When does a bent concatenation not belong to the completed Maiorana-McFarland class?

Sadmir Kudin^{*}, Enes Pasalic[†], Alexandr Polujan[‡], and Fengrong Zhang[§]

*University of Primorska, FAMNIT & IAM, Glagoljaška 8, 6000 Koper, Slovenia, sadmir.kudin@iam.upr.si

[†]University of Primorska, FAMNIT & IAM, Glagoljaška 8, 6000 Koper, Slovenia, enes.pasalic6@gmail.com

[‡]Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, alexandr.polujan@gmail.com

⁸School of Cyber Engineering, Xidian University, Xi'an 710071, P.R. China, zhfl203@163.com

Abstract—Every Boolean bent function f can be written either as a concatenation $f = f_1 || f_2$ of two complementary semi-bent functions f_1, f_2 ; or as a concatenation $f = f_1 || f_2 || f_3 || f_4$ of four Boolean functions f_1, f_2, f_3, f_4 , all of which are simultaneously bent, semi-bent, or 5-valued spectra-functions. In this context, it is essential to ask: When does a bent concatenation f (not) belong to the completed Maiorana-McFarland class $\mathcal{M}^{\#}$? In this article, we answer this question completely by providing a full characterization of the structure of \mathcal{M} -subspaces for the concatenation of the form $f = f_1 || f_2$ and $f = f_1 || f_2 || f_3 || f_4$, which allows us to specify the necessary and sufficient conditions so that f is outside $\mathcal{M}^{\#}$. Based on these conditions, we propose several explicit design methods of specifying bent functions outside $\mathcal{M}^{\#}$ in the special case when f = g ||h||g||(h+1), where g and h are bent functions.

I. PRELIMINARIES

Let \mathbb{F}_2^n be the vector space of all *n*-tuples $x = (x_1, \ldots, x_n)$, where $x_i \in \mathbb{F}_2$. For $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in \mathbb{F}_2^n , the usual scalar product over \mathbb{F}_2 is defined as $x \cdot y = x_1y_1 + \cdots + x_ny_n$. By 0_n we denote the all-zero vector of \mathbb{F}_2^n . Every Boolean function $f: \mathbb{F}_2^n \to \mathbb{F}_2$ can be uniquely represented by its associated algebraic normal form (ANF) in the form $f(x_1, \ldots, x_n) = \sum_{u \in \mathbb{F}_2^n} \lambda_u(\prod_{i=1}^n x_i^{u_i})$, where $x_i, \lambda_u \in \mathbb{F}_2$ and $u = (u_1, \ldots, u_n) \in \mathbb{F}_2^n$. The algebraic degree of f, denoted by deg(f), is equal to the maximum Hamming weight of $u \in \mathbb{F}_2^n$ for which $\lambda_u \neq 0$.

The first-order derivative of a function f in the direction $a \in \mathbb{F}_2^n$ is given by $D_a f(x) = f(x) + f(x+a)$. Derivatives of higher orders are defined recursively, i.e., the k-th order *derivative* of a function $f \in \mathcal{B}_n$ is defined by $D_V f(x) =$ $D_{a_k} D_{a_{k-1}} \dots D_{a_1} f(x) = D_{a_k} (D_{a_{k-1}} \dots D_{a_1} f)(x),$ where $V = \langle a_1, \ldots, a_k \rangle$ is a vector subspace of \mathbb{F}_2^n spanned by elements $a_1, \ldots, a_k \in \mathbb{F}_2^n$. Note that if $a_1, \ldots, a_k \in \mathbb{F}_2^n$ are linearly dependent, then $D_{a_k}D_{a_{k-1}}\dots D_{a_1}f = 0$. The Walsh-Hadamard transform of $f \in \mathcal{B}_n$ at any point $\omega \in \mathbb{F}_2^n$ is defined $W_f(\omega) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus \omega \cdot x}$. A function $f \in \mathcal{B}_n$, for even n, is called *bent* if $|W_f(u)| = 2^{\frac{n}{2}}$, for all $u \in \mathbb{F}_2^n$. Its unique dual function f^* is defined as $W_f(u) = 2^{\frac{n}{2}}(-1)^{f^*(u)}$, which is also bent. Two Boolean functions $f, f' \in \mathcal{B}_n$ are called extended-affine equivalent, if there exists an affine permutation A of \mathbb{F}_2^n and affine function $l \in \mathcal{B}_n$, such that $f \circ A + l = f'$. It is well known, that extended-affine (EA) equivalence preserves the bent property.

The completed Maiorana-McFarland class $\mathcal{M}^{\#}$ [6] is the set of *n*-variable (n = 2m) Boolean bent functions, which are EA-equivalent to the functions of the form

$$f(x,y) = x \cdot \pi(y) + g(y), \text{ for all } x, y \in \mathbb{F}_2^m, \qquad (1)$$

where π is a permutation on \mathbb{F}_2^m , and g is an arbitrary Boolean function on \mathbb{F}_2^m . It is well-known from Dillon's thesis [3] that a bent function $f \in \mathcal{B}_n$ belongs to $\mathcal{M}^{\#}$ iff there exists a vector space V of dimension m, such that $D_a D_b f = 0$ for all $a, b \in V$. This characterization motivates the following definition:

Definition 1. [11] Let $f \in \mathcal{B}_n$ be a Boolean function. We call a vector subspace V of \mathbb{F}_2^n an \mathcal{M} -subspace of f, if we have that $D_a D_b f = 0$, for any $a, b \in V$.

