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Abstract. We present NeRF-XL, a principled method for distributing
Neural Radiance Fields (NeRFs) across multiple GPUs, thus enabling
the training and rendering of NeRFs with an arbitrarily large capacity.
We begin by revisiting existing multi-GPU approaches, which decom-
pose large scenes into multiple independently trained NeRFs [9, 15, 17],
and identify several fundamental issues with these methods that hin-
der improvements in reconstruction quality as additional computational
resources (GPUs) are used in training. NeRF-XL remedies these is-
sues and enables the training and rendering of NeRFs with an arbitrary
number of parameters by simply using more hardware. At the core of
our method lies a novel distributed training and rendering formulation,
which is mathematically equivalent to the classic single-GPU case and
minimizes communication between GPUs. By unlocking NeRFs with ar-
bitrarily large parameter counts, our approach is the first to reveal multi-
GPU scaling laws for NeRFs, showing improvements in reconstruction
quality with larger parameter counts and speed improvements with more
GPUs. We demonstrate the effectiveness of NeRF-XL on a wide variety
of datasets, including the largest open-source dataset to date, Matrix-
City [5], containing 258K images covering a 25km2 city area. Visit our
webpage at https://research.nvidia.com/labs/toronto-ai/nerfxl/
for code and videos.

Fig. 1: Our principled multi-GPU distributed training algorithm enables scaling up
NeRFs to arbitrarily-large scale.
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1 Introduction

Recent advances in novel view synthesis have greatly enhanced our ability to cap-
ture Neural Radiance Fields (NeRFs), making the process significantly more ac-
cessible. These advancements enable the reconstruction of both larger scenes and
finer details within a scene. Expanding the scope of a captured scene, whether by
increasing the spatial scale (e.g., capturing a multi-kilometer-long cityscape) or
the level of detail (e.g., scanning the blades of grass in a field), involves incorpo-
rating a greater volume of information into the NeRF for accurate reconstruction.
Consequently, for scenes with high information content, the number of trainable
parameters required for reconstruction may exceed the memory capacity of a
single GPU.

In this paper, we introduce NeRF-XL, a principled algorithm for efficiently
distributing Neural Radiance Fields (NeRFs) across multiple GPUs. Our method
enables the capture of high-information-content scenes, including those with
large-scale and high-detail features, by simply adding more hardware resources.
At its core, NeRF-XL allocates NeRF parameters across a disjoint set of spa-
tial regions and trains them jointly across GPUs. Unlike conventional distributed
training pipelines that synchronize gradients during the backward pass, our ap-
proach only requires information synchronization during the forward pass. Ad-
ditionally, we drastically reduce the required data transfer between GPUs by
carefully rewriting the volume rendering equation and relevant loss terms for the
distributed setting. This novel rewriting enhances both training and rendering
efficiency. The flexibility and scalability of our approach allows us to efficiently
optimize NeRFs with an arbitrary number of parameters using multiple GPUs.

Our work contrasts with recent approaches that utilize multi-GPU algorithms
to model large-scale scenes by training a set of independent NeRFs [9, 15, 17].
While these approaches require no communication between GPUs, each NeRF
needs to model the entire space, including the background region. This leads to
increased redundancy in the model’s capacity as the number of GPUs grows.
Additionally, these methods require blending NeRFs during rendering, which
degrades visual quality and introduces artifacts in overlapping regions. Conse-
quently, unlike NeRF-XL, these methods fail to achieve visual quality improve-
ments as more model parameters (equivalent to more GPUs) are used in training.

We demonstrate the effectiveness of our method across a diverse set of cap-
tures, including street scans, drone flyovers, and object-centric videos. These
range from small scenes (10m2) to entire cities (25km2). Our experiments show
that NeRF-XL consistently achieves improved visual quality (measured by
PSNR) and rendering speed as we allocate more computational resources to
the optimization process. Thus, NeRF-XL enables the training of NeRFs with
arbitrarily large capacity on scenes of any spatial scale and detail.

2 Related Work

Single GPU NeRFs for Large-Scale Scenes Many prior works have adapted
NeRF to large-scale outdoor scenes. For example, BungeeNeRF [21] uses a
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Fig. 2: Independent Training v.s. Joint Training with multi-GPU. Training
multiple NeRFs independently [9,15,18] requires each NeRF to model both the focused
region and its surroundings, leading to redundancy in model’s capacity. In contrast, our
joint training approach utilizes non-overlapping NeRFs, thus without any redundancy.

multi-scale, coarse-to-fine pipeline to address memory constraints; Grid-guided
NeRF [22] uses multiple image planes for drone-captured footage; F2-NeRF [19]
introduces a space warping algorithm for efficient level-of-detail handling in a
free camera trajectory capture; and UrbanNeRF [14] leverages LiDAR and seg-
mentation maps to improve in-the-wild captures. Despite their advancements,
these prior works are bounded by the computational capacity of a single GPU.

NeRFs with Multiple GPUs An alternative approach for training NeRFs on
large-scale scenes is to use multiple GPUs. BlockNeRF [15], MegaNeRF [18] and
SNISR [20] partition a scene into overlapping NeRFs based on camera trajectory
or spatial content, and optimize each NeRF independently (one per GPU). Pro-
gressiveNeRF [9] adopts a similar strategy but recursively optimizes one NeRF
at a time with overlapped blending. While these methods overcome the memory
limitations of a single GPU, each independent NeRF has to model the entire
scene within a spatial region, leading to increased redudancy (in the model’s
capacity) and decreased visual quality as more GPUs are used in training. Fur-
thermore, these methods must rely on depth initialization for spatial partition-
ing [20], or introduce overlapping between NeRFs [9,15,18], which causes visual
artifacts during rendering. We provide an in-depth analysis of the problems faced
by prior multi-GPU methods in the next section.

