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ABSTRACT 
 
Objectives: This study aims to systematically review the literature on the computational processing of the 
language of pain, or pain narratives, whether generated by patients or physicians, identifying current 
trends and challenges. 
Methods: Following the PRISMA guidelines, a comprehensive literature search was conducted to select 
relevant studies on the computational processing of the language of pain and answer pre-defined research 
questions. Data extraction and synthesis were performed to categorize selected studies according to their 
primary purpose and outcome, patient and pain population, textual data, computational methodology, 
and outcome targets. 
Results: Physician-generated language of pain, specifically from clinical notes, was the most used data. 
Tasks included patient diagnosis and triaging, identification of pain mentions, treatment response 
prediction, biomedical entity extraction, correlation of linguistic features with clinical states, and lexico-
semantic analysis of pain narratives. Only one study included previous linguistic knowledge on pain 
utterances in their experimental setup. Most studies targeted their outcomes for physicians, either directly 
as clinical tools or as indirect knowledge. The least targeted stage of clinical pain care was self-
management, in which patients are most involved. Affective and sociocultural dimensions were the least 
studied domains. Only one study measured how physician performance on clinical tasks improved with 
the inclusion of the proposed algorithm. 
Discussion: This review found that future research should focus on analyzing patient-generated language 
of pain, developing patient-centered resources for self-management and patient-empowerment, exploring 
affective and sociocultural aspects of pain, and measuring improvements in physician performance when 
aided by the proposed tools. 
 
Keywords: pain; language of pain; natural language processing; systematic review; computational 
analysis 
 
 
LAY SUMMARY 
 
The objective of this study is to conduct a thorough literature review of the computational processing of 
pain language, or pain narratives, whether originating from patients or physicians, with the aim of 
identifying prevailing trends and challenges. An exhaustive, systematic literature review was undertaken 
to select pertinent studies that address predefined research questions. Selected studies were categorized 
according to their primary purpose and outcome, patient and pain population, textual data, computational 
methodologies, and outcome targets. Tasks performed by the selected studies included patient diagnosis 
and triaging, pain mention identification, treatment response prediction, biomedical entity extraction, 
correlation of linguistic features with clinical states, and lexico-semantic analyses of pain narratives. Most 
studies used physician-generated pain language from clinical notes. The results of this literature review 
suggest future research should concentrate on analyzing patient-generated pain language, developing 
patient-centric resources to facilitate self-management and improve patient-empowerment, exploring the 
affective and sociocultural facets of pain, and assessing improvement in physician performance when 
aided by the proposed tools.  



 3 

BACKGROUND AND SIGNIFICANCE 

Pain is a subjective experience, embedded in the biopsychosocial model of health [1,2]. It is also private, 
unless communicated. There are many types of pain communication, such as facial expressions, verbal 
interjections, and narratives. Given the rich connection between language, psychology, and socio-culture, 
patient pain narratives reflect the multiple dimensions of pain in a more natural and personalized way. 
They can elucidate what it means to experience pain to that specific person and, when properly assessed, 
improve the clinical outcome [3], with information the person in pain believes to be relevant about the 
bodily distribution of the feeling of pain, temporal patterns of activity, intensity, emotional and 
psychological impacts, and others [4]. Indeed, patient pain utterances have been lexically [5] and 
grammatically [6,7] analyzed and related with clinical states, resulting namely in the widely used McGill 
Pain Questionnaire (MPQ) [8]. 
 
Patient pain narratives are an instance of the language of pain, which encompasses the linguistic 
formulation of the pain experience [7]. Anyone verbally expressing or describing an experience of pain 
(theirs or that of others) is effectively employing the language of pain. Although most practices and 
clinicians already include some kind of analysis of the natural language of pain, usually based on the 
clinician's own experience in communicating with people in pain and assessing them, they seldom follow 
a systematic, quantifiable, and explainable approach. Moreover, patients commonly report dissatisfaction 
in feeling heard or understood, and many clinicians find this communication challenging and frustrating 
[3].  
 
Computational models assessing the language of pain may help supporting clinical pain assessment in a 
systematic, quantifiable, and explainable manner. Indeed, language has been explored with increasingly 
more complex natural language processing (NLP) techniques, due to the development of these techniques 
and the larger availability of computational resources and relevant data. In what respects health-related 
applications, various works started to focus on mental health topics, such as depression diagnosis [9], 
suicidal ideation detection [10], and the linguistic analysis of multiple and co-occurring mental health 
conditions [11], because they are closely related with language. Some focus has also been given to 
computationally explore the language of pain.  
 
In this work we systematically review the literature on the computational processing of the language of 
pain, generated either by patients or physicians. To the best of our knowledge, at the time of writing, there 
is no published systematic review defining the landscape of this research paradigm.  
 
Research questions 
This work aims at answering the following research questions: 

Q1. Given patient-generated and physician-generated language of pain: 
Q1.a. Which language type is most analyzed? 
Q1.b. Which tasks are performed for each language type? 

Q2. Are the linguistic findings by [5], [6], and [7] explicitly incorporated into the main processing? 
Q3. For whom are the studies and their outcomes primarily designed: patients (e.g., pain journaling 

app) or physicians (e.g., diagnosis assistant)? 
Q4. Which dimensions of pain are most and less studied? 
Q5. Which stage of pain care is being targeted: diagnosis, clinical-decision support, treatment/ 

rehabilitation, or self-management? 
Q6. Does physician performance on clinical tasks improve with the inclusion of the proposed 

algorithm? 
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MATERIALS AND METHODS 

We followed the PRISMA [12] guidelines. All steps were performed by at least two independent reviewers, 
and all disagreements were resolved through consensus, with the assistance of additional reviewers when 
necessary (up to four). Extraction was refined after piloting. Synthesis was validated by all reviewers. 
 
Article retrieval  
This systematic review has two main axes: computational processing and language of pain. Table A.1 in 
Supplementary Materials shows the defined search keywords. The article search query was defined as the 
matching of at least one keyword in both axes, either in the publication title or abstract. We searched the 
following six databases: PubMed 1, IEEE Xplorer 2, ACM Digital Library 3, SCOPUS 4, Web of Science 5, 
and PLOS 6. All databases were initially queried, without constraints, on January 20, 2023, except for 
SCOPUS, which was queried on January 23, 2023. We performed the same query one year later to update 
the retrieval for the full year of 2023. 
 
Article selection 
We selected articles that met all the following criteria: (1) primary data source is the natural language of 
pain, (2) main processing is based on a computational method, and (3) primary outcome is some aspect of 
the experience of pain. We excluded articles that matched any of the following criteria: (1) is a duplicate 
of another article, (2) is not an original research article, (3) is not written in Portuguese, English, Spanish, 
or French, (4) abstract or full text are not available, or (5) does not meet all the inclusion criteria. 
 
Data extraction 
We defined a set of data points primarily aimed at answering the review questions previously presented. 
These data points were based on [13] and [14], which performed systematic reviews on NLP in the clinical 
domain, and on [15] and [16], which performed systematic and scoping reviews on machine learning 
specifically in the pain domain. Table A.2 in Supplementary Materials shows the data points extracted 
from each selected article. We measured machine learning reporting quality using [17]. Studies were not 
excluded due to machine learning reporting quality. 

RESULTS 

We retrieved a total of 2,394 articles. We performed study selection using Rayyan 7 [18]. A total of 40 
articles were included for data extraction and synthesis. Fig. 1 shows the corresponding selection PRISMA 
flow diagram for the selection phase. Fig. 2 shows the distribution of studies per publication year. 
 
Primary purpose and task 
Classification-based studies (n=17) performed patient diagnosis/ phenotyping (n=7), identification of 
pain mentions (n=3), treatment response prediction (n=2), identification of pain assessments (n=1), 
identification of patient-reported outcomes (PROs; n=1), patient questionnaire automation (n=1), risk 
factor prediction (n=1), and patient triaging (n=1).  

 
1 https://www.pubmed.ncbi.nlm.nih.gov 
2 https:// www.ieeexplore.ieee.org/Xplore/home.jsp 
3 https:// www.dl.acm.org 
4 https://www.scopus.com 
5 https://www.clarivate.com/webofsciencegroup/solutions/web-of-science 
6 https:// www.plos.org 
7 https://www.rayyan.ai 
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Correlation-based studies (n=5) determined the linguistic characteristics that correlated with specific 
clinical parameters, in this case, pain catastrophizing (n=3), pain intensity (n=3), illness intrusiveness 
(n=2), life satisfaction (n=1), depression (n=1), and treatment response (n=1).  
 
Extraction-based studies (n=8) extracted pain intensity (n=3), body locations (n=3), drugs and treatments 
(n=3), pain qualities (n=2), pain care quality (PCQ) indicators (n=2), co-morbidities (n=2), symptoms (n=1),  
International Classification of Functioning, Disability, and Health (ICF) factors (n=1), reliefs (n=1), family 
environment (n=1), social determinants of health (SDoH; n=1), pain mentions (n=1), and Unified Medical 
Language System (UMLS) [19] semantic types (n=1).  
 
Lexico-semantic analysis-based studies (n=10) determined the lexical and thematic characteristics of pain 
narratives, specifically reports of the overall experience of pain (n=5), of pain management (n=4), pain 
terms (n=1), and pain qualities (n=1).  
 
Table 1 shows these data. 
 

Table 1. Primary purpose and task. 

