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We investigated the optimal control of a continuous variable system, focusing on entanglement
generation in an optomechanical system without utilizing Fock basis cutoffs. Using the Krotov
algorithm to optimize the dynamics of the covariance matrix, we illustrated how to design a control
objective function to manipulate the dynamics of the system to generate a desirable target state.
We showed that entanglement between the macroscopic mechanical mirror and the quantum optical
cavity can be reliably generated through imposing the control on the detuning of the external laser
field. It has be shown that the control may be still achieved when imposing spectral constraints on
the external field to restrict it to low-frequency components. In addition, we systematically studies
the effects of quantum control on non-Markovian open system dynamics. We observed that memory
effects can play a beneficial role in mitigating the detrimental impact of environmental noises.
Specifically, the entanglement generated shows reduced decay in the presence of these memory
effects.

I. INTRODUCTION

In recent years, the interaction between quantum
macroscopic objects and microscopic systems has been
a research area of significant theoretical intrigue as well
experimental and practical importance [1–4]. For exam-
ple, the interaction between macroscopic spin systems
in the form of magnon modes [5–10] with various quan-
tum systems have been under extensive study. Another
widely successful platform for such studies is the optome-
chanical systems [11–15], consisting of a mechanical os-
cillator mode interacting with a quantum cavity mode.
Optomechanical system has demonstrated a very versa-
tile experimental realizability [16–18] with a wide variety
of interesting properties, with applications in quantum
information processing [19–24], quantum entanglement
generation [25–29], and quantum sensing [30–32]. In such
studies, manipulating the system dynamics is often neces-
sary in order to realize a desirable state. Especially, many
quantum information tasks [33] would require entangle-
ment as a key resource. In the case of continuous-variable
quantum information processes, realizing desirable Gaus-
sian states and gates [34, 35] is an important area of
research. In addition, entanglement with macroscopic
objects can also have applications in quantum metrol-
ogy, such as a direct read-out of mechanical motion [36]
in coupled oscillators, and quantum-enhanced weak force
sensing [37, 38].

To date, there is a wide range of quantum control pro-
tocols available [39–43], such as stimulated Raman adia-
batic passage (STIRAP) [44], chopped random basis [45,
46] and gradient ascent methods [47]. Optimal controls
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using machine learning tools have also been recently pro-
posed [48–50]. Among the various control strategies, the
Krotov control [51–55] is a versatile algorithm that can
be applied to Bose-Einstein condensate [56], photochem-
istry [53, 57], non-linear Schrödinger equation [52, 56],
and optimal control under open systems [58], as well as
controlling towards entanglers [59, 60]. For optomechan-
ical system, controls have been proposed using contin-
uous measurement [61] and feedback control [62]. En-
tanglement generation using reservoir engineering [63],
pulsed interaction [64], via dissipative effects [65] and ex-
ternal pulses [66] have also been reported. However, to
implement a numerical implementation for the optimal
control of continuous variable (CV) systems [34, 67, 68]
would generally require some sort of cut-off, such as cut
off the Fock state basis larger than some photon num-
ber [69–72]. Such cutoffs may either difficult to estimate,
or introduces errors due to the cutoff. Based on the ini-
tial state and target state of the control, this may also
restrict the states available for study where only states
with some low photon numbers or in a small subspace is
available. It can also pose issues in many-body systems
as the number of particles grows due to the corresponding
exponential growth of the Hilbert space.

