When does a bent concatenation not belong to the completed Maiorana-McFarland class?

Sadmir Kudin ${ }^{*}$, Enes Pasalic ${ }^{\dagger}$, Alexandr Polujan ${ }^{\ddagger}$, and Fengrong Zhang ${ }^{\S}$
*University of Primorska, FAMNIT \& IAM, Glagoljaška 8, 6000 Koper, Slovenia, sadmir.kudin@iam.upr.si
${ }^{\dagger}$ University of Primorska, FAMNIT \& IAM, Glagoljaška 8, 6000 Koper, Slovenia, enes.pasalic6@gmail.com
\ddagger Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, alexandr.polujan@ gmail.com
${ }^{\text {§ S School of Cyber Engineering, Xidian University, Xi'an 710071, P.R. China, zhfl203@163.com }}$

Abstract

Every Boolean bent function f can be written either as a concatenation $f=f_{1} \| f_{2}$ of two complementary semi-bent functions f_{1}, f_{2}; or as a concatenation $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$ of four Boolean functions $f_{1}, f_{2}, f_{3}, f_{4}$, all of which are simultaneously bent, semi-bent, or 5 -valued spectra-functions. In this context, it is essential to ask: When does a bent concatenation f (not) belong to the completed Maiorana-McFarland class $\mathcal{M}^{\#}$? In this article, we answer this question completely by providing a full characterization of the structure of \mathcal{M}-subspaces for the concatenation of the form $f=f_{1} \| f_{2}$ and $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$, which allows us to specify the necessary and sufficient conditions so that f is outside $\mathcal{M}^{\#}$. Based on these conditions, we propose several explicit design methods of specifying bent functions outside $\mathcal{M}^{\#}$ in the special case when $f=g\|h\| g \|(h+1)$, where g and h are bent functions.

I. Preliminaries

Let \mathbb{F}_{2}^{n} be the vector space of all n-tuples $x=\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i} \in \mathbb{F}_{2}$. For $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{F}_{2}^{n}, the usual scalar product over \mathbb{F}_{2} is defined as $x \cdot y=$ $x_{1} y_{1}+\cdots+x_{n} y_{n}$. By 0_{n} we denote the all-zero vector of \mathbb{F}_{2}^{n}. Every Boolean function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ can be uniquely represented by its associated algebraic normal form (ANF) in the form $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathbb{F}_{2}^{n}} \lambda_{u}\left(\prod_{i=1}^{n} x_{i}{ }^{u_{i}}\right)$, where $x_{i}, \lambda_{u} \in \mathbb{F}_{2}$ and $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{F}_{2}^{n}$. The algebraic degree of f, denoted by $\operatorname{deg}(f)$, is equal to the maximum Hamming weight of $u \in \mathbb{F}_{2}^{n}$ for which $\lambda_{u} \neq 0$.

The first-order derivative of a function f in the direction $a \in \mathbb{F}_{2}^{n}$ is given by $D_{a} f(x)=f(x)+f(x+a)$. Derivatives of higher orders are defined recursively, i.e., the k-th order derivative of a function $f \in \mathcal{B}_{n}$ is defined by $D_{V} f(x)=$ $D_{a_{k}} D_{a_{k-1}} \ldots D_{a_{1}} f(x)=D_{a_{k}}\left(D_{a_{k-1}} \ldots D_{a_{1}} f\right)(x)$, where $V=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ is a vector subspace of \mathbb{F}_{2}^{n} spanned by elements $a_{1}, \ldots, a_{k} \in \mathbb{F}_{2}^{n}$. Note that if $a_{1}, \ldots, a_{k} \in \mathbb{F}_{2}^{n}$ are linearly dependent, then $D_{a_{k}} D_{a_{k-1}} \ldots D_{a_{1}} f=0$. The WalshHadamard transform of $f \in \mathcal{B}_{n}$ at any point $\omega \in \mathbb{F}_{2}^{n}$ is defined $W_{f}(\omega)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x) \oplus \omega \cdot x}$. A function $f \in \mathcal{B}_{n}$, for even n, is called bent if $\left|W_{f}(u)\right|=2^{\frac{n}{2}}$, for all $u \in \mathbb{F}_{2}^{n}$. Its unique dual function f^{*} is defined as $W_{f}(u)=2^{\frac{n}{2}}(-1)^{f^{*}(u)}$, which is also bent. Two Boolean functions $f, f^{\prime} \in \mathcal{B}_{n}$ are called extended-affine equivalent, if there exists an affine permutation A of \mathbb{F}_{2}^{n} and affine function $l \in \mathcal{B}_{n}$, such that $f \circ A+l=f^{\prime}$. It is well known, that extended-affine (EA) equivalence preserves the bent property.

The completed Maiorana-McFarland class $\mathcal{M}^{\#}$ [6] is the set of n-variable ($n=2 m$) Boolean bent functions, which are EA-equivalent to the functions of the form

$$
\begin{equation*}
f(x, y)=x \cdot \pi(y)+g(y), \text { for all } x, y \in \mathbb{F}_{2}^{m} \tag{1}
\end{equation*}
$$

where π is a permutation on \mathbb{F}_{2}^{m}, and g is an arbitrary Boolean function on \mathbb{F}_{2}^{m}. It is well-known from Dillon's thesis [3] that a bent function $f \in \mathcal{B}_{n}$ belongs to $\mathcal{M}^{\#}$ iff there exists a vector space V of dimension m, such that $D_{a} D_{b} f=0$ for all $a, b \in V$. This characterization motivates the following definition:
Definition 1. [11] Let $f \in \mathcal{B}_{n}$ be a Boolean function. We call a vector subspace V of \mathbb{F}_{2}^{n} an \mathcal{M}-subspace of f, if we have that $D_{a} D_{b} f=0$, for any $a, b \in V$.