3 Revisiting Existing Approaches: Independent Training

In leveraging multiple GPUs for large-scale captures, prior research [8,9,15] has
consistently employed the approach of training multiple NeRFs focusing on dif-
ferent spatial regions, where each NeRF is trained independently on its own
GPU. However, independently training multiple NeRFs has fundamental issues
that impede visual-quality improvements with the introduction of additional re-
sources (GPUs). This problem is caused by three main issues described below.

Model Capacity Redundancy. The objective of training multiple independent
NeRFs is to allow each NeRF to focus on a different (local) region and achieve
better quality within that region than a single global model with the same ca-
pacity. Despite this intention, each NeRF is compelled to model not only its
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Fig. 3: Independent Training requires Blending for Novel-View Synthesis.
Either blending in 2D [9,15] or 3D [18] introduces blurriness into the rendering.

Fig. 4: Independent Training Creates Distinct Camera Optimizations. Cam-
era optimization in NeRF can be achieved by either transforming the inaccurate camera
itself or all other cameras along with the underlying 3D scene. Thus, training multiple
NeRFs independently with camera optimization may lead to inconsistencies in camera
corrections and scene geometry, causing more difficulties for blended rendering.

designated region but also the surrounding areas, since training rays often ex-
tend beyond the designated region as depicted in Figure 2(a). This leads to
an inherent redundancy in the model’s capacity since each NeRF must model
both the local and surrounding regions. As a result, increasing the number of
GPUs (and hence using smaller spatial regions per NeRF), increases the to-
tal redundancy in the model’s capacity. For example, Mega-NeRF [18] exhibits
38%/56%/62% ray samples outside the tiled regions with 2×/4×/8× tiles on the
University4 capture. In contrast, our proposed method of jointly training all
tiles removes the need for surrounding region modeling in each NeRF, thereby
completely eliminating redundancy, as shown in Figure 2(b)). This feature is
crucial for efficiently leveraging additional computational resources.

Blending for Rendering. When rendering independently trained NeRFs, it is
often necessary to employ a blending strategy to merge the NeRFs and mitigate
inconsistencies at the region boundaries. Past works typically choose local regions
with a certain degree of overlap, such as 50% in Block-NeRF [15] and 15%
in Mega-NeRF [18]. Two primary approaches exist for blending NeRFs during
novel-view synthesis. One approach involves rendering each NeRF independently
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Fig. 5: Potential Artifacts Caused by 3D Blending. On the left we show Mega-
NeRF results trained with 2 GPUs. At 0% overlap, boundary artifacts appear due to
independent training, while at 15% overlap, severe artifacts appear due to 3D blending.
On the right we illustrate the reason behind this artifact: while each independently
trained NeRF renders the correct color, the blended NeRF do not guarantee correct
color rendering.

and then blending the resulting images when the camera is positioned within the
overlapped region (referred to as 2D blending) [9,15]. The alternative approach is
to blend the color and density in 3D for ray samples within the overlapped region
(referred to as 3D blending) [18]. As illustrated in Figure 3, both approaches can
introduce blur into the final rendering. Moreover, blending in 3D can lead to more
pronounced artifacts in rendering, due to deviations in the volume rendering
equation, as demonstrated in Figure 5. In contrast, our joint training approach
does not rely on any blending for rendering. In fact, our method renders the
scene in the exact same way during training and inference, thereby eliminating
the train-test discrepancies introduced by past methods.

Inconsistent Per-camera Embedding. In many cases, we need to account for
things like white balance, auto-exposure, or inaccurate camera poses in a cap-
ture. A common approach to model these factors is by optimizing an embedding
for each camera during the training process, often referred to as appearance em-
bedding or pose embedding [6, 7, 16]. However, when training multiple NeRFs
independently, each on its own GPU, the optimization process leads to inde-
pendent refinements of these embeddings. This can result in inconsistent camera
embeddings due to the inherently ambiguous nature of the task, as demonstrated
in Figure 4. Inconsistencies in appearance embeddings across NeRFs can result
in disparate underlying scene colors, while inconsistencies in camera pose em-
beddings can lead to variations in camera corrections and the transformation of
scene geometry. These disparities introduce further difficulties when merging the
tiles from multiple GPUs for rendering. Conversely, our joint training approach
allows optimizing a single set of per-camera embeddings (through multi-GPU
synchronization), thus completely eliminating these issues.
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Fig. 6: Our Training Pipeline. Our method jointly trains multiple NeRFs across all
GPUs, each of which covers a disjoint spatial region. The communication across GPUs
only happens in the forward pass but not the backward pass (shown in gray arrows).
(a) We can train this system by evaluating each NeRF to get the sample color and
density, then broadcast these values to all other GPUs for a global volume rendering
(§ 4.2). (b) By rewriting volume rendering equation we can dramatically reduce the
data transfer to one value per-ray, thus improving efficiency (§ 4.3).

Due to the issues listed above, prior works [15,18] which train multiple indepen-
dent NeRFs do not effectively harness the benefits of additional computational
resources (GPUs) as they scale up, as evidenced in our experiments (§ 5). As a
result, we advocate for a novel joint training approach. Without any heuristics,
our approach gracefully enhances both visual quality and rendering speed as
more GPUs are used in training, Moreover, our method reveals the multi-GPU
scaling laws of NeRF for the first time.

4 Our Method: Joint Training

4.1 Background

Volume Rendering NeRFs [10] employ volume rendering to determine the pixel
color through the integral equation:

C(tn ) tf ) =

∫ tf

tn

T (tn ) t)σ(t)c(t) dt,

where T (tn ) t) = exp

(
−
∫ t

tn

σ(s) ds

)
.

(1)

Here, T (tn ) t) represents transmittance, σ(t) denotes density, and c(t) signifies
the color at position t along the ray.

Distortion Loss Initially introduced in Mip-NeRF 360 [1] and validated in subse-
quent works [2,4,16], this loss acts as a regularizer to address “floater” artifacts
in NeRF reconstructions caused by limited training viewpoint coverage. It is
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calculated along a ray as

Ldist(tn ) tf ) =

∫ tf

tn

w(ti)w(tj) |ti − tj | dti dtj , (2)

where w(t) = T (tn ) t)σ(t) represents the volume rendering weight for each
sample along the ray. Intuitively, it penalizes floaters by encouraging density
concentration in minimal, compact regions. See [1] for more details.

