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A PROOF THEORY OF (ω-)CONTEXT-FREE LANGUAGES,

VIA NON-WELLFOUNDED PROOFS

ANUPAM DAS AND ABHISHEK DE

University of Birmingham, UK

Abstract. We investigate the proof theory of regular expressions with fixed
points, construed as a notation for (ω-)context-free grammars. Starting with
a hypersequential system for regular expressions due to Das and Pous [DP17],
we define its extension by least fixed points and prove the soundness and com-
pleteness of its non-wellfounded proofs for the standard language model. From
here we apply proof-theoretic techniques to recover an infinitary axiomatisa-
tion of the resulting equational theory, complete for inclusions of context-free
languages. Finally, we extend our syntax by greatest fixed points, now comput-
ing ω-context-free languages. We show the soundness and completeness of the
corresponding system using a mixture of proof-theoretic and game-theoretic
techniques.

1. Introduction

The characterisation of context-free languages (CFLs) as the least solutions of
algebraic inequalities, sometimes known as the ALGOL-like theorem, is a folklore
result attributed to several luminaries of formal language theory including Gins-
burg and Rice [GR62], Schutzenberger [Sch63], and Gruska [Gru71]. This induces a
syntax for CFLs by adding least fixed point operators to regular expressions, as first
noted by Salomaa [Sal73]. Leiß [Lei92] called these constructs “µ-expressions” and
defined an algebraic theory over them by appropriately extending Kleene algebras,
which work over regular expressions. Notable recent developments include a gener-
alisation of Antimirov’s partial derivatives to µ-expressions [Thi17] and criteria for
identifying µ-expressions that can be parsed unambiguously [KY19].

Establishing axiomatisations and proof systems for classes of formal languages
has been a difficult challenge. Many theories of regular expressions, such as Kleene
algebras (KA) were proposed in the late 20th century (see, e.g., e.g. [Con71, Kle56,
Koz94]). The completeness of KA for the (equational) theory of regular languages,
due to Kozen [Koz94] and Krob [Kro90] independently, is a celebrated result that
has led to several extensions and refinements, e.g. [KS97, KS12, CLS15, KS20].
More recently the proof theory of KA has been studied via infinitary systems.
On one hand, [Pal07] proposed an ω-branching sequent calculus and on the other
hand [DP17, DDP18, HK22] have studied cyclic ‘hypersequential’ calculi.

Inclusion of CFLs is Π0
1-complete, so any recursive (hence also cyclic) axiomati-

sation must necessarily be incomplete. Nonetheless various theories of µ-expressions
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Figure 1. Summary of our main contributions. Each arrow →
denotes an inclusion of equational theories, over an appropriate
language of µ-expressions. The gray arrow, Theorem 16, is also a
consequence of the remaining black ones.

have been extensively studied, in particular Chomsky algebras and µ-semirings [ÉL02,
EL05, Lei16, LH18], giving rise to a rich algebraic theory. Indeed Grathwohl, Hen-
glein, and Kozen [GHK13] have given a complete (but infinitary) axiomatisation of
the equational theory of µ-expressions, by extending these algebraic theories with
a continuity principle for least fixed points.

Contributions. In this paper, we propose a non-wellfounded system µHKA∞ for
µ-expressions. It can be seen as an extension of the cyclic system of [DP17] for
regular expressions. Our first main contribution is the adequacy of this system for
CFLs: µHKA∞ proves e = f just if the CFLs computed by e and f , L(e) and L(f)
respectively, are the same. We use this result to obtain alternative proof of com-
pleteness of the infinitary axiomatisation µCA of [GHK13], comprising our second
main result. Our method is inspired by previous techniques in non-wellfounded
proof-theory, namely [Stu08, DDS23], employing ‘projections’ to translate non-
wellfounded proofs to wellfounded ones. Our result is actually somewhat stronger
than that of [GHK13], since our wellfounded proofs are furthermore cut-free.

Finally we develop an extension µνℓHKA of (leftmost) µHKA by adding greatest
fixed points, ν, for which L(·) extends to a model of ω-context-free languages. Our
third main contribution is the soundness and completeness of µνℓHKA for L(·).
Compared to µHKA, the difficulty for metalogical reasoning here is to control in-
terleavings of µ and ν, both for soundness argument and in controlling proof search
for completeness. To this end we employ game theoretic techniques to characterise
word membership and control proof search.