Ref. Primary purpose Primary task Task extension 
[20] Develop a generalizable model to identify patients with chronic low back pain (LBP) 

from electronic health records (EHRs). Classification diagnosis/ 
phenotype 

[21] Investigate clinical clues capable of distinguishing temporomandibular (TMD)-
mimicking conditions from actual TMD. Classification diagnosis/ 

phenotype 
[22] Identify acute LBP conditions from EHRs where it is not explicitly coded. Classification diagnosis/ 

phenotype 
[23] Analyze the difference in frequency of back pain complaints on Twitter before and 

during the COVID-19 pandemic. Classification diagnosis/ 
phenotype 

[24] Classify self-reported narratives of migraine or cluster headache patients. Classification diagnosis/ 
phenotype 

[25] Validate use of language features from patient narratives for pain intensity estimation. Classification diagnosis/ 
phenotype 

[26] Use natural language processing (NLP) to determine the severity of pain experienced by 
Osteoarthritis patients based on EHRs. Classification diagnosis/ 

phenotype 
[27] Identify pain assessments from EHRs to assess pain care quality (PCQ) indicators. Classification identify pain 

assessment 
[28] Automate both the creation and utilization of regular expressions (RegEx) for the 

classification of clinical text. Classification identify pain 
mentions 

[29] Identify reports of pain severity in EHRs and classify positive notes according to the 
overall pain of the patient, with a generalizable model. Classification identify pain 

mentions 

[30] Identify "pain relevant" EHRs of sickle cell disease patients and classify "pain change" in 
positive cases. Classification 

identify pain 
mentions and 
changes 

[31] 
Classify symptom attributes (pain interference and fatigue domains) from textual 
meaning units relevant for patient-reported outcome (PRO) analysis from patient 
interviews. 

Classification identify PRO 

[32] 
Automate patient-reported outcome measures (PROMs) of knee injuries by developing 
an open-ended questionnaire that automatically maps onto Knee Injury and 
Osteoarthritis Outcome Score (KOOS) [33]. 

Classification questionnaire 
automation 

[34] Develop a novel deep learning approach to detect risk factors for underlying disease in 
patients presenting with LBP in EHRs. Classification risk factors 

[35] Classify placebo responders vs nonresponders in chronic back pain using language 
features, from patients undergoing treatment. Classification treatment 

response 
[36] Predict placebo and drug response in patients with chronic back pain before treatment, 

assessing model generalizability from [35]. Classification treatment 
response 

[37] Triage patients with musculoskeletal conditions based on primary care referral letters. Classification triage 

[38] Validate association between reattribution of chronic back pain to mind/brain processes 
and pain reduction in pain reprocessing therapy. Correlation 

pain 
catastrophizing, 
illness 
intrusiveness, 
pain intensity 

[39] Create a longitudinal pattern study of patient pain from EHRs. Correlation pain intensity 

[40] Classify and correlate risk for opioid agreement violation for chronic noncancer pain 
patients from EHR data (structured and unstructured), prior to the agreement. Correlation treatment 

response 



 6 

[41] Find correlations between language use and pain catastrophizing in chronic 
musculoskeletal pain patients. Correlation pain 

catastrophizing 

[42] 
Compare the performance of automatic feature extraction versus human feature 
extraction to predict measures of psychological and physical health for chronic pain 
patients. 

Correlation 

pain 
catastrophizing, 
life satisfaction, 
illness 
intrusiveness, 
pain intensity, 
depression 

[43] Extract information about various pain characteristics in EHRs to learn relations between 
pain symptoms, their identifying parameters, and treatments. Extraction 

body location, 
quality of pain, 
quantity of pain, 
symptoms, 
drugs/treatment 

[44] Map phrases from EHRs to classes in a pre-defined ontology (in this case, a chronic pain 
ontology). Extraction 

body location, 
quantity of pain, 
drugs/treatments, 
co-morbidities, 
reliefs, family 
environment 

[45] Extract International Classification of Functioning, Disability, and Health (ICF) factors 
from EHRs of LBP patients, relevant to the timing of rehabilitation. Extraction ICF factors 

[46] Develop a corpus of pain annotations from mental health records for use in downstream 
NLP pipelines. Extraction 

pain mention 
(and negation), 
body location, 
quality of pain, 
treatment 

[47] Extract PCQ indicators from EHRs. Extraction PCQ indicators 

[48] Identify PCQ indicators and assess patterns across different clinic visit types using NLP 
on Veteran’s Health Administration (VHA) chiropractic clinic documentation. Extraction PCQ indicators 

[49] Apply NLP and inference methods to extract social determinants of health (SDoH) from 
EHRs of patients with chronic LPB. Extraction 

SDoH, 
depression, 
anxiety, quantity 
of pain 

[50] Triage patients with musculoskeletal conditions based on general practitioner referral 
letters. Extraction UMLS semantic 

types 

[51] Explore language use and themes of fibromyalgia patients on an online forum and 
compare with clinical knowledge. 

Lexico-
semantic 
analysis 

pain experience 

[52] Understand what people in Ireland discuss on Twitter regarding their experience of 
chronic pain, their sentiment, gender, and tweet dissemination. 

Lexico-
semantic 
analysis 

pain experience 

[53] Explore what patients discuss on social media regarding their chronic pain. 
Lexico-
semantic 
analysis 

pain experience 

[54] Understand how the experience of pain is discussed online for sufferers of endometriosis. 
Lexico-
semantic 
analysis 

pain experience 

[55] Understand how the experience of musculoskeletal disorder is communicated between 
patients, general practitioners, and specialists.  

Lexico-
semantic 
analysis 

pain experience, 
pain management 

[56] Find differences in the themes discussed by nurses (EHRs) vs. patients (social media) 
when describing experiences of pain. 

Lexico-
semantic 
analysis 

pain management 

[57] Explore discussed themes of opioid use for pain management on social media, to learn 
patient perspective that may go beyond the scope of standard questionnaires. 

Lexico-
semantic 
analysis 

pain management 

[58] Thematic analysis of conversations between physicians and patients about chronic pain 
management. 

Lexico-
semantic 
analysis 

pain management 

[59] Develop and make public a lexicon for "pain" based on multiple sources, for downstream 
NLP tasks. 

Lexico-
semantic 
analysis 

pain terms 

[60] Update McGill Pain Questionnaire (MPQ) [8] vocabulary according to pain descriptor 
usage on social media. 

Lexico-
semantic 
analysis 

quality of pain 

 
Patient and pain population 
Not all studies reported patient population distributions. Most reported the number of patients included 
in their work (n=28), ranging from 5 to 127,871 patients, with an average of 6,386.2 (Q2=227, Q3=713.5). 
The average reported patient mean age (n=14) was 46.1 (Q2=48.8, Q3=53.7). The average reported 
percentage of female-identified gender patients (n=17) was 57.1% (Q2=55.3%, Q3=72.4%).  
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Similarly, not all studies reported pain population distributions. Studies specifying the target chronicity 
of pain were specifically designed for chronic pain (n=19), acute pain (n=2), or both (n=4). Musculoskeletal 
pain (n=21) was the most targeted pain, followed by cancer (n=3), noncancer (n=2), nonterminal (n=1), 
and headache (n=1). Lower back and back were the most targeted pain locations (n=10). 
 
Table 2 shows these data. 
 

Table 2. Patient and pain population. 

Ref. 
Number 

of 
patients 

Average 
age 

Percentage 
female 

Chronicity of 
pain 

Generic type of 
pain Specific type of pain 

[20] 31     Chronic Musculoskeletal Lower back 
[21] 319   76.5%   Musculoskeletal Jaw 
[22] 15,715     Acute Musculoskeletal Lower back 
[23]         Musculoskeletal Back 
[24] 121 45.0 60.0%   Headache Migraine, Cluster Headache 

[25] 65 56.4 61.5% Chronic Musculoskeletal Osteoarthritis, Rheumatoid Arthritis, 
Spondylarthritis, Ankylosing Spondylitis 

[26]       Chronic Musculoskeletal Osteoarthritis 
[27] 92     Chronic Musculoskeletal   
[29] 462       Cancer Bone metastases 
[30] 40     Acute   Sickle Cell Disease 
[31] 87 24.2 72.4%   Cancer (treatment)   
[32]         Musculoskeletal Knee 
[34] 1,943       Musculoskeletal Lower back 
[35] 42 45.3 40.3% Chronic Musculoskeletal Back 
[36] 84 45.3 43.0% Chronic Musculoskeletal Back 
[37] 576       Musculoskeletal Knee, Hip 
[38] 135 41.1 54.0% Chronic Musculoskeletal Back 
[39] 33 62.0   Chronic Cancer Prostate 
[40] 3,668 48.0 55.3% Chronic Noncancer   

[41] 71 55.4 54.0% Chronic Musculoskeletal Lower back, Osteoarthritis, Rheumatoid 
Arthritis, Fibromyalgia 

[42] 93 49.6 86.0% Chronic Nonterminal   
[44]       Chronic     
[45] 5     Chronic Musculoskeletal Lower back 
[46] 723   47.0% Acute, Chronic     
[47] 127,871 51.8 11.8% Acute, Chronic Musculoskeletal   
[48] 11,416   15.8%   Musculoskeletal   
[49] 364 53.7 62.7% Chronic Musculoskeletal Lower back 
[50] 643 53.5 51.6%   Musculoskeletal Knee, Hip 
[51]       Acute, Chronic Musculoskeletal Fibromyalgia 
[52] 715     Chronic     
[53] 709     Chronic     
[54]     100.0% Chronic Noncancer Endometriosis 

[55] 22     Chronic Musculoskeletal 
Osteoarthritis, Rheumatoid Arthritis, Back, 
Psoriatic Arthritis, Fibromyalgia, Dish 
Syndrome 

[58] 123 14.7 78.9% Chronic     
[59]       Acute, Chronic     



 8 

Textual data 
The studied languages were English (n=35), Finnish (n=1), Japanese (n=1), Dutch (n=1), Korean (n=1), and 
Portuguese (n=1). The studied language of pain was generated by physicians (n=20), patients (n=14), or 
both (n=6). Physician-generated data was obtained from electronic health records (EHRs; n=22) and 
interviews (n=3), whilst patient-generated data was obtained from interviews (n=11) and social media 
(n=7). The average reported number of documents used for analysis was 20,954 (Q2=626, Q3=3,426). Only 
a few studies reported the average length of their documents (n=6), with an average length of 500 tokens 
(Q2=374.9, Q3=888.5). Table A.3 in Supplementary Materials shows textual data availability. 
 