4.2 Non-overlapped NeRFs

A straightforward strategy to increase model capacity with multiple GPUs is to
partition 3D space into tiles and allocate a NeRF for each tile. But unlike prior
works [9, 15, 18] that employ overlapped NeRFs to model both tiles and their
surrounding regions, our method exclusively models non-overlapped tiles, with
each NeRF assigned to a single tile. This distinction is illustrated in Figure 2.

To render our NeRFs across multiple GPUs, we first distribute ray samples
among GPUs based on the bounding box of the tiles. Notably it’s important
to ensure that sample intervals do not extend beyond tile boundaries to pre-
vent overlap between samples. We subsequently query sample attributes (i.e.
color and density) on each respective GPU. Volume rendering is then performed
through a global gather operation, consolidating information across all GPUs
onto a single GPU to compute the final pixel color. Since all sample intervals
are non-overlapping, the scene can be rendered accurately following the volume
rendering equation without the need for any blending.

Training proceeds in a similar fashion to rendering, except that during the
forward pass each GPU performs the global gather operation (i.e. broadcast) to
obtain the information (i.e. color and density) from all other GPUs (illustrated
as gray lines in Figure 6(a)). Then, each GPU computes the loss locally and
back-propagates the gradients to its own parameters. Notably the forward pass
produces the exact same loss values on every GPU, but each loss lives in a
different computational graph that only differentiates with respect to its own
local parameters, thus no gradient communication are required across GPUs.

Such a naive scheme is extremely simple to implement, and mathemati-
cally identical to training and rendering a NeRF represented by multiple small
NeRFs [12, 13] on a single large GPU. Distributing learnable parameters and
computational cost across multiple GPUs allows scaling NeRF to scenes of any
size, as well as making most parts of training fully parallel (e.g., network eval-
uation, back-propagation). Despite its simplicity and scalability in comparison
to blending overlapping NeRFs in prior works [9, 15, 18], this naive approach
requires synchronizing O(SK2) data across GPUs, where K is the number of
GPUs, and S is the average number of samples per-ray per-GPU. As the number
of GPUs increases or the ray step size decreases, synchronization across GPUs
quickly becomes a bottleneck. Therefore, on top of this approach, we present
a sophisticated solution that significantly alleviates the burden of multi-GPU
synchronization in a principled manner.
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4.3 Partition Based Volume Rendering

If we consider the near-far region [tn ) tf ] consisting of N segments [t1 ) t2, t2 )

t3, ..., tN ) tN+1], we can rewrite the volume-rendering integral (1) into a sum of
integrals for each segment along the ray:

C(t1 ) tN+1) =

∫ tN+1

t1

T (t1 ) t)σ(t)c(t)dt =

N∑
k=1

T (t1 ) tk)C(tk ) tk+1) (3)

in which the transmittance T (t1 ) tk) can be written as:

T (t1 ) tk) =

k−1∏
i=1

T (ti ) ti+1) (4)

The above equation states that volume rendering along an entire ray is equiv-
alent to first performing volume rendering independently within each segment,
then performing alpha compositing on all the segments. We can also rewrite the
accumulated weights A(t1 ) tN+1) and depths D(t1 ) tN+1) in a similar way:

A(t1 ) tN+1) =

∫ tN+1

t1

T (t1 ) t)σ(t)dt =

N∑
k=1

T (t1 ) tk)A(tk ) tk+1) (5)

D(t1 ) tN+1) =

∫ tN+1

t1

T (t1 ) t)σ(t)tdt =

N∑
k=1

T (t1 ) tk)D(tk ) tk+1) (6)

We can further rewrite the point-based integral in the distortion loss as an
accumulation across segments:

Ldist(t1 ) tN+1) =

∫ tN+1

t1

w(ti)w(tj) |ti − tj | dtidtj

= 2

N∑
k=1

T (t1 ) tk)S(t1 ) tk) +

N∑
k=1

T (t1 ) tk)
2Ldist(tk ) tk+1)

(7)
in which the S(t1 ) tk) is defined as:

S(t1 ) tk) = D(tk ) tk+1)A(t1 ) tk)−A(tk ) tk+1)D(t1 ) tk) (8)

Intuitively, the first term S(t1 ) tk) penalizes multiple peaks across segments
(zero if only one segment has non-zero values), while the second term Ldist(tk )

tk+1) penalizes multiple peaks within the same segment. This transforms the
pairwise loss on all samples into a hierarchy: pairwise losses within each segment,
followed by a pairwise loss on all segments. Derivations for all the above formulae
are given in the appendix.
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Recall that the main drawback of our naive approach was an expensive per-
sample data exchange across all GPUs. The above formulae convert sample-
based composition to tile-based composition. This allows us to first reduce the
per-sample data into per-tile data in parallel within each GPU and exchange
only the per-tile data across all GPUs for alpha compositing. This operation is
cost-effective, as now the data exchange is reduced from O(KS2) to O(S2) (each
GPU contains a single tile). Figure 6(b) shows an overview of our approach.
§ 5.4 quantifies the improvement gained from this advanced approach compared
to the naive version.

In addition to the volume rendering equation and distortion loss, a wide range
of loss functions commonly used in NeRF literature can be similarly rewritten
to suit our multi-GPU approach. For further details, we encourage readers to
refer to the appendix.

4.4 Spatial Partitioning

Our multi-GPU strategy relies on spatial partitioning, raising the question of
how to create these tiles effectively. Prior works [15, 18] opt for a straightfor-
ward division of space into uniform-sized blocks within a global bounding box.
While suitable for near-rectangular regions, this method proves suboptimal for
free camera trajectories and can lead to unbalanced compute assignment across
GPUs. As noted in [19], a free camera trajectory involves uneven training view
coverage, resulting in varying capacity needs across space (e.g., the regions that
are far away from any camera require less capacity than regions near a cam-
era). To achieve balanced workload among GPUs, we want to ensure each GPU
runs a similar number of network evaluations (i.e. has a similar number of ray
samples). This balance not only allocates compute resources evenly but also min-
imizes waiting time during multi-GPU synchronization for communicating the
data, as unequal distribution can lead to suboptimal GPU utilization.