Further, we will investigate \mathcal{M} -subspaces of the Boolean functions of the form $f = f_1 || f_2$ or $f = f_1 || f_2 || f_3 || f_4$, which are defined as follows. We define the concatenation $f_1 || f_2 : \mathbb{F}_2^{n+1} \to \mathbb{F}_2$ of the two functions as:

$$f_1||f_2(z, z_{n+1}) = f_1(z) + z_{n+1}(f_1(z) + f_2(z)),$$

for all $z \in \mathbb{F}_2^n$, $z_{n+1} \in \mathbb{F}_2$, (2)

that is, $f_1||f_2(z,0) = f_1(z)$, and $f_1||f_2(z,1) = f_2(z)$.

For i = 1, ..., 4, let $f_i \in \mathcal{B}_n$. The formula for the concatenation $f = f_1 ||f_2||f_3||f_4 \in \mathcal{B}_{n+2}$ of the four functions is given by:

$$f(z, z_{n+1}, z_{n+2}) = f_1(z) + z_{n+1}z_{n+2}(f_1 + f_2 + f_3 + f_4)(z) + z_{n+1}(f_1 + f_2)(z) + z_{n+2}(f_1 + f_3)(z),$$
(3)

for all $z \in \mathbb{F}_2^n$ and $z_{n+1}, z_{n+2} \in \mathbb{F}_2$, that is, $f(z, 0, 0) = f_1(z)$, $f(z, 1, 0) = f_2(z)$, $f(z, 0, 1) = f_3(z)$ and $f(z, 1, 1) = f_4(z)$. Throughout this article, we will call bent functions of the form (2) and (3) *bent concatenations*.

The main aim of this article is to develop further a theory of \mathcal{M} -subspaces for bent concatenations initially analyzed in [11] and recently considered in [9]. For a more detailed treatment of bent functions we refer to [2], [7], and for their designs outside $\mathcal{M}^{\#}$ to [8], [10]. The rest of the paper is organized in the following way. In Sections II and III, we provide a full characterization of the structure of \mathcal{M} subspaces for the concatenation of the form $f = f_1 || f_2$ and $f = f_1||f_2||f_3||f_4$, respectively. Consequently, we specify the necessary and sufficient conditions so that f is outside $\mathcal{M}^{\#}$. Based on these conditions, we propose in Section IV several explicit design methods of specifying bent functions outside $\mathcal{M}^{\#}$ in the special case when f = g||h||g||(h + 1).

II. CONCATENATION OF TWO FUNCTIONS

Let $a, b \in \mathbb{F}_2^n$. From Eq. (2), we deduce that the secondorder derivative of the concatenation $f = f_1 || f_2 : \mathbb{F}_2^{n+1} \to \mathbb{F}_2$, with respect to (a, 0) and (b, 0) has the following form

$$D_{(a,0)}D_{(b,0)}f = D_{(a,0)}D_{(b,0)}f_1||f_2 = D_a D_b f_1||D_a D_b f_2.$$
(4)

Similarly, from Eq. (2), the second-order derivative of $f = f_1 || f_2$ w.r.t. (a, 0) and (b, 1), at the point $(z, z_{n+1}) \in \mathbb{F}_2^{n+1}$, can be computed as

$$D_{(a,0)}D_{(b,1)}f = D_{(b,1)}(D_af_1||D_af_2) = g_1||g_2, \text{ where}$$

$$g_1(z) = D_af_1(z) + D_af_2(z+b) \text{ and}$$
(5)

$$g_2(z) = D_af_2(z) + D_af_1(z+b), \text{ for all } z \in \mathbb{F}_2^n.$$

Since $D_{(a,a_{n+1})}D_{(b,b_{n+1})}f = D_{(b,b_{n+1})}D_{(a,a_{n+1})}f = D_{(a+b,a_{n+1}+b_{n+1})}D_{(b,b_{n+1})}f$, for all $a, b \in \mathbb{F}_2^n$ and $a_{n+1}, b_{n+1} \in \mathbb{F}_2$, the rest of the cases can also be computed with (4) and (5). Using these expressions, we relate \mathcal{M} -subspaces of f_1 and f_2 as follows:

Theorem 2. Let $f_1, f_2 \in \mathcal{B}_n$ and let $k \in \{1, ..., n\}$. The function $f = f_1 || f_2 \in \mathcal{B}_{n+1}$ has no (k + 1)-dimensional \mathcal{M} -subspaces if and only if the following conditions hold:

- a) The functions f_1 and f_2 do not share a common (k + 1)dimensional \mathcal{M} -subspace;
- b) For every vector $u \in \mathbb{F}_2^n$ and every k-dimensional \mathcal{M} subspace $V \subset \mathbb{F}_2^n$ of both f_1 and f_2 , there is $a \in V$ such that

$$D_a f_1(z) + D_a f_2(z+u) \neq 0$$
, for some $z \in \mathbb{F}_2^n$. (6)