Tab. 3 shows these data. 
 

Table 3. Textual data. 

Ref. Language Type of pain language Source Number of documents Average document length 
in tokens/words 

[20] English Physicians Electronic health records 
(EHRs) 31   

[21] Korean Physicians EHRs 319   
[22] English Physicians EHRs 17,409   
[23] English Patients Social media 104,274   
[24] Dutch Patients Interview 121 476.0 
[25] Portuguese Patients Interview 65   
[26] English Physicians EHRs     
[27] English Physicians EHRs 1,058   
[28] English Physicians EHRs 702   
[29] English Physicians EHRs 1,459 1038.3 
[30] English Physicians EHRs 424   
[31] English Patients, Physicians Interview 391   
[32] English Patients Interview 55   
[34] English Physicians EHRs 2,749   
[35] English Patients Interview 42   
[36] English Patients Interview 84   
[37] English Physicians EHRs 576   
[38] English Patients Interview 135   
[39] English Physicians EHRs 4,409   
[40] English Physicians EHRs 3,668   
[41] English Patients Interview 71 273.8 
[42] English Patients Interview 93   
[43] English Physicians EHRs 3,750   
[44] English Physicians EHRs 500   
[45] Finnish Physicians EHRs 15   
[46] English Physicians EHRs 1,985 1026.0 
[47] English Physicians EHRs 270,915   
[48] English Physicians EHRs 63,812   
[49] English Physicians EHRs 626   
[50] English Physicians EHRs 586   
[51] English Patients Social media 399   
[52] English Patients Social media 941   
[53] English Patients Social media 937 53.0 
[54] English Patients Social media 70,817   
[55] English Patients, Physicians Interview 51   
[56] Japanese Patients, Physicians EHRs, Social media 619   
[57] English Patients, Physicians Social media 836   
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[58] English Patients, Physicians Interview 3,426 132.7 
[59] English Patients, Physicians EHRs, Social media 200   
[60] English Patients Social media 216,873   

 
Methodology 
The computational methodology is structured similarly for all studies, including the preprocessing, main 
task processing, and evaluation stages. Table A.4 in Supplementary Materials shows the code availability. 
According to [17], the average scores per reporting quality item (1-9), were, respectively: 1, 0.7, 0.5, 0.9, 
0.9, 0.3, 0.4, 0.5, 0.7. The two lowest scores were associated with reporting model bias and model 
parameters for reproducibility, which most studies lacked. The overall reporting quality score was 0.7. 
 
Preprocessing 
All studies followed a similar preprocessing pipeline, including the removal of unwanted tokens/ entities 
(n=22), such as stop-words, infrequent tokens, punctuation, non-alphanumerical tokens, etc., and text 
normalization (n=21), such as anonymization, spelling errors, lemmatization, stemming, lower-casing, 
among others. These were all standard techniques for NLP methodologies. Table A.5. in Supplementary 
Materials shows these data. 
 
Main task 
Biomedical entity extraction encompasses the identification and possible linkage of biomedical entities 
within a text to biomedical concepts in a pre-defined ontology. An unlinked entity is not immediately 
distinguishable from other unlinked entities of the same ontology class. Some studies defined their own 
task-specific ontologies/ dictionaries (n=3), whilst others used pre-defined, standard 
ontologies/dictionaries, such as UMLS (n=1), ICF (n=1), PCQ indicators (n=2) and SDoH (n=1). Some of 
these required the development of the corresponding ontology dictionary. For the extraction and possible 
linkage, some studies developed their own pipelines, such as rule-based, pattern matching (n=5), and deep 
learning-based (n=1), whilst others applied publicly or privately available pipelines, namely Clinical 
Language Annotation, Modeling, and Processing (CLAMP) [61] (n=1), Headai’s Graphmind (HGM) 8 
(n=1), clinical Text Analysis and Knowledge Extraction System (cTAKES) [62] (n=1), and MetaMap [63] 
(n=1). Table A.6 in Supplementary Materials shows these data. 
 
The classification task was structured in a standard way, i.e., feature extraction followed by classification 
(or comparison of multiple classifiers). Extracted features were either domain-driven (n=6), such as 
biomedical entity extraction and linking based on cTAKES or MetaMap, and psycholinguistics based on 
Linguistic Inquiry and Word Count (LIWC) [64], or domain-agnostic (n=11), such as word frequency, bag-
of-words (BOW), Term Frequency – Inverse Document Frequency (TF-IDF), word embeddings, and topic 
distribution. Classification was performed with both traditional models (n=12), such as rule-based, 
Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and 
Naïve Bayes (NB), and deep learning models (n=5), such as Feed-Forward Neural Network (FFNN), 
Bidirectional Encoder Representations from Transformers (BERT)-based [65], and Convolutional Neural 
Network (CNN). Tab. A.7 shows these data. The universe of classes of each study is shown in Tab. A.8. 
 
Correlation analysis was mainly structured in two stages: (1) feature extraction from the language of pain, 
and (2) feature correlation with target clinical parameters. Most studies used direct (psycho)linguistic 
features for their analysis, either with LIWC (n=2) or lower-level features, such as word frequency and 
topic importance (n=1). Other studies defined their features as inferred clinical states or risks (n=2). 

 
8 https://headai.com/ 
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Correlation analysis mostly followed standard statistical approaches, based on univariate and 
multivariate regression analyses. Table A.9 in Supplementary Materials shows these data. 
 
Lexico-semantic analysis, similarly to correlation, starts by extracting language-based features from the 
source language of pain, followed by analyzing distinctive characteristics. In general, there were two main 
approaches for feature extraction: (key)word frequencies and co-occurrence (n=7), and topic modelling, 
either manually (n=1), or with Latent Dirichlet Allocation (LDA) [66] (n=2), Differential Language 
Analysis (DLA) (n=1), or Leximancer 9 (n=1). Word-based features were analyzed with word clouds and 
network analyzes, whilst topic analysis was qualitative and comparative between sub-populations. 
Although focused on lexico-semantic analyses, two studies [59,60] had additional outcomes, namely a 
pain lexicon for downstream NLP tasks, and a proposal for an updated version of the MPQ, respectively. 
Table. A.10 in Supplementary Materials shows these data. 
 
Evaluation 
Evaluation methods are intrinsically related to the main task. k-Fold cross validation (CV; n=13) was the 
main testing framework for supervised tasks. Classification and extraction resorted to commonly used 
supervised metrics, such as recall/ sensitivity (n=17), precision/ positive predictive value (PPV; n=15), F1 
(n=15), accuracy (n=8), area under the curve (AUC; n=6), specificity (n=4), and negative predictive value 
(NPV; n=1). Some of these works also resorted to qualitative evaluation methods (n=4). Correlation and 
lexico-semantic analysis resorted mostly to correlation and qualitative metrics, respectively. Table A.11 in 
Supplementary Materials shows these data. 
 
Outcome targets 
Most studies targeted their outcomes at physicians (n=28) and only a few at patients (n=5). The dimensions 
of pain addressed by the studies were sensory (n=29), physiologic (n=24), cognitive (n=22), behavioral 
(n=20), affective (n=14), and sociocultural (n=9). The targeted stages of care were treatment/ rehabilitation 
(n=19), clinical-decision support (n=18), diagnosis (n=17), and self-management (n=6).  
 
Table 4 shows these data. Table A.12 in Supplementary Materials shows each study’s main outcome. 
 

Table 4. Outcome targets. Dimensions of pain: P=Physiologic, S=Sensory, A=Affective, C=Cognitive, 
B=Behavioral, SC=Sociocultural 

 

Ref. 
Main beneficiary Dimensions of pain Stage of care 

Physician Patient P S A C B SC Diagnosis Clinical-decision 
support 

Treatment/ 
Rehabilitation 

Self-
management 

[20] ✓  ✓      ✓    
[21] ✓  ✓ ✓  ✓ ✓  ✓    
[22] ✓  ✓ ✓     ✓ ✓   
[23]  ✓  ✓   ✓     ✓ 
[24] ✓  ✓ ✓ ✓    ✓    
[25]    ✓     ✓    
[26] ✓   ✓     ✓ ✓   
[27]   ✓ ✓ ✓    ✓ ✓   
[28]    ✓       ✓  
[29] ✓   ✓     ✓ ✓   
[30] ✓   ✓     ✓    
[31] ✓  ✓ ✓  ✓  ✓  ✓ ✓  

 
9 https://www.leximancer.com/ 
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[32] ✓  ✓ ✓ ✓ ✓ ✓   ✓ ✓  
[34] ✓  ✓   ✓   ✓ ✓   
[35] ✓  ✓ ✓ ✓      ✓  
[36] ✓      ✓    ✓  
[37] ✓  ✓ ✓  ✓ ✓   ✓ ✓  
[38]    ✓ ✓ ✓     ✓  
[39] ✓  ✓ ✓     ✓ ✓   
[40] ✓     ✓ ✓    ✓  
[41] ✓    ✓ ✓     ✓  
[42]    ✓ ✓ ✓ ✓   ✓   
[43] ✓  ✓ ✓ ✓ ✓   ✓ ✓   
[44]   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   
[45] ✓  ✓    ✓ ✓  ✓ ✓  
[46]   ✓ ✓  ✓   ✓ ✓   
[47] ✓  ✓ ✓ ✓ ✓     ✓  
[48] ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓  
[49]    ✓ ✓    ✓    
[50] ✓  ✓       ✓   
[51] ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  
[52]   ✓ ✓ ✓ ✓       
[53] ✓  ✓ ✓  ✓ ✓    ✓ ✓ 
[54] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ 
[55] ✓ ✓  ✓ ✓ ✓ ✓ ✓   ✓ ✓ 
[56] ✓ ✓ ✓   ✓ ✓    ✓ ✓ 
[57] ✓  ✓  ✓  ✓   ✓ ✓  
[58] ✓ ✓   ✓ ✓ ✓ ✓   ✓ ✓ 
[60]    ✓ ✓ ✓   ✓    

 

DISCUSSION 

The review research questions explore pain language analysis via computational methods, covering its 
prevalence, tasks linked to patient- and physician-generated language of pain, integration of linguistic 
findings, primary beneficiaries, pain dimensions, targeted pain care stages, and the impact of proposed 
algorithms on physician performance in pain-related clinical tasks. The following discussion addresses 
each of these questions. 
 
