation of vanishingly-
small-momentum phonons. On the other hand, when
vi > vs, one observes that δϵk,q = vs|q| also for a finite
nonzero value q∗ = − 2vi

vi+vs
k, thus signaling that the im-

purity emits resonantly finite-momentum phonons as well
in this regime. (12) also reveals (see (S28)) two distinct
possible behaviors: when vi > vs, the large-momentum
and large-time behavior of |G(k, t; k, 0)| decays exponen-
tially as:

|G(k, t; k, 0)| ∼

e−Re{F (t)}e
g2K

(2π)2

∫ +∞
k

dq e−αq

(vs−vi)
2q e

− g2K

(2π)2
2πvike

− 2αvik
vi+vs

(vi+vs)2
t
,

(13)

where the expression of F (t) is reported in (S29). The
presence of a finite-momentum-phonon emission channel
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in this regime is quantitatively signaled by the quasipar-

ticle decay term of the form e−
t

τ(k) , where the expres-
sion of the lifetime τ(k) can be read off from the ex-
ponent of the last term of (13). This reveals that τ(k)
decreases with interaction strength as g−2 and, in the
limit of vanishing momentum cutoff α, with the impu-
rity momentum k−1. Moreover, when the quasiparticle
resonant momentum q∗ = − 2vik

vi+vs
(i.e., the nonzero mo-

mentum satisfying δϵk,q∗ = vi|q∗|) satisfies |q∗| ≫ α−1,
the momentum exchange between the 1D bath and the
impurity is strongly suppressed due to the existence of
a finite momentum cutoff on the bath excitation modes,
thus recovering, within an extended transient regime, the
dynamical properties that the impurity displays when the
relation δϵk,q = vs|q| is satisfied only by q = 0 for all val-
ues of k, to be described in the following paragraph.

Contrarily, when vi < vs, the absence of a nonzero
momentum satisfying the scattering resonance condition
results in a different behavior of |G(k, t; k, 0)| at large
time; when t≫ 1, one has (see (S30)):

|G(k, t; k, 0)| ∼

∼ e−Re{F (t)}e
− g2K

(2π)2

∫ +∞
k

dq qe−αq
(

1
[(vi+vs)q−2vik]2

− 1
(vs−vi)

2q2

)
,

(14)

which reproduces a slow power-law decay in time associ-
ated to the generation of phonons with vanishingly small
momentum. The latter grow logarithmically (rather than
linearly) in time as a consequence of the vanishing num-
ber of low-momentum particle-hole scattering processes
on top of a filled Fermi sea in linearized bands described
by TLL theory.

We plot in Fig. 1(up) the curve |G(k, t; k, 0)| as a func-
tion of t for distinct values of k and different choices in
the relative magnitude of vi and vs. We confirm the
analytical predictions of (13-14) by comparing them to
the direct numerical evaluation of |G(k, t; k, 0)| in (12).
For sufficiently large time t we obtain curves that repro-
duce an exponential time-decay of |G(k, t; k, 0)| within
the vi > vs regime and a slow power-law decay within the
vi < vs regime. Moreover, we compare in Fig. 1(down)
the behavior of |G(k, t; k, 0)| as a function of k for a fixed
finite value of t in the two identified dynamical regimes.
We manifestly see the significantly faster decrease of the
finite-k values of the momentum-space Green’s function
in the vi > vs regime of motion, as compared to the
slower decay achieved in the vi < vs case.

The zero-momentum behavior of |G(k, t; k, 0)|, is di-
rectly linked to the generation of low-energy phonons by
an impurity with k = 0, since the latter, regardless of the
relative magnitude of vi and vs, meets the resonance con-
dition δϵk=0,q = vs|q| only at q = 0. A careful analysis
of the expression in (12) at k = 0 leads to the large-time

(a)

(b)

(c)

(d)

|G
(k

,t
;k

,0
)|

|G
(k

,t
;k

,0
)|

|G
(k

,t
;k

,0
)|

|G
(k

=0
,t

;k
=0

,0
)|

kt

t t

FIG. 1. (a)-(b)-(c): |G(k, t; k, 0)| vs t for (a) vi < vs, k > 0,
(b) vi > vs, k > 0 and (c) vi ≶ vs, k = 0 compared to
and in agreement with their large-time analytical estimates in
(13),(14) and (15). We use vs = 2, g = 5.0, K = 1.5, α = 0.1
and (a) vi = vs/2, (b) vi = 2vs and (c) vi = vs/2 and vi = 2vs.
(d): |G(k, t; k, 0)| vs k for t = 10.0, vi = 4.0, g = 2.0, α =
0.1, K = 1.5, with vs = 1.0, 7.0.