Proof. (Sketch) Assume that W is an \mathcal{M} -subspace of f, with $\dim(W) = k + 1$. Consider the projection $P : W \to \mathbb{F}_2$ given by $P(z, z_{n+1}) = z_{n+1}$, for all $(z, z_{n+1}) \in W$, where $z \in \mathbb{F}_2^n$ and $z_{n+1} \in \mathbb{F}_2$. Then, $\dim(\ker(P)) \ge k$ (by rank-nullity theorem). If $\dim(\ker(P)) = k+1$, then Eq. (4) implies that f_1 and f_2 share a common (k + 1)-dimensional \mathcal{M} -subspace. Similarly, when $\dim(\ker(P)) = k$, define V through $\{(v, 0) : v \in V\} = \ker(P)$. Then, taking $u \in \mathbb{F}_2^n$ be such that $(u, 1) \in W \setminus \ker(P)$, by Eqs. (4) and (5) one deduces Eq. (6). In the other direction, it can be shown that assuming that f_1 and f_2 do not share a common (k + 1)-dimensional \mathcal{M} -subspace leads to a contradiction. \Box

Using the fact that a bent function $f \in \mathcal{B}_t$ is in the $\mathcal{M}^{\#}$ class if and only if it has a t/2-dimensional \mathcal{M} -subspace, from Theorem 2 we deduce the following result.

Corollary 3. Let $f_1, f_2 \in \mathcal{B}_n$, n = 2k + 1, be Boolean functions such that $f = f_1 || f_2 \in \mathcal{B}_{n+1}$ is a bent function. Then, the function f is outside the $\mathcal{M}^{\#}$ class if and only if the following conditions hold:

- The functions f₁ and f₂ do not share a common (k+1)dimensional M-subspace;
- 2) For every vector $u \in \mathbb{F}_2^n$ and every k-dimensional \mathcal{M} -subspace $V \subset \mathbb{F}_2^n$ of both f_1 and f_2 , there is $a \in V$ such that $D_a f_1(z) + D_a f_2(z+u) \neq 0$, for some $z \in \mathbb{F}_2^n$.

It is well-known that in the above concatenation $f = f_1 || f_2$, the function f is bent if and only if f_1 and f_2 are disjoint spectra semi-bent functions; see [14, Theorem 6]. In particular, when $f_i \colon \mathbb{F}_2^{2k+1} \to \mathbb{F}_2$ are represented in the form $f_i(x, y) =$ $x \cdot \phi_i(y) + h_i(y)$, for $x \in \mathbb{F}_2^{k+1}$, $y \in \mathbb{F}_2^k$, where $\phi \colon \mathbb{F}_2^k \to \mathbb{F}_2^{k+1}$ and $h_i \colon \mathbb{F}_2^k \to \mathbb{F}_2$, then the properties of ϕ_i are essential in defining disjoint spectra semi-bent functions f_1 and f_2 .

Theorem 4. Let f_1 and f_2 defined as $f_i(x, y) = x \cdot \pi_i(y) + h_i(y)$, with $x \in \mathbb{F}_2^{k+1}$ and $y \in \mathbb{F}_2^k$ and h_i are arbitrary Boolean functions on \mathbb{F}_2^k . Then, the concatenation $f = f_1 || f_2$ is a bent function on \mathbb{F}_2^{2k+2} if and only if $\operatorname{im}(\pi_1) \cap \operatorname{im}(\pi_2) = \emptyset$ and π_i are injective mappings.

Proof. Notice that $f = f_1 || f_2 \colon \mathbb{F}_2^{k+1} \times \mathbb{F}_2^{k+1} \to \mathbb{F}_2$ is the function defined by $f(x, y) = x \cdot \pi(y, y_{k+1}) + h(y, y_{k+1})$, for all $x \in \mathbb{F}_2^{k+1}$, $y \in \mathbb{F}_2^k$ and $y_{n+1} \in \mathbb{F}_2$, where π is defined by $\pi(y, 0) = \pi_1(y)$ and $\pi(y, 1) = \pi_2(y)$, and similarly $h(y, 0) = h_1(y)$ and $h(y, 1) = h_2(y)$, for all $y \in \mathbb{F}_2^k$. We know that f is bent if and only if π is a permutation, and π is a permutation if and only if $im(\pi_1) \cap im(\pi_2) = \emptyset$ and π_1 and π_2 are injective mappings.

However, it turns out that $f = f_1 || f_2 \in \mathcal{M}^{\#}$ since f_1 and f_2 share an \mathcal{M} -subspace of maximal dimension.

Remark 5. Any construction method employing the functions $f_i(x, y) = x \cdot \phi_i(y) + h_i(y)$, where $x \in \mathbb{F}_2^{k+1}$ and $y \in \mathbb{F}_2^k$ (consequently $\phi_i : \mathbb{F}_2^k \to \mathbb{F}_2^{k+1}$), will only provide a function f which belongs to $\mathcal{M}^{\#}$. This is due to Corollary 3 and the fact that $\mathbb{F}_2^{k+1} \times \{0_k\}$ is a canonical \mathcal{M} -subspace of dimension k+1 which is shared by f_1 and f_2 .