Which language type is most analyzed? (Q1.a) 
Physician-generated language of pain, specifically from EHRs, was the most used type of language. It is 
usually large and accompanied by structured patient metadata, which can provide both contextualization 
for controlling variables and expert annotated labels, such as International Classification of Diseases (ICD) 
coding. The free text itself is generated in a clinical domain, with the specific aim of describing clinical 
parameters [67]. These data are also more commonly publicly available in standard datasets than patient-
generated data [68,69]. 
 
Patient-generated language has a more colloquial lexical profile and may lack some of the physician-
generated data characteristics, depending on the collection conditions. Patient interviews allow for a 
granular control over the data that is captured, namely controlling variables, expert annotated labels, and 
contextual aim. However, such collection protocols are difficult to implement and may have limited reach, 
both in size and applicability. Social media documents, on the other hand, have a large public availability, 
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but there is little control over the data that is collected and the contextual aim of the document, usually 
requiring some assumptions (e.g., self-reported diagnoses) [70].  
 
Importantly, although both physician- and patient-generated languages describe the same object (i.e., the 
experience of pain), only the patient has direct access to the object itself (i.e., the personal experience). 
 
Which tasks are performed for each language type? (Q1.b) 
For classification-based studies, questionnaire automation and treatment response were performed only 
with patient-generated language of pain [32,35,36]. These tasks, as presently formulated, could not be 
performed with any other source of language of pain. Similarly, pain assessment and risk factor 
identification were performed only with physician-generated language of pain, because no other source 
would be adequate [27,34]. Patient diagnosis/ phenotyping and PRO identification used both sources of 
language of pain for similar outcomes [20–26,31]. Finally, pain mention identification and patient triaging 
only used physician-generated data [28–30,37]. However, it seems reasonable to also perform these based 
on patient-generated data, and thus, we conclude that there is a gap in this line of research. One possible 
challenge, especially for patient triaging based on patient-generated language, is in assuming that patient 
concerns are relevant for that task, especially when the patients themselves are unaware of their clinical 
status (otherwise, triaging would not be necessary). Arguably, from the studies performing lexico-
semantic analysis of patient-generated language of pain, patient concerns are clinically relevant [51]. 
However, in such studies, the included patients assumingly already knew their clinical status, and, 
therefore, were already biased towards specific concerns. Thus, it is not clear from the reviewed literature 
if patient concerns are clinically relevant for triaging when they are unaware of their clinical status. 
 
Entity extraction was only performed with physician-generated language of pain, leaving this line of 
research clearly lacking in entity extraction from patient-generated language. One possible challenge for 
the extraction (and linkage) of biomedical entities from patient-generated language might be the 
adaptation of existing tools, designed for biomedical or clinical text (e.g., MetaMap, cTAKES, CLAMP), to 
colloquial language, or even the development of new ones. Indeed, no study directly applied these tools 
to patient-generated language of pain, so the baseline performance for this adaptation is also lacking. 
 
Lexico-semantic analysis was addressed with patient-generated language of pain, although some studies 
also included physician-generated data [55–58]. Their purpose was to compare linguistic characteristics 
between patients and physicians when describing pain management, which is an inherently collaborative 
task. Similarly, correlation analysis mostly observed correlation between linguistic patient features and 
clinical parameters, specifically because the research aims were to identify linguistic clues for the patient 
clinical status. 
 
Are previous linguistic findings explicitly incorporated into the main 
processing? (Q2) 
Only one study [60] explicitly incorporated the linguistic findings of [5] (MPQ). The grammatical findings 
by [6] and [7] were never explicitly incorporated, nor referenced. The reason for the widespread exclusion 
of these linguistic findings is unclear. Importantly, these are specifically applied to patient-generated 
language of pain, and most studies in this review do not use such type of language. Another possible 
explanation is that their inclusion may require the use of algorithms taking advantage of rules and/or 
grammars, which can be laborious to define. However, since their clinical correlation is lacking, it is 
currently unknown if their exchange for easier-to-implement deep learning approaches is reasonable. 
Moreover, the inclusion of these linguistic findings to address the various tasks mentioned in this review 
has potentially positive outcomes. First, they already reveal phrasal structures that indicate certain aspects 
of the pain experience, supported by linguistic theories and ample data. Second, the data may already 
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include contents equivalent to these phrasal structures, becoming easier to leverage. Finally, because they 
are focused on patient-generated language, they could help with the adaptation or development of clinical 
text tools for colloquial language, facilitating the challenges previously identified.  
 
Which dimensions of pain are most and less studied? (Q4) 
The most studied pain dimensions are physiologic, sensory, cognitive, and behavioral. These were studied 
either directly from the language of pain, or indirectly as controlling variables or post-hoc analyzes. When 
directly studied from the language of pain, physiologic and sensory aspects of pain, e.g., location, 
duration, and intensity, were commonly extracted from the text, or used as prediction target. Cognitive 
and behavioral aspects, on the other hand, were commonly integrated in thematic analyzes of the language 
of pain. 
 
The least studied are the affective and sociocultural dimensions. Indeed, not many studies took advantage 
of off-the-shelf sentiment analysis tools to assess patient mood and well-being, although text can be a good 
indicator of sentiment [71]. The sociocultural dimension, on the other hand, is harder to gauge, but it can 
also manifest linguistically, namely in word-choice, sentence construction, and focused themes. Moreover, 
the pain experience can be modulated by the sociocultural context in which it is described, e.g., a clinical 
context may invite the use of certain terms that the patient would otherwise not use, and vice-versa. 
Indeed, no study compared the linguistic characteristics and clinical relevance of patient-generated 
language of pain in a clinical context versus in-the-wild (i.e., colloquial language). This is especially 
relevant for the design of patient-centered tools aimed to be used in daily contexts. 
 
For whom are the studies, and their outcomes primarily designed, and which 
stage of pain care is being targeted? (Q3, Q5) 
Most of the studies included in this review were targeted for physicians, either directly as useful clinical 
insights, or as tools that can eventually be integrated in the clinical care pipeline. Very few studies were 
targeted at patients [23,54–56,58], which is closely related with the targeted stage of care: it seems that only 
a few outcomes were patient-focused because patients are mostly involved on the self-management stage, 
which is by far the least targeted one. Treatment/rehabilitation is the most targeted stage of care. Due to 
the recurrent care necessary for pain treatment, especially for chronic pain, this observation seems to be 
in line with clinical needs. The same applies for clinical-decision support, which is the second most 
targeted stage of care. These, together with the diagnosis stage, also seem to be the easiest to perform in 
terms of data availability, namely EHRs with clinical annotations and longitudinal assessments. On the 
other hand, self-management requires the active inclusion of patients in the study, which limits data 
abundance and availability. We believe this is one of the reasons why this is the least targeted stage of 
care.  
 
We argue that there is potential in targeting patients and pain self-management, specifically with 
computational processing and NLP. As stated elsewhere, after sufficient time, pain can become a daily 
partner, with variations dependent on internal and external aspects. A tool designed to be always available 
to patients, providing context for their experience considering these aspects (e.g., how they feel today in 
comparison to yesterday or the previous week), has the potential to greatly improve patient 
empowerment. This may increase control over pain, which, over time, helps patients cope with their 
clinical status and make the best out of their situation. Therefore, we conclude that there is a research gap 
in this area and more work is necessary with patients as the primary beneficiaries. 
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Does physician performance on clinical tasks improve with the inclusion of 
the proposed algorithm? (Q6) 
Physicians learn to communicate with patients and extract clinically relevant information from that 
exchange. Years of experience allow them to develop mental models for all dimensions of pain and the 
way they manifest in in-person consultations [72]. If the tools developed in this line of research (i.e., 
computational pain assessment from patient narratives) are to be included in the pain care pipeline, their 
performance should be compared to that of physicians for the same task, under identical conditions. 
Moreover, since the aim of these tools is to assist physicians (as opposed to replacing them), physician 
performance gains when assisted by these tools should also be measured. Importantly, various studies 
partnered with experts and physicians to create the golden annotation on which they then measured the 
performance of their tools. This alone, however, does not allow measuring the tool performance in 
comparison to physician performance. For a given task, this requires the golden annotation, the tool itself, 
and an ensemble of physicians unfamiliar with the test set. Both tool and physician performance should 
be measured based on the same test set input and golden annotation. Only one study included in this 
review compared these performances and their gains, finding that the best performance for their task was 
obtained by combining the efforts of both algorithm and clinicians [45]. Thus, there is still a lack of 
evidence for the practical advantage of using these tools.   
 