|G
(x

,t;
0,

0)
|

x x

FIG. 2. Left: time evolution of |G(x, t; 0, 0)| as a function of
time t in the case vi > vs for parameter values L = 100, vs =
1, vi = 4, K = 1.5, α = 10−1, both for g = 0 and g = 2.
Right: time evolution of |G(x, t; 0, 0)| as a function of time
t in the case vi < vs for parameter values vs = 7, the other
parameters remaining unchanged, both for g = 0 and g = 2.

estimate:

|G(k = 0, t; k = 0, 0)| ∼ e
− g2K

(2π)2
2

(vi+vs)2
log

(
(vi+vs)t

α

)
,
(15)

namely, a power law decay in time (see SM (S2C)). We
confirm this result by comparing the numerical evalua-
tion of (12) with k = 0 to the analytical estimate in (15).
The result is shown in Fig. 1, for vi > vs and vi < vs.
Let us now focus on the real-space behavior of the

Green’s function. We fix the values of the parameters
of the problem with the sole exception of the phonon ve-
locity vs, which satisfies alternatively vi > vs or vi < vs.
We plot the result in Fig. 2. For vi > vs a rapid de-
cay of the amplitude of the peak in |G(y, t;x, 0)| around
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xp ≈ vit occurs. It is absent when vi < vs, since the
finite-momentum impurity Green’s function is exponen-
tially suppressed in the large-time limit when vi > vs.
The impurity coherence is thus more rapidly destroyed
by hybridization between the impurity and the bath de-
grees of freedom. We also show in Fig. S4 the effect
of an increasing interaction strength on the propagation
speed and coherence of the impurity. The interactions
both slow down the impurity propagation and destroy
its quasiparticle coherence. The effect is much more dra-
matic in the case vi > vs, as noticed before.
Let us now turn to the density profiles computed again

via the linked cluster expansion (see SM (S3)). Such
density profiles can be measured in cold atom experi-
ments [19–21, 25–27]. The resulting expressions are valid
for any dispersion relation satisfying ϵ−k = ϵk. The ini-
tial condition for the impurity is a wavepacket of ampli-

tude ψ(y) of the form |ψimp(0)⟩ =
∫ L/2
−L/2 dy ψ(y) d̂

†(y) |0⟩,
while the 1D quantum bath is at zero temperature. The
local density expectation value within this approximation
reads:

⟨ψ(t)| d̂†(x)d̂(x) |ψ(t)⟩ =∑
k,k2

(Fψ)∗(k2)(Fψ)(k)ei[(kx−ϵkt)−(k2x−ϵk2
t)]

exp

{
−

[∫
duR(u; k)

1− iut− e−iut

u2
+

+

∫
duR(u; k2)

1 + iut− eiut

u2
+

−
∫
du

∫
dvS(u, v; k, k2)

1− eiut

u

1− e−ivt

v

]}
, (16)

where we introduced the function S(u, v; k, k2) =
g2K
(2π)2

∫
dp|p|e−α|p|δ(u−ϵk2+p−ωp+ϵk2)δ(v−ϵk+p−ωp+

ϵk) and the Fourier transform of the initial wavefunction

(Fψ)(q) = 1
L

∫ L/2
−L/2 dx e

−iqxψ(x) (see SM S3). The ex-

pression is normalized regardless of the specific form of
the dispersion relation.

As before, we now specialize to the case of a lin-
ear dispersion relation ϵk = vi|k|. We assume the
Fourier transform of the initial wave-packet to be a gaus-
sian centered at momentum k0 with variance σ2, i.e.,

(Fψ)(k) = (2π)1/4√
L2σ

e−(k−k0)2/(2σ2). The propagation of

the wavepacket is strongly affected by the zeros of the
function vi|k+ q|+ vs|k| − vi|k|. We fix the values of the
parameters of the problem with the sole exception of the
phonon velocity vs, which satisfies alternatively vi > vs
or vi < vs. When vi > vs, the presence of a nonzero
solution to the equation vi|k + q| + vs|k| − vi|k| = 0 is
linked to the damping of the peak in the density dur-
ing time evolution. This behavior can be linked to (13),
that shows that the presence of a nonzero solution to
the scattering resonance condition allows for quasiparti-

x x

ρ
(x
,t
)

FIG. 3. Left: evolution of the density profile ρ(x, t) vs t in
the case vi > vs for parameter values L = 100, k0 = π/2, vs =
1, vi = 4, K = 1.5, α = 10−1, σ = 0.1, both for g = 0 and
g = 2. Right: same plot as above in the case vi < vs = 7, the
other parameter values being unchanged.

cle behavior with a finite lifetime. On the other hand,
when vi < vs, the propagation of the density wavepacket
is almost unaffected by the impurity-bath interaction. In
such case, the impurity can only quasi-resonantly emit
low-momentum phonons, which are injected into the bath
as in the paradigmatic AOC problem.

