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Abstract—Every Boolean bent function f can be written either
as a concatenation f = f1||f2 of two complementary semi-bent
functions f1, f2; or as a concatenation f = f1||f2||f3||f4 of four
Boolean functions f1, f2, f3, f4, all of which are simultaneously
bent, semi-bent, or 5-valued spectra-functions. In this context,
it is essential to ask: When does a bent concatenation f (not)
belong to the completed Maiorana-McFarland class M#? In
this article, we answer this question completely by providing
a full characterization of the structure of M-subspaces for the
concatenation of the form f = f1||f2 and f = f1||f2||f3||f4,
which allows us to specify the necessary and sufficient conditions
so that f is outside M#. Based on these conditions, we propose
several explicit design methods of specifying bent functions
outside M# in the special case when f = g||h||g||(h+1), where
g and h are bent functions.

I. PRELIMINARIES

Let Fn
2 be the vector space of all n-tuples x = (x1, . . . , xn),

where xi ∈ F2. For x = (x1, . . . , xn) and y = (y1, . . . , yn)
in Fn

2 , the usual scalar product over F2 is defined as x · y =
x1y1 + · · · + xnyn. By 0n we denote the all-zero vector of
Fn
2 . Every Boolean function f : Fn

2 → F2 can be uniquely
represented by its associated algebraic normal form (ANF)
in the form f(x1, . . . , xn) =

∑
u∈Fn

2
λu(

∏n
i=1 xi

ui), where
xi, λu ∈ F2 and u = (u1, . . . , un) ∈ Fn

2 . The algebraic degree
of f , denoted by deg(f), is equal to the maximum Hamming
weight of u ∈ Fn

2 for which λu ̸= 0.
The first-order derivative of a function f in the direction

a ∈ Fn
2 is given by Daf(x) = f(x) + f(x + a). Derivatives

of higher orders are defined recursively, i.e., the k-th order
derivative of a function f ∈ Bn is defined by DV f(x) =
Dak

Dak−1
. . . Da1f(x) = Dak

(Dak−1
. . . Da1f)(x), where

V = ⟨a1, . . . , ak⟩ is a vector subspace of Fn
2 spanned by

elements a1, . . . , ak ∈ Fn
2 . Note that if a1, . . . , ak ∈ Fn

2 are
linearly dependent, then Dak

Dak−1
. . . Da1

f = 0. The Walsh-
Hadamard transform of f ∈ Bn at any point ω ∈ Fn

2 is defined
Wf (ω) =

∑
x∈Fn

2
(−1)f(x)⊕ω·x. A function f ∈ Bn, for even

n, is called bent if |Wf (u)| = 2
n
2 , for all u ∈ Fn

2 . Its unique
dual function f∗ is defined as Wf (u) = 2

n
2 (−1)f

∗(u), which
is also bent. Two Boolean functions f, f ′ ∈ Bn are called
extended-affine equivalent, if there exists an affine permutation
A of Fn

2 and affine function l ∈ Bn, such that f ◦A+l = f ′. It
is well known, that extended-affine (EA) equivalence preserves
the bent property.

The completed Maiorana-McFarland class M# [6] is the
set of n-variable (n = 2m) Boolean bent functions, which are
EA-equivalent to the functions of the form

f(x, y) = x · π(y) + g(y), for all x, y ∈ Fm
2 , (1)

where π is a permutation on Fm
2 , and g is an arbitrary Boolean

function on Fm
2 . It is well-known from Dillon’s thesis [3] that

a bent function f ∈ Bn belongs to M# iff there exists a
vector space V of dimension m, such that DaDbf = 0 for
all a, b ∈ V . This characterization motivates the following
definition:

Definition 1. [11] Let f ∈ Bn be a Boolean function. We call
a vector subspace V of Fn

2 an M-subspace of f , if we have
that DaDbf = 0, for any a, b ∈ V .