Further, we will investigate \mathcal{M}-subspaces of the Boolean functions of the form $f=f_{1} \| f_{2}$ or $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$, which are defined as follows. We define the concatenation $f_{1} \| f_{2}$: $\mathbb{F}_{2}^{n+1} \rightarrow \mathbb{F}_{2}$ of the two functions as:

$$
\begin{align*}
& f_{1} \| f_{2}\left(z, z_{n+1}\right)=f_{1}(z)+z_{n+1}\left(f_{1}(z)+f_{2}(z)\right) \\
& \text { for all } z \in \mathbb{F}_{2}^{n}, z_{n+1} \in \mathbb{F}_{2} \tag{2}
\end{align*}
$$

that is, $f_{1} \| f_{2}(z, 0)=f_{1}(z)$, and $f_{1} \| f_{2}(z, 1)=f_{2}(z)$.
For $i=1, \ldots, 4$, let $f_{i} \in \mathcal{B}_{n}$. The formula for the concatenation $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ of the four functions is given by:

$$
\begin{align*}
f\left(z, z_{n+1}, z_{n+2}\right) & =f_{1}(z)+z_{n+1} z_{n+2}\left(f_{1}+f_{2}+f_{3}+f_{4}\right)(z) \\
& +z_{n+1}\left(f_{1}+f_{2}\right)(z)+z_{n+2}\left(f_{1}+f_{3}\right)(z) \tag{3}
\end{align*}
$$

for all $z \in \mathbb{F}_{2}^{n}$ and $z_{n+1}, z_{n+2} \in \mathbb{F}_{2}$, that is, $f(z, 0,0)=$ $f_{1}(z), f(z, 1,0)=f_{2}(z), f(z, 0,1)=f_{3}(z)$ and $f(z, 1,1)=$ $f_{4}(z)$. Throughout this article, we will call bent functions of the form (2) and (3) bent concatenations.

The main aim of this article is to develop further a theory of \mathcal{M}-subspaces for bent concatenations initially analyzed in [11] and recently considered in [9]. For a more detailed treatment of bent functions we refer to [2], [7], and for their designs outside $\mathcal{M}^{\#}$ to [8], [10]. The rest of the paper is organized in the following way. In Sections II and III, we provide a full characterization of the structure of \mathcal{M} subspaces for the concatenation of the form $f=f_{1} \| f_{2}$ and
$f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$, respectively. Consequently, we specify the necessary and sufficient conditions so that f is outside $\mathcal{M}^{\#}$. Based on these conditions, we propose in Section IV several explicit design methods of specifying bent functions outside $\mathcal{M}^{\#}$ in the special case when $f=g\|h\| g \|(h+1)$.

II. Concatenation of two Functions

Let $a, b \in \mathbb{F}_{2}^{n}$. From Eq. (2), we deduce that the secondorder derivative of the concatenation $f=f_{1} \| f_{2}: \mathbb{F}_{2}^{n+1} \rightarrow \mathbb{F}_{2}$, with respect to $(a, 0)$ and $(b, 0)$ has the following form

$$
\begin{equation*}
D_{(a, 0)} D_{(b, 0)} f=D_{(a, 0)} D_{(b, 0)} f_{1}\left\|f_{2}=D_{a} D_{b} f_{1}\right\| D_{a} D_{b} f_{2} . \tag{4}
\end{equation*}
$$

Similarly, from Eq. (2), the second-order derivative of $f=$ $f_{1} \| f_{2}$ w.r.t. $(a, 0)$ and $(b, 1)$, at the point $\left(z, z_{n+1}\right) \in \mathbb{F}_{2}^{n+1}$, can be computed as

$$
\begin{align*}
& D_{(a, 0)} D_{(b, 1)} f=D_{(b, 1)}\left(D_{a} f_{1} \| D_{a} f_{2}\right)=g_{1} \| g_{2}, \text { where } \\
& g_{1}(z)=D_{a} f_{1}(z)+D_{a} f_{2}(z+b) \text { and } \tag{5}\\
& g_{2}(z)=D_{a} f_{2}(z)+D_{a} f_{1}(z+b), \text { for all } z \in \mathbb{F}_{2}^{n} .
\end{align*}
$$

Since $D_{\left(a, a_{n+1}\right)} D_{\left(b, b_{n+1}\right)} f=D_{\left(b, b_{n+1}\right)} D_{\left(a, a_{n+1}\right)} f=$ $D_{\left(a+b, a_{n+1}+b_{n+1}\right)} D_{\left(b, b_{n+1}\right)} f$, for all $a, b \in \stackrel{\mathbb{F}_{2}^{n}}{ }$ and $a_{n+1}, b_{n+1} \in \mathbb{F}_{2}$, the rest of the cases can also be computed with (4) and (5). Using these expressions, we relate \mathcal{M} subspaces of f to \mathcal{M}-subspaces of f_{1} and f_{2} as follows:

Theorem 2. Let $f_{1}, f_{2} \in \mathcal{B}_{n}$ and let $k \in\{1, \ldots, n\}$. The function $f=f_{1}| | f_{2} \in \mathcal{B}_{n+1}$ has no $(k+1)$-dimensional \mathcal{M} subspaces if and only if the following conditions hold:
a) The functions f_{1} and f_{2} do not share a common $(k+1)$ dimensional \mathcal{M}-subspace;
b) For every vector $u \in \mathbb{F}_{2}^{n}$ and every k-dimensional \mathcal{M} subspace $V \subset \mathbb{F}_{2}^{n}$ of both f_{1} and f_{2}, there is $a \in V$ such that

$$
\begin{equation*}
D_{a} f_{1}(z)+D_{a} f_{2}(z+u) \neq 0, \text { for some } z \in \mathbb{F}_{2}^{n} \tag{6}
\end{equation*}
$$