A comparison of the time evolution of the impurity
density profile in absence of impurity-bath interactions to
its counterpart in presence of a finite interaction strength
g, both for vi > vs and vi < vs is shown in Fig. 3. The
result is consistent with the data in Fig. 2 and shows a
strong damping of the ballistically-propagating peak of
the initial density profile when vi > vs, and an almost
free evolution when vi < vs instead.

Previous work on the single-particle Green’s function
of a free impurity (ϵk = tik

2)[13] is consistent with
our results on |G(k, t; k, 0)|, as one can infer by defin-
ing vi(k) = 2tik as the group velocity associated to a
quadratic dispersion relation, and comparing it to vs to
identify distinct dynamical regimes. More interestingly,
the small-k dispersion of the impurity velocity vi(k) has
dramatic consequences on the asymptotic behavior of
|G(x, t; 0, 0)| for large values of x and t compared to the
ϵk = vi|k| case, as it determines a different low-k behav-
ior of |G(k, t; k, 0)|. The subdiffusive spread of correla-
tions for a free impurity is a consequence of the linearly-
vanishing group velocity around k = 0 [13]; in the case of
a linear dispersion relation, instead, vi is constant and the
k-dependence appears only in the form of a term that is
O(1) in time, which does not significantly alter the non-
interacting case of ballistic propagation. Moreover, we
point out that the result in Fig. 3 for the time evolution
of the impurity density point towards a marginal effect of
impurity-bath interactions on ρ(x, t) when vi < vs. Such
a signature cannot be directly inferred from the behavior
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of G(x, t; 0, 0) and showcases a form of emergent protec-
tion of free propagation that is absent in the quasiparticle
(vi > vs) dynamical regime.

This predictions can potentially be tested in cold
atomic systems. The main difficulty is to realize a Dirac
dispersion for the impurity, but several proposals have
been already put forward[28–30], where the additional
challenge of removing negative energy states from the
Dirac bands stands. Quantum microscope allow for a
direct measurement of the density profile and a compar-
ison with the results of Fig, 3. The velocity of the bath
could be easily varried by changing e.g. the interaction
between the particles of bath.

In this work, we have characterized the properties of
a mobile impurity with linear dispersion relation inside
a 1D quantum system, described by the Luttinger liq-
uid low-energy universality class. By using a linked-
cluster expansion approximation, we have computed the
single-particle Green’s function and the density profile of
the impurity, This unveils a transition in the dynamical
properties of the impurity as a function of the relative
magnitude of the impurity velocity vi and of the phonon
sound velocity vs. When vi > vs, the impurity acquires
a finite lifetime due to finite-momentum phonon emis-
sion and thus displays the characteristic behavior of a
quasiparticle; when vi < vs, the impurity propagation
is roughly unaffected, while the quasi-resonant emission
of low-momentum phonons into the bath shakes the low-
energy excitation occupations within the bath itself and
results in an AOC.

The current work opens perspective lines of research
in the identification of 1D many-body quantum phases
of matter through impurity dynamics, as it improves the
understanding of the interplay between the impurity dis-
persion relation and 1D superfuidity. Future works may
be concerned with the characterization of impurity dy-
namics within different phases of matter that can be re-
alized in 1D settings, such as Mott insulators and Bose
glasses. Several extensions of our work would be desir-
able, such as taking into account the finite temperature
effects, or extending the calculations of the density profile
to other dispersions.
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S1. DERIVATION OF THE GREEN’S FUNCTION IN REAL SPACE

We sketch here the derivation of the Green’s function of the impurity shown in (11). We construct an estimate of
the single-particle Green’s function of the impurity in real space:

⟨0| d̂(y)e−iĤtd̂†(x) |0⟩ = 1

L

∑
k1,k2

ei(k2y−k1x) ⟨0| d̂k2(t)d̂
†
k1
(0) |0⟩ = 1

L

∑
k1,k2

ei(k2y−k1x)⟨φk2,+(t)φ∗
k1,+(0)⟩, (S17)

by computing a second-order perturbative estimate of the average in the last expression in (S17), and then performing
a nonperturbative exponentiation of the result. The average reads:∫