III. CONCATENATION OF FOUR FUNCTIONS

Similarly as in the case of two functions concatenation, we derive the following formulas for the second-order derivatives of $f = f_1 ||f_2||f_3||f_4$ (where f_i are suitable bent, semi-bent or five-valued spectra functions) if f is bent [1]). For a function $h : \mathbb{F}_2^m \to \mathbb{F}_2$ and $r \in \mathbb{F}_2^m$ by h^r , we denote the translation of h by r, that is $h^r(x) = h(x+r)$, for all $x \in \mathbb{F}_2^m$. In the following formulas, a and b are two arbitrary elements from \mathbb{F}_2^n , not necessarily different.

$$D_{(a,0,0)}D_{(b,0,0)}f = D_{(a,0,0)}D_{(b,0,0)}(f_1||f_2||f_3||f_4)$$

= $D_aD_bf_1||D_aD_bf_2||D_aD_bf_3||D_aD_bf_4$ (7)

$$D_{(a,1,0)}D_{(b,0,0)}f = (D_bf_1 + D_bf_2^a)|| (D_bf_1 + D_bf_2^a)^a||(D_bf_3 + D_bf_4^a)||(D_bf_3 + D_bf_4^a)^a$$
(8)

$$D_{(a,0,1)}D_{(b,0,0)}f = (D_bf_1 + D_bf_3^a)|| (D_bf_2 + D_bf_4^a)||(D_bf_1 + D_bf_3^a)^a||(D_bf_2 + D_bf_4^a)^a$$
(9)

 $D_{(a,1,1)}D_{(b,0,0)}f = (D_bf_1 + D_bf_4^a)||$ $(D_bf_2 + D_bf_3^a)||(D_bf_2 + D_bf_3^a)^a||(D_bf_1 + D_bf_4^a)^a$ (10)

$$D_{(a,0,1)}D_{(b,1,0)}f = (f_1 + f_2^b + f_3^a + f_4^{a+b})||$$

$$(f_1 + f_2^b + f_3^a + f_4^{a+b})^b||(f_1 + f_2^b + f_3^a + f_4^{a+b})^a|| \quad (11)$$

$$(f_1 + f_2^b + f_3^a + f_4^{a+b})^{a+b}.$$

Compared to Proposition V.2 in [9], the result below gives the most general structure of \mathcal{M} -subspaces of varying dimension for a 4-concatenation of not necessarily bent functions.

Theorem 6. Let $f = f_1||f_2||f_3||f_4: \mathbb{F}_2^{n+2} \to \mathbb{F}_2$ be the concatenation of arbitrary Boolean functions $f_1, \ldots, f_4 \in \mathcal{B}_n$ and let W be a (k + 2)-dimensional subspace of \mathbb{F}_2^{n+2} , $k \in \{0, \ldots, n\}$. Then, W is an \mathcal{M} -subspace of f if and only if W has one of the following forms:

- a) $W = V \times \{(0,0)\}$, where $V \subset \mathbb{F}_2^n$ is a common (k+2)dimensional \mathcal{M} -subspace of f_1, \ldots, f_4 .
- b) $W = \langle V \times \{(0,0)\}, (a,1,0) \rangle$, where V is a common (k + 1)-dimensional \mathcal{M} -subspace of f_1, \ldots, f_4 , and $a \in \mathbb{F}_2^n$ is such that

$$D_v f_1 + D_v f_2^a = D_v f_3 + D_v f_4^a = 0$$
, for all $v \in V$.

c) $W = \langle V \times \{(0,0)\}, (a,0,1) \rangle$, where V is a common (k + 1)-dimensional \mathcal{M} -subspace of f_1, \ldots, f_4 , and $a \in \mathbb{F}_2^n$ is such that

$$D_v f_1 + D_v f_3^a = D_v f_2 + D_v f_4^a = 0$$
, for all $v \in V$.

d) $W = \langle V \times \{(0,0)\}, (a,1,1) \rangle$, where V is a common (k + 1)-dimensional \mathcal{M} -subspace of f_1, \ldots, f_4 , and $a \in \mathbb{F}_2^n$ is such that

$$D_v f_1 + D_v f_4^a = D_v f_2 + D_v f_3^a = 0$$
, for all $v \in V$.

e) $W = \langle V \times \{(0,0)\}, (a,0,1), (b,1,0) \rangle$, where V is a common k-dimensional M-subspace of f_1, \ldots, f_4 , and $a, b \in \mathbb{F}_2^n$ are such that $D_v f_1 + D_v f_3^a = D_v f_2 + D_v f_4^a = D_v f_1 + D_v f_2^b = D_v f_3 + D_v f_4^b = 0$, for all $v \in V$, and $f_1(x) + f_2(x+b) + f_3(x+a) + f_4(x+a+b) = 0$, for all $x \in \mathbb{F}_2^n$.

Proof. (Sketch) Assume first that W is an \mathcal{M} -subspace of f. Let $P: W \to \mathbb{F}_2^2$ be the projection on the last two coordinates, i.e., $P((w_1, \ldots, w_{n+1}, w_{n+2})) = (w_{n+1}, w_{n+2})$, for all $(w_1, \ldots, w_{n+1}, w_{n+2}) \in W$. There are 5 subspaces of \mathbb{F}_2^2 , and depending on which subspace $\operatorname{im}(P)$ is equal to, we obtain the five corresponding forms a) - e) of the subspace W. The proof follows by applying Eqs. (7) - (11). The other direction is proved similarly.

Remark 7. Proposition V.2 in [9] specifies the structure of \mathcal{M} -subspaces of maximal dimension m+1 for $f = f_1||f_2||f_3||f_4$, where both f and $f_i \in \mathcal{B}_{2m}$ are bent and additionally at least one f_i admits the canonical \mathcal{M} -subspace $U = \mathbb{F}_2^m \times \{0_m\}$. Thus, it is a special case of Theorem 6.