We propose an efficient partitioning scheme aimed at evenly distributing
workload across GPUs. When a sparse point cloud is accessible (e.g., obtained
from SFM), we partition the space based on the point cloud to ensure that each
tile contains a comparable number of points. This is achieved by recursively
identifying the plane where the Cumulative Distribution Function (CDF) equals
0.5 for the 3D point distribution along each axis. As a result, this approach leads
to approximately evenly distributed scene content across GPUs. In cases where
a sparse point cloud is unavailable, indicating a lack of prior knowledge about
the scene structure, we instead discretize randomly sampled training rays into
3D samples. This serves as an estimation of the scene content distribution based
on the camera trajectory, enabling us to proceed with partitioning in a simi-
lar manner. This process is universally applicable to various types of captures,
including street, aerial, and object-centric data, and runs very quickly in prac-
tice (typically within seconds). Please refer to the appendix for visualizations of
partitioned tiles on different captures.
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Garden [1] University4 [9] Building [18] Mexico Beach [3] Laguna Seca MatrixCity [5]

#Img 161 939 1940 2258 27695 258003
#Pixc 175M 1947M 1920M 2840M 47294M 25800M
#Pixd 0.84M 3.98M - 9.63M 2819M 2007M

Table 1: Data Statistics. Our experiments are conducted on these captures from var-
ious sources, including street captures (University4, MatrixCity, Laguna Seca),
aerial captures (Building, Mexico Beach) and an object-centric 360-degree capture
(Garden). These data span a wide range of scales, enabling a comprehensive evalua-
tion of the multi-GPU system. Pixc and Pixd are denoted for color pixels and depth
pixels, respectively.

5 Experiments

Datasets. The crux of a multi-GPU strategy lies in its ability to consistently im-
prove performance across all types of captures, regardless of scale, as additional
resources are allocated. However, prior works typically evaluate their methods
using only a single type of capture (e.g., street captures in Block-NeRF, aerial
captures in Mega-NeRF). In contrast, our experiments are conducted on di-
verse captures from various sources, including street captures (University4 [9],
MatrixCity [5], Laguna Seca1), aerial captures (Building [18], Mexico
Beach [3]) and an object-centric 360-degree capture (Garden [1]). These data
also span a wide range of scales, from Garden with 161 images in a 10m2 area,
to MatrixCity with 258K images in a 25km2 area, thereby offering a compre-
hensive evaluation of the multi-GPU system. Table 1 shows detailed statistics
for each of these captures.

5.1 Joint Training v.s. Independent Training

In this section, we conduct a comparative analysis between our proposed ap-
proach and two prior works, Block-NeRF [15] and Mega-NeRF [18], all of which
are aimed at scaling up NeRFs beyond the constraints of a single GPU. To en-
sure a fair evaluation solely on the multi-GPU strategies, we re-implemented
each baseline alongside our method within a unified framework2. Each method
is configured with the same NeRF representation (Instant-NGP [11]), spatial
skipping acceleration structure (Occupancy Grid [11]), distortion loss [1], and
multi-GPU parallel inference. This standardized setup allows us to focus on as-
sessing the performance of different multi-GPU strategies in both training (i.e.,
joint vs. independent [15, 18]) and rendering (i.e., joint vs. 2D blending [15] vs.
3D blending [18]). For each baseline method, we adopt their default overlap-
ping configurations, which is 15% for Mega-NeRF and 50% for Block-NeRF. All
methods are trained for the same number of iterations (20K), with an equal

1 Laguna Seca: An in-house capture of a 3.6km race track.
2 On Building scene, our 8 GPU Mega-NeRF implementation achieves 20.8 PSNR

comparing to 20.9 PSNR reported in the original paper.
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Fig. 7: Qualitative Comparison. Comparing to prior works, our method efficiently
harnesses multi-GPU setups for performance improvement on all types of data.

Fig. 8: Quantitative Comparison. Prior works based on independent training fails
to realize performance improvements with additional GPUs, while our method enjoys
improved rendering quality and speed as more resources are added to training.

number of total samples per iteration (effectively the batch size of the model).
Please refer to the appendix for implementation details.
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Fig. 9: Scalability of Our Approach. More GPUs allow for more learnable param-
eters, leading to larger model capacity with better quality.

In this section we conduct experiments on four captures, including Gar-
den [1], Building [18], University4 [9] and MatrixCity [5], with GPU con-
figurations ranging from 1× to 16× (multi-node). We evaluate the scalability of
each method using two key metrics: Peak Signal-to-Noise Ratio (PSNR) for qual-
ity assessment and Rays Per Second for rendering speed, on the respective test
sets of each capture. As illustrated in Figure 8, baseline approaches struggle to
improve rendering quality with an increase in the number of GPUs, largely due
to the inherent issues associated with independent training outlined in § 3. Ad-
ditionally, baseline methods also fails to achieve faster rendering with additional
GPUs, as they either need to evaluate duplicate pixels for 2D blending [15] or
duplicate 3D samples for 3D blending [18]. In contrast, our proposed approach,
employing joint training and rendering, effectively eliminates model redundancy
and train-test discrepancy. Thus, it gracefully benefits from increased param-
eters and parallelization with additional GPUs, resulting in nearly linear im-
provements in both quality and rendering speed. More qualitative comparisons
are shown in Figure 7.

5.2 Robustness and Scalability

We further evaluate the robustness and scalability of our approach by testing it
on larger scale captures with increased GPU resources. Specifically, Figure 10
showcases our novel-view rendering results on the 1km2 Laguna Seca with 8
GPUs, the 6km2 Mexico Beach [3] with 8 GPUs, and the 25km2 Matrix-
City [5] with 64 GPUs. It’s noteworthy that each of these captures entails bil-
lions of pixels (see Table 1), posing a significant challenge to the NeRF model’s
capacity due to the vast amount of information being processed.