DϕDφei(S0+Sint)φk2,+(t)φ
∗
k1,+(0) = ⟨φk2,+(t)φ∗

k1,+(0)e
iSint⟩S0

=

= ⟨φk2,+(t)φ∗
k1,+(0)⟩S0 −

1

2
⟨φk2,+(t)φ∗

k1,+(0)S
2
int⟩S0 ,

(S18)

where the first-order term vanishes because it contains the average of single phonon field terms over the quadratic
TLL action. We employ the expressions for the impurity field free Green’s functions:

⟨φk,±(t)φ∗
k′,∓(t

′)⟩S0 = δk,k′e
−iϵk(t−t′)F (ϵk)∓ 1

2
, (S19)

⟨φk,±(t)φ∗
k′,±(t

′)⟩S0
= θ(t− t′)δk,k′e

−iϵk(t−t′)F (ϵk)± 1

2
+ θ(t′ − t)δk,k′e

−iϵk(t−t′)F (ϵk)∓ 1

2
, (S20)

and similarly for the phonon fields:

⟨ϕq,±(t)ϕ∗q′,∓(t′)⟩S0
= δq,q′e

−iωq(t−t′)F (ωq)∓ 1

2
, (S21)

⟨ϕq,±(t)ϕ∗q′,±(t′)⟩S0 = θ(t− t′)δq,q′e
−iωq(t−t′)F (ωq)± 1

2
+ θ(t′ − t)δq,q′e

−iωq(t−t′)F (ωq)∓ 1

2
, (S22)

where F (ϵ) = 1 + 2nB(ϵ) and nB(ϵ) = (eβϵ − 1)−1 is the Bose-Einstein distribution function. Using Wick’s theorem,
one obtains the result:

⟨0| d̂(y)e−iĤtd̂†(x) |0⟩ = 1

L

∑
k1,k2

ei(k2y−k1x)δk1,k2e
−iϵk1

t

[
1−

∫
duR(u; k1)

1− iut− e−iut

u2

]
≈

≈
∫

dk

2π
eik(y−x)−iϵkt−

∫
duR(u;k) 1−iut−e−iut

u2 ,

(S23)

where R(u; k) is defined as:

R(u; k) =
g2K

(2π)2

∫
dp|p|e−α|p|δ(u− ϵk+p − ωp + ϵk), (S24)

and in the second equality we have reexponentiated the term in square brackets, in the spirit of the linked-cluster
expansion method. The momentum-space Green’s function is read off from the expression of the real-space Green’s
function in (S23) as its inverse Fourier transform and takes the form:

G(k, t; k, 0) ≈ e−ivi|k|t−
∫
duR(u;k) 1−iut−e−iut

u2 . (S25)
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S2. DERIVATION OF THE GREEN’S FUNCTION IN MOMENTUM SPACE

If one chooses the dispersion relation of the impurity to be linear, i.e., ϵk = vi|k|, one can compute the nontrivial
term in the exponent in (S23) for k > 0 ( without loss of generality due to the property R(u;−k) = R(u; k)) as:

exp

{
−
∫
duR(u; k)

1− iut− e−iut

u2

}
=

exp

{
− g2K

(2π)2

[∫ +∞

k

dq qe−αq
1− it[(vi + vs)q − 2vik]− e−it[(vi+vs)q−2vik]

[(vi + vs)q − 2vik]2
+

−
∫ +∞

k

dq qe−αq
1− i(vs − vi)qt− e−i(vs−vi)qt

(vs − vi)2q2
+

1

(vi + vs)2
log

(
1 + i

vi + vs
α

t

)
+

1

(vs − vi)2
log

(
1 + i

vs − vi
α

t

)
+

− i
t

(vi + vs)α
− i

t

(vs − vi)α

]}
.