All our main results are summarised in Fig. 1.
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authors are grateful to anonymous reviewers for their helpful comments (in par-
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[Lan02, LMS04, MHHO05].
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2. A syntax for context-free grammars

Throughout this work we make use of a finite set A (the alphabet) of letters,
written a, b, . . . , and a countable set V of variables, written X,Y, . . . . When
speaking about context-free grammars (CFGs), we always assume non-terminals
are from V and the terminals are from A.

We define (µ-)expressions, written e, f, etc., by:

e, f, . . . ::= 0 | 1 | X | a | e+ f | e · f | µXe (1)

We usually simply write ef instead of e · f . µ is considered a variable binder, with
the free variables FV(e) of an expression e defined as expected:

Definition 1 (Free variables). The set of free variables of an expression e, written
FV(e), is defined by:

• FV(0) := ∅

• FV(1) := ∅

• FV(X) := {X}
• FV(e+ f) := FV(e) ∪ FV(f)
• FV(ae) := FV(e)
• FV(µXe) := FV(e) \ {X}

We sometimes refer to expressions as formulas, and write ⊑ for the subformula
relation.

µ-expressions compute languages of finite words in the expected way:

Definition 2 (Language semantics). Let us temporarily expand the syntax of
expressions to include each language A ⊆ A∗ as a constant symbol. We interpret
each closed expression (of this expanded language) as a subset of A∗ as follows:

• L(0) := ∅

• L(1) := {ε}
• L(a) := {a}
• L(A) := A

• L(e+ f) := L(e) ∪ L(f)
• L(ef) := {vw : v ∈ L(e), w ∈ L(f)}
• L(µXe(X)) :=

⋂

{A ⊇ L(e(A))}

Note that all the operators of our syntax correspond to monotone operations on
P(A∗), with respect to ⊆. Thus L(µXe(X)) is just the least fixed point of the
operation A 7→ L(e(A)), by the Knaster-Tarski fixed point theorem.

The productive expressions, written p, q etc. are generated by:

p, q, . . . ::= a | p+ q | p · e | e · p | µXp (2)

We say that an expression is guarded if each variable occurrence occurs free in a
productive subexpression. Left-productive and left-guarded are defined in the
same way, only omitting the clause e · p in the grammar above. For convenience of
exposition we shall employ the following convention throughout:

Convention 3. Henceforth we assume all expressions are guarded.

Remark 4 (Why only guarded expressions?). There are several reasons for em-
ploying this convention. Most importantly, left-guardedness will be required for
our treatment of ω-words later via greatest fixed points, where grammars naturally
parse from the left via leftmost derivations. In the current setting, over finite words
with only least fixed points, it makes little difference whether we use only guarded



4 A NON-WELLFOUNDED PROOF THEORY OF (ω-)CONTEXT-FREE LANGUAGES

expressions or not, nor whether we guard from the left or right. However our con-
vention does simplify some proofs and change some statements; we will comment
on such peculiarities when they are important.

Example 5 (Empty language). In the semantics above, note that the empty lan-
guage ∅ is computed by several expressions, not only 0 but also µXX and µX(aX).
Note that whle the former is unguarded the latter is (left-)guarded. In this sense
the inclusion of 0 is somewhat ‘syntactic sugar’, but it will facilitate some of our
later development.

Example 6 (Kleene star and universal language). For any expression e we can
compute its Kleene star e∗ := µX(1 + eX) or e∗ := µX(1+Xe). These definitions
are guarded just when e is productive. Now, note that we also have not included
a symbol ⊤ for the universal language A∗. We can compute this by the expression
(
∑

A)
∗, which is guarded as

∑

A is productive.

It is well-known that µ-expressions compute just the context-free (CF) lan-
guages [GR62, Sch63, Gru71]. In fact this holds even under the restriction to
left-guarded expressions, by simulating the Greibach normal form:

Theorem 7 (Adequacy, see, e.g., [ÉL02, EL05]). L is context-free (and ε /∈ L)
⇐⇒ L = L(e) for some e left-guarded (and left-productive, respectively).

While this argument is known, it is pertinent to recall it as we are working with
only guarded expressions, and as some of the intermediate concepts will be useful
to us later. First we will need to define a notion of subformula peculiar to fixed
point expressions:

Definition 8 (Fisher-Ladner (FL)). The Fischer-Ladner (FL) closure of an
expression e, written FL(e), is the smallest set of expressions closed under closed
subformulas and, whenever µXf(X) ∈ FL(e) then f(µXf(X)) ∈ FL(e).

