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An Overpartition Companion of Andrews and Keith’s 2-colored

q-series Identity

Hunter Waldron

Abstract

Andrews and Keith recently produced a general Schmidt type partition theorem using a

novel interpretation of Stockhofe’s bijection, which they used to find new q-series identities. This

includes an identity for a trivariate 2-colored partition generating function. In this paper, their

Schmidt type theorem is further generalized akin to how Franklin classically extended Glaisher’s

theorem. As a consequence, we obtain a companion to Andrews and Keith’s 2-colored identity

for overpartitions. These identities appear to be special cases of a much more general result.

1 Schmidt Type Partitions

There has been a growing interest (see [2, 4, 6, 10, 11, 14, 15, 21, 22]) following the expository work

of Andrews and Paule [5] in researching the combinatorics of Schmidt type partitions, which are

partitions weighted by the sum of parts having only indices from some strict subset of the positive

integers. Their namesake Schmidt was the first to observe Theorem 1, which has since witnessed

numerous proofs (notably, Mork produced a bijection [17] using diagonal hooks, similar to a variant

of Sylvester’s classic bijection [7]).

Theorem 1 (Schmidt [18]). For all n ≥ 1, the number of partitions λ with distinct parts such that

λ1 + λ3 + λ5 + · · · = n is equal to the number of partitions of size n.

For the Schmidt weight to be defined, we must take any partition λ to be a weakly decreasing

sequence λ = (λ1, λ2, . . . , λℓ(λ)) of ℓ(λ) positive integers with λk = 0 whenever k > ℓ(λ), a conven-

tion used implicitly throughout this paper. The parts of λ are the positive λk, the size is the sum

of all parts |λ| = λ1 + λ2 + λ3 + · · · , and the length is the number of parts ℓ(λ).

The first generalization of Theorem 1 was found by Uncu [20] as a special case of an identity

using Boulet-Stanley weights [8]. Uncu’s theorem can be stated as follows.

Theorem 2 (Uncu [20]). For all n ≥ 1, the number of partitions λ such that λ1+λ3+λ5+ · · · = n

is equal to the number of 2-colored partitions of n.

Remark 1. Bowman and Alladi also each found results before Schmidt that can be considered

equivalent to Theorem 1 (see [1, 2, 9]).
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Here we use the language of colored partitions, where a part size is said to appear in t colors,

which we take to be some fixed positive integers c1, . . . , ct, if distinct markings of all such parts

using these colors as subscripts in weakly decreasing order are distinguished. A t-colored partition

has all part sizes appearing in t colors. For example, with colors {1, 2} the 2-colored partitions

of 3 are (32), (31), (22, 12), (22, 11), (21, 12), (22, 12), (12, 12, 12), (12, 12, 11), (12, 11, 11), and

(11, 11, 11).

Let P be the set of all partitions, and for given m ≥ 2, let Dm ⊂ P contain only the partitions

where each part size appears fewer than m times. Schmidt weights appear to be intimately con-

nected to colored partitions. This is exemplified by Andrews and Keith [4] in Theorem 3, which

generalizes Theorem 1 from D2 (which is the set of partitions with distinct parts) to Dm, along

with a far more general Schmidt weight. Li and Yee also generalized Uncu’s theorem to t-colored

partitions in for all of P [15], which they call multipartitions.

Theorem 3 (Andrews-Keith [4]). Fix m ≥ 2 and S = {s1, . . . , si} ⊆ {1, 2, . . . ,m− 1} with 1 ∈ S.

For all n ≥ 1, The partitions λ ∈ Dm such that

n =
∑

k≡S
(mod m)

λk = λs1 + · · ·+ λsi + λs1+m + · · ·+ λsi+m + · · ·

ρj =
∑

k≥0

(λmk+j − λmk+j+1) = λj − λj+1 + λj+m − λj+m+1 + · · ·

for 1 ≤ j < m are equinumerous with the partitions of size n in P where any parts congruent to k

modulo i appears in the sk+1 − sk colors {sk, . . . , sk+1 − 1} where we take si+1 = m, and parts of

color j appear ρj times.