In this paper we show how to use the Krotov method
to control CV systems, specifically focusing on entan-
glement generation in optomechanical systems. To ad-
dress the limitations associated with Fock-basis trunca-
tion, we propose applying the Krotov control method to
the expectation value equations. Specifically, we adapt
the Krotov control objective function for the equation
of motion of the quantum system’s covariance matrix,
which directly affects the degree of entanglement. This
approach allows for the study of quantum system control
without the constraints imposed by Fock-basis trunca-
tion. We also investigate key properties of the control al-
gorithm, such as convergence behavior and spectral lim-
its, to ensure its efficacy in practical applications. A
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realistic description of quantum systems necessitates a
more general treatment of open systems, where the en-
vironmental memory must be considered. We derive the
equation of motion governing the covariance matrix in a
general non-Markovian open system setting, and examine
the robustness of optimal control strategies under these
dynamics. The general approach outlined in this paper
will be useful for the study of controlling various contin-
uous variable (CV) quantum systems beyond the specific
examples discussed. The paper is organized as follows:
We first introduce a general outline of how to utilize the
Krotov control algorithm on the CV system in Sec. II,
then turn to a more specific example of generating entan-
glement between the mechanical mode and the quantum
cavity in an optomechanical system in Sec. III, with a
study on the non-Markovian open systems in Sec. IV.

II. OPTIMAL CONTROL OF CV SYSTEMS

The control of quantum dynamics plays a crucial role
in a diverse range of applications such as state transfer
and generation [73, 74], realization of quantum gates [75],
generating quantum entanglement [59, 60], and assisting
quantum metrology [76], to name just a few. Mathemat-
ically, the control problem can be stated as fining the
control fields fi(t) such that the time-dependent Hamil-
tonian

H(t) = H0 +
∑
i

fi(t)Hi (1)

can drive the system dynamics to some target states
at a prescribed time tf , where H0 and Hi are time-
independent Hamiltonian describing the uncontrolled
part and components under control, respectively. To
facilitate control of the dynamics of quantum systems,
many different protocols have been proposed [39–46]. A
common problem facing quantum optimal controls is that
there would be an interdependence of the control field
and the quantum state. Without loss of generality, we
consider here the case of a single control target. Among
the various control strategies, one outstanding algorithm
is the Krotov method [51–55]. By clever mathematical
construction, the Krotov control method decouples the
interdependence of the control field and the quantum
state under control, and uses an iterative algorithm to
minimize a target function of the form

J
[
|φ(i)(tf )⟩, {f (i)l (t)}

]
= JT (|φ(i)(tf )⟩) +

∑
l

∫
dtg(f

(i)
l (t)), (2)

where |φ(i)(t)⟩ is the wave functions at the i-th iteration

at t, evolving under the controls f
(i)
l of the i-th iteration,

JT is a final time objective function to minimize and g is
a correction term of the running cost of the control fields,

usually taking the form of

g(f
(i)
l (t)) =

λa,l
Sl(t)

(∆f
(i)
l (t))2, (3)

where λa,l > 0 is an inverse step-size, ∆f
(i)
l (t) = f

(i)
l (t)−

f
(i−1)
l (t) is the difference of the control function between
the current and last iteration, and Sl(t) ∈ [0, 1] is an
update shape function, generally taken as the Blackman
window function [55, 77]. The control pulse can then be
updated iteratively using

∆f
(i)
l (t) =

Sl(t)

λa,l
Im

[〈
χ(i−1)(t)

∣∣∣∣∣ ∂H(i)

∂f
(i)
l (t)

∣∣∣∣∣φ(i)(t)

〉]
,

(4)

where |χ(i)(t)⟩ is a co-state that evolves ‘backwards’ ac-
cording to H†(t), with boundary condition at the final tf
as |χ(i−1)(tf )⟩ = −∂JT /∂⟨φ(i−1)(tf )|. By construction,
the Krotov control ensures the monotonic convergence of
the iterative algorithm in that the control objective func-
tion Eq. (2) of the current iteration is guaranteed to be
smaller than the previous iteration.
In order to drive an initial states to a target state, the