Proof. (Sketch) Assume that W is an \mathcal{M}-subspace of f, with $\operatorname{dim}(W)=k+1$. Consider the projection $P: W \rightarrow \mathbb{F}_{2}$ given by $P\left(z, z_{n+1}\right)=z_{n+1}$, for all $\left(z, z_{n+1}\right) \in W$, where $z \in \mathbb{F}_{2}^{n}$ and $z_{n+1} \in \mathbb{F}_{2}$. Then, $\operatorname{dim}(\operatorname{ker}(P)) \geq k$ (by ranknullity theorem). If $\operatorname{dim}(\operatorname{ker}(P))=k+1$, then Eq. (4) implies that f_{1} and f_{2} share a common $(k+1)$-dimensional \mathcal{M} subspace. Similarly, when $\operatorname{dim}(\operatorname{ker}(P))=k$, define V through $\{(v, 0): v \in V\}=\operatorname{ker}(P)$. Then, taking $u \in \mathbb{F}_{2}^{n}$ be such that $(u, 1) \in W \backslash \operatorname{ker}(P)$, by Eqs. (4) and (5) one deduces Eq. (6). In the other direction, it can be shown that assuming that f_{1} and f_{2} do not share a common $(k+1)$-dimensional \mathcal{M} subspace leads to a contradiction.

Using the fact that a bent function $f \in \mathcal{B}_{t}$ is in the $\mathcal{M}^{\#}$ class if and only if it has a $t / 2$-dimensional \mathcal{M}-subspace, from Theorem 2 we deduce the following result.
Corollary 3. Let $f_{1}, f_{2} \in \mathcal{B}_{n}, n=2 k+1$, be Boolean functions such that $f=f_{1} \| f_{2} \in \mathcal{B}_{n+1}$ is a bent function. Then, the function f is outside the $\mathcal{M}^{\#}$ class if and only if the following conditions hold:

1) The functions f_{1} and f_{2} do not share a common $(k+1)$ dimensional \mathcal{M}-subspace;
2) For every vector $u \in \mathbb{F}_{2}^{n}$ and every k-dimensional \mathcal{M} subspace $V \subset \mathbb{F}_{2}^{n}$ of both f_{1} and f_{2}, there is $a \in V$ such that $D_{a} f_{1}(z)+D_{a} f_{2}(z+u) \neq 0$, for some $z \in \mathbb{F}_{2}^{n}$.
It is well-known that in the above concatenation $f=f_{1} \| f_{2}$, the function f is bent if and only if f_{1} and f_{2} are disjoint spectra semi-bent functions; see [14, Theorem 6]. In particular, when $f_{i}: \mathbb{F}_{2}^{2 k+1} \rightarrow \mathbb{F}_{2}$ are represented in the form $f_{i}(x, y)=$ $x \cdot \phi_{i}(y)+h_{i}(y)$, for $x \in \mathbb{F}_{2}^{k+1}, y \in \mathbb{F}_{2}^{k}$, where $\phi: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{k+1}$ and $h_{i}: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}$, then the properties of ϕ_{i} are essential in defining disjoint spectra semi-bent functions f_{1} and f_{2}.

Theorem 4. Let f_{1} and f_{2} defined as $f_{i}(x, y)=x \cdot \pi_{i}(y)+$ $h_{i}(y)$, with $x \in \mathbb{F}_{2}^{k+1}$ and $y \in \mathbb{F}_{2}^{k}$ and h_{i} are arbitrary Boolean functions on \mathbb{F}_{2}^{k}. Then, the concatenation $f=f_{1} \| f_{2}$ is a bent function on $\mathbb{F}_{2}^{2 k+2}$ if and only if $\operatorname{im}\left(\pi_{1}\right) \cap \operatorname{im}\left(\pi_{2}\right)=\varnothing$ and π_{i} are injective mappings.
Proof. Notice that $f=f_{1} \| f_{2}: \mathbb{F}_{2}^{k+1} \times \mathbb{F}_{2}^{k+1} \rightarrow \mathbb{F}_{2}$ is the function defined by $f(x, y)=x \cdot \pi\left(y, y_{k+1}\right)+h\left(y, y_{k+1}\right)$, for all $x \in \mathbb{F}_{2}^{k+1}, y \in \mathbb{F}_{2}^{k}$ and $y_{n+1} \in \mathbb{F}_{2}$, where π is defined by $\pi(y, 0)=\pi_{1}(y)$ and $\pi(y, 1)=\pi_{2}(y)$, and similarly $h(y, 0)=$ $h_{1}(y)$ and $h(y, 1)=h_{2}(y)$, for all $y \in \mathbb{F}_{2}^{k}$. We know that f is bent if and only if π is a permutation, and π is a permutation if and only if $\operatorname{im}\left(\pi_{1}\right) \cap \operatorname{im}\left(\pi_{2}\right)=\varnothing$ and π_{1} and π_{2} are injective mappings.

However, it turns out that $f=f_{1} \| f_{2} \in \mathcal{M}^{\#}$ since f_{1} and f_{2} share an \mathcal{M}-subspace of maximal dimension.
Remark 5. Any construction method employing the functions $f_{i}(x, y)=x \cdot \phi_{i}(y)+h_{i}(y)$, where $x \in \mathbb{F}_{2}^{k+1}$ and $y \in \mathbb{F}_{2}^{k}$ (consequently $\phi_{i}: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{k+1}$), will only provide a function f which belongs to \mathcal{M} \#. This is due to Corollary 3 and the fact that $\mathbb{F}_{2}^{k+1} \times\left\{0_{k}\right\}$ is a canonical \mathcal{M}-subspace of dimension $k+1$ which is shared by f_{1} and f_{2}.