As an application of Theorem 3, Andrews and Keith obtained new q-series sum-product identi-

ties, including the trivariate identity shown here in Theorem 4 that has a product side well-known

to be a generating function for 2-colored partitions.

Theorem 4 (Andrews-Keith [4]). We have the equality

∑

n≥0

∑

j+k≥n
j,k≤n

(−1)j+k+ntj1t
k
2q
(n2)+(

j+1

2 )+(k+1

2 )[ n
n−j,n−k,j+k−n

]

q

(t1q; q)n(t2q; q)n(q; q)n
=

1

(t1q; q)∞(t2q; q)∞
.

This is written as an equality of formal power series (here, in the ring k[[q, t1, t2]] for any

characteristic zero field k) using the standard notation for the q-Pochhammer symbol (z; q)0 = 1

and (z; q)n =
∏n−1

k=0(1 − zqk) for n > 0, with the limiting case as n → ∞ written (z; q)∞. The

q-multinomial coefficient is given below on the left for n = k1 + · · ·+ kt with each ki ≥ 0

[

n

k1, . . . , kt

]

q
=

(q; q)n
(q; q)k1 · · · (q; q)kt

[

n

k

]

q
=

(q; q)n
(q; q)k(q; q)n−k
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and the q-binomial coefficient is the special case where t = 2, which can unambiguously be written

as shown above on the right.

2 New Results

The 2-colored partitions are related to the well-studied overpartitions P, introduced by Corteel

and Lovejoy in [16], which are partitions in P where the first occurrence of any part size may be

distinguished with an overline. Overpartitions can be identified with 2-colored partitions where

a fixed color may appear at most once per part size. For example, the overpartitions of 3 are

(3), (3), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1, 1), and (1, 1, 1).

The equivalent of the product side in Theorem 4 for overpartitions is (−qt1; q)∞/(qt2; q)∞.

Andrews and Keith found a relationship between Schmidt type partitions and overpartitions in [4],

although their result is inadequate to imply a companion identity for Theorem 4 with all three

variables present. The main result in this paper is such an identity, which is presented here.

Theorem 5. We have the equality

∑

n≥0

∑

j+k≥n
j,k≤n

(−1)j+k+ntj1t
k
2q
(n2)+(

k+1

2 )+j2−nj+j
[

n
n−j,n−k,j+k−n

]

q

(t2q; q)n(q; q)n
=

(−t1q; q)∞
(t2q; q)∞

.

Ultimately, the proof of Theorem 5 given in this paper uses q-series techniques. However the

identity was first conjectured by the author after further generalizing Theorem 3 to allow partition

parts to appear freely, rather than being restricted to Dm, with excessive repetition being tracked.

Theorem 6. Fix m and S as in Theorem 3. The partitions in P with the same conditions on

n and the ρj , having exactly the parts α1, . . . , αt appearing p1, . . . , pt ≥ m times respectively, are

equinumerous with the partitions of n in P with the same conditions on the colors, with in addition

the parts iα1, . . . , iαt appearing ⌊p1/m⌋, . . . , ⌊pt/m⌋ times respectively, in only the color {m}.

Remark 2. The generalization of Theorem 3 to Theorem 6 is similar to how Franklin [12] classically

extended Glaisher’s theorem [13].

An explanation of how Theorem 5 was conjectured is provided here. In the limiting case of

Theorem 6 with m = 2 and S = {1} where all parts are allowed to repeat fewer than 4 times, we

obtain the following equality, expressed in terms of generating functions.