Further, we will investigate M-subspaces of the Boolean
functions of the form f = f1||f2 or f = f1||f2||f3||f4, which
are defined as follows. We define the concatenation f1||f2 :
Fn+1
2 → F2 of the two functions as:

f1||f2(z, zn+1) = f1(z) + zn+1(f1(z) + f2(z)),

for all z ∈ Fn
2 , zn+1 ∈ F2,

(2)

that is, f1||f2(z, 0) = f1(z), and f1||f2(z, 1) = f2(z).
For i = 1, . . . , 4, let fi ∈ Bn. The formula for the

concatenation f = f1||f2||f3||f4 ∈ Bn+2 of the four functions
is given by:

f(z, zn+1, zn+2) =f1(z) + zn+1zn+2(f1 + f2 + f3 + f4)(z)

+zn+1(f1 + f2)(z) + zn+2(f1 + f3)(z),
(3)

for all z ∈ Fn
2 and zn+1, zn+2 ∈ F2, that is, f(z, 0, 0) =

f1(z), f(z, 1, 0) = f2(z), f(z, 0, 1) = f3(z) and f(z, 1, 1) =
f4(z). Throughout this article, we will call bent functions of
the form (2) and (3) bent concatenations.

The main aim of this article is to develop further a theory
of M-subspaces for bent concatenations initially analyzed
in [11] and recently considered in [9]. For a more detailed
treatment of bent functions we refer to [2], [7], and for
their designs outside M# to [8], [10]. The rest of the paper
is organized in the following way. In Sections II and III,
we provide a full characterization of the structure of M-
subspaces for the concatenation of the form f = f1||f2 and
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f = f1||f2||f3||f4, respectively. Consequently, we specify the
necessary and sufficient conditions so that f is outside M#.
Based on these conditions, we propose in Section IV several
explicit design methods of specifying bent functions outside
M# in the special case when f = g||h||g||(h+ 1).

II. CONCATENATION OF TWO FUNCTIONS

Let a, b ∈ Fn
2 . From Eq. (2), we deduce that the second-

order derivative of the concatenation f = f1||f2 : Fn+1
2 → F2,

with respect to (a, 0) and (b, 0) has the following form

D(a,0)D(b,0)f = D(a,0)D(b,0)f1||f2 = DaDbf1||DaDbf2.
(4)

Similarly, from Eq. (2), the second-order derivative of f =
f1||f2 w.r.t. (a, 0) and (b, 1), at the point (z, zn+1) ∈ Fn+1

2 ,
can be computed as

D(a,0)D(b,1)f = D(b,1)(Daf1||Daf2) = g1||g2, where
g1(z) = Daf1(z) +Daf2(z + b) and
g2(z) = Daf2(z) +Daf1(z + b), for all z ∈ Fn

2 .

(5)

Since D(a,an+1)D(b,bn+1)f = D(b,bn+1)D(a,an+1)f =
D(a+b,an+1+bn+1)D(b,bn+1)f , for all a, b ∈ Fn

2 and
an+1, bn+1 ∈ F2, the rest of the cases can also be computed
with (4) and (5). Using these expressions, we relate M-
subspaces of f to M-subspaces of f1 and f2 as follows:

Theorem 2. Let f1, f2 ∈ Bn and let k ∈ {1, . . . , n}. The
function f = f1||f2 ∈ Bn+1 has no (k + 1)-dimensional M-
subspaces if and only if the following conditions hold:
a) The functions f1 and f2 do not share a common (k + 1)-

dimensional M-subspace;
b) For every vector u ∈ Fn

2 and every k-dimensional M-
subspace V ⊂ Fn

2 of both f1 and f2, there is a ∈ V such
that

Daf1(z) +Daf2(z + u) ̸= 0, for some z ∈ Fn
2 . (6)