Limitations 
This systematic review is highly focused on the merger of two domains: NLP and pain. Although we tried 
to include every relevant keyword from each domain, to accommodate for the maximum number of 
studies in this research field, this type of database search is still limited by definition. By excluding articles 
based on their written language, we may also be overlooking relevant developments. Additionally, 
although we based this review on other closely related reviews, it is important to note that there are no 
other directly comparable data extraction and synthesis methodologies available, which represents an 
important limitation. 
 

CONCLUSIONS 

This systematic review delves into the intersection of NLP and the study of pain narratives, examining 
research works that computationally analyze the language of pain generated by patients or physicians. It 
is structured around a set of well-defined review research questions. These questions cover important 
aspects, such as the type of language of pain analyzed, tasks performed, incorporation of linguistic 
findings, target audience, dimensions of pain studied, and addressed stages of clinical pain care. We found 
a limited exploration of patient-generated language of pain and incorporation of linguistic findings, 
limited development of self-management and patient-centered tools, limited exploration of affective and 
sociocultural dimensions, and practically inexistent measurement of gains in physician performance on 
clinical tasks when aided by the proposed tools. Importantly, to our knowledge, there is no previously 
published systematic review that defines the landscape of research at the intersection of NLP and pain. 
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AUC Area Under the Curve 
BOB Bag-of-Bigrams 

BOW Bag-of-Words 
CNN Convolutional Neural Network 

CUI Concept Unique Identifier 
CV Cross Validation 

DLA Differential Language Analysis 
DT Decision Tree 

EHR Electronic Health Record 
FFNN Feed Forward Neural Network 

ICD International Classification of Diseases 
ICF International Classification of Functioning, Disability, and Health 

kNN k-Nearest Neighbors 
KOOS Knee injury and Osteoarthritis Outcome Score 

LBP Low back pain 
LDA Latent Dirichlet Allocation 

LR Logistic Regression 
LSA Latent Semantic Analysis 

MeSH Medical Subject Headings 
MPQ McGill Pain Questionnaire 

NB Naïve Bayes 
NER Named Entity Recognition 
NLP Natural Language Processing 
NPV Negative Predictive Value 
PCQ Pain Care Quality 
POS Part-of-Speech 
PPV Predictive Positive Value 
PRC Precision-Recall Curve 
PRO Patient-Reported Outcome 

PROM Patient-Reported Outcome Measurement 
RegEx Regular Expression 

RF Random Forest 
ROC Receiver Operating Characteristic 

SDoH Social Determinants of Health 
SNOMED-CT Systematized Nomenclature of Medicine – Clinical Terms 

SVM Support Vector Machine 
TF-IDF Term Frequency – Inverse Document Frequency 

TMD Temporomandibular 
UMLS Unified Medical Language System 

VDP Verbally Declared Pain 
VHA Veteran’s Health Administration 
W2V Word2Vec 
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Table A.1. Search keywords, for article retrieval, for each of the axes in the systematic review. 

 
Axis Keywords 

Computational processing machine learning, deep learning, natural language processing, nlp, text mining, text processing, text analysis 

Language of pain language, linguistics, clinical text, clinical narrative, clinical note, patient text, patient narrative, patient note, biomedical text, biomedical narrative, biomedical 
note, medical text, medical narrative, medical note, pain, chronic pain, painful 

 
 

Table A.2. Extracted data points. 
 

Group Data points 

Overview 

Article title 
Publishing year 
Primary purpose 
Primary task 

Patient population 

Number 
Average age 
Percentage of female-gendered 
Chronicity of pain 
Generic type of pain 
Specific type of pain 

Textual data 

Language 
Type of pain language (patient- or physician-generated) 
Source (HER, interview, social media) 
Number of documents 
Average document length (in tokens) 
Data availability 

Methodology 

Textual data preprocessing 
Main task processing 
Evaluation method(s) 
Code availability 

Outcome targets 

Primary outcome question 
Primary outcome answer 
Target(s) (physicians, patients) 
Dimension(s) of pain (physiologic, sensory, affective, cognitive, behavioral, or sociocultural) [1] 
Stage(s) of care (diagnosis, clinical-decision support, treatment/rehabilitation, or self-management) 
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Table A.3. Textual data availability. 
 

Ref. Availability Availability access 
[2] Available on request  
[3] Available on request  
[4] Available on request  

[5] Available i2b2, available: https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/; MIMIC-III, available: https://physionet.org/content/mimiciii-demo/1.4/; ARIA: not 
stated 

[6] Available on request  
[7] Not available   
[8] Available https://github.com/yonestar/Ashar_2023_CBP_reattribution 
[9]   Vocabulary and rules are available on supplementary data 

[10] Available on request  
[11] Available on request  
[12] Not available   
[13] Available on request  
[14] Available on request  
[15] Available on request  
[16] Not available   

[17] Partially available 
CRIS, available upon request: 
https://projects.slam.nhs.uk/research/cris#:~:text=It%20provides%20authorised%20researchers%20with,SLaM)%20electronic%20clinical%20records%20system; 
MIMIC-III, available: https://physionet.org/content/mimiciii-demo/1.4/; Reddit & Twitter: Not stated. 
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Table A.4. Code availability. 
 

Ref. Availability Availability access 
[18] Available  https://github.com/haven-jeon/KoNLP 
[5] Available https://github.com/hn617/texTRACTOR 
[6] Available https://github.com/zhaohualu/nlp4pro1 
[7] Available on request  
[9] Not available. Suggested open-source modules.  

[19] Available on request  
[10] Available https://github.com/jayachaturvedi/pain_in_mental_health 
[12] Available https://github.com/BCHSI/social-determinants-of-health-clbp 
[20] Available https://www.leximancer.com/ 
[17] Available https://github.com/jayachaturvedi/pain_lexicon 
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Table A.5. Preprocessing techniques. 
 

Ref. Remove Normalize Other 
[21]  ✓ anonymization  

[18] ✓ tokens with count < 2 ✓ manually - correction of spelling errors, categorization of symptoms ✓ manual categorization of 
synonyms 

[2] ✓ punctuation, numbers, links, emails, dates ✓ tokens with count < 5 with token with minimum edit distance, 
lemmatization 

 

[3] ✓ duplicates, repeated characters, non-English tweets ✓ links to images with special token, links to retweets with special token, 
other links with special token, emoticons with corresponding text 

 

[4] ✓ stop-words ✓ manual cleaning  

[22]  ✓ lemmatization ✓ POS tagging, punctuation 
inference, transcription 

[23] ✓ duplicates, special characters, punctuation ✓ POS tagging, NER tagging  
[24] ✓ stop-words ✓ stemming  
[25] ✓ duplicates ✓ lower-case  
[5] ✓ whitespaces, special characters ✓ medical abbreviations with expansion, lower-case  

[26] ✓ stop-words, punctuation ✓ lemmatization  

[7]   ✓ POS tagging, syntactic 
dependencies 

[27]    

[28] ✓ stop-words ✓ lemmatization, tokens with embedding index ✓ POS tagging, LIWC [29] 
tagging 

[30] ✓ stop-words ✓ lemmatization, tokens with embedding index ✓ POS tagging, LIWC tagging 

[31] ✓ punctuation, special characters ✓ personal names with special token, subset of phrases with special token, 
contractions with expansion, abbreviations with expansion, lower-case 

 

[8] ✓ stop-words, typographical errors, tokens with length < 2 or length > 
20 ✓ lemmatization  

[9] ✓ identifiers ✓ dates  
[32]  ✓ reports of pain with x/10  
[19] ✓ punctuation, determiners, title abbreviations ✓ lower-case  
[10]  ✓ anonymization  
[33] ✓ punctuation, irrelevant characters ✓ lower-case  
[12] ✓ stop-words ✓ lemmatization  
[13]  ✓ entities with UMLS [34] semantic types  
[35] ✓ POS != noun ✓ POS tagging  
[15] ✓ stop-words, links, punctuation, internet symbols ✓ lemmatization, lower-case  
[16] ✓ stop-words, words not in the same document as word "pain" ✓ POS tagging  
[36] ✓ stop-words   

[37] ✓ manually - usernames, links, internet symbols, irrelevant contexts, 
automatically - posts with CrystalFeel [38] sarcasm score > 0.7   
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Table A.6. Main extraction methodology. 

Ref. Ontology definition (and sample annotation) Entity extraction (and linkage) 

[32] 1. Create pain ontology with focus group, with reference to CUIs. 
2. Sample annotation for training and validation. 1. Apply CLAMP [39]. 

[19] 

1. Human annotation of training sample using pre-defined ontology (mapping 
exemplars, i.e., unique text strings, to ontology classes). 

2. Create ontology dictionary: map each training exemplar to a corresponding 
BOW, BOB, and frequency count within that exemplar’s class (it may appear in 
other classes). 

1. Convert each test document to (1-5)-grams, each of which is also converted into BOW and BOB 
(identical to the exemplar dictionary). 

2. Compare the BOW and BOB of each n-gram of each test document with every single entry in the 
exemplar dictionary of size n to 4n, using the Jaccard Index. 

3. Select the top-n Jaccard Index exemplars for each test document n-gram. 
4. Define output vector of each word in the test document as the sum of the scores of that word for 

each class of the exemplar dictionary (score is a combination of the Jaccard index and the 
frequency counts of the matching exemplar). Top-scoring class is the selected entity. 

[40] 1. Map each relevant ICF code (title and description levels) with a list of terms and 
phrases found on the data. 

1. Apply HGM 1 with 12 setups against medical expert annotation (each setup is a combination of 
the method (normal or fuzzy), the ICF coding level (title or description), and the augmentation of 
the initial mapping with more terms, from MeSH and/or ”real life” (as determined by medical 
experts). 

[10] 1. Define pain ontology. 
2. Use Pain Lexicon [17] as dictionary for pain mentions. 

1. Find mentions of pain using the Pain Lexicon dictionary. 
2. Manually annotate pain mentions for pain relevance, anatomy, character, and management. 