Corollary 1. Let e(λ) be the number of part sizes for λ ∈ D4 that appear 2 or 3 times and o(µ) be

the number of parts that are overlined for µ ∈ P. Then

∑

λ∈D4

t
e(λ)
1 tλ1 − λ2 + λ3 − λ4 + · · ·

2 qλ1 + λ3 + λ5 + · · · =
∑

µ∈P

t
o(µ)
1 t

ℓ(µ)−o(µ)
2 q|µ|.
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The right hand side has the desired product form of Theorem 5, whereas developing the left

hand side using a recurrence like those in [4] gives the terms of the sum. Define for k ≥ 0

Q2k = qk

Q2k+1 = t2q
k+1

and let Ln for n ≥ 0 be the generating function for the Schmidt type partitions having exactly n

parts. Then, with the base cases L0 = 1, L1 = Q1/(1−Q1), and

L2 =
Q2t1
1−Q2

+
Q1Q2

(1−Q1)(1 −Q2)

the recurrence

Ln =
Qn

1−Qn

(Ln−1 + t1Ln−2 + t1Ln−3)

is straightforward to establish.

An example of the partitions being enumerated in Corollary 1 is provided here. The coefficient

of t1t
2
2q

6 is 6 since the relevant Schmidt type partitions are (5, 3, 1, 1), (4, 3, 1, 1, 1), (3, 3, 3, 1),

(3, 3, 2, 1, 1), (3, 2, 2, 2, 1), and (4, 2, 2, 2). The overpartitions are (4, 1, 1), (4, 1, 1), (2, 2, 2), (3, 2, 1),

(3, 2, 1), and (3, 2, 1).

Given the sheer generality of Theorem 6, there is a strong reason to expect that Theorem 4

and Theorem 5 are the t = 2 cases of infinite families of identities, one for each t ≥ 2 associated

to t-colored partitions, and a related family of Schmidt type partitions. The recurrences for larger

t are no more difficult to establish, but even conjecturing the identity becomes considerably more

difficult for t = 3.

Question. Can Theorem 4 and Theorem 5 be generalized for t-colored partitions, for each t ≥ 2?

We finish this section with the proof of Theorem 5. In section 3, the proof of Theorem 6 is

given, as well as a discussion of some of the associated generating functions.

Proof of Theorem 5. Using well-known generating function identities, we can write

(−t1q; q)∞
(t2q; q)∞

=
∑

n≥0

tn1q
(n+1

2 )

(q; q)n
×

∑

m≥0

tm2 qm
2

(q; q)m(t2q; q)m

and so for any fixed J ≥ 0, the coefficient of tJ1 on the product side of Theorem 5 is

q(
J+1

2 )

(q; q)J

∑

m≥0

tm2 qm
2

(q; q)m(qt2; q)m
.

We proceed now to show that the coefficient of tJ1 is the same on the sum side. Extracting the
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coefficient of tJ1 , we obtain

(−1)JqJ
2+J

∑

n≥J

∑

J+k≥n
k≤n

(−1)k+ntk2q
(n2)+(

k+1

2 )−nJ
[

n
n−J,n−k,J+k−n

]

q

(t2q; q)n(q; q)n

=q(
J+1

2 )
∑

n≥0

n+J
∑

k=n

(−1)k+ntk2q
(n2)+(

k+1

2 )[ n+J
n,n+J−k,k−n

]

q

(t2q; q)n+J(q; q)n+J

=q(
J+1

2 )
∑

n≥0

J
∑

k=0

(−1)ktn+k
2 qn

2+(k+1

2 )+nk
[

n+J
n,J−k,k

]

q

(t2q; q)n+J(q; q)n+J

=
q(

J+1

2 )

(q; q)J

∑

n≥0

tn2q
n2

(t2q; q)n+J(q; q)n

J
∑

k=0

(−1)ktk2q
(k2)+(n+1)k

[

J
k

]

q

by shifting n to n+J , k to n+ k, and then finally breaking apart the q-multinomial coefficient and

rewriting. Now we can evoke Cauchy’s q-binomial theorem (see [3], Theorem 3.3)

(z; q)N =
N
∑

k=0

(−1)kzkq(
k

2)
[

N
k

]

q

with z = t2q
n+1 to write this in the desired form

q(
J+1

2 )

(q; q)J

∑

n≥0

tn2q
n2

(t2q; q)n+J(q; q)n
(t2q

n+1; q)J

=
q(

J+1

2 )

(q; q)J

∑

n≥0

tn2q
n2

(t2q; q)n(q; q)n
.