target function JT is usually taken as the infidelity 1− f
with f being the fidelity between the target state and
the evolved state under control. However, with contin-
uous variable systems, one issue is that to facilitate the
numerical calculations, the Hamiltonian and the quan-
tum states needs to have some cutoff in the Hilbert space.
While in certain cases the cutoff Nc in the Fock space can
be estimated, it can still pose issues where such estima-
tion is difficult. One complication lies in that while the
cutoff may be estimated for the initial and final states,
special care needs to be taken such that this cutoff ap-
plies during all times in the evolution, which can be non-
trivial to impose. Moreover, especially with many-body
systems, if the required cutoff is large, the computation
cost can get very expensive, as the Hilbert space grow
exponentially with the number of particles n considered
as Nn

c . This is especially relevant for tasks such as en-
tanglement generation in CV systems, where operators
not conserving the total number of excitations such as
non-linear interactions are called for [35, 78–80].
To avoid this issue, we can instead apply the Kro-

tov control to the equations of motion for the expec-
tation values. We consider, for example, a generic
quadratic Hamiltonian H = RiMijRj/2 (double in-
dex implies summation throughout the paper) [34, 81]
with the canonical position and momentum operators
R = (q1, q2, . . . , qn, p1, p2, . . . , pn), whose commutation
relationship is given by [Ri, Rj ] = iσij . With the order-
ing of canonical operators R chosen here, the σ matrix
takes the form of

σ =

[
0 1
−1 0

]
. (5)
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Here we will be focusing on Gaussian states, whose
information can be encapsulated in a covariance ma-
trix [35, 68] (CM) γ, defined through its matrix elements
as γij = ⟨RiRj⟩+ ⟨RjRi⟩ − 2⟨Ri⟩⟨Rj⟩. The CM evolves
according to

∂tγ = σMγ + γ[σM]T (6)

where the Hamiltonian is symmetrized as M =
(M +MT )/2. We can then vectorize the CM by stacking
its columns, denoted as γ⃗. Using the Kronecker product

property AOB = [BT ⊗ A]O⃗, the equation of motion
Eq. (6) in for the vectorized CM γ⃗ follows

∂tγ⃗ = [1 ⊗ σM+ σM⊗ 1] · γ⃗, (7)

which takes the form of a Schrödinger-like equation
with a non-Hermitian effective Hamiltonian −iHsys =
[1 ⊗ σM+ σM⊗ 1]. For the optimal control towards a
target CM, we will now use this effective Hamiltonian in
the pulse update equation Eq. (4), where the vectorized
CM γ⃗ replaces the wave functions |φ(t)⟩.
With the linear equation of motion for the CM in place,

we can now construct the target functional for the control
as the vector distance for the real-valued CM with the
squared 2-norm d2(x, y) = (x− y) · (x− y),

JT = d2(γ⃗T , γ⃗(tf ))

= ||γ⃗T ||2 + ||γ⃗(tf )||2 − 2γ⃗T · γ⃗(tf ), (8)

where γT is the target CM, and γ(tf ) is the controlled CM
at the end of the evolution at time tf . The corresponding
boundary condition for the backwards evolving costate χ⃗
for the next iteration is given by

χ⃗(tf ) = − ∂JT
∂γ⃗(tf )

= 2 [γ⃗T − γ⃗(tf )] . (9)

This approach is akin to formulating the control with vec-
torized density operators evolving under a master equa-
tion [55], with a control target using the Hilbert-Schmidt
distance between the density operators. It is also worth
pointing out that in contrast to the density operators,
the CM is real-valued and the distance is generally not
upper-bounded, which calls for a careful tuning of the
control parameters such as the step size λa,l and the up-
date function Sl(t) to ensure a monotonic convergence.