(Although manual extraction, it was included due to its use of Pain Lexicon and explicit design 
for NLP integration. It is equated to a rule-based pipeline.) 

[33] 
1. Sample annotation for PCQ indicators, information about the treatment of pain, 

and contextual modifiers. 
2. Curate a normalized vocabulary using the terms found during annotation and 

from other standardized sources (UMLS, VHA). 

1. Identify targeted PCQ indicators in each sentence of each document using the curated 
vocabulary (not described). 

[11] 1. Same as [33]. 
1. Apply existing NLP algorithm to extract PCQ indicators. 
2. Compare patterns of indicators across different visit types. 
3. Evaluated co-occurrence of indicators. 

[12] 
1. Create SDoH ontology, with additional anxiety, depression, and pain score 

classes. 
2. Training sample annotation. 

1. Compare performance of 3 extraction approaches: cTAKES [41], deep learning, and hybrid LR 
with pattern matching. 

[13] 1. Use UMLS as ontology, restricted to a specific set of semantic types. 

1. Extract demographic and clinical data from referral letter, such as: age, gender, postcode, body 
mass index, medication, smoking status, and comorbidities (not described). 

2. Extract and link biomedical entities to UMLS concepts from each referral letter using MetaMap 
[42]. 

3. Count mentions of each extracted concept and semantic type. 
 

 

  

 
1 https://headai.com/ 
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Table A.7. Main classification methodology. 

Ref. Feature extraction Classification 

[21] 

1. Biomedical entity extraction and CUI linkage with negation, using a custom cTAKES 
pipeline. 

2. Vectorization of each document according to normalized CUI frequency (and negation), in 2 
ways: set of all possible CUIs, or a manually curated set of CUIs directly related to back 
pain. 

1. Bernoulli NB, Multinomial NB, LinearSVC, and Perceptron. 

[18] 
1. Statistical analysis to compare word frequency between conditions. 
2. Vectorize each patient according to ”diagnostic clues” from linguistic and clinical analysis 

(not described). 
1. Multivariate LR. 

[2] 

1. Model 1: TFI-DF ( 1-5-grams). 
2. Model 2: TFI-DF ( 1-5-grams) with select words. 
3. Model 3: Pre-train W2V word embeddings. 
4. Model 4: Define set of keywords. 
5. Model 5: Topic modelling with manual review and selection of the most appropriate topics. 
6. Model 6: N/A. 

1. Model 1: LR. 
2. Model 2: LR. 
3. Model 3: CNN. 
4. Model 4: Keyword search. 
5. Model 5: Topic with greatest importance. 
6. Model 6: Notes with ICD-10 annotation defined as positive acute LBP. 

[3] N/A 1. Fine-tune RoBERTa [43] with a classification layer. 

[4] 
1. Select phrases manually labelled as ”attack descriptions”. 
2. BOW ((1-3)-gram) vectorization (on the word and character level). 
3. Patient metadata features (age and gender). 

1. Binary classification (SVM, LR, NB) of combinatorial feature vectors (BOW and 
metadata) for a total of 9 models. 

[22] 
1. TF-IDF with and without POS tagging. 
2. Topic distribution. 
3. Early Fusion. 
4. Late Fusion. 

1. DT, SVM 

[23] 1. Develop dictionary for 3 pain intensity classes (mild, moderate, severe). 
2. Extract GloVe [44] embeddings for all dictionary and document words. 

1. Assign pain intensity class according to document and dictionary embedding cosine 
similarity. 

[24] 1. BOW (1-gram) vectorization 1. kNN, DT, SVM, RF 

[25] 

1. Given a positive document, using the Smith-Waterman alignment algorithm, find a token 
alignment with every other positive document, obtaining a list of phrases and their 
corresponding similarity score. 

2. Given the list of phrases, generate a list of keys (not described). 
3. For each key, produce 2 RegEx (one with distance control and other without). 
4. Filter out generated RegEx based on a precision threshold (default is 100%). 
5. Use resulting RegEx to match expressions in the documents, each match is given a 

prediction score which favors lengthier matches. 

1. Classifier chooses label according to highest scoring match. 
2. If there is no match resort to other two classifiers: ALIGN and SVM. ALIGN simply 

selects the label of the text snippet with the highest similarity score given by the 
Smith-Waterman alignment algorithm. SVM is trained on BOW. 

[5] 

1. Define look-up table with UMLS codes from the ”signs and symptoms” semantic type 
relating to pain. 

2. Define look-up table with exceptional, hypothetical, conditional, and historical keywords 
that might affect the semantics of the medical concept, expanding them with 5 more words 
per keyword using GloVe. 

3. Extract and link biomedical entities to ICD codes from each phrase in a given sentence (in 
this case, sentence is a document), with the corresponding confidence score and negation, 
using MetaMap. 

4. Identify all phrases with ICD codes relating to ”pharmacologic substance”. 
5. Identify all ICD codes relating to the ”signs and symptoms” UMLS semantic type – if a 

single phrase has more than one, select the one with the largest confidence score. 

1. Classify pain score based on rules and look-up tables. 
2. Define VDP classification of a given note (multiple sentences) as the weighted 

average pain score of its sentences. 

[26] 1. Count (1-2)-gram frequency overall and per class (for both binary and multi-class settings). 
2. Topic modelling with LDA [45] with k=2 (coherence score to determine k) 

1. Binary and multi-class classification with n-gram frequency and topic distributions as 
features (combinatorial nature for multiple setups), using various classifiers: LR, DT, 
RF, FFNN. 

[6] N/A 1. End-to-end classification with BERT [46] (using a pre-trained model, further fine-
tuned with their data). 
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2. XGBoost and SVM classification using W2V word-embeddings (using a pre-trained 
model, further fined-tuned with their data). 

3. Use as baseline TF-IDF+SVM, GloVe+SVM, GloVe+XGBoost, BioBERT [47], Blue-
BERT, and ClinicalBERT [48]. 

[7] 
1. Biomedical entity extraction and linking with MetaMap (medical conditions, surgical 

procedures, and anatomical structures), with negation detection. 
2. Manually curated list of pain modifiers sorted for severity. 
3. Sentiment polarity algorithm using StanfordCoreNLP [49] library. 

1. For Q1 and Q2 (multiple choice questions), use feature vector as is. 
2. For Q3-Q10 (Likert-scale questions), use WEKA [50] for classification of ordinal 

classes (not described). 

[27] 1. Down-sampling of the majority class. 1. Propose novel architecture (BERT-CNN) to handle large contexts. 

[28] 1. Extract 348 features: linguistic, psycholinguistic (LIWC), sentiment (VADER [51]), and 
semantic proximity (vector similarity based on LSA [52]). 

1. SVM and LR with L1 and L2 regularization and feature selection (grid search). 
2. Linear regression for feature importance analysis. 

[30] 

1. Integrate findings of previous study [28]. 
2. Extract 3 LIWC features: ”Drives”, ”Achievement”, and ”Leisure”. 
3. Compute median value of each word proximity to 8 ”topics”: ”magnify”, ”afraid”, ”fear”, 

”awareness”, ”loss”, ”identity”, ”stigma”, and ”force”. Proximity is calculated with the dot 
product between the vector of the word and the vector of the ”topic”. Vectors (300 
dimensions) are obtained by applying LSA on a very large dataset. 

1. Fit binary classification model (linear regression) to study1 data (development set), 
applying bidirectional stepwise selection to further reduce number of features. 

2. Apply resulting model to study2 data (test only). 

[31] 

1. Use MetaMap to extract and link biomedical entities and replace them with their 
corresponding UMLS semantic type. 

2. Topic modelling with LDA (1-gram, because preprocessing and previous step already 
aggregated relevant n-grams), with k=11, according to perplexity and four topic coherence 
metrics. 

1. Binary machine learning model for each class (not described). 
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Table A.8. Universe of classes for classification-based studies. 

Ref. Number of classes Class names 
[21] 4 "no back pain", "compressed nerve", "disc pain", "non-mechanical" 
[18] 2 "TMD-mimicking", "actual TMD" 
[2] 2 “acute low back pain”, “other” 
[3] 2 "complaint of back pain", "other" 
[4] 2 “migraine”, “cluster headache” 

[22] 3 “mild”, “moderate”, “severe” 
[23] 3 “mild”, “moderate”, “severe” 
[24] 2 "has pain assessment mention", "does not have" 
[25] 3 "have pain", "no pain", "other" 
[5] 3 + 3 “irrelevant”, “0 pain”, “1 pain” + “pain”, “no pain”, “no mention of pain” 

[26] 2 + 4 "pain relevant", "not" + "pain increase", "pain uncertain", "pain unchanged", "pain decrease" 
[6] 4 "physical", "cognitive", "social", "unclassified" 
[7] 3 1, 2, 3 

[27] 7 “cancer”, “weight”, “fever”, “infection”, “bowel”, “abnormal reflexes”, “no risk factor” 
[28] 2 “responder”, “non-responder” 
[30] 2 “responder”, “non-responder” 
[31] 9 “orthopedic referral”, “discharge”, “injection”, “nutritionist”, “physiotherapy”, “diagnostic imaging surgery”, “review appointment”, “other” 
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Table A.9. Main correlation analysis methodology. 

Ref. Feature extraction Analysis 

[8] N/A 
1. Identify and measure words with greatest frequency change from pre- to post-treatment. 
2. Topical analysis using a text-scaling algorithm. 
3. Dictionary-based (medical expert derived) automated attribution scoring algorithm. 