3 The Proof of Theorem 6.

We start this section by introducing some notation and background. The reader is refered to [3]

for fundamental definitions related to visualizing partitions, including the Ferrers diagram and the

conjugate λ′ of a partition λ ∈ P.

For m ≥ 2, let Rm ⊂ P contain only the partitions with all parts divisble by m, and Fm be

the set of conjugates of the partitions in Dm. Equivalently, λ ∈ Fm if λk − λk+1 < m holds for all

k ≥ 1. The partitions of a fixed size in Rm and Dm are famously equinumerous [13], as are those

in Dm and Fm since conjugation is a bijection. Stockhofe ([19], in German) produced a family of

bijections from P to P that generalize conjugation, and can be restricted to a map φm : Fm → Rm

that Andrews and Keith showed implies Theorem 3.

To prove Theorem 6, we will extend φm to a larger map Φm : P → P that has the desired
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properties. We note here that Stockhofe’s full maps may very well also imply the theorem, but the

proof given here is also likely much less sophisticated. We will also need the the map Ψm,S : P → CS

where S = {s1, . . . , si} ⊆ {1, 2, . . . ,m} with 1 ∈ S is given, and CS is the set of colored partitions

with parts congruent to k modulo i appearing in the colors {sk, . . . , sk+1− 1} taking si+1 = m+1.

Definition of Ψm,S. For each λ ∈ P, the parts of the colored partition Ψm,S(λ) = µ are obtained

by marking the parts of λ counted by the Schmidt weight

n =
∑

k≡S
(mod m)

λk = λs1 + · · ·+ λsi + λs1+m + · · ·+ λsi+m + · · ·

and then deleting all others, and finally conjugating. Any part of µ that is congruent to k modulo

i recieves the color sk + j where j is the number of squares at the bottom of the corresponding

column of λ’s Ferrers diagram that were not marked.

c
1
=
1

c
2
=
5

c
3
=
4

c
4
=
3

c
5
=
2 c1=1

c2=5

c3=4

c4=3

c5=2

Figure 1: An example of Ψm,S with m = 5 and S = {1, 2, 3}. In the image of Ψm,S, parts congruent
to 1 or 2 modulo 3 can appear in the colors 1 or 2 respectively, and parts 0 modulo 3 can appear in
the colors 3,4, or 5. As shown in the figure, Ψ5,{1,2,3}(5, 5, 4, 4, 4, 4, 4, 4, 3, 2, 1) = (71, 63, 62, 61, 21)

The fact that Ψm,S is invertible is clear since the columns of λ’s Ferrers diagram can be deter-

mined from the corresponding part in µ by using the part’s color and the repeating pattern of the

Schmidt weight to add the appropriate number of uncounted squares. The Schmidt weight of λ

becomes the size of µ by construction, and the alternating sums

∑

k≥0

(λmk+j − λmk+j+1) = λj − λj+1 + λj+m − λj+m+1 + · · ·

for 1 ≤ j ≤ m are separating the columns of λ by their residue modulo m, counting the parts of µ

in each color.

Remark 3. From the properties of Ψm,S a statement analogous to Theorem 3 holds with Dm
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replaced by P, which is also a limiting case of Theorem 6 obtained by allowing all parts to repeat

without restriction.

Below, we use φm in the definition of Φm. Since we only rely on the properties of φm which are

already established, we do not provide a definition in this paper. The interested reader can find

that in [4], along with a detailed example.

Definition of Φm. For each λ ∈ P, Φm(λ) = µ is given by the following process. From λ’s Ferrers

diagram, remove any columns of width m (corresponding to parts repeating m times in λ′) until

a partition λf ∈ Fm remains. Also, build the partition λc by taking any removed column with k

parts and inserting the part km into λc. Next, let λr = φm(λf ), and insert the parts of λc into λr

to form µ.