From Theorem 6, we obtain the following full characterization of the class inclusion of $f = f_1 ||f_2||f_3||f_4$ in the $\mathcal{M}^{\#}$ class in terms of properties of f_1, \ldots, f_4 .

Corollary 8. Let $f = f_1||f_2||f_3||f_4: \mathbb{F}_2^{n+2} \to \mathbb{F}_2$ be the concatenation of $f_1, \ldots, f_4 \in \mathcal{B}_n$ and assume that f is bent;

thus f_i are bent, semi-bent or five-valued spectra functions. Then, f is outside of the $\mathcal{M}^{\#}$ class if and only if the following conditions hold:

- a) The functions f_1, \ldots, f_4 do not share a common (n/2+1)dimensional \mathcal{M} -subspace;
- b) There are no common (n/2)-dimensional \mathcal{M} -subspaces $V \subset \mathbb{F}_2^n$ of f_1, \ldots, f_4 such that there is an element $a \in \mathbb{F}_2^n$ for which

$$D_v f_1 + D_v f_2^a = D_v f_3 + D_v f_4^a = 0, \text{ for all } v \in V, \text{ or} D_v f_1 + D_v f_3^a = D_v f_2 + D_v f_4^a = 0, \text{ for all } v \in V, \text{ or} D_v f_1 + D_v f_4^a = D_v f_2 + D_v f_3^a = 0, \text{ for all } v \in V.$$
(12)

c) There are no common (n/2-1)-dimensional \mathcal{M} -subspaces $V \subset \mathbb{F}_2^n$ of f_1, \ldots, f_4 such that there are elements $a, b \in \mathbb{F}_2^n$ (not necessarily different), for which

$$D_{v}f_{1} + D_{v}f_{3}^{a} = D_{v}f_{2} + D_{v}f_{4}^{a} = D_{v}f_{1} + D_{v}f_{2}^{b}$$

$$= D_{v}f_{3} + D_{v}f_{4}^{b} = 0, \text{ for all } v \in V, \text{ and}$$

$$f_{1}(x) + f_{2}(x+b) + f_{3}(x+a)$$

$$+ f_{4}(x+a+b) = 0, \text{ for all } x \in \mathbb{F}_{2}^{n}.$$
(13)

Proof. The result follows directly from Theorem 6, by setting k+2 = n/2+1, and the fact that a bent function $f \in \mathcal{B}_{n+2}$ is in the $\mathcal{M}^{\#}$ class if and only if it has an (n/2+1)-dimensional \mathcal{M} -subspace.

Notice that when f_i are bent in Corollary 8, then the item a) is automatically satisfied since none of the functions f_i admits an \mathcal{M} -subspace of dimension n/2 + 1. The condition in b) was recently deduced in [9, Corollary V.11] for a special case when f_i are bent functions on \mathbb{F}_2^n that share an \mathcal{M} -subspace of maximal dimension n/2.

Open Problem 9. Is the condition c) in Corollary 8 independent of conditions a), b)? Particularly, the existence of bent functions $f = f_1 ||f_2||f_3||f_4$ on \mathbb{F}_2^{n+2} in $\mathcal{M}^{\#}$, where all $f_i \in \mathcal{B}_n$ are bent and outside $\mathcal{M}^{\#}$, is hard to establish.

Notice that, when $f = f_1||f_1||f_1||f_1 + 1$ so that $f(x, y_1, y_2) = f_1(x) + y_1y_2$, where f_1 is a bent function on \mathbb{F}_2^n , it was deduced [13] that f is outside $\mathcal{M}^{\#}$ if and only if f_1 is outside $\mathcal{M}^{\#}$. This result also follows from Theorem 10 below, as we show in the next section.

IV. AN APPLICATION: DESIGNING BENT FUNCTIONS OUTSIDE $\mathcal{M}^{\#}$ of the form g||h||g||(h + 1)

The concatenation f = g||h||g||h + 1 (where g and h are bent) is interesting in terms of the class inclusion, as the dual bent condition is automatically satisfied. Recall that when f_i are all bent, then $f = f_1||f_2||f_3||f_4$ is bent if and only if $f_1^* + f_2^* + f_3^* + f_4^* = 1$; see [4]. The analysis of structural properties of \mathcal{M} -subspaces presented in the previous section turns out to be useful when considering certain special cases of bent 4-concatenation. A. The necessary and sufficient condition for f = g||h||g||(h+1) to be outside $\mathcal{M}^{\#}$

Theorem 10. Let h and g be two arbitrary bent functions in \mathcal{B}_n . Then, the function $f = f_1 ||f_2||f_3||f_4 \colon \mathbb{F}_2^{n+2} \to \mathbb{F}_2$, where $f_1 = f_3 = g$ and $f_2 = f_4 + 1 = h$ is a bent function in the $\mathcal{M}^{\#}$ class if and only if the functions g and h have a common (n/2)-dimensional \mathcal{M} -subspace, thus $g, h \in \mathcal{M}^{\#}$.