Proof. (Sketch) Assume that W is an M-subspace of f , with
dim(W ) = k + 1. Consider the projection P : W → F2

given by P (z, zn+1) = zn+1, for all (z, zn+1) ∈ W , where
z ∈ Fn

2 and zn+1 ∈ F2. Then, dim(ker(P )) ≥ k (by rank-
nullity theorem). If dim(ker(P )) = k+1, then Eq. (4) implies
that f1 and f2 share a common (k + 1)-dimensional M-
subspace. Similarly, when dim(ker(P )) = k, define V through
{(v, 0) : v ∈ V } = ker(P ). Then, taking u ∈ Fn

2 be such that
(u, 1) ∈ W \ ker(P ), by Eqs. (4) and (5) one deduces Eq.
(6). In the other direction, it can be shown that assuming that
f1 and f2 do not share a common (k + 1)-dimensional M-
subspace leads to a contradiction.

Using the fact that a bent function f ∈ Bt is in the M#

class if and only if it has a t/2-dimensional M-subspace, from
Theorem 2 we deduce the following result.

Corollary 3. Let f1, f2 ∈ Bn, n = 2k + 1, be Boolean
functions such that f = f1||f2 ∈ Bn+1 is a bent function.
Then, the function f is outside the M# class if and only if
the following conditions hold:

1) The functions f1 and f2 do not share a common (k+1)-
dimensional M-subspace;

2) For every vector u ∈ Fn
2 and every k-dimensional M-

subspace V ⊂ Fn
2 of both f1 and f2, there is a ∈ V such

that Daf1(z) +Daf2(z + u) ̸= 0, for some z ∈ Fn
2 .

It is well-known that in the above concatenation f = f1||f2,
the function f is bent if and only if f1 and f2 are disjoint
spectra semi-bent functions; see [14, Theorem 6]. In particular,
when fi : F2k+1

2 → F2 are represented in the form fi(x, y) =
x ·ϕi(y)+hi(y), for x ∈ Fk+1

2 , y ∈ Fk
2 , where ϕ : Fk

2 → Fk+1
2

and hi : Fk
2 → F2, then the properties of ϕi are essential in

defining disjoint spectra semi-bent functions f1 and f2.

Theorem 4. Let f1 and f2 defined as fi(x, y) = x · πi(y) +
hi(y), with x ∈ Fk+1

2 and y ∈ Fk
2 and hi are arbitrary

Boolean functions on Fk
2 . Then, the concatenation f = f1||f2

is a bent function on F2k+2
2 if and only if im(π1)∩im(π2) = ∅

and πi are injective mappings.

Proof. Notice that f = f1||f2 : Fk+1
2 × Fk+1

2 → F2 is the
function defined by f(x, y) = x ·π(y, yk+1)+h(y, yk+1), for
all x ∈ Fk+1

2 , y ∈ Fk
2 and yn+1 ∈ F2, where π is defined by

π(y, 0) = π1(y) and π(y, 1) = π2(y), and similarly h(y, 0) =
h1(y) and h(y, 1) = h2(y), for all y ∈ Fk

2 . We know that f is
bent if and only if π is a permutation, and π is a permutation if
and only if im(π1)∩ im(π2) = ∅ and π1 and π2 are injective
mappings.

However, it turns out that f = f1||f2 ∈ M# since f1 and
f2 share an M-subspace of maximal dimension.

Remark 5. Any construction method employing the functions
fi(x, y) = x · ϕi(y) + hi(y), where x ∈ Fk+1

2 and y ∈ Fk
2

(consequently ϕi : Fk
2 → Fk+1

2 ), will only provide a function
f which belongs to M#. This is due to Corollary 3 and the
fact that Fk+1

2 ×{0k} is a canonical M-subspace of dimension
k + 1 which is shared by f1 and f2.