It is well-known that FL(e) is finite, and in fact has size linear in that of e.
Now the ⇐= direction of the Adequacy theorem, Theorem 7, can be proved by
construing FL(e) as the non-terminals of an appropriate CFG. Formally, this is
broken up into the following two Propositions.

Proposition 9. L(e) is context-free, for any closed expression e.

Proof of Proposition 9. We construct a CF grammar with nonterminals Xf for each
f ∈ FL(e), starting nonterminal Xe, and all productions of form:

X1 → ε
Xa → a

Xf+g → Xf | Xg

Xfg → XfXg

XµXf(X) → Xf(µXf(X)) �

(3)

For the =⇒ direction of Theorem 7, since we assume only guarded expres-
sions, we work with grammars in Greibach normal form (GNF). Recall that a GNF
grammar is one for which each production has form X → a ~X or X → ε, for X, ~X
non-terminals and a ∈ A. It is well-known that such grammars exhaust all CF
languages [JEH01]. Thus we obtain a slightly stronger result:

Proposition 10 (see, e.g., [ÉL02, EL05]). L is context-free =⇒ L = L(e) for
some left-guarded expression e. Moreover if ε /∈ L then e is left-productive.
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Proof sketch. We expand the statement to grammars where each non-terminal has
a unique production whose RHS is an arbitrary left-guarded µ-expression, i.e. of
the form {Xi → ei( ~X)}i<n for non-terminals ~X = X0, . . . , Xn−1. Note that
this exhausts all context-free languages by (a) assuming Greibach normal form
for left-guardedness; and (b) using + to combine multiple productions from the
same non-terminal. From here we proceed by induction on n, the number of non-
terminals, using Bekić’s Theorem for resolving equational systems. Namely from
{Xi → ei( ~X,Xn)}i≤n we set e′n( ~X) := µXnen( ~X,Xn) and first find solutions ~f to
the grammar {Xi → ei( ~X, e′n(

~X))}i<n, by inductive hypothesis. Now we set the
solution for Xn to be fn := e′n(

~f). Note that, since we did not introduce identities,
the solutions contain 1 just if there is an ε production for some non-terminal, by
Greibach normal form. �

Example 11. Consider the left-guarded expressions Dyck1 := µX(1+ 〈X〉X) and
{anbn}n := µX(1 + aXb). As suggested, Dyck1 indeed computes the language of
well-bracketed words over alphabet {〈, 〉}, whereas {anbn}n computes the set of
words ~a~b with |~a| = |~b|. We can also write (a∗b∗) := µX(1 + aX +Xb), which is
guarded but not left-guarded. However, if we define Kleene ∗ as in Example 6, then
we can write a∗ and b∗ as left-guarded expressions and then take their product
for an alternative representation of (a∗b∗). Note that the empty language ∅ is
computed by the left-guarded expression µX(aX), cf. Example 5.

3. A non-wellfounded proof system

In this section we extend a calculus HKA from [DP17] for regular expressions
to all µ-expressions, and prove soundness and completeness of its non-wellfounded
proofs for the language model L(·). We shall apply this result in the next section
to deduce completeness of an infinitary axiomatisation for L(·), before considering
the extension to greatest fixed points later.

A hypersequent has the form Γ → S where Γ (the LHS) is a list of expressions
(a cedent) and S (the RHS) is a set of such lists. We interpret lists by the product
of their elements, and sets by the sum of their elements. Thus we extend our
notation for language semantics by L(Γ) := L(

∏

Γ) and L(S) :=
⋃

Γ∈S

L(Γ).

The system µHKA is given by the rules in Fig. 2. Here we use commas to delimit
elements of a list or set and square brackets [, ] to delimit lists in a set. In the k

rules, we write aS := {[a,Γ] : Γ ∈ S} and Sa := {[Γ, a] : Γ ∈ S}.
For each inference step, as typeset in Fig. 2, the principal formula is the distin-

guished magenta formula occurrence in the lower sequent, while any distinguished
magenta formula occurrences in upper sequents are auxiliary. (Other colours may
be safely ignored for now).