Proof. We compute $f_1^* + f_2^* + f_3^* + f_4^* = g^* + h^* + g^* + h^* + 1 = 1$, hence f is a bent function. Let $V \subset \mathbb{F}_2^n$ be a common (n/2)-dimensional \mathcal{M} -subspace of g and h. Then, V is also a common (n/2)-dimensional \mathcal{M} -subspace of f_1, \ldots, f_4 and $D_v f_1 + D_v f_3 = D_v g + D_v g = 0$, $D_v f_2 + D_v f_4 = D_v h + D_v h = 0$, for all $v \in V$. Setting $a = 0_n$ in the item b) of Corollary 8, we deduce that f is a bent function in $\mathcal{M}^{\#}$.

Assume now that g and h do not have a common (n/2)dimensional \mathcal{M} -subspace, and that $f \in \mathcal{M}^{\#}$. Then, the cases a) and b) in Corollary 8 hold, hence it has to be the case c) that fails. That is, there is a common (n/2 - 1)-dimensional \mathcal{M} -subspace $V \subset \mathbb{F}_2^n$ of f_1, \ldots, f_4 , (i.e. of g and h) such that there are elements $a, b \in \mathbb{F}_2^n$ (not necessarily different), for which

$$D_v f_1 + D_v f_3^a = D_v f_2 + D_v f_4^a = D_v f_1 + D_v f_2^b = D_v f_3 + D_v f_4^b = 0, \text{ for all } v \in V, \text{ and}$$

$$f_1(x) + f_2(x+b) + f_3(x+a) + f_4(x+a+b) = 0,$$

for all $x \in \mathbb{F}_2^n$.

From $D_v f_1 + D_v f_3^a = 0$, we get $D_v g + D_v g^a = D_a D_v g = 0$, for all $v \in V$. Similarly, $D_v f_2 + D_v f_4^a = 0$ implies $D_v h + D_v h^a = D_a D_v h = 0$, for all $v \in V$. This implies that a has to be in V, otherwise $\langle V, a \rangle$ would be a common (n/2)dimensional \mathcal{M} -subspace of g and h. Setting v = a in $D_v f_1 + D_v f_2^b = 0$, we get

$$g(x) + g(x+a) + h(x+b) + h(x+a+b) = 0,$$

for all $x \in \mathbb{F}_2^n$. (14)

On the other hand, from $f_1(x) + f_2(x+b) + f_3(x+a) + f_4(x+a+b) = 0$ we have g(x) + h(x+b) + g(x+a) + h(x+a+b) + 1 = 0, that is g(x) + g(x+a) + h(x+b) + h(x+a+b) = 1, for all $x \in \mathbb{F}_2^n$. However, this is in contradiction with Eq. (14). We conclude that f is a bent function outside the $\mathcal{M}^{\#}$ class. \Box

Remark 11. Notice that Theorem 10 answers negatively Open Problem 9 when a bent function $f \in \mathcal{B}_{n+2}$ is represented as f = g||h||g||h + 1.

However, Theorem 10 provides a very flexible method of constructing bent functions outside $\mathcal{M}^{\#}$ for $n \geq 10$.

Corollary 12. Let $g \in \mathcal{B}_n$ be any bent function outside $\mathcal{M}^{\#}$, with $n \geq 8$, and h be any bent function on \mathbb{F}_2^n . Then, the bent function $f \in \mathcal{B}_{n+2}$ defined as f = g||h||g||h + 1 is outside the $\mathcal{M}^{\#}$ class.

Proof. By Theorem 10, $f \in \mathcal{M}^{\#}$ if and only if g and h share a common (n/2)-dimensional \mathcal{M} -subspace. But since g

is outside $\mathcal{M}^{\#}$ it does not admit any (n/2)-dimensional \mathcal{M} subspace, and therefore it cannot share with h regardless of hbelongs to $\mathcal{M}^{\#}$ or not. Thus, $f \in \mathcal{B}_{n+2}$ is outside $\mathcal{M}^{\#}$. \Box

Another important consequence of Theorem 10 is the following result which also sheds more light on the existence of bent functions outside $\mathcal{M}^{\#}$, for the special case when n = 8.

Corollary 13. Let $g \in \mathcal{B}_n$ be an arbitrary bent function $n \ge 6$. Then, there exists a bent function $f \in \mathcal{B}_{n+2}$ outside the $\mathcal{M}^{\#}$ class such that g(x) = f(x, 0, 0), for all $x \in \mathbb{F}_2^n$.

Proof. Let h be a bent function in n variables with a unique (n/2)-dimensional \mathcal{M} -subspace V; see [9] for their existence. Since g is bent, thus not affine, there exist are two elements $a, b \in \mathbb{F}_2^n$ such that $D_a D_b g \neq 0$. Let A be any affine permutation of \mathbb{F}_2^n such that $A^{-1}(\{a,b\}) \subset V$. Define $h' = h \circ A$. Then, by construction g and h' do not share an (n/2)-dimensional \mathcal{M} -subspace. Therefore, by Theorem 10, the function f = g||h'||g||(h' + 1) is a bent function outside the $\mathcal{M}^{\#}$ class, and the result follows.

Note that certain design methods of constructing 8-variable bent functions outside $\mathcal{M}^{\#}$ using bent functions $f_1, \ldots, f_4 \in \mathcal{M}^{\#}$ were considered in [9], but Corollary 13 confirms this fact theoretically and thus excludes the case that bent functions outside $\mathcal{M}^{\#}$ originate from the 4-concatenation of semi-bent or five-valued spectra functions only. Moreover, it is always possible to find more than one permutation A (from the proof of Corollary 13). It means that for $n \ge 6$, the number of bent functions outside $\mathcal{M}^{\#}$ in n + 2 variables is always strictly greater than the number of all bent functions in n variables.