(S26)

A. The case vi > vs

If vi > vs, then the maximum of the real part of the first integrand of (S26) q∗ = 2vi
vi+vs

k falls within the domain
of integration. Exploiting the fact that:

lim
t→+∞

1

πt

1− cos(tx)

x2
= δ(x) (S27)

in the first integral in the modulus of (S26) and neglecting the oscillating term in the second integral of the same
expression, one obtains the final result displayed in (13):∣∣∣∣∣exp

{
−
∫
duR(u; k)

1− iut− e−iut

u2

}∣∣∣∣∣ =∼ e−Re{F (t)}e
g2K

(2π)2

∫ +∞
k

dq e−αq

(vs−vi)
2q e

− g2K

(2π)2
2πvike

− 2αvik
vi+vs

(vi+vs)2
t
, (S28)

where:

F (t) =
g2K

(2π)2

[
1

(vi + vs)2
log

(
1 + i

vi + vs
α

t

)
+

1

(vs − vi)2
log

(
1 + i

vs − vi
α

t

)
− i

t

(vi + vs)α
− i

t

(vs − vi)α

]
. (S29)

B. The case vi < vs

If vi < vs, instead, the maximum of the real part of the first integrand of (S26) q∗ = 2vi
vi+vs

k falls outside of the
domain of integration. Then, the oscillating terms in the first and second integrals of (S26) may be neglected in the
large-time limit and one obtains the r.h.s. of (14):∣∣∣∣∣exp

{
−
∫
duR(u; k)

1− iut− e−iut

u2

}∣∣∣∣∣ ∼ e−Re{F (t)}e
− g2K

(2π)2

∫ +∞
k

dq qe−αq
(

1
[(vi+vs)q−2vik]2

− 1
(vs−vi)

2q2

)
. (S30)

C. The zero-momentum Green’s function |G(k = 0, t; k = 0, 0)|

In the zero-momentum case, we are able to derive a more precise form of the momentum-space Green’s function.
We start from the full expression of |G(k, t; k, 0)| specialized to the k = 0 case and rewrite it as follows:

|G(k = 0, t; k = 0, 0)| =

∣∣∣∣∣exp
{
−
∫
duR(u; k = 0)

1− iut− e−iut

u2

}∣∣∣∣∣ = exp

{
− g2K

(2π)2

∫ +∞

−∞
dp |p|e−α|p| 1− cos [(vi + vs)|p|t]

(vi + vs)2|p|2

}
=

= exp

{
− g2K

(2π)2
2

∫ +∞

0

dp e−αp
1− cos [(vi + vs)pt]

(vi + vs)2p

}
= exp

{
− g2K

(2π)2
2

(vi + vs)2

∫ +∞

0

dx e
− αx

(vi+vs)t
1− cosx

x

}
,

(S31)
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where, in the last step, we performed the substitution x = (vi + vs)pt. Thus, the large-time asymptotic behavior of

|G(k = 0, t; k = 0, 0)| depends on the large-time behavior of the integral expression I(t) =
∫ +∞
0

dx e
− αx

(vi+vs)t 1−cos x
x .

We evaluate the latter first by subdividing the range of integration as:

I(t) =

=

∫ 1

0

dx e
− αx

(vi+vs)t
1− cosx

x
+

∫ (vi+vs)t

α

1

dx e
− αx

(vi+vs)t
1− cosx

x
+

∫ (vi+vs)2t2

α2

(vi+vs)t

α

dx e
− αx

(vi+vs)t
1− cosx

x
+

+

∫ +∞

(vi+vs)2t2

α2

dx e
− αx

(vi+vs)t
1− cosx

x
= I1(t) + I2(t) + I3(t) + I4(t),

(S32)

and then considering the role of each contribution when t≫ 1.

In such limit, it is easy to see that I1(t) is bounded by the time-independent O(1) constant
∫ 1

0
dx 1−cos x

x . Similarly,

exploiting the fact that 1−cos x
x ≤ 2

x for x > 0, one obtains the following estimate on the value of I4(t):

I4(t) =

∫ +∞

(vi+vs)2t2

α2

e
− αx

(vi+vs)t
1− cosx

x
≤ 2α2

(vi + vs)2t2

∫ +∞

(vi+vs)2t2

α2

e
− αx

(vi+vs)t =
2α

(vi + vs)t
e−

(vi+vs)t

α
t→+∞−−−−→ 0. (S33)

Similar considerations hold for I3(t), which turns out to be bounded by a O(1) constant in the large-time limit:

I3(t) =

∫ (vi+vs)2t2

α2

(vi+vs)t

α

dx e
− αx

(vi+vs)t
1− cosx

x
≤ 2α

(vi + vs)t

∫ (vi+vs)2t2

α2

(vi+vs)t

α

dx e
− αx

(vi+vs)t = 2
(
e−1 − e−

(vi+vs)t

α

)
t→+∞−−−−→ 2e−1.