III. Concatenation of four Functions

Similarly as in the case of two functions concatenation, we derive the following formulas for the second-order derivatives of $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$ (where f_{i} are suitable bent, semi-bent or five-valued spectra functions) if f is bent [1]). For a function $h: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ and $r \in \mathbb{F}_{2}^{m}$ by h^{r}, we denote the translation of h by r, that is $h^{r}(x)=h(x+r)$, for all $x \in \mathbb{F}_{2}^{m}$. In the following formulas, a and b are two arbitrary elements from \mathbb{F}_{2}^{n}, not necessarily different.

$$
\begin{align*}
& D_{(a, 0,0)} D_{(b, 0,0)} f=D_{(a, 0,0)} D_{(b, 0,0)}\left(f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}\right) \tag{7}\\
& \quad=D_{a} D_{b} f_{1}\left\|D_{a} D_{b} f_{2}\right\| D_{a} D_{b} f_{3} \| D_{a} D_{b} f_{4} \\
& D_{(a, 1,0)} D_{(b, 0,0)} f=\left(D_{b} f_{1}+D_{b} f_{2}^{a}\right) \| \\
& \left(D_{b} f_{1}+D_{b} f_{2}^{a}\right)^{a}\left\|\left(D_{b} f_{3}+D_{b} f_{4}^{a}\right)\right\|\left(D_{b} f_{3}+D_{b} f_{4}^{a}\right)^{a} \tag{8}\\
& D_{(a, 0,1)} D_{(b, 0,0)} f=\left(D_{b} f_{1}+D_{b} f_{3}^{a}\right) \| \tag{9}\\
& \left(D_{b} f_{2}+D_{b} f_{4}^{a}\right)\left\|\left(D_{b} f_{1}+D_{b} f_{3}^{a}\right)^{a}\right\|\left(D_{b} f_{2}+D_{b} f_{4}^{a}\right)^{a} \\
& D_{(a, 1,1)} D_{(b, 0,0)} f=\left(D_{b} f_{1}+D_{b} f_{4}^{a}\right) \| \\
& \left(D_{b} f_{2}+D_{b} f_{3}^{a}\right)\left\|\left(D_{b} f_{2}+D_{b} f_{3}^{a}\right)^{a}\right\|\left(D_{b} f_{1}+D_{b} f_{4}^{a}\right)^{a} \tag{10}
\end{align*}
$$

$$
\begin{align*}
& D_{(a, 0,1)} D_{(b, 1,0)} f=\left(f_{1}+f_{2}^{b}+f_{3}^{a}+f_{4}^{a+b}\right) \| \\
& \left(f_{1}+f_{2}^{b}+f_{3}^{a}+f_{4}^{a+b}\right)^{b}\left\|\left(f_{1}+f_{2}^{b}+f_{3}^{a}+f_{4}^{a+b}\right)^{a}\right\| \tag{11}\\
& \left(f_{1}+f_{2}^{b}+f_{3}^{a}+f_{4}^{a+b}\right)^{a+b}
\end{align*}
$$

Compared to Proposition V. 2 in [9], the result below gives the most general structure of \mathcal{M}-subspaces of varying dimension for a 4-concatenation of not necessarily bent functions.
Theorem 6. Let $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}: \mathbb{F}_{2}^{n+2} \rightarrow \mathbb{F}_{2}$ be the concatenation of arbitrary Boolean functions $f_{1}, \ldots, f_{4} \in \mathcal{B}_{n}$ and let W be a $(k+2)$-dimensional subspace of \mathbb{F}_{2}^{n+2}, $k \in\{0, \ldots, n\}$. Then, W is an \mathcal{M}-subspace of f if and only if W has one of the following forms:
a) $W=V \times\{(0,0)\}$, where $V \subset \mathbb{F}_{2}^{n}$ is a common $(k+2)$ dimensional \mathcal{M}-subspace of f_{1}, \ldots, f_{4}.
b) $W=\langle V \times\{(0,0)\},(a, 1,0)\rangle$, where V is a common $(k+$ 1)-dimensional \mathcal{M}-subspace of f_{1}, \ldots, f_{4}, and $a \in \mathbb{F}_{2}^{n}$ is such that

$$
D_{v} f_{1}+D_{v} f_{2}^{a}=D_{v} f_{3}+D_{v} f_{4}^{a}=0, \text { for all } v \in V
$$

c) $W=\langle V \times\{(0,0)\},(a, 0,1)\rangle$, where V is a common $(k+$ $1)$-dimensional \mathcal{M}-subspace of f_{1}, \ldots, f_{4}, and $a \in \mathbb{F}_{2}^{n}$ is such that

$$
D_{v} f_{1}+D_{v} f_{3}^{a}=D_{v} f_{2}+D_{v} f_{4}^{a}=0, \text { for all } v \in V
$$

d) $W=\langle V \times\{(0,0)\},(a, 1,1)\rangle$, where V is a common $(k+$ $1)$-dimensional \mathcal{M}-subspace of f_{1}, \ldots, f_{4}, and $a \in \mathbb{F}_{2}^{n}$ is such that

$$
D_{v} f_{1}+D_{v} f_{4}^{a}=D_{v} f_{2}+D_{v} f_{3}^{a}=0, \text { for all } v \in V
$$

e) $W=\langle V \times\{(0,0)\},(a, 0,1),(b, 1,0)\rangle$, where V is a common k-dimensional \mathcal{M}-subspace of f_{1}, \ldots, f_{4}, and $a, b \in \mathbb{F}_{2}^{n}$ are such that $D_{v} f_{1}+D_{v} f_{3}^{a}=D_{v} f_{2}+D_{v} f_{4}^{a}=$ $D_{v} f_{1}+D_{v} f_{2}^{b}=D_{v} f_{3}+D_{v} f_{4}^{b}=0$, for all $v \in V$, and $f_{1}(x)+f_{2}(x+b)+f_{3}(x+a)+f_{4}(x+a+b)=0$, for all $x \in \mathbb{F}_{2}^{n}$.

Proof. (Sketch) Assume first that W is an \mathcal{M}-subspace of f. Let $P: W \rightarrow \mathbb{F}_{2}^{2}$ be the projection on the last two coordinates, i.e., $P\left(\left(w_{1}, \ldots, w_{n+1}, w_{n+2}\right)\right)=\left(w_{n+1}, w_{n+2}\right)$, for all $\left(w_{1}, \ldots, w_{n+1}, w_{n+2}\right) \in W$. There are 5 subspaces of \mathbb{F}_{2}^{2}, and depending on which subspace $\operatorname{im}(P)$ is equal to, we obtain the five corresponding forms a) - e) of the subspace W. The proof follows by applying Eqs. (7) - (11). The other direction is proved similarly.