Figure 9 presents qualitative results obtained using our approach, highlight-
ing how the quality improves with the incorporation of more parameters through
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Fig. 10: More Rendering Results on Large Scale Captures. We test the ro-
bustness of our approach on larger captures with more GPUs. Please refer to the our
webpage for video tours on these data.

Fig. 11: Comparison with PyTorch DDP on University4. PyTorch Dis-
tributed Data Parallel (DDP) is designed for faster rendering by distributing rays
across GPUs. In contrast, our approach distributes parameters across GPUs, scaling
beyond the memory limits of single GPU in the cluster, and enabling larger model
capacity for better quality.

the utilization of additional GPUs. Please refer to our webpage for the video ren-
dering.

5.3 Comparison with PyTorch DDP

Another common approach to utilize multi-GPU for NeRF is distributing rays
across GPUs, e.g., PyTorch’s Distributed Data Parallel (DDP). This method typ-
ically allows for larger batch sizes during training or faster rendering through in-
creased parallelization. However, DDP necessitates that all GPUs host all model
parameters, thus limiting the model’s capacity to the memory of a single GPU.
In contrast, our approach assigns each GPU to handle a distinct 3D tiled region,
aiming to alleviate memory constraints and ensure optimal quality even for large-
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Fig. 12: Synchronization Cost on University4. Our partition-based volume
rendering (§ 4.3) allows tile-based communication, which is much cheaper than the
naive sample-based communication (§ 4.2), thus enabling faster rendering.

scale scenes. Figure 11 illustrates a comparison between our method and DDP
on the University4 dataset. In this comparison, our method employs N× more
parameters while DDP trains with N× more rays on N GPUs. The substantial
improvement in PSNR indicates that large-scale NeRF benefits more from in-
creased model capacity than from training more rays, a benefit uniquely enabled
by our approach. However, DDP renders much faster than our approach due to
the balanced workload created by parallelizing rays across GPUs. In contrast, our
approach does not guarantee balanced workload distribution and consequently
suffers from multi-GPU synchronization in run-time.

5.4 Multi-GPU Communication

We report the profiling results of multi-GPU communication costs on the Uni-
versity4 capture in Figure 12. Despite achieving a reduction in communica-
tion costs by over 2× through partition-based volume rendering (tile-based vs.
sample-based synchronization), multi-GPU communication remains the primary
bottleneck of our system. We attribute this to imbalanced workload distribu-
tion across GPUs, which could potentially be addressed through better spatial
partitioning algorithms. We leave this optimization for future exploration.

6 Conclusion and Limitation

In conclusion, we revisited the existing approaches of decomposing large-scale
scenes into independently trained NeRFs, and identified significant issues that
impeded the effective utilization of additional computational resources (GPUs),
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thereby contradicting the core objective of leveraging multi-GPU setups to im-
prove large-scale NeRF performance. Consequently, we introduced NeRF-XL, a
principled algorithm to efficiently harness multi-GPU setups, and enhance NeRF
performance at any scale by jointly training multiple non-overlapped NeRFs. Im-
portantly, our method does not rely on any heuristics, and adheres to scaling
laws for NeRF in the multi-GPU setting across various types of data.

However, our approach still has limitations. Similar to any other multi-GPU
distributed setup, synchronization and communication overhead is inevitable in
our joint training approach, which results in a slightly slower training speed
(1×-1.5×) compared to baselines with independent training. Additionally, while
our distributed approach is agnostic to NeRF representation in theory, we have
been only experimented with a popular choice, Instant-NGP [11], that equips
with hash grids and MLPs. It will be an interesting future work to apply the
framework to other representations, even beyond the task of static scene novel-
view synthesis.
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A Implementation Details

In this section, we elaborate on the implementation intricacies of our multi-
GPU NeRF representation, multi-GPU volume rendering and distortion loss, as
well as the spatial partitioning strategy we employed. Additionally, we outline
detailed differences between the baseline approaches and our method from the
implementation perspective.

A.1 NeRF Representation

Our experiments are all conducted with the hash-grid based NeRF representation
introduced in Instant-NGP [11]. In single GPU experiments, we adhere to the
original configuration of Instant-NGP. This entails predicting sample density
through hash encoding followed by a one-layer MLP, and predicting sample color
through another two-layer MLP. The latter is conditioned on the view direction
and, optionally, an appearance embedding.

In the multi-GPU joint training scenario, we assign each GPU a NeRF with
its own independent hash encoding and density MLP. However, for the color
MLP, we adopt a different approach. As the sample color is conditioned on
the view direction and optionally an appearance embedding, which can be out
of training distribution during novel-view rendering, independent color MLPs
will lead to inconsistent color prediction given the same input. Thus we adopt
parameter sharing across all GPUs for the color MLP utilizing Distributed Data
Parallel (DDP), to ensure consistent interpretation of novel view direction and
appearance embedding among all GPUs. Notably, when enabled during training,
an appearance embedding of zero is utilized for rendering novel-view images.
Similarly, when camera optimization is enabled, the camera pose embedding of
each camera is also shared across GPUs.

While our experiments specifically focus on the Instant-NGP representation,
we believe our approach can be generalized to many other NeRF representa-
tions. The Instant-NGP representation combines grid-based and MLP elements,
suggesting that our multi-GPU distribution strategy is applicable to both grid-
based and MLP-based NeRFs, as long as each NeRF is confined within a non-
overlapping bounding box for proper integration. In essence, regardless of which
representation is used, our approach simply increases its model capacity by de-
ploying multiple instantiations with multi-GPU, while enabling parameter shar-
ing across them. Consequently, all instantiations are conceptually united as a
“single NeRF” with spatially partitioned parameters.