III. ENTANGLEMENT GENERATION IN AN
OPTOMECHANICAL SYSTEM

As an illustrative example, we consider the problem of
entanglement generation in an optomechanical system.
The optomechanical system describes an interesting cou-
pling between the quantized cavity mode and a macro-
scopic movable mirror, which can enable a wide variety of
studies on the interaction between microscopic quantum
systems and macroscopic objects, such as macroscopic

entanglement generation [27, 28, 63, 64]. In a typical op-
tomechanical system [11, 12, 14, 15, 25, 82] there exists a
parametric coupling between the displacement of the me-
chanical mode, and the Hamiltonian of the system can
be written as (taking ℏ = 1)

H = ωcã
†ã+ωmb̃

†b̃+gã†ã(b̃+b̃†)+Ωd(ãe
iωt+h.c.), (10)

where ã† (ã) and b̃† (b̃) are creation (annihilation) opera-
tors of the cavity light field and mechanical mode respec-
tively, with frequencies ωc and ωm, g is the single-photon
optomechanical coupling strength, and Ωd is the ampli-
tude of the driving laser with frequency ω. In the strong
driving regime, the Hamiltonian H can be linearized as
[11, 12]

HS = −∆a†a+ ωmb
†b+G(a† + a)(b† + b), (11)

where a and b are the quantum fluctuations of optical
and mechanical modes around their mean values (α, β),

with the linearization ã = a+ α and b̃ = b+ β. G = αg
is the effective coupling rate, and ∆ = ω− ωc + 2G2/ωm
is the modified detuning. To generate entanglement be-
tween the mechanical mirror and the optical cavity, we
propose to control the system by tuning the frequency
of the external laser, which may be realized experimen-
tally [83, 84]. This would lead to a time-dependent de-
tuning parameter which would serve as the control pa-
rameter f(t), with the Hamiltonian

Hc(t) = f(t)a†a+ ωmb
†b+G(a† + a)(b† + b)

=
f(t)

2

[
p2c + q2c

]
+
ωm
2

[
p2m + q2m

]
+ 2Gqcqm

(12)

where we have rewritten the Hamiltonian in the position-
momentum basis with qc = (a† + a)/

√
2, pc = i(a† −

a)/
√
2 for the cavity mode and similar for the mechan-

ical mode. This is a quadratic Hamiltonian and the M
matrix in the equation of motion for the vectorized CM
Eq. (7) can be given by, with R = {qc, qm, pc, pm}, as
M = M0 + f(t)Mc with

M0 =

 0 2G 0 0
2G ωm 0 0
0 0 0 0
0 0 0 ωm

 , (13)

and Mc = diag(1, 0, 1, 0). The target CM is chosen to be
the entangled two-mode squeezed state [68, 85] given by
exp

[
r
(
ab− a†b†

)]
|00⟩ with a squeezing parameter r ∈

R, where |00⟩ is the two-mode vacuum state. The explicit
expression of the two-mode squeezed state CM can be
written in the form of

γT =

 cosh(2r) − sinh(2r) 0 0
− sinh(2r) cosh(2r) 0 0

0 0 cosh(2r) sinh(2r)
0 0 sinh(2r) cosh(2r)

 .
(14)
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The entanglement of the two-mode Gaussian states can
be measured by the logarithmic negativity [86–89],

N = −
∑
i

log2 (min(1, |λi|)) (15)

where λi are the symplectic eigenvalues (accounting for
the 2-fold degeneracy) of the partial-transpose CM γTB =
PγP , P = diag(1, 1, 1,−1) [81, 88]. Especially, for the
target two-mode squeezed state with r > 0, we have
NT = 2 log2(e

r).

Choosing system parameters ωm = 1, G = 0.1, we
now use the Krotov control algorithm to generate the
control field to drive an initial vacuum state |00⟩ to the
target desired two-mode squeeze state with a squeezing
parameter r = 1.25. The target negativity NT ≈ 3.6067,
and the control goal is set to be such that the distance
between the evolved CM and the target CM is less than
10−4, with a control run-time of tf = 60. The initial
guess for the control is set to be a constant f(t) = 0.
The resulting controlled detuning f(t) is shown in Fig. 1
(a) as the solid blue line. We also show the entanglement
dynamics between the mechanical mirror and the optical
cavity in Fig. 1 (c), as the ratio of the negativity of the
evolved state divided by the target negativity (solid blue
line). It can be seen that the controlled detuning is on
the same order-of-magnitude with other parameters of
the Hamiltonian, and we are able to reach the target
entangled state at the end of the evolution.