Our system differs from the original presentation of HKA in [DP17] as (a) we have
general fixed point rules, not just for the Kleene ∗; and (b) we have included both
left and right versions of the k rule, for symmetry. We extend the corresponding
notions of non-wellfounded proof appropriately:

Definition 12 (Non-wellfounded proofs). A preproof (of µHKA) is generated
coinductively from the rules of µHKA i.e. it is a possibly infinite tree of sequents
(of height ≤ ω) generated by the rules of µHKA. A preproof is regular or cyclic
if it has only finitely many distinct subproofs. An infinite branch of a preproof is
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Non-logical
rules:

init

→ [ ]

Γ → S
w-r

Γ → S, [∆]

Γ → S
k
l
a

a,Γ → aS

Γ → S
k
r
a

Γ, a → Sa

Left logi-
cal rules:

0-l
Γ, 0,Γ′ → S

Γ,Γ′ → S
1-l

Γ, 1,Γ′ → S

Γ, e, f,Γ′ → S
·-l

Γ, ef,Γ′ → S

Γ, e,Γ′ → S Γ, f ,Γ′ → S
+-l

Γ, e+ f,Γ′ → S

Γ, e(µXe(X)),Γ′ → S
µ-l

Γ, µXe(X),Γ′ → S

Right logi-
cal rules:

Γ → S
0-r

Γ → S, [∆, 0,∆′]

Γ → S, [∆,∆′]
1-r

Γ → S, [∆, 1,∆′]

Γ → S, [∆, e, f ,∆]
·-r

Γ → S, [∆, ef,∆′]

Γ → S, [∆, e,∆′], [∆, f ,∆′]
+-r

Γ → S, [∆, e+ f,∆′]

Γ → S, [∆, e(µXe(X)),∆′]
µ-r

Γ → S, [∆, µXe(X),∆′]

Figure 2. Rules of the system µHKA.

progressing if it has infinitely many µ-l steps. A preproof is progressing, or a
∞-proof, if all its infinite branches are progressing. We write µHKA ⊢∞ Γ → S
if Γ → S has a ∞-proof in µHKA, and sometimes write µHKA∞ for the class of
∞-proofs of µHKA.

Note that our progress condition on preproofs is equivalent to simply checking
that every infinite branch has infinitely many left-logical or k steps, as µ-l is the
only rule among these that does not decrease the size of the LHS. This is simpler
than usual conditions from non-wellfounded proof theory, as we do not have any
alternations between the least and greatest fixed points. Indeed we shall require a
more complex criterion later when dealing with ω-languages. Note that, as regular
preproofs may be written naturally as finite graphs, checking progressiveness for
them is efficiently decidable (even in NL, see e.g. [DP17, CD22]).

The need for such a complex hypersequential line structure is justified in [DP17]
by the desideratum of regular completeness for the theory of regular expressions:
intuitionistic ‘Lambek-like’ systems, cf. e.g. [Jip04, Pal07, DP18] are incomplete
(wrt regular cut-free proofs). The complexity of the RHS of sequents in HKA

is justified by consideration of proof search for, say, a∗ → (aa)∗ + a(aa)∗ and
(a+ b)∗ → a∗(ba∗)∗, requiring reasoning under sums and products, respectively.

In our extended system we actually gain more regular proofs of inclusions be-
tween context-free languages. For instance:

Example 13. Recall the guarded expressions {anbn}n and (a∗b∗) from Example 11.
We have the regular ∞-proof R in Fig. 3 of {anbn}n → [(a∗b∗)], where • marks
roots of identical subproofs. Note that indeed the only infinite branch, looping on
•, has infinitely many µ-l steps.

Remark 14 (Impossibility of general regular completeness). At this juncture let us
make an important point: it is impossible to have any (sound) recursively enumer-
able system, let alone regular cut-free proofs, complete for context-free inclusions,
since this problem is Π0

1-complete (see e.g. [JEH01]). In this sense examples of
regular proofs are somewhat coincidental.

It is not hard to see that each rule of µHKA is sound for language semantics:



A NON-WELLFOUNDED PROOF THEORY OF (ω-)CONTEXT-FREE LANGUAGES 7

init

→ [ ]
1-l,1-r

1 → [1]
w-r,+-r

1 → [1 + a(a∗b∗) + (a∗b∗)b]

...
µ-l,µ-r •

{anbn}n → (a∗b∗)
k
r
b
{anbn}n, b → [(a∗b∗), b]

·-l,·-r

{anbn}nb → [(a∗b∗)b]
µ-r,+-r,w-r

{anbn}nb → [(a∗b∗)]
k
l
a
a, {anbn}nb → [a, (a∗b∗)]

·-l,·-r

a{anbn}nb → [a(a∗b∗)]
w-r,+-r

a{anbn}nb → [1 + a(a∗b∗) + (a∗b∗)b]
+-l

1 + a{anbn}nb → [1 + a(a∗b∗) + (a∗b∗)b]
µ-l,µ-r •

{anbn}n → [(a∗b∗)]

Figure 3. A regular ∞-proof R of {anbn}n → [(a∗b∗)].