Theorem 14. Let n, k be two integers such that k < n/2 - 1. Let g, h be two bent functions in \mathcal{B}_n whose \mathcal{M} -subspaces of maximal dimension k are mutually non-intersecting. Assume that for any subspace $\Lambda \subset \mathbb{F}_2^n$ with $\dim(\Lambda) = k - 1$, there exists $a \in \Lambda$ such that $D_ag \neq D_ah$. Then, $f = f_1 ||f_2||f_3||f_4: \mathbb{F}_2^{n+2} \to \mathbb{F}_2$, where $f_1 = f_3 = g$ and $f_2 = f_4 + 1 = h$, is a bent function whose \mathcal{M} -subspaces have dimension < k + 1.

Proof. (Sketch) By assumption, we have that $W = \langle V \times \{(0,0)\}, (a,i_1,i_2) \rangle$ is not an \mathcal{M} -subspace of f, where V is a k-dimensional \mathcal{M} -subspace of g (resp. h), $(i_1,i_2) \in \mathbb{F}_2^2$. Thus, let Δ be a common (k-1)-dimensional \mathcal{M} -subspace of g and h. Set $W = \langle \Delta \times \{(0,0)\}, (a,i_1,i_2), (b,i_3,i_4) \rangle$, where $(i_1,i_2), (i_3,i_4) \in \mathbb{F}_2^2$ and $(i_1,i_2) \neq (i_3,i_4)$. Then, there are two cases to be considered, namely 1) $a \notin \Delta$ or $b \notin \Delta$ and 2) $a, b \in \Delta$. It can be shown that the vector space W, with $\dim(W) = k+1$, is not an \mathcal{M} -subspace of f. The result follows then from Theorem 6.

Corollary 15. Let n be an even integer. Let π be a permutation such that $g = x \cdot \pi(y)$ has only one (n/2)-dimensional \mathcal{M} subspace. Let A be an invertible matrix on \mathbb{F}_2^n such that I + Ais also an invertible matrix on \mathbb{F}_2^n . Let $h = g \circ A$. Then, the function $f = f_1 ||f_2||f_3||f_4: \mathbb{F}_2^{n+2} \to \mathbb{F}_2$, where $f_1 = f_3 = g$ and $f_2 = f_4 + 1 = h$, is a bent function outside $\mathcal{M}^{\#}$. *Proof.* Since g has only one (n/2)-dimensional \mathcal{M} -subspace, we have that g and h have no common (n/2)-dimensional \mathcal{M} -subspace. Since I + A is also an invertible matrix on \mathbb{F}_2^n , we have g + h is also a bent function, that is, for any nonzero vector $a \in \mathbb{F}_2^n$ we have $D_ag \neq D_ah$. From Theorem 14, we have the maximal dimension of \mathcal{M} -subspaces of f is < n/2 + 1, thus $f \notin \mathcal{M}^{\#}$.

B. A special case of relating g and h in a linear manner

The following result, obtained in [5], provides two secondary constructions of bent functions in n + 2 variables from bent functions in n variables. Notice that a version of the result is also stated as Theorem 45 in [12].

Theorem 16. [5] Let g be a bent function in n variables. Then, the functions f and f' in (n + 2)-variables defined by

$$f(z, z_{n+1}, z_{n+2}) = g(z) + \sum_{i=1}^{n} \alpha_i z_i z_{n+1} + z_{n+1} z_{n+2},$$

$$f'(z, z_{n+1}, z_{n+2}) = g(z) + \sum_{i=1}^{n} \alpha_i z_i (z_{n+1} + z_{n+2}) + z_{n+1} z_{n+2},$$
(15)

for all $z \in \mathbb{F}_2^n$ and $z_{n+1}, z_{n+2} \in \mathbb{F}_2$, are bent functions for all $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_2$.

Nevertheless, these methods fall under the concatenation framework given by f = g||h||g||(h + 1) and the class inclusion of these functions is then easily determined.

Proposition 17. Let g be a bent function in n variables. Let f and f' be the bent functions in (n + 2)-variables defined in Eq. (15). Then, the functions f and f' are in the $\mathcal{M}^{\#}$ class if and only if the function g is in the $\mathcal{M}^{\#}$ class.

Proof. Note that f and f' are extended affine equivalent, hence it is enough to investigate the class inclusion for one of them; therefore, we will prove the result for f. By looking at f(z,0,0), f(z,1,0), f(z,0,1) and f(z,1,1), we see that $f = f_1 ||f_2||f_3||f_4$, where $f_1(z) = f_3(z) = g(z)$, $f_2(z) = f_4(z) + 1 = g(z) + \sum_{i=1}^n \alpha_i z_i$. Since the functions g(z) and $g(z) + \sum_{i=1}^n \alpha_i z_i$ have the same \mathcal{M} -subspaces, the result follows from Theorem 10.

Consequently, we provide an alternative proof of existence of cubic bents functions outside $\mathcal{M}^{\#}$ on \mathbb{F}_2^n for all $n \ge 10$.

Corollary 18. Cubic bent functions on \mathbb{F}_2^n outside $\mathcal{M}^{\#}$ exist for all $n \geq 10$.

Proof. In Theorem 16, take $g \in \mathcal{B}_{10}$ as h_3^{10} or h_4^{10} from [11, Table 4], which are both outside $\mathcal{M}^{\#}$.