III. CONCATENATION OF FOUR FUNCTIONS

Similarly as in the case of two functions concatenation, we
derive the following formulas for the second-order derivatives
of f = f1||f2||f3||f4 (where fi are suitable bent, semi-bent or
five-valued spectra functions) if f is bent [1]). For a function
h : Fm

2 → F2 and r ∈ Fm
2 by hr, we denote the translation

of h by r, that is hr(x) = h(x + r), for all x ∈ Fm
2 . In the

following formulas, a and b are two arbitrary elements from
Fn
2 , not necessarily different.

D(a,0,0)D(b,0,0)f = D(a,0,0)D(b,0,0)(f1||f2||f3||f4)
= DaDbf1||DaDbf2||DaDbf3||DaDbf4

(7)

D(a,1,0)D(b,0,0)f = (Dbf1 +Dbf
a
2 )||

(Dbf1 +Dbf
a
2 )

a||(Dbf3 +Dbf
a
4 )||(Dbf3 +Dbf

a
4 )

a (8)

D(a,0,1)D(b,0,0)f = (Dbf1 +Dbf
a
3 )||

(Dbf2 +Dbf
a
4 )||(Dbf1 +Dbf

a
3 )

a||(Dbf2 +Dbf
a
4 )

a (9)

D(a,1,1)D(b,0,0)f = (Dbf1 +Dbf
a
4 )||

(Dbf2 +Dbf
a
3 )||(Dbf2 +Dbf

a
3 )

a||(Dbf1 +Dbf
a
4 )

a (10)

2



D(a,0,1)D(b,1,0)f = (f1 + f b
2 + fa

3 + fa+b
4 )||

(f1 + f b
2 + fa

3 + fa+b
4 )b||(f1 + f b

2 + fa
3 + fa+b

4 )a||
(f1 + f b

2 + fa
3 + fa+b

4 )a+b.

(11)

Compared to Proposition V.2 in [9], the result below gives
the most general structure of M-subspaces of varying dimen-
sion for a 4-concatenation of not necessarily bent functions.

Theorem 6. Let f = f1||f2||f3||f4 : Fn+2
2 → F2 be the

concatenation of arbitrary Boolean functions f1, . . . , f4 ∈ Bn

and let W be a (k + 2)-dimensional subspace of Fn+2
2 ,

k ∈ {0, . . . , n}. Then, W is an M-subspace of f if and only
if W has one of the following forms:
a) W = V × {(0, 0)}, where V ⊂ Fn

2 is a common (k + 2)-
dimensional M-subspace of f1, . . . , f4.

b) W = ⟨V ×{(0, 0)}, (a, 1, 0)⟩, where V is a common (k+
1)-dimensional M-subspace of f1, . . . , f4, and a ∈ Fn

2 is
such that

Dvf1 +Dvf
a
2 = Dvf3 +Dvf

a
4 = 0, for all v ∈ V.

c) W = ⟨V ×{(0, 0)}, (a, 0, 1)⟩, where V is a common (k+
1)-dimensional M-subspace of f1, . . . , f4, and a ∈ Fn

2 is
such that

Dvf1 +Dvf
a
3 = Dvf2 +Dvf

a
4 = 0, for all v ∈ V.

d) W = ⟨V ×{(0, 0)}, (a, 1, 1)⟩, where V is a common (k+
1)-dimensional M-subspace of f1, . . . , f4, and a ∈ Fn

2 is
such that

Dvf1 +Dvf
a
4 = Dvf2 +Dvf

a
3 = 0, for all v ∈ V.

e) W = ⟨V × {(0, 0)}, (a, 0, 1), (b, 1, 0)⟩, where V is a
common k-dimensional M-subspace of f1, . . . , f4, and
a, b ∈ Fn

2 are such that Dvf1 +Dvf
a
3 = Dvf2 +Dvf

a
4 =

Dvf1 + Dvf
b
2 = Dvf3 + Dvf

b
4 = 0, for all v ∈ V , and

f1(x)+ f2(x+ b)+ f3(x+ a)+ f4(x+ a+ b) = 0, for all
x ∈ Fn

2 .