Lemma 15 (Local soundness). For each inference step,

Γ0 → S0 · · · Γk−1 → Sk−1
r

Γ → S
(4)

for some k ≤ 2, we have: ∀i < kL(Γi) ⊆ L(Si) =⇒ L(Γ) ⊆ L(S).

Consequently finite proofs are also sound, by induction on their structure. For
non-wellfounded proofs, we must employ a less constructive argument, typical of
non-wellfounded proof theory:

Theorem 16 (Soundness). µHKA ⊢∞ Γ → S =⇒ L(Γ) ⊆ L(S).

Proof of Theorem 16. For each sequent S = Γ → S, define nS ∈ N ∪ {∞} for the
least length of word w ∈ L(Γ) \L(S) (if there is no such word then nS = ∞). Now
suppose, for contradiction, that P is a ∞-proof of S = Γ → S, but L(Γ) \ L(S) 6=
∅, and so nS ∈ N. By (the contraposition of) Lemma 15 we may continually
choose invalid premisses of rules to build an infinite branch (Si = Γi → Si)i<ω s.t.
L(Γi) \ L(Si) 6= ∅ for all i < ω. Moreover, we can guarantee that the sequence
(nSi

)i<ω is monotone non-increasing. For this note that for each inference step
S0 · · · Sk−1

r

S
of form as in (4) we have:

(1) If r is a k step, then nS > nS0
; and,

(2) Otherwise there is some i < k with nS = nSi
.

In particular, if r is a +-l step, we should choose the Si admitting the smallest nSi
.

Now, since P is a ∞-proof, (Si)i<ω must be progressing and has infinitely many
µ-l steps. We have two cases:

• If (Si)i<ω has infinitely many k steps then case 1 happens infinitely often
along (nSi

)i<ω, and so it is a monotone non-increasing sequent of natural
numbers that does not converge. Contradiction.

• Otherwise (Si)i≥k is k-step-free, for some k < ω, and so the number of
letters in the LHS of the sequent is monotone non-decreasing in i ≥ k.
Since there are infinitely many µ-l steps, by guardedness the number of
producing expressions (whose languages necessarily are nonempty and do
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not contain ε) is strictly increasing, and eventually dominates even n0 ≥ ni.
Contradiction. �

By inspection of the rules of µHKA we have:

Lemma 17 (Invertibility). Let r be a logical step as in (4). L(Γ) ⊆ L(S) =⇒
L(Γi) ⊆ L(Si), for each i < k.

Theorem 18 (Completeness). L(Γ) ⊆ L(S) ⇒ µHKA ⊢∞ Γ → S.

Proof sketch. We describe a bottom-up proof search strategy:

(1) Apply left logical rules maximally, preserving validity by Lemma 17. Any
infinite branch is necessarily progressing.

(2) This can only terminate at a sequent of the form a1, . . . , an → S with
~a ∈ L(S), whence we mimic a ‘leftmost’ parsing derivation for ~a wrt S. �

To flesh out a bit more the Item 2 of the argument above, let us state:

Lemma 19 (Membership). a1 · · ·an ∈ L(S) ⇒ µHKA ⊢∞ a1, . . . , an → S.

Proof idea. Recall the ‘canonical’ grammar as constructed in (3). We proceed by
induction on a leftmost (or rightmost) derivation (as defined for Muller CFGs in
Section 6) of ~a according to this canonical grammar. �

4. Completeness of an infinitary cut-free axiomatisation

While our completeness result above was relatively simple to establish, we can
use it, along with proof theoretic techniques, to deduce completeness of an infinitary
axiomatisation of the theory of µ-expressions. In fact we obtain an alternative proof
of the result of [GHK13], strengthening it to a ‘cut-free’ calculus µHKAω.

Write µCA for the set of axioms consisting of:

• (0, 1,+, ·) forms an idempotent semiring (aka a dioid).
• (µ-continuity) eµXf(X)g =

∑

n<ω

efn(0)g.