[9] 

1. Define vocabulary and rules for pattern-matching and rating of each document (pain 
severity and clinical concepts). 

2. Find mentions of UMLS body location concepts with ClinREAD [53], and replace with 
preferred term. 

3. Find mentions of 16 UMLS semantic types with ClinREAD and replace with preferred 
term. 

4. Contextualize mentions with negations, conditionals, and dates. 
5. Cleanup processing into structured data of CUIs. 

1. Find pain severity (as extracted from the NLP pipeline) correlates from structured 
demographic and clinical data, in a univariate analysis. 

2. Multiple regression model to assess the strength of associations between the occurrence of 
severe pain and all defined variables for which the p-value was significative in the 
univariate analysis. 

3. Color-coding of longitudinal pain severity development per patient. 

[54] 

1. Develop sets of keywords and phrases for each outcome and domain of the Opioid 
Risk Tool. 

2. Augment sets with specific terms using cTAKES. 
3. Apply RegEx-based algorithm (based on the defined sets of keywords and phrases) to 

EHRs (structured and unstructured parts) to score all elements of the Opioid Risk Tool. 
4. For each patient, select the maximum score obtained in each Opioid Risk Tool element 

(multiple EHRs per patient). 
5. Aggregate Opioid Risk Tool scores and convert to one of 3 classes – 0-3: low risk; 4-7: 

moderate risk; ≥ 8: high risk. 
6. Binary classification to determine if patient was going to violate opioid agreement (not 

described). 

1. Correlate predicted risk for opioid agreement violation with actual agreement outcome.  

[55] 1. Extract 8 LIWC features: first person singular pronouns, pronouns referencing other 
people, anxiety, anger, sadness, positive emotions, causation, and insight. 

1. Correlation analysis between LIWC category scores and pain catastrophizing score. 
2. Multiple regression analysis to identify which LIWC categories most contributed for the 

prediction of pain catastrophizing. 
3. Regression analysis to identify LIWC category contributors but controlling for pain 

intensity and neuroticism. 

[56] 
1. Extract 5 LIWC features: first-person pronouns, positive emotions, negative emotions, 

cognitive processes, biological processes. 
2. Two annotators label emotional tone of each essay (classes: positive, negaive, mixed). 

1. Correlate LIWC features with psychological and physical health parameters (Hierarchical 
Linear Regression Analyses). 

2. Correlate human-extracted features with psychological and physical health parameters. 
(Hierarchical Linear Regression Analyses). 

3. Compare correlation models (LIWC vs. human extraction). 
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Table A.10. Main lexico-semantic analysis methodology. 

Ref. Feature extraction Analysis 

[35] 
1. Generate word frequency and keyword lists, and concordance plots with AntConc 2 (not 

described). 
2. POS-tagging. 
3. Filter out everything but nouns. 

1. Find relations between words that frequently co-occur using ManyEyes 3. 

[14] 
1. Define set of 24 terms related to pain and count their frequency. 
2. Manual topic categorization of each tweet, where topics were pre-defined by the authors. 
3. Manual gender categorization of each tweet, based on what the contributor displayed on 

the twitter bio, when available. 

1. Analysis of reach of each tweet, based on the number of impressions. 
2. Topic analysis. 
3. Sentiment analysis of each tweet based on Sentiment Dictionary that states the sentiment 

(-5 to +4) of more than 10,000 words. It was required that at least 2 words per tweet were 
recognized by the dictionary to assign a sentiment. 

[15] 
1. Manually develop 3 vocabularies: body regions, types of healthcare providers, and 

alternative therapies. 
2. Count frequency of each word in each vocabulary. 
3. Topic modelling with LDA, k=1 according to coherence score. 

1. Wordcloud for (key)word frequency analysis. 
2. Topic analysis. 

[16] 1. Extract adjectives from social media posts containing the word “pain”. 
1. Word co-occurrence network analysis. 
2. Qualitative analysis of a sample of social media posts, assigning topical dimensions to 

each. 
3. Validated dimensions using W2V model and clustering (K-Means) on full dataset. 

[20] 
1. Apply Leximancer 4 with 2 setups: automatically- and manually-seeded concept 

mappings, which is similar to topic modelling. The manually-seeded concepts were 
focused on pain management to skew the analysis to that direction. 

1. Study concept relation within the text and compare between groups (patients, general 
practitioners, and specialists). 

[57] 1. Select EHRs and blog posts that contain predefined terms related to pain, drugs, and 
nurse calls. 

1. Compare physician and patient perspective using correspondence analysis (not 
described). 

[58] 1. DLA on the documents – similar to topic modelling but finds the words that most 
correlate to given terms, in this case opioid medication (not described). 

1. Creation of word clouds from the DLA topics for qualitative analysis. 
2. Topic analysis. 

[36] 

1. Topic modelling with LDA - separate model for coaches and participants - k = 15 topics 
from qualitative gauge. 

2. Transform each communication (set of documents from a single source – either parent-
teen pair or coaches) into a topic vector, where +1 is added to the corresponding topic 
dimension that each message is labelled. 

1. Topic analysis. 
2. Analysis of communication flow. 
3. Communication clustering and analysis using K-Means (k=4). 

[17] 

1. Thematic analysis on 4 sources of data: CRIS 5, MIMIC-III [59], Reddit, Twitter. 
2. Extract pain-related words from 3 scientific publications. 
3. Extract pain synonyms from 3 biomedical ontologies (UMLS, SNOMED-CT, ICD-10). 
4. Using 8 different pre-trained word-embedding models, extract all words similar to ”pain” 

according to a similarity cut-off point using the elbow method. 
5. Lower-case and remove duplicates. 
6. Add new terms to lexicon as suggested by clinicians. 

1. Validate and filter lexicon with clinicians. 

[37] 

1. Define set of 78+51 pain descriptors (original MPQ [60] + thesaurus). 
2. Using W2V, compute similarity score between each word in the sample with the pain 

descriptors. 
3. Select the top-most similar words for each pain descriptor (maximum of 20). Manually 

curate new words for relevancy. 

1. Count the frequency of each pain descriptor and new words within the sample. Use 
counts of the original 78 MPQ pain descriptors as the minimum threshold for relevancy 
and discard all descriptors less frequent than that threshold. 

2. Calculate intensity (score 0-1) of each pain descriptor using CrystalFeel [38], and order 
pain descriptors (within each category) according to intensity score. 

3. Propose updated MPQ. 
 

 
2 https://www.laurenceanthony.net/software/antconc/ 
3 https://www.bewitched.com/manyeyes.html (tool not available since 2015) 
4 https://www.leximancer.com/ 
5 https://www.maudsleybrc.nihr.ac.uk/facilities/clinical-record-interactive-search-cris/ 
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Table A.11. Evaluation methods. 
 

Ref. k-fold CV Accuracy F1 Precision/PPV Recall/Sensitivity Specificity NPV AUC Qualitative Other 
[21]     ✓ ✓     

[18] ✓ 10 ✓  ✓ ✓ ✓ ✓    

[2] ✓ 10  ✓ ✓ ✓   ✓ PRC, ROC   

[3] ✓ 5 ✓ balanced 
✓ macro, 

micro, 
weighted 

✓ ✓     ✓ Mathew's correlation coefficient 

[4] ✓ 5, n ✓ ✓ weighted, 
micro ✓ ✓      

[22] ✓ n  ✓ weighted        

[23]         ✓  

[24] ✓ 10  ✓ ✓ ✓   ✓   

[25] ✓ 10 ✓ ✓ ✓ ✓      

[5]   ✓ ✓ ✓      

[26]   ✓ ✓ ✓      

[6] ✓ 5 ✓ ✓ ✓ ✓ ✓  ✓ PRC, ROC   

[7] ✓ 10  ✓ ✓ ✓      

[27] ✓ 2       ✓ ROC   

[28]  ✓   ✓ ✓    ✓ correlation 
[30]  ✓ balanced ✓ ✓ ✓   ✓ ROC   

[31] ✓ 10 ✓       ✓ ✓ perplexity, topic coherence 
[8]         ✓ ✓ Cohen’s Kappa 

[9]  ✓ ✓ ✓ ✓     ✓ univariate and multivariate 
regression 

[54]    ✓ ✓ ✓ ✓ ✓ ROC   

[55]          ✓ correlation metrics 

[56]          ✓ beta unstandardized regression 
coefficient 

[32]   ✓ ✓ ✓      

[19] ✓ 5  ✓ ✓ ✓   ✓ ROC   

[40]          ✓ algorithm coverage vs. expert 
coverage 

[10]          ✓ inter-annotator agreement (accuracy 
and Cohen's Kappa) 

[33]   ✓ ✓ ✓      
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[11]         ✓  

[12] ✓ 6  ✓ ✓ ✓     ✓ inter-annotator agreement (Cohen's 
Kappa, Krippendorff's alpha) 

[13]         ✓  

[35]         ✓  

[14]           

[15]           

[16]         ✓  

[20]         ✓  

[57]         ✓  

[58]           

[36]         
✓ manual 

verification of 
topic assignment 

 

[17]         ✓  

[37]         ✓  
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Table A.12. Primary outcome. 
 

Ref. Primary outcome (question) Primary outcome (conclusion) 

[21] Can a machine learning framework accurately classify patterns of LBP from EHRs? High performance scores on a very small dataset. Requires larger data for a clear indicator of 
success. 

[18] What are clinical clues that distinguish TMD from TMD-mimicking conditions? 
Mouth opening limitation and lack of mention of TMD joint or noise are more associated with 
mimicking conditions based on chief complaints. Cutoff mouth opening sizes of 12mm 
comfortable and 26.5mm maximum optimally distinguish between groups.  

[2] Can we automatically identify EHRs reporting acute LBP episodes? Developed model is robust to the reduction of annotated training samples. Topic models can be 
used in an unsupervised setting. 

[3] How has back pain complaint on Twitter vary (in terms of frequency), from before to 
during the COVID-19 pandemic? 