Proof. (Sketch) Assume first that W is an M-subspace of
f . Let P : W → F2

2 be the projection on the last two
coordinates, i.e., P ((w1, . . . , wn+1, wn+2)) = (wn+1, wn+2),
for all (w1, . . . , wn+1, wn+2) ∈ W . There are 5 subspaces of
F2
2, and depending on which subspace im(P ) is equal to, we

obtain the five corresponding forms a) - e) of the subspace
W . The proof follows by applying Eqs. (7) - (11). The other
direction is proved similarly.

Remark 7. Proposition V.2 in [9] specifies the structure of M-
subspaces of maximal dimension m+1 for f = f1||f2||f3||f4,
where both f and fi ∈ B2m are bent and additionally at least
one fi admits the canonical M-subspace U = Fm

2 × {0m}.
Thus, it is a special case of Theorem 6.

From Theorem 6, we obtain the following full characteri-
zation of the class inclusion of f = f1||f2||f3||f4 in the M#

class in terms of properties of f1, . . . , f4.

Corollary 8. Let f = f1||f2||f3||f4 : Fn+2
2 → F2 be the

concatenation of f1, . . . , f4 ∈ Bn and assume that f is bent;

thus fi are bent, semi-bent or five-valued spectra functions.
Then, f is outside of the M# class if and only if the following
conditions hold:

a) The functions f1, . . . , f4 do not share a common (n/2+1)-
dimensional M-subspace;

b) There are no common (n/2)-dimensional M-subspaces
V ⊂ Fn

2 of f1, . . . , f4 such that there is an element a ∈ Fn
2

for which

Dvf1 +Dvf
a
2 = Dvf3 +Dvf

a
4 = 0, for all v ∈ V, or

Dvf1 +Dvf
a
3 = Dvf2 +Dvf

a
4 = 0, for all v ∈ V, or

Dvf1 +Dvf
a
4 = Dvf2 +Dvf

a
3 = 0, for all v ∈ V.

(12)
c) There are no common (n/2−1)-dimensional M-subspaces

V ⊂ Fn
2 of f1, . . . , f4 such that there are elements a, b ∈

Fn
2 (not necessarily different), for which

Dvf1 +Dvf
a
3 = Dvf2 +Dvf

a
4 = Dvf1 +Dvf

b
2

= Dvf3 +Dvf
b
4 = 0, for all v ∈ V, and

f1(x) + f2(x+ b) + f3(x+ a)

+ f4(x+ a+ b) = 0, for all x ∈ Fn
2 .

(13)

Proof. The result follows directly from Theorem 6, by setting
k+2 = n/2+1, and the fact that a bent function f ∈ Bn+2 is
in the M# class if and only if it has an (n/2+1)-dimensional
M-subspace.

Notice that when fi are bent in Corollary 8, then the item a)
is automatically satisfied since none of the functions fi admits
an M-subspace of dimension n/2 + 1. The condition in b)
was recently deduced in [9, Corollary V.11] for a special case
when fi are bent functions on Fn

2 that share an M-subspace
of maximal dimension n/2.

Open Problem 9. Is the condition c) in Corollary 8 inde-
pendent of conditions a), b)? Particularly, the existence of
bent functions f = f1||f2||f3||f4 on Fn+2

2 in M#, where
all fi ∈ Bn are bent and outside M#, is hard to establish.

Notice that, when f = f1||f1||f1||f1 + 1 so that
f(x, y1, y2) = f1(x) + y1y2, where f1 is a bent function on
Fn
2 , it was deduced [13] that f is outside M# if and only if

f1 is outside M#. This result also follows from Theorem 10
below, as we show in the next section.