We also study the effectiveness of the Krotov iterative
algorithm. In Fig. 2 we show the squared distance d2
Eq. (8) for each iteration. With a search step-size of
1/λa = 1/8000, we are able to reach the target J in ∼
1200 iterations, and we can see that the distance between
that evolved state and the target state decreases not only
monotonically but also exponentially with the number of
iterations, suggesting that the control algorithm is very
effective at converging to the desired control function.

A. Krotov control with optional spectral cutoff

In practical scenarios, it is often preferable to use a
control field that is neither too strong in magnitude nor
oscillates too rapidly. While it can be observed clearly
in Fig. 1 (a), we may also quantitatively study it by tak-
ing a Fourier transformation of the control field. Given
that the control field is real-valued, we use the standard
discrete cosine transformation (DCT),

Yk = 2

n−1∑
j=0

Xj cos [π(j + 1/2)k/n] (16)

t
0 20 40 60

f(
t)

−0.5

0.0

0.5

(a)

ω
0.0 0.5 1.0 1.5 2.0 2.5

|f(
ω
)|

0.2

0.1

0

0.1

0.2

(b)

t
0 20 40 60

N
(t
)/
N

T

0.0

0.5

1.0

(c)

FIG. 1. Optimal generation of entanglement in an optome-
chanical system. Panel (a): the control fields in the time do-
main, with (orange dashed line) and without (blue solid line)
spectral cutoff. Panel (b): The control fields in the frequency
domain, showing the absolute values of the amplitudes for
control fields with (orange) and without (blue) spectral cut-
offs. Panel (c): Dynamics of the log negativity divided by the
target negativity, as a function of time.

iteration #
0 500 1000 1500

d 2

10-4

10-2

100

102

FIG. 2. The distance between the final covariance matrix
under control and the target covariance matrix, against the
Krotov iteration count (log scale). The blue line shows the
case where no spectral cutoff is applied, and the orange dashed
line is the case where a spectral cutoff is applied after each
iteration. It can be seen that while it takes more iterations
to reach a target distance, both case are effective control that
can roughly approach the target exponentially.

with the inverse

Wk = Y0 + 2

n−1∑
j=1

Yj cos [πj(k + 1/2)/n]

≡ f(ω = 0) + 2

n−1∑
j=1

f(ωj) cos [ωjt+ φj ] , (17)



5

where ωj = πj/tf , φj = πj/2n, with a logical DFT size
N = 2n as an overall normalizing factor, and n = 6000 is
the control field’s time grid size. In Fig. 1 (b) we show the
absolute values of the control f in the frequency domain.

It can be readily seen that the angular frequencies of
the control field is relatively small (Here it is smaller than
2 in our parameter choice), showing vanishingly small
amplitudes for larger frequencies: here, the sum of abso-
lute amplitudes for ω > 2.56 is smaller than ∼ 0.00446.
We may also further restrict the spectral limit of the
control field. While it may require solving for a complex
Fredholm equation [90], in simple cases it can suffice to
cut off the higher frequencies after each iteration [55].
Here, we keep only the first 20 frequencies for the DCT,
corresponding to a cut-off frequency of ∼ 1. To keep both
ends of the control field constant f(0) = f(tf ) = 0, the
control field after the frequency cut is then multiplied
update window function S(t) in Eq. (4). In Fig. 1 (a)
and (b) we show the final control field with the spectral
constraint in both time and frequency domain, and the
resulting entanglement dynamics is shown in Panel (c) in
Fig. 1, as dashed orange lines. It can be seen that we are
still able to reliably generate the desired entangled state
with the spectral cutoff for the control field. The distance
d2 in each iteration is displayed in Fig. 2. We observed
that while it takes more number of iterations to reach
the target distance of 10−4, the distance between the
evolved state and the target state still converges mostly
exponentially and keeps the monotonic trend of conver-
gence, showing that this strategy is effective in the case
where the spectral constraint is being applied.