In the case that λ ∈ Fm, this will leave λf = λ and λc = (), so Φm(λ) = φm(λ) which shows

that Φm is indeed an extension of φm. Since λr ∈ Rm and all the parts of λc are divisible by m,

λc and λr are easily recovered from µ, and λ is in turn recovered by taking the parts of λc to form

the missing columns, so Φm is a bijection. Moreover, since λ is only being modified in multiples

of m (including the application of φm) the Schmidt weight of λ′ is preserved by Φm, as are the

alternating sums ρj for j 6= m.

We now have all the tools needed to proceed with the the proof.

Proof of Theorem 6. The actual bijection between the two families of partitions in Theorem 3

is given by λ 7→ Ψm,S(φm(λ′)′). We need only show that the map λ 7→ Ψm,S(Φm(λ′)′) correctly

handles the parts α1, . . . , αt that appear p1, . . . , pt ≥ m times, respectively. These repetitions

become columns in λ′, which are removed in multiples of m until none more can be removed, each

time becoming a single part that Ψm,S will assign the color m to.

3.1 On The Generating Functions of Schmidt Type Partitions

We finish with some discussion of the generating functions associated to Schmidt type partitions.

Many examples of these can be found in the references with various statistics attached, although

none of them consider both the Schmidt weight and the size of the same partition. The question

of what q-series identities are associated to this combination of statistics is, as such, unexplored,

and may be another direction for q-series research.

Mork’s bijection [17] easily implies two identities with these statistics attached. We briefly

describe the map here. Given a partition λ, place numbers in the diagonal squares from the top

left of λ’s Ferrers diagram, as well as on the diagonal directly above, which count the square they

are in and all squares below or to the right. These quantities are called hook lengths. The Schmidt

type partition µ is then constructed so that µ1 + µ3 + µ5 + · · · is the sum of the lower diagonal

hook lengths, and µ2 + µ4 + µ6 + · · · is the sum of the upper diagonal hook lengths.

7
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Figure 2: Mork’s bijection maps the partition (7, 5, 4, 4, 2, 1) to (12, 10, 7, 5, 3, 2, 1).

Since |λ| = µ1 + µ3 + µ5 + · · · and this map is invertible, Theorem 1 is implied. Observe that

|µ| = 2|λ| − ℓ(λ) since the sum of all hook lengths double counts each square, except those furthest

to the left, and also that µ2 + µ4 + µ6 + · · · = |λ| − ℓ(λ). These relationships readily imply:

∑

λ∈D2

s|λ|qλ1 + λ3 + λ5 + · · · =
1

(qs; qs2)∞

∑

λ∈D2

s|λ|qλ2 + λ4 + λ6 + · · · =
1

(s; qs2)∞
.

The second identity here is notable since there are infinitely many partitions λ such that λ2+λ4 +

λ6 + · · · = n for each n ≥ 1, so s cannot be excluded.

We can obtain much more general identities using the map Ψm,S discussed above. Let 1 ≤ i ≤ m

where m ≥ 2. Then

∑

λ∈P

s|λ|q
∑

∞

k=0

∑i
j=1

λkm+j =
1

(sq, . . . , siqi, si+1qi, . . . , smqi; smqi)∞

∑

λ∈Dm

s|λ|q
∑

∞

k=0

∑i
j=1

λkm+j =
1

(sq, . . . , siqi, si+1qi, . . . , sm−1qi; smqi)∞
.

where we are using the notation for products of q-Pochhammer symbols

(z1, . . . , zn; q)∞ = (z1; q)∞ · · · (zn; q)∞.

There are a few ways to show this. The first identity is implied by the map Ψm,S by setting S =

{1, . . . , i} and tracking what happens to the uncounted parts. As for the second, the relationship

1

(smqi; smqi)∞

∑

λ∈Dm

s|λ|q
∑

∞

k=0

∑i
j=1

λkm+j =
∑

λ∈P

s|λ|q
∑

∞

k=0

∑i
j=1

λkm+j

can be established through the observation that any λ ∈ P may uniquely be decomposed into a

partition in Dm and a partition with parts repeating in multiples of m, and that this decomposition

preserves not just the Schmidt weight as similarly argued for the definition of Φm, but also the size

(see also [8], where the same observation is applied to Stanley-Boulet weights).
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