Remark 7. Proposition V. 2 in [9] specifies the structure of \mathcal{M} subspaces of maximal dimension $m+1$ for $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$, where both f and $f_{i} \in \mathcal{B}_{2 m}$ are bent and additionally at least one f_{i} admits the canonical \mathcal{M}-subspace $U=\mathbb{F}_{2}^{m} \times\left\{0_{m}\right\}$. Thus, it is a special case of Theorem 6.

From Theorem 6, we obtain the following full characterization of the class inclusion of $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$ in the $\mathcal{M}^{\#}$ class in terms of properties of f_{1}, \ldots, f_{4}.
Corollary 8. Let $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}: \mathbb{F}_{2}^{n+2} \rightarrow \mathbb{F}_{2}$ be the concatenation of $f_{1}, \ldots, f_{4} \in \mathcal{B}_{n}$ and assume that f is bent;
thus f_{i} are bent, semi-bent or five-valued spectra functions. Then, f is outside of the $\mathcal{M}^{\#}$ class if and only if the following conditions hold:
a) The functions f_{1}, \ldots, f_{4} do not share a common $(n / 2+1)$ dimensional \mathcal{M}-subspace;
b) There are no common ($n / 2$)-dimensional \mathcal{M}-subspaces $V \subset \mathbb{F}_{2}^{n}$ of f_{1}, \ldots, f_{4} such that there is an element $a \in \mathbb{F}_{2}^{n}$ for which

$$
\begin{gather*}
D_{v} f_{1}+D_{v} f_{2}^{a}=D_{v} f_{3}+D_{v} f_{4}^{a}=0, \text { for all } v \in V \text {, or } \\
D_{v} f_{1}+D_{v} f_{3}^{a}=D_{v} f_{2}+D_{v} f_{4}^{a}=0, \text { for all } v \in V \text {, or } \\
D_{v} f_{1}+D_{v} f_{4}^{a}=D_{v} f_{2}+D_{v} f_{3}^{a}=0, \text { for all } v \in V . \tag{12}
\end{gather*}
$$

c) There are no common ($n / 2-1$)-dimensional \mathcal{M}-subspaces $V \subset \mathbb{F}_{2}^{n}$ of f_{1}, \ldots, f_{4} such that there are elements $a, b \in$ \mathbb{F}_{2}^{n} (not necessarily different), for which

$$
\begin{align*}
& D_{v} f_{1}+D_{v} f_{3}^{a}=D_{v} f_{2}+D_{v} f_{4}^{a}=D_{v} f_{1}+D_{v} f_{2}^{b} \\
& =D_{v} f_{3}+D_{v} f_{4}^{b}=0, \text { for all } v \in V, \text { and } \\
& f_{1}(x)+f_{2}(x+b)+f_{3}(x+a) \tag{13}\\
& +f_{4}(x+a+b)=0, \text { for all } x \in \mathbb{F}_{2}^{n} .
\end{align*}
$$

Proof. The result follows directly from Theorem 6, by setting $k+2=n / 2+1$, and the fact that a bent function $f \in \mathcal{B}_{n+2}$ is in the $\mathcal{M}^{\#}$ class if and only if it has an $(n / 2+1)$-dimensional \mathcal{M}-subspace.

Notice that when f_{i} are bent in Corollary 8, then the item a) is automatically satisfied since none of the functions f_{i} admits an \mathcal{M}-subspace of dimension $n / 2+1$. The condition in b) was recently deduced in [9, Corollary V.11] for a special case when f_{i} are bent functions on \mathbb{F}_{2}^{n} that share an \mathcal{M}-subspace of maximal dimension $n / 2$.

Open Problem 9. Is the condition c) in Corollary 8 independent of conditions $a), b)$? Particularly, the existence of bent functions $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$ on \mathbb{F}_{2}^{n+2} in $\mathcal{M}^{\#}$, where all $f_{i} \in \mathcal{B}_{n}$ are bent and outside $\mathcal{M}^{\#}$, is hard to establish.

Notice that, when $f=f_{1}\left\|f_{1}\right\| f_{1} \| f_{1}+1$ so that $f\left(x, y_{1}, y_{2}\right)=f_{1}(x)+y_{1} y_{2}$, where f_{1} is a bent function on \mathbb{F}_{2}^{n}, it was deduced [13] that f is outside $\mathcal{M}^{\#}$ if and only if f_{1} is outside $\mathcal{M}^{\#}$. This result also follows from Theorem 10 below, as we show in the next section.

IV. An Application: Designing bent functions outside $\mathcal{M}^{\#}$ OF THE FORM $g\|h\| g \|(h+1)$

The concatenation $f=g\|h\| g \| h+1$ (where g and h are bent) is interesting in terms of the class inclusion, as the dual bent condition is automatically satisfied. Recall that when f_{i} are all bent, then $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$ is bent if and only if $f_{1}^{*}+f_{2}^{*}+f_{3}^{*}+f_{4}^{*}=1$; see [4]. The analysis of structural properties of \mathcal{M}-subspaces presented in the previous section turns out to be useful when considering certain special cases of bent 4-concatenation.
A. The necessary and sufficient condition for $f=g\|h\| g \|(h+$ 1) to be outside $\mathcal{M}^{\#}$

Theorem 10. Let h and g be two arbitrary bent functions in \mathcal{B}_{n}. Then, the function $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}: \mathbb{F}_{2}^{n+2} \rightarrow \mathbb{F}_{2}$, where $f_{1}=f_{3}=g$ and $f_{2}=f_{4}+1=h$ is a bent function in the $\mathcal{M}^{\#}$ class if and only if the functions g and h have a common ($n / 2$)-dimensional \mathcal{M}-subspace, thus $g, h \in \mathcal{M}^{\#}$.