IV. OPEN SYSTEM EFFECTS ON THE
OPTIMAL CONTROLS

In this section, we will study how quantum entangle-
ment is affected by the environment effects. It is known
that entanglement is a fragile resource and may be sus-
ceptible to many environment effects such as the decoher-
ence, dephasing and entanglement sudden death [91, 92].
To study how the proposed control strategy is robust
againt the influences of open system effects, we consider
the optomechanical system embedded in a bosonic envi-
ronment,

HB =
∑
j

ωj b̄
†
j b̄j , (18)

where b̄†j (b̄j) are bosonic creation (annihilation) opera-
tors. The system-bath interaction is given by

HI =
∑
j

gj(Lb̄
†
j + L†b̄j), (19)

where L describes the damping of the mechanical oscil-
lator and gj is the coupling strength between the system
and the environment. To obtain the reduced system dy-
namics, we use the quantum state diffusion (QSD) equa-
tion [25, 93–95], which projects the bath modes onto

t
0 20 40 60

N
(t
)/
N

T

0.0

0.5

1.0
closed
Non-Markovian
Markov

FIG. 3. The controlled system entanglement dynamics un-
der open system effects, showing the negativity as a function
of time, with system-bath coupling strength λ = 0.1. The
solid blue line represents a reference for the closed system dy-
namics, while the red dashed line shows the non-Markovian
dynamics (η = 0.5), and the green dash-dotted line shows the
Markov dynamics case. It can be seen that the entanglement
is better preserved when the memory effects of the environ-
ment are taken into consideration.

the Bargmann coherent states to arrive at a stochastic
Schrödinger equation for a pure representing a quantum
trajectory,

∂t|ψt(z∗)⟩ =
[
− iHs + Lz∗t − L†Ō(t, z∗)

]
|ψt(z∗t )⟩, (20)

where O(t, s, z∗)ψt ≡ δψt

δzs
is an ansatz for the functional

derivative with the initial condition O(t, s = t, z∗) = L

and Ō(t, z∗) ≡
∫ t
0
dsα(t, s)O(t, s, z∗). When the bath

spectrum is of the Lorentzian type, the correlation func-
tion of the environment α(t, s) is given by

α(t, s) =
η

2
e−(η+iΩ)|t−s|, (21)

where 1/η represents the memory time and Ω signifies
a central frequency shift. This choice of the correlation
function allows us to study how the system behaves un-
der a non-Markovian bath with a continuously tunable
strength of the memory effects, with smaller η corre-
sponding to stronger memory effects, whereas η → ∞
would lead to a memoryless (Markov) dynamics. The
O-operator follows the consistency condition

∂t
δ

δzs
|ψt(z∗t )⟩ =

δ

δzs
∂t|ψt(z∗t )⟩.

The reduced density operator may be obtained by a
stochastic average ρ =M [|ψt(z∗t )⟩⟨ψt(zt)|], whereM [·] ≡∫
dz2

π e−|z|2 [·] represents the average over the noise (a
Gaussian process) zt.
It can be analytically derived (see Appendix A) that

the CM under a general non-Markovian bath of the
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λ
0.0 0.1 0.2

η

0.4

0.6

0.8

1.0

2.0

2.5

3.0

3.5

FIG. 4. The negativity at tf as a function of the system-bath
coupling strength λ and the memory coefficient η, and the red
line shows the boundary where 90% of the target negativity
can be retained.