IV. AN APPLICATION: DESIGNING BENT FUNCTIONS
OUTSIDE M# OF THE FORM g||h||g||(h+ 1)

The concatenation f = g||h||g||h + 1 (where g and h are
bent) is interesting in terms of the class inclusion, as the dual
bent condition is automatically satisfied. Recall that when fi
are all bent, then f = f1||f2||f3||f4 is bent if and only if
f∗
1 + f∗

2 + f∗
3 + f∗

4 = 1; see [4]. The analysis of structural
properties of M-subspaces presented in the previous section
turns out to be useful when considering certain special cases
of bent 4-concatenation.
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A. The necessary and sufficient condition for f = g||h||g||(h+
1) to be outside M#

Theorem 10. Let h and g be two arbitrary bent functions in
Bn. Then, the function f = f1||f2||f3||f4 : Fn+2

2 → F2, where
f1 = f3 = g and f2 = f4 + 1 = h is a bent function in the
M# class if and only if the functions g and h have a common
(n/2)-dimensional M-subspace, thus g, h ∈ M#.

Proof. We compute f∗
1+f∗

2+f∗
3+f∗

4 = g∗+h∗+g∗+h∗+1 =
1, hence f is a bent function. Let V ⊂ Fn

2 be a common
(n/2)-dimensional M-subspace of g and h. Then, V is also
a common (n/2)-dimensional M-subspace of f1, . . . , f4 and
Dvf1 + Dvf3 = Dvg + Dvg = 0, Dvf2 + Dvf4 = Dvh +
Dvh = 0, for all v ∈ V . Setting a = 0n in the item b) of
Corollary 8, we deduce that f is a bent function in M#.

Assume now that g and h do not have a common (n/2)-
dimensional M-subspace, and that f ∈ M#. Then, the cases
a) and b) in Corollary 8 hold, hence it has to be the case c)
that fails. That is, there is a common (n/2 − 1)-dimensional
M-subspace V ⊂ Fn

2 of f1, . . . , f4, (i.e. of g and h) such that
there are elements a, b ∈ Fn

2 (not necessarily different), for
which

Dvf1 +Dvf
a
3 = Dvf2 +Dvf

a
4 = Dvf1 +Dvf

b
2 =

Dvf3 +Dvf
b
4 = 0, for all v ∈ V, and

f1(x) + f2(x+ b) + f3(x+ a) + f4(x+ a+ b) = 0,

for all x ∈ Fn
2 .

From Dvf1+Dvf
a
3 = 0, we get Dvg+Dvg

a = DaDvg = 0,
for all v ∈ V . Similarly, Dvf2 + Dvf

a
4 = 0 implies Dvh +

Dvh
a = DaDvh = 0, for all v ∈ V . This implies that a

has to be in V , otherwise ⟨V, a⟩ would be a common (n/2)-
dimensional M-subspace of g and h. Setting v = a in Dvf1+
Dvf

b
2 = 0, we get

g(x) + g(x+ a) + h(x+ b) + h(x+ a+ b) = 0,

for all x ∈ Fn
2 .

(14)

On the other hand, from f1(x)+f2(x+b)+f3(x+a)+f4(x+
a+b) = 0 we have g(x)+h(x+b)+g(x+a)+h(x+a+b)+1 =
0, that is g(x)+g(x+a)+h(x+b)+h(x+a+b) = 1, for all
x ∈ Fn

2 . However, this is in contradiction with Eq. (14). We
conclude that f is a bent function outside the M# class.

Remark 11. Notice that Theorem 10 answers negatively Open
Problem 9 when a bent function f ∈ Bn+2 is represented as
f = g||h||g||h+ 1.

However, Theorem 10 provides a very flexible method of
constructing bent functions outside M# for n ≥ 10.

Corollary 12. Let g ∈ Bn be any bent function outside M#,
with n ≥ 8, and h be any bent function on Fn

2 . Then, the bent
function f ∈ Bn+2 defined as f = g||h||g||h + 1 is outside
the M# class.

Proof. By Theorem 10, f ∈ M# if and only if g and h
share a common (n/2)-dimensional M-subspace. But since g

is outside M# it does not admit any (n/2)-dimensional M-
subspace, and therefore it cannot share with h regardless of h
belongs to M# or not. Thus, f ∈ Bn+2 is outside M#.