Proof. We compute $f_{1}^{*}+f_{2}^{*}+f_{3}^{*}+f_{4}^{*}=g^{*}+h^{*}+g^{*}+h^{*}+1=$ 1 , hence f is a bent function. Let $V \subset \mathbb{F}_{2}^{n}$ be a common ($n / 2$)-dimensional \mathcal{M}-subspace of g and h. Then, V is also a common $(n / 2)$-dimensional \mathcal{M}-subspace of f_{1}, \ldots, f_{4} and $D_{v} f_{1}+D_{v} f_{3}=D_{v} g+D_{v} g=0, D_{v} f_{2}+D_{v} f_{4}=D_{v} h+$ $D_{v} h=0$, for all $v \in V$. Setting $a=0_{n}$ in the item b) of Corollary 8 , we deduce that f is a bent function in $\mathcal{M}^{\#}$.

Assume now that g and h do not have a common ($n / 2$)dimensional \mathcal{M}-subspace, and that $f \in \mathcal{M}^{\#}$. Then, the cases $a)$ and b) in Corollary 8 hold, hence it has to be the case c) that fails. That is, there is a common $(n / 2-1)$-dimensional \mathcal{M}-subspace $V \subset \mathbb{F}_{2}^{n}$ of f_{1}, \ldots, f_{4}, (i.e. of g and h) such that there are elements $a, b \in \mathbb{F}_{2}^{n}$ (not necessarily different), for which

$$
\begin{aligned}
& D_{v} f_{1}+D_{v} f_{3}^{a}=D_{v} f_{2}+D_{v} f_{4}^{a}=D_{v} f_{1}+D_{v} f_{2}^{b}= \\
& D_{v} f_{3}+D_{v} f_{4}^{b}=0, \text { for all } v \in V, \text { and } \\
& f_{1}(x)+f_{2}(x+b)+f_{3}(x+a)+f_{4}(x+a+b)=0
\end{aligned}
$$

for all $x \in \mathbb{F}_{2}^{n}$.
From $D_{v} f_{1}+D_{v} f_{3}^{a}=0$, we get $D_{v} g+D_{v} g^{a}=D_{a} D_{v} g=0$, for all $v \in V$. Similarly, $D_{v} f_{2}+D_{v} f_{4}^{a}=0$ implies $D_{v} h+$ $D_{v} h^{a}=D_{a} D_{v} h=0$, for all $v \in V$. This implies that a has to be in V, otherwise $\langle V, a\rangle$ would be a common $(n / 2)$ dimensional \mathcal{M}-subspace of g and h. Setting $v=a$ in $D_{v} f_{1}+$ $D_{v} f_{2}^{b}=0$, we get

$$
\begin{equation*}
g(x)+g(x+a)+h(x+b)+h(x+a+b)=0 \tag{14}
\end{equation*}
$$

$$
\text { for all } x \in \mathbb{F}_{2}^{n}
$$

On the other hand, from $f_{1}(x)+f_{2}(x+b)+f_{3}(x+a)+f_{4}(x+$ $a+b)=0$ we have $g(x)+h(x+b)+g(x+a)+h(x+a+b)+1=$ 0 , that is $g(x)+g(x+a)+h(x+b)+h(x+a+b)=1$, for all $x \in \mathbb{F}_{2}^{n}$. However, this is in contradiction with Eq. (14). We conclude that f is a bent function outside the $\mathcal{M}^{\#}$ class.

Remark 11. Notice that Theorem 10 answers negatively Open Problem 9 when a bent function $f \in \mathcal{B}_{n+2}$ is represented as $f=g\|h\| g \| h+1$.

However, Theorem 10 provides a very flexible method of constructing bent functions outside $\mathcal{M}^{\#}$ for $n \geq 10$.

Corollary 12. Let $g \in \mathcal{B}_{n}$ be any bent function outside $\mathcal{M}^{\#}$, with $n \geq 8$, and h be any bent function on \mathbb{F}_{2}^{n}. Then, the bent function $f \in \mathcal{B}_{n+2}$ defined as $f=g\|h\| g \| h+1$ is outside the $\mathcal{M}^{\#}$ class.
Proof. By Theorem 10, $f \in \mathcal{M}^{\#}$ if and only if g and h share a common ($n / 2$)-dimensional \mathcal{M}-subspace. But since g
is outside $\mathcal{M}^{\#}$ it does not admit any ($n / 2$)-dimensional \mathcal{M} subspace, and therefore it cannot share with h regardless of h belongs to $\mathcal{M}^{\#}$ or not. Thus, $f \in \mathcal{B}_{n+2}$ is outside $\mathcal{M}^{\#}$.

Another important consequence of Theorem 10 is the following result which also sheds more light on the existence of bent functions outside $\mathcal{M}^{\#}$, for the special case when $n=8$.

Corollary 13. Let $g \in \mathcal{B}_{n}$ be an arbitrary bent function $n \geq 6$. Then, there exists a bent function $f \in \mathcal{B}_{n+2}$ outside the $\mathcal{M}^{\#}$ class such that $g(x)=f(x, 0,0)$, for all $x \in \mathbb{F}_{2}^{n}$.
Proof. Let h be a bent function in n variables with a unique ($n / 2$)-dimensional \mathcal{M}-subspace V; see [9] for their existence. Since g is bent, thus not affine, there exist are two elements $a, b \in \mathbb{F}_{2}^{n}$ such that $D_{a} D_{b} g \neq 0$. Let A be any affine permutation of \mathbb{F}_{2}^{n} such that $A^{-1}(\{a, b\}) \subset V$. Define $h^{\prime}=h \circ A$. Then, by construction g and h^{\prime} do not share an ($n / 2$)-dimensional \mathcal{M}-subspace. Therefore, by Theorem 10 , the function $f=g\left\|h^{\prime}\right\| g \|\left(h^{\prime}+1\right)$ is a bent function outside the $\mathcal{M}^{\#}$ class, and the result follows.