Percentage of back pain complaints in twitter increased 84% during COVID-19 pandemic in 
comparison to previous year. 

[4] Can machine learning algorithms accurately classify migraine and cluster headache 
patient narratives? 

Developed model identifies differences in vocabulary for each class, which are successfully 
used for classification. These lexical characteristics are congruent with expert knowledge. 

[22] Can language features extracted from patient narratives estimate pain intensity? Language features allow estimation of pain intensity with weighted F1 of 0.60. Focus on specific 
words/themes correlates with specific pain intensities.  

[23] Can NLP techniques categorize EHRs based on osteoarthritis pain severity? The approach shows potential for identifying patients with mild to severe osteoarthritis pain. 
Further development is needed. 

[24] Can we automatically detect EHRs that contain documentation of pain assessment? Task is feasible with high performance scores. Requires further development to automatically 
assess PCQ indicators. 

[25] Can machine generated RegEx be used to improve classifications tasks of clinical text? Machine-generated RegEx can be effectively used in clinical text classification. The RegEx-
based classifier can be combined with other classifiers to improve classification performance. 

[5] Can an NLP pipeline trained on public EHRs data extract physician-reported pain from 
institutional EHRs? Developed model successfully detects and quantifies reports of pain severity in EHRs. 

[26] Can EHRs be used to predict pain relevance and pain change in sickle cell disease 
patients? 

DT and FFNN are promising models to predict pain relevance and pain change from EHRs in 
sickle cell disease patients. 

[6] 
Are NLP algorithms useful for identifying different attributes of pain interference (and 
fatigue) symptoms experienced by child and adolescent cancer survivors as compared 
to the judgment by PRO content experts? 

As an alternative to using standard PRO surveys, collecting unstructured PROs via interviews 
or conversations during clinical encounters and applying NLP methods can facilitate PRO 
assessment in child and adolescent cancer survivors. 

[7] Can free-text patient questionnaire responses be automatically classified on a Likert 
scale for a closed-ended questionnaire? 

Demonstration of the feasibility of processing open-ended patient questionnaire answers, in 
order to map to closed-ended questionnaires, in this case, Likert scales. 

[27] Can a deep learning model accurately identify risk factors for LBP in EHRs? The application of BERT models on down-sampled annotated EHRs is useful in detecting risk 
factors suggesting an indication for imaging for patients with LBP. 

[28] Can language features identify placebo responders in chronic back pain?  Language features successfully identified placebo responders with 79% accuracy. 

[30] Can patient narratives prior to treatment be used to predict placebo and drug response? Placebo response is predictable using NLP techniques and can be examined through the study 
of mental processes that are reflected onto the semantic content of patient narratives. 

[31] Can NLP techniques triage musculoskeletal patients based on referral letters? 
Demonstration of the feasibility of automatically triaging knee or hip pain patients based on the 
contents of their referral letters. The latent topics modelled from the training data were shown 
to have relevant clinical interpretability. 

[8] Is increased attribution of chronic back pain to mind/brain processes associated with 
reductions in pain intensity? 

Pain reprocessing therapy led to significant increases in mind- or brain-related attributed 
causes of pain and increases in mind-brain attributions were associated with reduced pain. 

[9] Can longitudinal NLP analysis of EHRs from metastatic prostate cancer patients be 
used to meaningfully depict the experience of their pain? 

It is feasible to track longitudinal patterns of pain with text mining of free text from EHRs in a 
cohort of patients. Their model is also generalizable to other datasets, and it provides a number 
of phenotype-oriented observations useful for future research and for monitoring pain 
management and identifying novel cancer phenotypes.  

[54] Can NLP of EHRs be used to effectively assess risk of opioid-agreement violation? Patients classified as high risk by the model were found to be three times more likely to violate 
the agreement than those classified with lower risk. 

[55] Are linguistic patterns associated with pain catastrophizing in patients with persistent 
musculoskeletal pain? 

Pain catastrophizing is associated with a “linguistic fingerprint” that can be discerned from 
patients’ natural word use. Patients who catastrophize exhibit a heightened focus on the self 
and the negative emotional aspects of their pain experience when writing about their life with 
chronic pain. 
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[56] How do human raters and automated text analysis compare in predicting self-reported 
psychological and physical health? 

The utility of automated text analysis over human raters depends on the individual 
characteristic being measured. Human ratings were better for predicting depression, but 
automated text analysis was sufficient for predicting pain catastrophizing and illness 
intrusiveness. 

[32] Can NLP efficiently and accurately extract pain information from EHRs? The customized NLP model demonstrated good and successful performance in extracting 
granular pain information from EHRs. 

[19] Can an exemplar-based method accurately assign medical ontology classes to EHRs 
free-text? 

The exemplar-based method achieved good precision and recall in assigning chronic pain 
ontology classes to unseen EHRs free-text. 

[40] How does NLP compare to medical experts in ICF factor extraction from EHRs? Comparison between model outputs and medical expert labelling in terms of coverage reveals 
that the combination of both experts and model produces the best performance. 

[10] How is pain mentioned in mental health records? Most pain mentions were relevant to patient's physical pain. Chest was most common 
anatomy. Chronic was most common character. 

[33] Can EHRs of the VHA be used to automatically extract PCQ indicators? PCQ indicators can be reliably extracted from the VHA EHRs using NLP. 

[11] What are the patterns of pain care quality indicators documented by chiropractors 
across different visit types? 

VHA chiropractors frequently document PCQ indicators, identifiable using NLP, with 
variability across different visit types. More total indicator classes were documented during 
consultation versus follow-up visits, with high co-occurrence of pain assessment indicators. 

[12] Can we accurately extract SDoH information from EHRS of chronic LBP patients? The hybrid and machine learning models showed promising performance for extracting many 
SDoH entities, while rule-based cTAKES had lower performance. 

[13] What factors predict optimal versus suboptimal care pathway? Lower body mass index, named disease/syndrome, taking pharmacologic substance predict 
optimal pathway. Single diagnostic procedure predicts suboptimal pathway. 

[35] Is text mining useful to characterize clinical distinctions and patient concerns of 
fibromyalgia in online patient-generated text? 

Text mining has the potential for extracting keywords to confirm the clinical distinction of a 
certain disease and can help objectively understand the concerns of patients by generalizing 
their large number of subjective illness experiences. 

[14] Based on Twitter, which pain-related topics are discussed, which keywords are 
commonly used, what is the dissemination impact, and what are the user's genders? 

Analysis highlighted prevalent keywords such as headache and migraine, with a higher 
engagement from females, and an overall negative sentiment. Retweets tended to convey more 
positive sentiment, notably in the cannabis and fibromyalgia categories. 

[15] What are the main discussion topics related to chronic pain, that patients discuss on 
social media? 

Patients discuss body regions and compare treatments proposed by medical physicians versus 
other healthcare providers. 

[16] What can discussions of pain tell us about the social and communicative contexts of 
online endometriosis communities? 

Sharing experiences of pain online provides validation and reinforces patient ownership and 
authority. 

[20] How do doctors and patients communicate about managing musculoskeletal disorders? Doctors and patients emphasized different aspects - patients wanted to return to normal while 
doctors encouraged accepting a new normal. 

[57] What are the differences in perspectives on pain between nurses' observations and 
patients' experiences? 

Observed differences between physicians and patients, namely on the early detection of side 
effects. 

[58] Are Yelp reviews useful for understanding the patients' and caregivers' experiences 
related with pain management and opioids? 

Yelp reviews offer insights into pain management and opioid use that are not assessed by 
traditional surveys. 

[36] What are the patterns of engagement during an internet-delivered cognitive behavioral 
therapy intervention for youth with chronic pain? 

Identified 4 clusters of participants based on patterns of engagement - Assignment-Focused, 
Short Message Histories, Pain-Focused, and Activity-Focused 

[17] What are key terms to describe pain? Proposed lexicon consists of 382 terms, derived from 3 sources. Validated by two clinicians and 
compared against existing ontologies. 

[37] What are relevant contemporary English pain descriptors based on social media data? 
Suggest removing 11 descriptors from the original MPQ, adding 13 new descriptors to existing 
categories, and adding a new category (psychological) with 9 new descriptors. Modified MPQ 
requires validity analysis. 
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Acronyms 
AUC Area Under the Curve 
BOB Bag-of-Bigrams 

BOW Bag-of-Words 
CNN Convolutional Neural Network 

CUI Concept Unique Identifier 
CV Cross Validation 

DLA Differential Language Analysis 
DT Decision Tree 

EHR Electronic Health Record 
FFNN Feed Forward Neural Network 

ICD International Classification of Diseases 
ICF International Classification of Functioning, Disability, and Health 

kNN k-Nearest Neighbors 
KOOS Knee injury and Osteoarthritis Outcome Score 

LBP Low back pain 
LDA Latent Dirichlet Allocation 

LR Logistic Regression 
LSA Latent Semantic Analysis 

MeSH Medical Subject Headings 
MPQ McGill Pain Questionnaire 

NB Naïve Bayes 
NER Named Entity Recognition 
NLP Natural Language Processing 
NPV Negative Predictive Value 
PCQ Pain Care Quality 
POS Part-of-Speech 
PPV Predictive Positive Value 
PRC Precision-Recall Curve 
PRO Patient Reported Outcome 

PROM Patient Reported Outcome Measurement 
RegEx Regular Expression 

RF Random Forest 
ROC Receiver Operating Characteristic 

SDoH Social Determinants of Health 
SNOMED-CT Systematized Nomenclature of Medicine – Clinical Terms 

SVM Support Vector Machine 
TF-IDF Term Frequency – Inverse Document Frequency 

TMD Temporomandibular 
UMLS Unified Medical Language System 

VDP Verbally Declared Pain 
VHA Veteran’s Health Administration 
W2V Word2Vec 
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