We are using the notation fn(0) defined by f0(0) := 0 and fn+1(0) := f(fn(0)).
We also write e ≤ f for the natural order given by e+ f = f . Now, define µHKAω

to be the extension of µHKA by the ‘ω-rule’:

{Γ, en(0),Γ′ → S}n<ω
ω

Γ, µXe(X),Γ′ → S

By inspection of the rules we have soundness of µHKAω for µCA:

Proposition 20. µHKAω ⊢ Γ → S =⇒ µCA ⊢
∏

Γ ≤
∑

∆∈S

∏

∆.

Here the soundness of the ω-rule above is immediate from µ-continuity in µCA.
Note, in particular, that µCA already proves that µXe(X) is indeed a fixed point
of e(·), i.e. e(µXe(X)) = µXe(X) [GHK13]. The main result of this section is:

Theorem 21. µHKA ⊢∞ e → f =⇒ µHKAω ⊢ e ≤ f

Note that, immediately from Theorem 18 and Proposition 20, we obtain:

Corollary 22. L(e) ⊆ L(f) =⇒ µHKAω ⊢ e ≤ f =⇒ µCA ⊢ e ≤ f
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To prove Theorem 21 we employ similar techniques to those used for an extension
of linear logic with least and greatest fixed points [DDS23], only specialised to the
current setting. We only sketch the ideas here, referencing the analogous definitions
and theorems from that work at the appropriate moments.

4.1. Projections. Let us consider cedents Γ = Γ(f1, . . . , fk) where some occur-
rences of f1, . . . , fk are distinguished. Note that the distinguished occurrences of
each fi may include some, none or all of the occurrences of fi in Γ, including as
subexpressions of of expressions in Γ. We allow distinct fi and fj to be the same
formula, as long as they distinguish a disjoint set of occurrences.

When ~f = (µX1g1(X1), . . . , µXkg(Xk)) and ~n ∈ N
k, we write ~f~n := (gn1

1 (0), . . . , gnk

k (0)),
the list obtained by assigning ~n to ~f .

Let us briefly recap the definition of projectionin [DDS23, Definition 15], spe-
cialised to our setting:

Definition 23 (Projections). For each µHKA preproof P of Γ(~f) → S and ~n ∈ N
k

we define P (~n) a preproof of Γ(~f~n) → S by coinduction on P :

• The definition of P (~n) commutes with any step for which a distinguished
formula is not principal for a µ-l step.

• If P ends with a step for which a distinguished formula if µ-l principal,

Q

Γ(µXe(X)), e(µXe(X)),Γ′(µXe(X)) → S
µ-l

Γ(µXe(X)), µXe(X),Γ′(µXe(X)) → S

(5)

then we proceed by case analysis on the number assigned:

P (0, ~n) := 0-l
Γ(0), 0,Γ′(0) → S

P (n+ 1, ~n) :=
Q(n,n+1,~n)

Γ(en+1(0)), e(en(0)),Γ′(en+1(0)) → S
=
Γ(en+1(0)), en+1(0),Γ′(en+1(0)) → S

where in the second case we have further distinguished the occurrences of
µXe(X) indicated in the auxiliary formula in (5).

Note that we have technically used a ‘repetition’ rule = in the translation above
to ensure productivity of the translation. However it turns out this is unnecessary,
as ∞-proofs are indeed closed under taking projections:

Proposition 24. If P is a µHKA ∞-proof, then so is P (~n).

The proof of this result follows the same argument as [DDS23, Proposition 18].
To briefly recall the idea:

Proof sketch. Each maximal branch B of P (~n) is a prefix of some branch B′ of P ,
by inspection of the translation, only with some µ-l steps replaced by ‘=’ steps or,
when B is finite, a 0-l step. Thus if B is infinite then it must have infinitely many
k steps, since B′ must be progressing, and so must have infinitely many µ-l steps
too. �
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In particular we have:

Corollary 25 (Projection). For each ∞-proof P of Γ, µXe(X),Γ′ → S, P (n) is
an ∞-proof of Γ, en(0),Γ′ → S, for each n < ω.

From here it is simple to provide a translation from µHKA ∞-proofs to µHKAω

preproofs, as in Definition 30 shortly. However, to prove the image of the translation
is wellfounded, we shall need some structural proof theoretic machinery, which will
also serve later use when dealing with greatest fixed points in Sections 5 and 6.