Note that certain design methods of constructing 8 -variable bent functions outside $\mathcal{M}^{\#}$ using bent functions $f_{1}, \ldots, f_{4} \in$ $\mathcal{M}^{\#}$ were considered in [9], but Corollary 13 confirms this fact theoretically and thus excludes the case that bent functions outside $\mathcal{M}^{\#}$ originate from the 4-concatenation of semi-bent or five-valued spectra functions only. Moreover, it is always possible to find more than one permutation A (from the proof of Corollary 13). It means that for $n \geq 6$, the number of bent functions outside $\mathcal{M}^{\#}$ in $n+2$ variables is always strictly greater than the number of all bent functions in n variables.

Theorem 14. Let n, k be two integers such that $k<n / 2-1$. Let g, h be two bent functions in \mathcal{B}_{n} whose \mathcal{M}-subspaces of maximal dimension k are mutually non-intersecting. Assume that for any subspace $\Lambda \subset \mathbb{F}_{2}^{n}$ with $\operatorname{dim}(\Lambda)=k-1$, there exists $a \in \Lambda$ such that $D_{a} g \neq D_{a} h$. Then, $f=$ $f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}: \mathbb{F}_{2}^{n+2} \rightarrow \mathbb{F}_{2}$, where $f_{1}=f_{3}=g$ and $f_{2}=f_{4}+1=h$, is a bent function whose \mathcal{M}-subspaces have dimension $<k+1$.
Proof. (Sketch) By assumption, we have that $W=\langle V \times$ $\left.\{(0,0)\},\left(a, i_{1}, i_{2}\right)\right\rangle$ is not an \mathcal{M}-subspace of f, where V is a k-dimensional \mathcal{M}-subspace of g (resp. $h),\left(i_{1}, i_{2}\right) \in \mathbb{F}_{2}^{2}$. Thus, let Δ be a common $(k-1)$-dimensional \mathcal{M}-subspace of g and h. Set $W=\left\langle\Delta \times\{(0,0)\},\left(a, i_{1}, i_{2}\right),\left(b, i_{3}, i_{4}\right)\right\rangle$, where $\left(i_{1}, i_{2}\right),\left(i_{3}, i_{4}\right) \in \mathbb{F}_{2}^{2}$ and $\left(i_{1}, i_{2}\right) \neq\left(i_{3}, i_{4}\right)$. Then, there are two cases to be considered, namely 1) $a \notin \Delta$ or $b \notin \Delta$ and 2) $a, b \in \Delta$. It can be shown that the vector space W, with $\operatorname{dim}(W)=k+1$, is not an \mathcal{M}-subspace of f. The result follows then from Theorem 6.

Corollary 15. Let n be an even integer. Let π be a permutation such that $g=x \cdot \pi(y)$ has only one ($n / 2$)-dimensional \mathcal{M} subspace. Let A be an invertible matrix on \mathbb{F}_{2}^{n} such that $I+A$ is also an invertible matrix on \mathbb{F}_{2}^{n}. Let $h=g \circ A$. Then, the function $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}: \mathbb{F}_{2}^{n+2} \rightarrow \mathbb{F}_{2}$, where $f_{1}=f_{3}=g$ and $f_{2}=f_{4}+1=h$, is a bent function outside $\mathcal{M}^{\#}$.

Proof. Since g has only one ($n / 2$)-dimensional \mathcal{M}-subspace, we have that g and h have no common ($n / 2$)-dimensional \mathcal{M}-subspace. Since $I+A$ is also an invertible matrix on \mathbb{F}_{2}^{n}, we have $g+h$ is also a bent function, that is, for any nonzero vector $a \in \mathbb{F}_{2}^{n}$ we have $D_{a} g \neq D_{a} h$. From Theorem 14, we have the maximal dimension of \mathcal{M}-subspaces of f is $<$ $n / 2+1$, thus $f \notin \mathcal{M}^{\#}$.

B. A special case of relating g and h in a linear manner

The following result, obtained in [5], provides two secondary constructions of bent functions in $n+2$ variables from bent functions in n variables. Notice that a version of the result is also stated as Theorem 45 in [12].

Theorem 16. [5] Let g be a bent function in n variables. Then, the functions f and f^{\prime} in $(n+2)$-variables defined by

$$
\begin{align*}
f\left(z, z_{n+1}, z_{n+2}\right) & =g(z)+\sum_{i=1}^{n} \alpha_{i} z_{i} z_{n+1}+z_{n+1} z_{n+2} \\
f^{\prime}\left(z, z_{n+1}, z_{n+2}\right) & =g(z)+\sum_{i=1}^{n} \alpha_{i} z_{i}\left(z_{n+1}+z_{n+2}\right) \tag{15}\\
& +z_{n+1} z_{n+2}
\end{align*}
$$

for all $z \in \mathbb{F}_{2}^{n}$ and $z_{n+1}, z_{n+2} \in \mathbb{F}_{2}$, are bent functions for all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2}$.

Nevertheless, these methods fall under the concatenation framework given by $f=g\|h\| g \|(h+1)$ and the class inclusion of these functions is then easily determined.

Proposition 17. Let g be a bent function in n variables. Let f and f^{\prime} be the bent functions in $(n+2)$-variables defined in Eq. (15). Then, the functions f and f^{\prime} are in the $\mathcal{M}^{\#}$ class if and only if the function g is in the $\mathcal{M}^{\#}$ class.
Proof. Note that f and f^{\prime} are extended affine equivalent, hence it is enough to investigate the class inclusion for one of them; therefore, we will prove the result for f. By looking at $f(z, 0,0), f(z, 1,0), f(z, 0,1)$ and $f(z, 1,1)$, we see that $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$, where $f_{1}(z)=f_{3}(z)=g(z)$, $f_{2}(z)=f_{4}(z)+1=g(z)+\sum_{i=1}^{n} \alpha_{i} z_{i}$. Since the functions $g(z)$ and $g(z)+\sum_{i=1}^{n} \alpha_{i} z_{i}$ have the same \mathcal{M}-subspaces, the result follows from Theorem 10.