Lorentzian spectrum may be given by

∂tγ = [σM+ σ∆] γ + γ [σM+ σ∆]
T
+ 2

[
σδRσT

]
(22)

where δmn = l∗mon + o∗mln, δ
R = Re[δ], ∆mn = ilmo

∗
n −

il∗mon, and L = liRi, Ō = oiRi are the system-bath inter-
action and the noise-free Ō operator, assuming a linear
composition for both operators. In the Markov limit,
we have Ō = L/2, and the equation above reduces to the
well-known result of the CM under Markov baths [96, 97]
with [δR]mn → Re(l∗mln), and ∆mn → Im(l∗mln), where
they are generally known as the diffusion and drift ma-
trices.

Here, we consider a case where the mechanical mode
is coupled to a bosonic bath [25]. To begin with, we
assume that only the mechanical mode is dissipative,
where system-bath coupling operator is given by L = λb,
where λ denotes the system-bath interaction strength.
With λ = 0.1, we plot the open system dynamics of the
entanglement under both a non-Markovian environment
(η = 0.5) and a Markov environment in Fig. 3. Com-
pared with the ideal closed system dynamics, it can be
seen that the entanglement generation can be degraded
under decoherence, while the non-Markovian case fares
better and can retain a higher degree of entanglement.

To further probe the influences of the environmental
noises, we plot the final-time entanglement as a func-
tion of the system-bath coupling strength λ and the bath
memory parameter η in Fig. 4, with a region highlighted
where ∼ 90% of the target entanglement can be retained.
It can be seen that a weaker coupling or a stronger
memory effects may both help protect the entanglement
against the detrimental effects of the noise. The mem-
ory effects of non-Markovian environments can also lead
to some counterintuitive behaviors. Consider the case

λo

0.00 0.04 0.08

λ
m

0.00

0.06

0.12

0.18

0.24

3.0

3.1

3.2

3.3

3.4

3.5

3.6

FIG. 5. Controlled entanglement at tf as a function of the
system-bath coupling strength of the optical mode λo and of
the mechanical mode λm, taking η = 0.2. Red line shows the
boundary where 90% of the target entanglement is retained.

where both the optical mode and the mechanical mode
are coupled to the bath, with L = λoa+ λmb. The non-
Markovian bath would then induce an indirect coupling
between the optical and mechanical modes. In Fig. 5 we
show the entanglement at tf as a function of the system-
bath coupling strengths λo and λm, with η = 0.2. It
can be seen that stronger coupling rates to the bath does
not necessarily mean the entanglement will decay more
in a non-Markovian bath, and in some regions stronger
coupling strengths retains the entanglement better, due
to the indirect coupling induced by the non-Markovian
bath. This feature is generally not observed in Markov
baths and highlights how the memory effects of the bath
may help in the preservation of quantum entanglement.

V. CONCLUSION

In conclusion, we have proposed an optimal control
strategy for CV systems using the Krotov algorithm to
the covariance matrix’s equation of motion to minimize
the distance between the target CM and the controlled
CM, facilitating precise numerical implementation with-
out the need for Fock-basis cutoffs. Our proposed method
allows for the study of complex quantum systems with-
out suffering from the exponential growth of the Hilbert
space. It is shown that, for a quadratic Hamiltonian,
the corresponding coefficient matrix only grows as 2N
where N is the number of particles, compared to the
exponential growth NN

c for a Fock-basis representation
where Nc is the cutoff per site. Our control strategy is
also applicable to the case where a high-photon-number
state is needed, or where the confinement of the dynam-
ics in a small subspace becomes impossible. This precise,
truncation-free macroscopic entanglement generation can
have wide applications in novel quantum devices that use
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CV entangled states as a resource, such as quantum in-
formation processing devices [33–35] and quantum sen-
sors [37, 38]. Similar ideas may be applied to other CV
systems or target states. For example, here we consid-
ered controlling the CM which encapsulates the first and
second moments, but the algorithm may be easily gener-
alized to control the dynamics of expectation values other
than the first and second moments as long as they form
a closed set of linear differential equations.