Another important consequence of Theorem 10 is the fol-
lowing result which also sheds more light on the existence of
bent functions outside M#, for the special case when n = 8.

Corollary 13. Let g ∈ Bn be an arbitrary bent function n ≥ 6.
Then, there exists a bent function f ∈ Bn+2 outside the M#

class such that g(x) = f(x, 0, 0), for all x ∈ Fn
2 .

Proof. Let h be a bent function in n variables with a unique
(n/2)-dimensional M-subspace V ; see [9] for their exis-
tence. Since g is bent, thus not affine, there exist are two
elements a, b ∈ Fn

2 such that DaDbg ̸= 0. Let A be any
affine permutation of Fn

2 such that A−1({a, b}) ⊂ V . Define
h′ = h ◦ A. Then, by construction g and h′ do not share an
(n/2)-dimensional M-subspace. Therefore, by Theorem 10,
the function f = g||h′||g||(h′ + 1) is a bent function outside
the M# class, and the result follows.

Note that certain design methods of constructing 8-variable
bent functions outside M# using bent functions f1, . . . , f4 ∈
M# were considered in [9], but Corollary 13 confirms this
fact theoretically and thus excludes the case that bent functions
outside M# originate from the 4-concatenation of semi-bent
or five-valued spectra functions only. Moreover, it is always
possible to find more than one permutation A (from the proof
of Corollary 13). It means that for n ≥ 6, the number of bent
functions outside M# in n + 2 variables is always strictly
greater than the number of all bent functions in n variables.

Theorem 14. Let n, k be two integers such that k < n/2−1.
Let g, h be two bent functions in Bn whose M-subspaces of
maximal dimension k are mutually non-intersecting. Assume
that for any subspace Λ ⊂ Fn

2 with dim(Λ) = k − 1,
there exists a ∈ Λ such that Dag ̸= Dah. Then, f =
f1||f2||f3||f4 : Fn+2

2 → F2, where f1 = f3 = g and
f2 = f4 + 1 = h, is a bent function whose M-subspaces
have dimension < k + 1.

Proof. (Sketch) By assumption, we have that W = ⟨V ×
{(0, 0)}, (a, i1, i2)⟩ is not an M-subspace of f , where V is
a k-dimensional M-subspace of g (resp. h), (i1, i2) ∈ F2

2.
Thus, let ∆ be a common (k − 1)-dimensional M-subspace
of g and h. Set W = ⟨∆ × {(0, 0)}, (a, i1, i2), (b, i3, i4)⟩,
where (i1, i2), (i3, i4) ∈ F2

2 and (i1, i2) ̸= (i3, i4). Then, there
are two cases to be considered, namely 1) a /∈ ∆ or b /∈ ∆
and 2) a, b ∈ ∆. It can be shown that the vector space W ,
with dim(W ) = k+1, is not an M-subspace of f . The result
follows then from Theorem 6.

Corollary 15. Let n be an even integer. Let π be a permutation
such that g = x · π(y) has only one (n/2)-dimensional M-
subspace. Let A be an invertible matrix on Fn

2 such that I+A
is also an invertible matrix on Fn

2 . Let h = g ◦ A. Then, the
function f = f1||f2||f3||f4 : Fn+2

2 → F2, where f1 = f3 = g
and f2 = f4 + 1 = h, is a bent function outside M#.
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Proof. Since g has only one (n/2)-dimensional M-subspace,
we have that g and h have no common (n/2)-dimensional
M-subspace. Since I +A is also an invertible matrix on Fn

2 ,
we have g+h is also a bent function, that is, for any nonzero
vector a ∈ Fn

2 we have Dag ̸= Dah. From Theorem 14,
we have the maximal dimension of M-subspaces of f is <
n/2 + 1, thus f ̸∈ M#.