(S34)

Finally, we estimate the most crucial term, namely I2(t), by firstly noticing that the cosin term only contributes a
finite O(1) constant in the large-time limit, so that:

I2(t) ∼
∫ (vi+vs)t

α

1

dx e
− αx

(vi+vs)t
1

x
. (S35)

After an integration by parts, the latter expression is rewritten as:

e−1 log

(
vi + vs
α

t

)
+

α

(vi + vs)t

∫ (vi+vs)t

α

1

dx e
− αx

(vi+vs)t log x =

= e−1 log

(
vi + vs
α

t

)
+ log

(
vi + vs
α

t

)(
e
− α

(vi+vs)t − e−1
)
+

∫ 1

α
(vi+vs)t

dy e−y log y,

(S36)

where in the last step we performed the substitution y = αx
(vi+vs)t

. Since the last term in (S36) converges to a constant

O(1) value for large values of t, one obtains in the end that:

I2(t) ∼t≫1 log

(
vi + vs
α

t

)
, (S37)

thus recovering the result in (15).

D. Effect of the interaction strength g on |G(x, t; 0, 0)|

As discussed in the main text, we provide in Fig. S4 the effect of an increasing interaction strength g on the
propagation speed and coherence of the impurity. The interactions both slow down the impurity propagation and
destroy its quasiparticle coherence. Moreover, the effect is much more dramatic in the case vi > vs, as expected.
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x x
|G

(x
,t

;0
,0

)|

FIG. S4. Left: |G(x, t; 0, 0)| as a function of the interaction strength g in the case vi > vs for parameter values L = 100, vs =
1, vi = 4, K = 1.5, α = 10−1.Right: |G(x, t; 0, 0)| as a function of the interaction strength g in the case vi < vs for vs = 7, the
other parameters being unchanged.

S3. THE IMPURITY DENSITY PROFILE

Considering an initial state for the impurity of the form:

|ψ(0)⟩ =
∫ L

2

−L
2

dy ψ(y)d̂†(y) |0⟩ . (S38)

Then, the expectation value of the density in the time-evolved state |ψ(t)⟩ = e−iĤt |ψ(0)⟩ can be rewritten in the
following way:

⟨ψ(t)| d̂†(x)d̂(x) |ψ(t)⟩ = 1

L2

∑
k,k′,q,q′

e−i(k−k
′)x

∫ L
2

−L
2

dy ψ∗(y)eiqy
∫ L

2

−L
2

dz ψ(z)e−iq
′z ⟨0| d̂qeiĤtd̂†kd̂k′e

−iĤtd̂†q′ |0⟩ . (S39)

Hence, the problem of computing ⟨ψ(t)| ρ̂(x) |ψ(t)⟩ boils down to the calculation of the matrix element in (S39).
We rewrite the matrix element in (S39) for the impurity density profile as a functional integral, namely:

⟨0| d̂k1eiĤtd̂
†
k2
d̂k3e

−iĤtd̂†k4 |0⟩ =
∫

DϕDφei(S0+Sint)φk1,−(0)φ
∗
k2,−(t)φk3,+(t)φ

∗
k4,+(0) =

= ⟨φk1,−(0)φ∗
k2,−(t)φk3,+(t)φ

∗
k4,+(0)e

iSint⟩S0
.

(S40)

A. Zeroth-order term

The first term in the perturbative expansion corresponds to the noninteracting average:

⟨φk1,−(0)φ∗
k2,−(t)φk3,+(t)φ

∗
k4,+(0)⟩S0 = δk1,k2δk3,k4e

i(ϵk1
−ϵk3

)t, (S41)

as one can show both by means of the Schroedinger equation and of the Keldysh path-integral formulation. In
following the latter route, one needs to exploit the expressions in (S19)(S20)(S21)(S22), where we remind that F (ϵ) =
coth [β(ϵ− µ)/2] = 1 + 2nB(ϵ) for a noninteracting system at equilibrium with inverse temperature β and chemical
potential µ. Since the initial density matrix of the bosonic impurity is |0⟩ ⟨0|, namely the state with zero occupancy
for all the modes, we set nB(ϵ) = 0 in the expression of F (ϵ) in the case of the impurity degrees of freedom.