Consequently, we provide an alternative proof of existence of cubic bents functions outside $\mathcal{M}^{\#}$ on \mathbb{F}_{2}^{n} for all $n \geq 10$.
Corollary 18. Cubic bent functions on \mathbb{F}_{2}^{n} outside $\mathcal{M}^{\#}$ exist for all $n \geq 10$.
Proof. In Theorem 16, take $g \in \mathcal{B}_{10}$ as h_{3}^{10} or h_{4}^{10} from [11, Table 4], which are both outside $\mathcal{M}^{\#}$.

C. Applying suitable affine transforms

The class inclusion properties are substantially affected by applying suitable affine transformations to bent functions used in 4-bent concatenation.

Theorem 19. Let $g \in \mathcal{B}_{n}$ be a bent function, $n \geq 6$, in the $\mathcal{M}^{\#}$ class, and let $q \in \mathcal{B}_{n}$ be a bent function with a
unique $n / 2$-dimensional \mathcal{M}-subspace. Then, there exist two linear permutations A and B of \mathbb{F}_{2}^{n} such that for $h=q \circ A$ and $h^{\prime}=q \circ B$ in \mathcal{B}_{n}, the function $f \in \mathcal{B}_{n+2}$ defined by $f=g\|h\| g \|(h+1)$ is a bent function inside the $\mathcal{M}^{\#}$ class, and the function $f^{\prime} \in \mathcal{B}_{n+2}$ defined by $f^{\prime}=g\left\|h^{\prime}\right\| g \|\left(h^{\prime}+1\right)$ is a bent function outside the $\mathcal{M}^{\#}$ class.
Proof. Let $a, b \in \mathbb{F}_{2}^{n}$ be two elements such that $D_{a} D_{b} g \neq 0$ (we know such two elements exist, otherwise g would be affine), and let V be the unique ($n / 2$)-dimensional \mathcal{M} subspace of q. Let B be any linear isomorphism such that $\{a, b\} \subset B^{-1}(V)$. The subspace $B^{-1}(V)$ is the unique $(n / 2)$ dimensional \mathcal{M}-subspace of $q \circ B$. Since $\{a, b\} \subset B^{-1}(V)$ and $D_{a} D_{b} g \neq 0$, we deduce that g and $q \circ B$ do not share an ($n / 2$)-dimensional \mathcal{M}-subspace. Setting $h^{\prime}=q \circ B$, from Theorem 10, we deduce that $f^{\prime}=g\left\|h^{\prime}\right\| g \|\left(h^{\prime}+1\right) \notin \mathcal{M}^{\#}$. Notice that h^{\prime} also admits a unique ($n / 2$)-dimensional \mathcal{M} subspace as h does.

On the other hand, since $g \in \mathcal{M}^{\#}$, it has at least one ($n / 2$)dimensional \mathcal{M}-subspace, denote it by W. Let A be any linear isomorphism such that $A(W)=V$, and set $h=q \circ A$. Then, W is an ($n / 2$)-dimensional \mathcal{M}-subspace of both g and h. By Theorem 10, we have that $f=g\|h\| g \|(h+1) \in \mathcal{M}^{\#}$.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their valuable comments, which helped to improve the presentation of the results.

References

[1] A. Canteaut and P. Charpin, "Decomposing bent functions," IEEE Transactions on Information Theory, vol. 49, no. 8, pp. 2004-2019, 2003. p. 2.
[2] C. Carlet and S. Mesnager, "Four decades of research on bent functions," Designs, Codes and Cryptography, vol. 78, no. 1, pp. 5-50, Jan 2016. p. 1.
[3] J. F. Dillon, "Elementary Hadamard difference sets," Ph.D. dissertation, University of Maryland, 1974. p. 1.
[4] S. Hodžić, E. Pasalic, and Y. Wei, "A general framework for secondary constructions of bent and plateaued functions," Designs, Codes and Cryptography, vol. 88, no. 10, pp. 2007-2035, Oct 2020. p. 3.
[5] E. P. Korsakova, "Graph classification for quadratic bent functions in 6 variables," Diskretn. Anal. Issled. Oper., vol. 20, no. 5, pp. 45-57, 2013. p. 5.
[6] R. L. McFarland, "A family of difference sets in non-cyclic groups," Journal of Combinatorial Theory, Series A, vol. 15, no. 1, pp. 1-10, 1973. p. 1.
[7] S. Mesnager, Bent Functions: Fundamentals and Results, 1st ed. Springer Cham, 2016. p. 1.
[8] E. Pasalic, A. Bapić, F. Zhang, and Y. Wei, "Explicit infinite families of bent functions outside the completed Maiorana-McFarland class," Designs, Codes and Cryptography, vol. 91, no. 7, pp. 2365-2393, Jul 2023. p. 1.
[9] E. Pasalic, A. Polujan, S. Kudin, and F. Zhang, " Design and analysis of bent functions using \mathcal{M}-subspaces," To appear in IEEE Transactions on Information Theory, pp. 1-1, 2024. pp. 1, 3, and 4.
[10] A. Polujan, E. Pasalic, S. Kudin, and F. Zhang, "Bent functions satisfying the dual bent condition and permutations with the $\left(\mathcal{A}_{m}\right)$ property," Submitted, 2023. p. 1.
[11] A. Polujan and A. Pott, "Cubic bent functions outside the completed Maiorana-McFarland class," Designs, Codes and Cryptography, vol. 88, no. 9, pp. 1701-1722, Sep 2020. pp. 1 and 5.
[12] N. Tokareva, Bent Functions. Results and Applications to Cryptography, 1st ed. Academic Press, 2015. p. 5.
[13] F. Zhang, E. Pasalic, A. Bapić, and B. Wang, "Constructions of several special classes of cubic bent functions outside the completed Maiorana-McFarland class," Information and Computation, p. 105149, 2024. p. 3.
[14] Y. Zheng and X.-M. Zhang, "On plateaued functions," IEEE Transactions on Information Theory, vol. 47, no. 3, pp. 1215-1223, 2001. p. 2.