A.2 Multi-GPU Volume Rendering and Distortion Loss

Algorithm 1 and 2 demonstrate the implementation of multi-GPU volume ren-
dering and distortion loss on each GPU, corresponding to the formulations pre-
sented in § 4.3 of the main paper. Both algorithms take in locally integrated
data (e.g., Tk→k+1, Ck→k+1) within the k-th GPU, and perform a global ag-
gregation of integrated data from all GPUs. This ensures identical outputs on
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Algorithm 1: Volume Rendering on k-th GPU
Data: Tk )k+1; Ck )k+1; I = {i1, i2, ...iN};
Result: C1 )N+1;
T1 )i ← 1;
C1 )N+1 ← 0;
for s← 1 to N do

/* s-th segment is from i-th GPU. */
i← I[s];
if i ̸= k then

/* Get the data from i-th GPU with auto-grad disabled. */
Ti )i+1, Ci )i+1 ← gather(i);

end
/* Global composition. */
C1 )N+1 += T1 )i × Ci )i+1;
T1 )i ∗= Ti )i+1;

end

Algorithm 2: Distortion Loss on k-th GPU
Data: Tk )k+1; Ck )k+1, I = {i1, i2, ...iN};

Ak )k+1, Dk )k+1; Lk )k+1;
Result: L1 )N+1;
T1 )i ← 1;
A1 )i ← 0;
D1 )i ← 0;
L1 )N+1 ← 0;
for s← 1 to N do

/* s-th segment is from i-th GPU. */
i← I[s];
if i ̸= k then

/* Get the data from i-th GPU with auto-grad disabled. */
Ti )i+1, Ci )i+1 ← gather(i);
Ai )k+1, Di )i+1,Li )i+1 ← gather_loss(i);

end
/* Global composition. */
S1 )i ← Dk )k+1 ×A1 )i −Ak )k+1 ×D1 )i;
L1 )N+1 += T 2

1 )i × Li )i+1 + T1 )i × S1 )i;
A1 )i += T1 )i ×Ai )i+1;
D1 )i += T1 )i ×Di )i+1;
T1 )i ∗= Ti )i+1;

end

every GPU, but each lives in a distinct computational graph that is only differ-
entiable with respect to it’s respective NeRF parameters. During inference, data
gathering is only required on a single GPU (e.g., 0-th GPU) to render the final
image, necessitating less data transfer compared to training. While we present
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Fig. 13: Our Spatial Partitioning Approach. We partition the space such that
each region contains similar amount of spatial content, which helps balance the compute
across multi-GPUs. (a) Initially, we generate a point cloud either through Structure
from Motion (SFM) or by discretizing training rays into samples. (b) Subsequently,
we construct a Probability Density Function (PDF) for the point cloud and partition
the space accordingly. This process is repeated for each axis, selecting the partitioning
scheme that results in partitions as close to cubic as possible (denoted by ARi, repre-
senting the aspect ratio for each partition). (c) Finally, we recursively apply step (b)
for n iterations to achieve 2n partitions.

our algorithms here as a loop over all GPUs for clarity, in practice, this is ac-
complished through batched asynchronous send/receive operations executed in
parallel. The global composition is implemented with parallel prefix scan using
the NerfAcc [4] toolbox.

A.3 Spatial Partitioning

Figure 13 illustrate our partition scheme. Initially, we create a point cloud from
either SFM or by discretizing random training rays into samples, forming a
Probability Density Function (PDF) for the distribution. By computing the Cu-
mulative Distribution Function (CDF) along each axis x, y, z in 3D space, we
identify the candidate planes where the CDF equals 0.5, signifying an optimal
separation that evenly divides the space into two partitions. To create nearly
cubic partitions, we choose the plane yielding partitions whose aspect ratios are
as close to 1 as possible. We apply this process recursively within each partition,
generating a power-of-two number of tile (2×, 4×, 8×, ...) for our distributed
NeRFs. Figure 14 provides a visualization on the partitions we get on various
captures.

A.4 Baselines

Below, we detail the implementation variances between the baseline approaches
(Block-NeRF [15], Mega-NeRF [18]) and our method, all of which are integrated
into the same system with identical configurations, including NeRF represen-
tation, spatial skipping acceleration structure, distortion loss, and multi-GPU
parallel inference.
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Fig. 14: Our Spatial Partitioning Results. Our partitioning approach is versa-
tile and applicable to various types of captures, including drone footage (Mexico
Beach, Building), street capture (MatrixCity, University4), and 360-degree
object-centric capture (Garden). For all captures except Building, partitioning is
based on SFM sparse points. However, due to the absence of point cloud data, the
Building capture is partitioned based on discretizing training rays into samples. Our
partition strategy ensures an even distribution of points across tiles, thereby naturally
demonstrating a level-of-detail property. This means that regions with more content or
those more frequently captured will have finer bounding boxes, enhancing granularity
where necessary.

Ours. Our method partitions the space into non-overlapping tiles, with each
NeRF assigned to a specific tile. All NeRFs are jointly trained using all training
rays.

Mega-NeRF. The original Mega-NeRF paper employs uniform spatial parti-
tioning, which may be suboptimal for free-trajectory captures [19]. To ensure
a fair comparison, we apply the same spatial partitioning scheme as our ap-
proach. However, Mega-NeRF trains each NeRF independently, necessitating
background modeling for every NeRF. To address this, we employ the scene
contraction method from Mip-NeRF 360 [1], enabling each NeRF to focus on its
assigned spatial region while also modeling the background. Consistent with the
original approach, we utilize only the rays that intersect with the bounding box
of each tile during NeRF training.

Block-NeRF. Instead of partitioning the space into tiles, the original Block-
NeRF paper partitions it based on training cameras. Specifically, it divides the
training data by grouping nearby cameras with some overlap, resulting in each
NeRF focusing on a different spatial region during independent training. Since
background modeling is required for each NeRF, and it is non-trivial to assign
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each NeRF a distinct bounding box from a group of cameras, scene contraction
does not apply. Therefore, we utilize the same bounding box covering the entire
region for all independently trained NeRFs.