B. Second-order term

Next, one needs to evaluate:

−⟨φk1,−(0)φ∗
k2,−(t)φk3,+(t)φ

∗
k4,+(0)

1

2
S2
int⟩S0

. (S42)
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Plugging in the expression of Sint, and, for the sake of convenience, introducing the notation:

G(k, α, t|k′, β, t′) := ⟨φk,α(t)φ∗
k′,β(t

′)⟩, (S43)

Gph(k, α, t|k′, β, t′) := ⟨ϕk,α(t)ϕ∗k′,β(t′)⟩, (S44)

one obtains the following expression for the second-order contribution in (S42):

− g2K

2L2

∑
k,k′

∑
p,p′ ̸=0

V (p)V (p′)

∫
dt1

∫
dt2{[

G(k1,−, 0|k2,−, t)G(k3,+, t|k,+, t1)G(k + p,+, t1|k′,+, t2)G(k′ + p′,+, t2|k4,+, 0)+

+G(k1,−, 0|k2,−, t)G(k3,+, t|k′,+, t2)G(k′ + p′,+, t2|k,+, t1)G(k + p,+, t1|k4,+, 0)

]
×

×

[
Gph(−p′,+, t2|p,+, t1) +Gph(−p,+, t1|p′,+, t2)

]
+

−G(k1,−, 0|k′,−, t2)G(k′ + p′,−, t2|k2,−, t)G(k3,+, t|k,+, t1)G(k + p,+, t1|k4,+, 0)×

×

[
Gph(−p′,−, t2|p,+, t1) +Gph(−p,+, t1|p′,−, t2)

]
+

−G(k1,−, 0|k,−, t1)G(k + p,−, t1|k2,−, t)G(k3,+, t|k′,+, t2)G(k′ + p′,+, t2|k4,+, 0)×

×

[
Gph(−p′,+, t2|p,−, t1) +Gph(−p,−, t1|p′,+, t2)

]
+

+

[
G(k1,−, 0|k,−, t1)G(k + p,−, t1|k′,−, t2)G(k′ + p′,−, t2|k2,−, t)G(k3,+, t|k4,+, 0)+

+G(k1,−, 0|k′,−, t2)G(k′ + p′,−, t2|k,−, t1)G(k + p,−, t1|k2,−, t)G(k3,+, t|k4,+, 0)

]
×

×

[
Gph(−p′,−, t2|p,−, t1) +Gph(−p,−, t1|p′,−, t2)

]}

(S45)

C. Final expression of the density within a second order expansion

After plugging the result shown in (S45) into (S39) and defining the Fourier transform of the initial wavefunction
as:

(Fψ)(q) := 1

L

∫ L
2

−L
2

dx e−iqxψ(x), (S46)
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one obtains the final result:

⟨ψ(t)| ρ̂(x) |ψ(t)⟩ =
∑
k,k2

e−i(k2−k)xei(ϵk2
−ϵk)t(Fψ)∗(k2)(Fψ)(k)+

− g2K

2L2

∑
k,k2

∑
p ̸=0

V 2(p)e−i(k2−k)x(Fψ)∗(k2)(Fψ)(k)×

×

{
ei(ϵk2

−ϵk)t

[
F (ωp)− 1

2

∫ t

0

dt2

∫ t

t2

dt1e
i(ϵk+ωp−ϵk+p)(t1−t2) +

F (ωp) + 1

2

∫ t

0

dt2

∫ t

t2

dt1e
i(ϵk−ϵk+p−ωp)(t1−t2)

]
+

+ ei(ϵk2
−ϵk)t

[
F (ωp) + 1

2

∫ t

0

dt1

∫ t

t1

dt2e
i(ϵk+p+ωp−ϵk)(t1−t2) +

F (ωp)− 1

2

∫ t

0

dt1

∫ t

t1

dt2e
i(ϵk+p−ϵk−ωp)(t1−t2)

]
+

− ei(ϵk2+p−ϵk+p)t

[
F (ωp) + 1

2

∫ t

0

dt1

∫ t

0

dt2e
i(ϵk2

−ωp−ϵk2+p)t2ei(ϵk+p+ωp−ϵk)t1+

+
F (ωp)− 1

2

∫ t

0

dt1

∫ t

0

dt2e
i(ϵk2

−ϵk2+p+ωp)t2ei(ϵk+p−ϵk−ωp)t1

]
+

− ei(ϵk2+p−ϵk+p)t

[
F (ωp)− 1

2

∫ t

0

dt1

∫ t

0

dt2e
i(ϵk2

+ωp−ϵk2+p)t1ei(ϵk+p−ϵk−ωp)t2+

+
F (ωp) + 1

2

∫ t

0

dt1

∫ t

0

dt2e
i(ϵk2

−ϵk2+p−ωp)t1ei(ϵk+p+ωp−ϵk)t2

]
+

+ ei(ϵk2
−ϵk)t

[
F (ωp)− 1

2

∫ t

0

dt1

∫ t

t1

dt2e
i(ϵk2

+ωp−ϵk2+p)(t1−t2) +
F (ωp) + 1

2

∫ t

0

dt1

∫ t

t1

dt2e
i(ϵk2

−ϵk2+p−ωp)(t1−t2)

]
+

+ ei(ϵk2
−ϵk)t

[
F (ωp) + 1

2

∫ t

0

dt2

∫ t

t2

dt1e
i(ϵk2+p+ωp−ϵk2

)(t1−t2) +
F (ωp)− 1

2

∫ t

0

dt2

∫ t

t2

dt1e
i(ϵk2+p−ϵk2

−ωp)(t1−t2)

]}
.