B. A special case of relating g and h in a linear manner

The following result, obtained in [5], provides two sec-
ondary constructions of bent functions in n+2 variables from
bent functions in n variables. Notice that a version of the result
is also stated as Theorem 45 in [12].

Theorem 16. [5] Let g be a bent function in n variables.
Then, the functions f and f ′ in (n+ 2)-variables defined by

f(z, zn+1, zn+2) =g(z) +
n∑

i=1

αizizn+1 + zn+1zn+2,

f ′(z, zn+1, zn+2) =g(z) +

n∑
i=1

αizi(zn+1 + zn+2)

+zn+1zn+2,

(15)

for all z ∈ Fn
2 and zn+1, zn+2 ∈ F2, are bent functions for

all α1, . . . , αn ∈ F2.

Nevertheless, these methods fall under the concatenation
framework given by f = g||h||g||(h + 1) and the class
inclusion of these functions is then easily determined.

Proposition 17. Let g be a bent function in n variables. Let
f and f ′ be the bent functions in (n+2)-variables defined in
Eq. (15). Then, the functions f and f ′ are in the M# class
if and only if the function g is in the M# class.

Proof. Note that f and f ′ are extended affine equivalent,
hence it is enough to investigate the class inclusion for
one of them; therefore, we will prove the result for f . By
looking at f(z, 0, 0), f(z, 1, 0), f(z, 0, 1) and f(z, 1, 1), we
see that f = f1||f2||f3||f4, where f1(z) = f3(z) = g(z),
f2(z) = f4(z) + 1 = g(z) +

∑n
i=1 αizi. Since the functions

g(z) and g(z) +
∑n

i=1 αizi have the same M-subspaces, the
result follows from Theorem 10.

Consequently, we provide an alternative proof of existence
of cubic bents functions outside M# on Fn

2 for all n ≥ 10.

Corollary 18. Cubic bent functions on Fn
2 outside M# exist

for all n ≥ 10.

Proof. In Theorem 16, take g ∈ B10 as h10
3 or h10

4 from [11,
Table 4], which are both outside M#.

C. Applying suitable affine transforms

The class inclusion properties are substantially affected by
applying suitable affine transformations to bent functions used
in 4-bent concatenation.

Theorem 19. Let g ∈ Bn be a bent function, n ≥ 6, in
the M# class, and let q ∈ Bn be a bent function with a

unique n/2-dimensional M-subspace. Then, there exist two
linear permutations A and B of Fn

2 such that for h = q ◦ A
and h′ = q ◦ B in Bn, the function f ∈ Bn+2 defined by
f = g||h||g||(h+ 1) is a bent function inside the M# class,
and the function f ′ ∈ Bn+2 defined by f ′ = g||h′||g||(h′ +1)
is a bent function outside the M# class.

Proof. Let a, b ∈ Fn
2 be two elements such that DaDbg ̸= 0

(we know such two elements exist, otherwise g would be
affine), and let V be the unique (n/2)-dimensional M-
subspace of q. Let B be any linear isomorphism such that
{a, b} ⊂ B−1(V ). The subspace B−1(V ) is the unique (n/2)-
dimensional M-subspace of q ◦ B. Since {a, b} ⊂ B−1(V )
and DaDbg ̸= 0, we deduce that g and q ◦ B do not share
an (n/2)-dimensional M-subspace. Setting h′ = q ◦B, from
Theorem 10, we deduce that f ′ = g||h′||g||(h′ + 1) ̸∈ M#.
Notice that h′ also admits a unique (n/2)-dimensional M-
subspace as h does.

On the other hand, since g ∈ M#, it has at least one (n/2)-
dimensional M-subspace, denote it by W . Let A be any linear
isomorphism such that A(W ) = V , and set h = q ◦A. Then,
W is an (n/2)-dimensional M-subspace of both g and h. By
Theorem 10, we have that f = g||h||g||(h+ 1) ∈ M#.
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