As an illustrative example, we applied the control
strategy to generate quantum entanglement in an op-
tomechanical system between a mechanical mirror and an
optical cavity. Our control protocol reliably drive an ini-
tial vacuum state into an entangled two-mode squeezed
state. Furthermore, the protocol exhibits good conver-
gence behavior, with the distance between the controlled
state and the target state converging exponentially with
the number of Krotov iterations. The resulting control
field is stable, exhibiting neither excessive amplitude nor

high-frequency oscillations. We also imposed spectral
constraints and found that satisfactory control fields can
still be achieved within these limits. Finally, we have
studied the effects of a general non-Markovian environ-
ment on the generated entanglement. The equation of
motion for the CM under non-Markovian dynamics shows
that quantum memory effects can preserve the entangle-
ment, resulting in slower decay compared to a memory-
less (Markovian) bath. The protocol and methodology
presented here are general and adaptable to other con-
tinuous variable systems, offering insights into optimal
control strategies and the impact of open system dynam-
ics.
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Appendix A: The non-Markovian dynamics of the CM

The details of deriving the equation of motion for the CM under a generic non-Markovian environment are presented
here. For the noise-free O-operator considered here, the corresponding master equation for the reduced density
operator of the system dynamics can be derived [95] using the Novikov theorem for the ensemble average involving
the noises, leading to

∂

∂t
ρs(t) = −i [Hs, ρt] +

[
L, ρtŌ

(0)†(t)
]
−
[
L†, Ō(0)(t)ρt

]
(A1)

With a system-bath coupling operator linear in R, L = liRi, we may write down an ansatz for the Ō-operator that’s
also only contain linear terms of Rk as Ō(t) = oi(t)Ri. For brevity, we drop the explicit time-dependence of the Ō
operator coefficients.

With the master equation Eq. (A1), the Langevin equation for the first and second moments may be readily derived
as

∂t⟨Rk⟩ = [σM]kj⟨Rj⟩+
{
ilio

∗
jσk,i⟨Rj⟩ − il∗i ojσk,i⟨Rj⟩

}
, (A2)

and

∂t⟨RiRj⟩ = [σM]ik ⟨RkRj⟩+ ⟨RiRk⟩ [σM]
T
kj

+ ⟨RiRn⟩[io∗nlmσTmj − ionl
∗
mσ

T
mj ] + [iσimlmo

∗
n − iσiml

∗
mon]⟨RnRj⟩

+ σiml
∗
monσ

T
nj + σino

∗
nlmσ

T
mj (A3)

Using the commutation relationship [Ri, Rj ] = iσij , we have

⟨RiRj⟩+ ⟨RjRi⟩ = 2⟨RiRj⟩ − iσij . (A4)

Rearranging the terms in Eqs. (A2) and (A3) to plug into the CM elements γij = ⟨RiRj⟩ + ⟨RjRi⟩ − 2⟨Ri⟩⟨Rj⟩, it
can then be shown that the CM follows

∂tγ = [σM+ σ∆] γ + γ [σM+ σ∆]
T
+ 2

[
σδRσT

]
(A5)

where δmn = l∗mon + o∗mln, δ
R = Re[δ], ∆mn = ilmo

∗
n − il∗mon.

Here, we will consider a leading order approximation of the Ō operator that keeps only the noise-independent terms,

∂tO(t, s) =
[
−iHs − L†Ō(t), O(t, s)

]
(A6)
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which gives, with ηeff = η + iΩ,

∂tŌ = α(0)L− ηeffŌ +
[
−iHs − L†Ō, Ō

]
. (A7)

This allows us to get the differential equations for the Ō operator’s coefficients as

∂toi = α(0)li − ηeffoi − ol[σM]li − iσkl [okoll
∗
i + oioll

∗
k] (A8)

Together with Eq. (A5), this set of equations would allow one to directly calculate the dynamics of the CM under a
non-Markovian bath for a generic quadratic Hamiltonian.
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