(S47)

T = 0 limit

In the limit where T → 0+, the phononic distribution function F (ωp) = coth(βωp/2) satisfies:

lim
β→+∞

F (ωp) = 1, (S48)
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since ωp > 0 ∀p ̸= 0. In such a case the expression for the time-evolved density profile simplifies to:

⟨ψ(t)| ρ̂(x) |ψ(t)⟩ =

=
∑
k,k2

e−i(k2−k)xei(ϵk2
−ϵk)t(Fψ)∗(k2)(Fψ)(k)−

g2K

2L2

∑
k,k2

∑
p̸=0

V 2(p)e−i(k2−k)x(Fψ)∗(k2)(Fψ)(k)×

×

{
ei(ϵk2

−ϵk)t
∫ t

0

dt2

∫ t

t2

dt1e
i(ϵk−ϵk+p−ωp)(t1−t2) + ei(ϵk2

−ϵk)t
∫ t

0

dt1

∫ t

t1

dt2e
i(ϵk+p+ωp−ϵk)(t1−t2)+

− ei(ϵk2+p−ϵk+p)t

∫ t

0

dt1

∫ t

0

dt2e
i(ϵk2

−ωp−ϵk2+p)t2ei(ϵk+p+ωp−ϵk)t1+

− ei(ϵk2+p−ϵk+p)t

∫ t

0

dt1

∫ t

0

dt2e
i(ϵk2

−ϵk2+p−ωp)t1ei(ϵk+p+ωp−ϵk)t2+

+ ei(ϵk2
−ϵk)t

∫ t

0

dt1

∫ t

t1

dt2e
i(ϵk2

−ϵk2+p−ωp)(t1−t2) + ei(ϵk2
−ϵk)t

∫ t

0

dt2

∫ t

t2

dt1e
i(ϵk2+p+ωp−ϵk2

)(t1−t2)

}
=

=
∑
k,k2

e−i(k2−k)xei(ϵk2
−ϵk)t(Fψ)∗(k2)(Fψ)(k)

{
1− g2K

L2

∑
p ̸=0

V 2(p)

[∫
duδ(u− ϵk + ϵk+p + ωp)

1 + iut− eiut

u2
+

+

∫
duδ(u− ϵk2 + ϵk2+p + ωp)

1− iut− e−iut

u2
+

−
∫
du

∫
dvδ(u− ϵk2 + ϵk2+p + ωp)δ(v − ϵk+p − ωp + ϵk)

1− e−iut

iu

1− e−ivt

iv

]}
.

(S49)

Reexponentiating the term in curly brackets of the last expression in (S49) and introducing the functions:

R(u; k) =
g2K

(2π)2

∫
dp|p|e−α|p|δ(u− ϵk+p − ωp + ϵk), (S50)

S(u, v; k, k2) =
g2K

(2π)2

∫
dp|p|e−α|p|δ(u− ϵk2+p − ωp + ϵk2)δ(v − ϵk+p − ωp + ϵk) (S51)

one obtains the result presented in (16):

⟨ψ(t)| ρ̂(x) |ψ(t)⟩ =
∑
k,k2

(Fψ)∗(k2)(Fψ)(k)ei[(kx−ϵkt)−(k2x−ϵk2
t)]×

× e
−
[∫

duR(u;k) 1−iut−e−iut

u2 +
∫
duR(u;k2)

1+iut−eiut

u2 −
∫
du

∫
dvS(u,v;k,k2)

1−eiut

u
1−e−ivt

v

] (S52)

It is worth noticing that the functions appearing in the expression above possess a number of symmetry properties
that constrain their explicit expression, namely:

g(v, u, t) = g∗(u, v, t), (S53)

S(v, u; k2, k) = S(u, v; k, k2), (S54)

S(u, v,−k,−k2) = S(u, v; k, k2), (S55)

R(u;−k) = R(u; k), (S56)

−
∫
duR(u; k) [f(u, t) + f∗(u, t)] +

∫
dudvS(u, v; k, k)g(u, v, t) = 0. (S57)
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