C. Applying suitable affine transforms

The class inclusion properties are substantially affected by applying suitable affine transformations to bent functions used in 4-bent concatenation.

Theorem 19. Let $g \in \mathcal{B}_n$ be a bent function, $n \ge 6$, in the $\mathcal{M}^{\#}$ class, and let $q \in \mathcal{B}_n$ be a bent function with a

unique n/2-dimensional \mathcal{M} -subspace. Then, there exist two linear permutations A and B of \mathbb{F}_2^n such that for $h = q \circ A$ and $h' = q \circ B$ in \mathcal{B}_n , the function $f \in \mathcal{B}_{n+2}$ defined by f = g||h||g||(h+1) is a bent function inside the $\mathcal{M}^{\#}$ class, and the function $f' \in \mathcal{B}_{n+2}$ defined by f' = g||h'||g||(h'+1)is a bent function outside the $\mathcal{M}^{\#}$ class.

Proof. Let $a, b \in \mathbb{F}_2^n$ be two elements such that $D_a D_b g \neq 0$ (we know such two elements exist, otherwise g would be affine), and let V be the unique (n/2)-dimensional \mathcal{M} subspace of q. Let B be any linear isomorphism such that $\{a, b\} \subset B^{-1}(V)$. The subspace $B^{-1}(V)$ is the unique (n/2)dimensional \mathcal{M} -subspace of $q \circ B$. Since $\{a, b\} \subset B^{-1}(V)$ and $D_a D_b g \neq 0$, we deduce that g and $q \circ B$ do not share an (n/2)-dimensional \mathcal{M} -subspace. Setting $h' = q \circ B$, from Theorem 10, we deduce that $f' = g||h'||g||(h'+1) \notin \mathcal{M}^{\#}$. Notice that h' also admits a unique (n/2)-dimensional \mathcal{M} subspace as h does.

On the other hand, since $g \in \mathcal{M}^{\#}$, it has at least one (n/2)dimensional \mathcal{M} -subspace, denote it by W. Let A be any linear isomorphism such that A(W) = V, and set $h = q \circ A$. Then, W is an (n/2)-dimensional \mathcal{M} -subspace of both g and h. By Theorem 10, we have that $f = g||h||g||(h + 1) \in \mathcal{M}^{\#}$. \Box

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their valuable comments, which helped to improve the presentation of the results.

REFERENCES

- A. Canteaut and P. Charpin, "Decomposing bent functions," *IEEE Transactions on Information Theory*, vol. 49, no. 8, pp. 2004–2019, 2003. p. 2.
- [2] C. Carlet and S. Mesnager, "Four decades of research on bent functions," *Designs, Codes and Cryptography*, vol. 78, no. 1, pp. 5–50, Jan 2016. p. 1.
- [3] J. F. Dillon, "Elementary Hadamard difference sets," Ph.D. dissertation, University of Maryland, 1974. p. 1.
- [4] S. Hodžić, E. Pasalic, and Y. Wei, "A general framework for secondary constructions of bent and plateaued functions," *Designs, Codes and Cryptography*, vol. 88, no. 10, pp. 2007–2035, Oct 2020. p. 3.
- [5] E. P. Korsakova, "Graph classification for quadratic bent functions in 6 variables," *Diskretn. Anal. Issled. Oper.*, vol. 20, no. 5, pp. 45–57, 2013. p. 5.
- [6] R. L. McFarland, "A family of difference sets in non-cyclic groups," *Journal of Combinatorial Theory, Series A*, vol. 15, no. 1, pp. 1–10, 1973. p. 1.
- [7] S. Mesnager, Bent Functions: Fundamentals and Results, 1st ed. Springer Cham, 2016. p. 1.
- [8] E. Pasalic, A. Bapić, F. Zhang, and Y. Wei, "Explicit infinite families of bent functions outside the completed Maiorana–McFarland class," *Designs, Codes and Cryptography*, vol. 91, no. 7, pp. 2365–2393, Jul 2023. p. 1.
- [9] E. Pasalic, A. Polujan, S. Kudin, and F. Zhang, "Design and analysis of bent functions using *M*-subspaces," *To appear in IEEE Transactions* on Information Theory, pp. 1–1, 2024. pp. 1, 3, and 4.
- [10] A. Polujan, E. Pasalic, S. Kudin, and F. Zhang, "Bent functions satisfying the dual bent condition and permutations with the (\mathcal{A}_m) property," *Submitted*, 2023. p. 1.
- [11] A. Polujan and A. Pott, "Cubic bent functions outside the completed Maiorana-McFarland class," *Designs, Codes and Cryptography*, vol. 88, no. 9, pp. 1701–1722, Sep 2020. pp. 1 and 5.
- [12] N. Tokareva, Bent Functions. Results and Applications to Cryptography, 1st ed. Academic Press, 2015. p. 5.

- [13] F. Zhang, E. Pasalic, A. Bapić, and B. Wang, "Constructions of several special classes of cubic bent functions outside the completed Maiorana-McFarland class," *Information and Computation*, p. 105149, 2024. p. 3.
- 2024. p. 3.
 [14] Y. Zheng and X.-M. Zhang, "On plateaued functions," *IEEE Transactions on Information Theory*, vol. 47, no. 3, pp. 1215–1223, 2001. p. 2.