4.2. Intermezzo: ancestry and threads. Given an inference step r, as typeset
in Fig. 2, we say a formula occurrence f in an upper sequent is an immediate
ancestor of a formula occurrence e in the lower sequent if they have the same
colour; furthermore if e and f are occur in a cedent Γ,Γ′,∆,∆′, they must be the
matching occurrences of the same formula (i.e. at the same position in the cedent);
similarly if e and f occur in the RHS context S, they must be matching occurrences
in matching lists.

Construing immediate ancestry as a directed graph allows us to characterise
progress by consideration of its paths:

Definition 26 ((Progressing) threads). Fix a preproof P . A thread is a max-
imal path in the graph of immediate ancestry. An infinite thread on the LHS is
progressing if it is infinitely often principal (i.o.p.) for a µ-l step.

Our overloading of terminology is suggestive:

Proposition 27. P is progressing ⇔ each branch of P has a progressing thread.

Proof sketch. The ⇐= direction is trivial. For =⇒ direction we appeal to König’s
lemma. Fix a branch B and take the subtree of its immediate ancestry graph with
nodes the principal formula occurrences along B, and edges given by reachability
(‘direct ancestry’). By progressiveness this tree is infinite, and by inspection of the
rules it is finitely branching, thus it must have an infinite path by König’s Lemma.
This path induces an infintely often principal thread along B, which in turn must
be infinitely often µ-l principal as every other LHS rule strictly decreases the size
of formula. �

Example 28. Recall the ∞-proof in Example 13. The only infinite branch, looping
on •, has a progressing thread indicated in magenta.

Fact 29 (See, e.g., [Koz83, KMV22]). Any i.o.p. thread has a unique smallest i.o.p.
formula, under the subformula relation. This formula must be a fixed point formula.

4.3. Translation to ω-branching system. We are now ready to give a transla-
tion from µHKA∞ to µHKAω.

Definition 30 (ω-translation). For preproofs P define Pω by coinduction:

• ·ω commutes with any step not a µ-l.

•













P

Γ, e(µXe(X)),Γ′ → S
µ-l

Γ, µXe(X),Γ′ → S













ω

:=















P (n)ω

Γ, en(0),Γ′ → S















n<ω
ω

Γ, µXe(X),Γ′ → S
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Theorem 21 now follows immediately from the following result, obtained by
analysis of progressing threads in the image of the ω-translation:

Lemma 31. P is progressing =⇒ Pω is wellfounded.

The proof of Lemma 31 follows the same argument as for the analogous result
in [DDS23, Lemma 23].

Proof sketch. Each branch of Pω can be specified by a branch B of P and a (possibly
infinite) sequence of natural numbers ~n ∈ ω≤ω, specifying at each ω-step which
premiss to follow. Call this B~n. Now, take a progressing thread along B and
consider its smallest i.o.p. µ-formula, say µXe(X). If B~n follows, say the kth

premiss at the first corresponding principal step for µXe(X) in B, write K for
height of the (k+1)th unfolding of µXe(X) in B. It follows from inspection of the
ω-translation and projections that B~n has height ≤ K. �

Example 32. Recalling Example 13, let us see the ω-translation of R in (3).
First, let us (suggestively) write {akbk}k<n for the nth approximant of {anbn}n,
i.e. {akbk}k<0 := 0 and {akbk}k<n+1 := 1 + a{akbk}k<nb. Now Rω is given below,

left, where recursively R(0) := 0-l
0 → (a∗b∗)

and R(n+ 1) is given below, right:















R(n)

{akbk}k<n → [(a∗b∗)]















n<ω
ω,µ-r

{anbn}n → [(a∗b∗)]

;

init

→ [ ]
1-l,1-r

1 → [1]

1 → [(a∗b∗)]

R(n)

{akbk}k<n → (a∗b∗)
k
r
b

{akbk}k<n, b → [(a∗b∗), b]
·-l,·-r

{akbk}k<nb → [(a∗b∗)b]
µ-r,+-r,w-r

{akbk}k<nb → [(a∗b∗)]
k
l
a

a, {akbk}k<nb → [a, (a∗b∗)]
·-l,·-r

a{akbk}k<nb → [a(a∗b∗)]

a{akbk}k<nb → [(a∗b∗)]
+-l

1 + a{akbk}k<nb → [(a∗b∗)]

5. Greatest fixed points and ω-languages

We extend the grammar of expressions from (1) by:

e, f . . . ::= . . . | νXe(X)

We call such expressions µν-expressions when we need to distinguish them from
ones without ν. The notions of a (left-)productive and (left-)guarded expression are
defined in the same way, extending the grammar of (2) by the clause νXp.