B Math

Here we first provide derivations of the proposed partitioned volume rendering
described in § 4.3 in the main paper. Then we show that not only the volume
rendering equation and distortion loss can be properly distributed across GPUs,
there is a family of functions can be distributed in the same way.

B.1 Derivations of Partitioned Volume Rendering

Here we provide the full derivations of the equations in § 4.3, where we turn the
volume rendering and distortion loss in the region of [tn ) tf ] into the regions of
N segments [t1 ) t2, t2 ) t3, ..., tN ) tN+1].

Transmittance Firstly, given that

T (t1 ) t) = exp

−
t∫

t1

σ(s)ds

 (9)

We can easily see that

T (t1 ) t) = exp

−
t∫

t1

σ(s)ds


= exp

−
tk∫

t1

σ(s)ds−
t∫

tk

σ(s)ds


= exp

−
tk∫

t1

σ(s)ds

 exp

−
t∫

tk

σ(s)ds


= T (t1 ) tk)T (tk ) t)

(10)
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And similarly:

T (t1 ) tk) = exp

−
tk∫

t1

σ(s)ds


= exp

−
k−1∑
k=1

tk+1∫
tk

σ(s)ds


=

k−1∏
k=1

exp

−
tk+1∫
tk

σ(s)ds


=

k−1∏
k=1

T (tk ) tk+1)

(11)

which is the Equation 4 in the main paper.

Accumulated Colors, Weights and Depths Given the volume rendering equation
that accumulates colors c(t) within the range of [tn ) tf ] along the ray:

C(tn ) tf ) =

tf∫
tn

T (tn ) t)σ(t)c(t)dt (12)

We can derive the partitioned version of it (Equation 4 in the main paper)
with the help of T (t1 ) t) = T (t1 ) tk)T (tk ) t) that we just derived in Equa-
tion 10:

C(t1 ) tN+1) =

tN+1∫
t1

T (t1 ) t)σ(t)c(t)dt

=

N∑
k=1

 tk+1∫
tk

T (t1 ) t)σ(t)c(t)dt


=

N∑
k=1

 tk+1∫
tk

T (t1 ) tk)T (tk ) t)σ(t)c(t)dt


=

N∑
k=1

T (t1 ) tk)

tk+1∫
tk

T (tk ) t)σ(t)c(t)dt


=

N∑
k=1

T (t1 ) tk)C(tk ) tk+1)

(13)
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The accumulated weights and depths (Equation 5 and 6 in the main paper)
can be derived in similar ways with the accumulated colors, thus we omit their
derivations here.

Distortion Loss The original distortion loss has the form of3

Ldist(t1 ) tN+1) =

tN+1∫∫
t1

w(t1 ) u)w(t1 ) v) |u− v| dudv (14)

in which w(t1 ) u) = T (t1 ) u)σ(u) represents the volume rendering weight for
the sample at location u along the ray.

First, we can break the double integral
∫∫ tN+1

t1
into two terms,

∫ tN+1

t1

∫ u

t1
and∫ tN+1

t1

∫ v

t1
, in which the first term covers all u ≥ v and the second term covers all

v ≥ u:

Ldist(t1 ) tN+1) =

tN+1∫∫
t1

w(t1 ) u)w(t1 ) v) |u− v| dudv

=

tN+1∫
t1

w(t1 ) u)

 u∫
t1

w(t1 ) v) (u− v) dv

 du

+

tN+1∫
t1

w(t1 ) v)

 v∫
t1

w(t1 ) u) (v − u) du

 dv

(15)

Since u and v are symmetric notations, it is evident that the two terms above
are equal. Thus:

Ldist(t1 ) tN+1) = 2

tN+1∫
t1

w(t1 ) u)z(t1 ) u)du

where z(t1 ) u) =

u∫
t1

w(t1 ) v) (u− v) dv

(16)

Assumes the sample u belongs to the k-th segment (i.e., tk ≤ u ≤ tk+1), then
we can break the above term z(t1 ) u) into the integral up to tk plus the integral

3 The distortion loss in this supplemental material has slightly different notations
comparing to the equation we have in the main paper. We substitute tk with u and
tj with v to reduce confusion in the following derivations.
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from tk to u:

z(t1 ) u) =

u∫
t1

w(t1 ) v) (u− v) dv

=

tk∫
t1

w(t1 ) v) (u− v) dv +

u∫
tk

w(t1 ) v) (u− v) dv

= z(t1 ) tk) + T (t1 ) tk) · z(tk ) u)

(17)

Substituting the term z(t1 ) u) in Equation 16 with Equation 17, we now
have the distortion loss in two terms:

Ldist(t1 ) tN+1) = 2

tN+1∫
t1

w(t1 ) u)z(t1 ) tk)du

+ 2 · T (t1 ) tk) ·
tN+1∫
t1

w(t1 ) u)z(tk ) u)du

(18)

Then we break the integral
∫ tN+1

t1
along the entire ray into the summation of

integral on each segment [tk, tk+1]:

Ldist(t1 ) tN+1) = 2

N∑
k=1

(L1 + T (t1 ) tk) · L2)

where L1 =

tk+1∫
tk

w(t1 ) u)z(t1 ) tk)du

L2 =

tk+1∫
tk

w(t1 ) u)z(tk ) tu)du

(19)
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Focusing on L1, with the help of Equation 16 we have:

L1 =

tk+1∫
tk

w(t1 ) u)z(t1 ) tk)du

= T (t1 ) tk) ·
tk+1∫
tk

w(t1 ) u)

 tk∫
tk

w(t1 ) v) (u− v) dv

 du

= T (t1 ) tk) ·

 tk+1∫
tk

w(t1 ) u)udu

 ·

 tk∫
t1

w(t1 ) v)dv


− T (t1 ) tk) ·

 tk+1∫
tk

w(t1 ) u)du

 ·

 tk∫
t1

w(t1 ) v)vdv



(20)

Recall that the accumulated weights and depths (Equation 5 and 6 in the
main paper) have the formulations of:

A(t1 ) tN+1) =

∫ tN+1

t1

w(t1 ) u)du (21)

D(t1 ) tN+1) =

∫ tN+1

t1

w(t1 ) u)udu (22)

Substituting the terms in Equation 20 with the above two equations we get
the Equation 9 in the main paper:

L1 = T (t1 ) tk)S(t1 ) tk) (23)

in which the S(t1 ) tk) is defined as:

S(t1 ) tk) = D(tk ) tk+1)A(t1 ) tk)−A(tk ) tk+1)D(t1 ) tk) (24)

Now focusing on L2, we can see that:

L2 =

tk+1∫
tk

w(t1 ) u)z(tk ) tu)du

= T (t1 ) tk)

tk+1∫
tk

w(tk ) u)z(tk ) tu)du

= T (t1 ) tk) ·
Ldist(tk ) tk+1)

2

(25)



NeRF-XL: Scaling NeRFs with Multiple GPUs 25

Putting together the above Equations 19, 23, 25, we then have derived the
Equation 7 in the main paper:

Ldist(t1 ) tN+1) = 2

N∑
k=1

T (t1 ) tk)S(t1 ) tk) +

N∑
k=1

T (t1 ) tk)
2Ldist(tk ) tk+1)

(26)

B.2 General Derivations for More NeRF-related Functions

In this section we prove that there is a family of integral functions defined in
the range of [t1, tN+1] can be rewritten into the form of sum product on the
integrals of each individual segment [tk, tk+1], which makes them suitable to be
distributed across multiple GPUs using our approach (i.e. first calculate each
segment independently within each GPU, then accumulate only per-ray data
across GPUs).

F(t1 ) tN+1) =

N∑
i=1

(

N∏
j=1

Hij(tj ) tj+1)) (27)

which we will call them breakable integrals.
A simple example of a breakable integral is:

F(t1 ) tN+1) =

∫ tN+1

t1

f(t)dt =

N∑
i=1

F(ti ) ti+1) (28)

which corresponds to Hij =

F . . .
F

.

Properties and Proofs A breakable integral has several nice properties:

Property 1 A breakable integral multiplies, adds or subtracts a breakable integral
is still a breakable integral.

Property 2 If F(t1 ) tN+1) is a breakable integral, then A(t1 ) tN+1) is also a
breakable integral when:

A(t1 ) tN+1) =

∫ tN+1

t1

F(t1 ) t)f(t)dt (29)

Proof:

A(t1 ) tN+1) =

∫ tN+1

t1

F(t1 ) t)f(t)dt =

N∑
k=1

∫ tk+1

tk

F(t1 ) t)f(t)dt (30)
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In which we have

F(t1 ) t)

=

k−1∑
i=1

(

k−1∏
j=1

Hij(tj ) tj+1) ·Hik(tk ) t)) +

k−1∏
j=1

Hkj(tj ) tj+1) ·Hkj(tk ) t)

= S1 + S2

(31)

Focusing on S1, we have

A1(t1 ) tN+1) =

N∑
k=1

∫ tk+1

tk

S1f(t)dt

=

N∑
k=1

∫ tk+1

tk

k−1∑
i=1

(

k−1∏
j=1

Hij(tj ) tj+1) ·Hik(tk ) t))

 f(t)dt

=

N∑
k=1

k−1∑
i=1

(

k−1∏
j=1

Hij(tj ) tj+1) ·
[∫ tk+1

tk

Hik(tk ) t)f(t)dt

]
)

=

N∑
k=1

k−1∑
i=1

(

k−1∏
j=1

Hij(tj ) tj+1) · Ĥik(tk ) tk+1))

(32)

Focusing on S2, we have

A2(t1 ) tN+1) =

N∑
k=1

∫ tk+1

tk

S2f(t)dt

=

N∑
k=1

∫ tk+1

tk

k−1∏
j=1

Hkj(tj ) tj+1) ·Hkj(tk ) t)

 f(t)dt

=

N∑
k=1

k−1∏
j=1

Hkj(tj ) tj+1) ·
[∫ tk+1

tk

Hkj(tk ) t)f(t)dt

]

=

N∑
k=1

k−1∏
j=1

Hkj(tj ) tj+1) · Ĥkj(tk ) tk+1)

(33)

Thus A(t1 ) tN+1) = A1(t1 ) tN+1) + A2(t1 ) tN+1) also belongs to the family
of breakable integrals.

Examples Here we show both the volume rendering equation and distortion
loss can be trivially proved as breakable integrals using the above properties.

Transmittance The transmittance belongs to this family because:

T (t1 ) tN+1) = exp

(
−
∫ tN+1

t1

σ(t)dt

)
=

N∏
i=1

T (ti ) ti+1) (34)
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Volume Rendering The volume rendering has the formulation of:

C(t1 ) tN+1) =

∫ tN+1

t1

T (t1 ) t)σ(t)c(t)dt (35)

Given that the transmittance T (t1 ) t) belongs to this family, and the prop-
erty 2 of this family, we know that volume rendering equation also belongs to
this family.

Distortion Loss The distortion loss has the formulation of:

Ldist(t1 ) tN+1) =

tN+1∫∫
t1

w(t1 ) u)w(t1 ) v) |u− v| dudv

= 2

tN+1∫
t1

w(t1 ) u)

 u∫
t1

w(t1 ) v) (u− v) dv

 du

= 2

tN+1∫
t1

T (t1 ) u)σ(u)

 u∫
t1

T (t1 ) v)σ(v) (u− v) dv

 du

= 2

tN+1∫
t1

T (t1 ) u)σ(u)S(t1 ) u)du

(36)

Similar to the volume rendering equation, from property 2 we know that the
formula within the bracket belongs to this family:

S(t1 ) u) =

u∫
t1

T (t1 ) v)σ(v) (u− v) dv (37)

From property 1 we know T (t1 ) u)S(t1 ) u) also belongs to this family.
Then apply property 2 again we can see that Ldist(t1 ) tN+1) also belongs to
this family.
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