As expected µν-expressions denote languages of finite and infinite words:

Definition 33 (Intended semantics of µν-expressions). We extend the notation vw
to all v, w ∈ A≤ω by setting vw = v when |v| = ω. We extend the definition of L(·)
from Definition 2 to all µν-expressions by setting L(νXe(X)) :=

⋃

{A ⊆ L(e(A))}
where now A varies over subsets of A≤ω.
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Again, since all the operations are monotone, L(νXe(X)) is indeed the greatest
fixed point of the operation A 7→ L(e(A)), by the Knaster-Tarski theorem. In fact
(ω-)languages computed by µν-expressions are just the ‘ω-context-free languages’
(ω-CFLs), cf. [CG77, Lin76], defined as the ‘Kleene closure’ of CFLs:

Definition 34 (ω-context-free languages). For A ⊆ A+ we write Aω := {w0w1w2 · · · :
∀i < ω wi ∈ A}. The class of ω-CFLs (CFω) is defined by:

CF
ω :=

{

⋃

i<n

AiB
ω
i : n < ω; Ai, Bi context-free and ε /∈ Ai, Bi, ∀i < n

}

It is not hard to see that each ω-CFL is computed by a µν-expression, by noting
that L(e)ω = L(νX(eX)):

Proposition 35. L ∈ CF
ω =⇒ L = L(e) for some left-productive e.

Proof. Given L =
⋃n

i=1 AiB
ω
i , by Proposition 10 let ei and fi be left-productive

with L(ei) = Ai, L(fi) = Bi for i = 1, . . . , n. Then, L = L(
∑n

i=1 eiνX(fiX)). �

We shall address the converse of this result later. First let us present our system
for µν-expressions, a natural extension of µHKA earlier:

Definition 36 (System). The system µνHKA extends µHKA by the rules:

Γ, e(νXe(X)),Γ′ → S
ν-l

Γ, νXe(X),Γ′ → S

Γ → S, [∆, e(νXe(X),∆′]
ν-r

Γ → S, [∆, νXe(X),∆′]
(6)

Preproofs for this system are defined just as for µHKA before. The definitions of
immediate ancestor and thread for µνHKA extends that of µHKA from Definition 26
according to the colouring above in (6).

However we must be more nuanced in defining progress, requiring a definition at
the level of threads as in Section 4. Noting that Fact 29 holds for our extended
language with νs as well as µs, we call an i.o.p. thread a µ-thread (or ν-thread)
if its smallest i.o.p. formula is a µ-formula (or ν-formula, respectively).

Definition 37 (Progress). Fix a preproof P . We say that an infinite thread τ
along a (infinite) branch B of P is progressing if it is i.o.p. and it is a µ-thread on
the LHS or it is a ν-thread on the RHS. B is progressing if it has a progressing
thread. P is a ∞-proof of µνHKA if each of its infinite branches has a progressing
thread.

Example 38. Write e := νZ(abZ) and f := µY (b + νX(aY X)). The sequent
e → [f ] has a preproof given in Fig. 4. This preproof has just one infinite branch,
looping on •, which indeed has a progressing thread following the magenta formulas.
The only fixed point infinitely often principal along this thread is νX(afX), which
is principal at each •. Thus this preproof is a proof and e → [f ] is a theorem of
µℓHKA∞.

Note that, even though this preproof is progressing, the infinite branch’s smallest
i.o.p. formula on the RHS is not a ν-formula, e.g. given by the magenta thread, as
f is also i.o.p. Let us point out that (a) the progressiveness condition only requires
existence of a progressing thread, even if other threads are not progressing (like the
unique LHS thread above).
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...
ν-r •

e → [νX(afX)]
kb

b, e → [b, νX(afX)]
w-r

b, e → [b, νX(afX)], [νX(aY X), νX(afX)]
+-r

b, e → [b+ νX(aY X), νX(afX)]
µ-r

b, e → [f, νX(afX)]
ka

a, b, e → [a, f, νX(afX)]
·-l,·-r

abe → [afνX(afX)]
ν-r •

e → [νX(afX)]
w-r

e → [b], [νX(afX)]
+-r

e → [b+ νX(afX)]
µ-r

e → [f ]

Figure 4. A µνℓHKA∞-preproof of e → [f ], where e := νZ(abZ)
and f := µY (b+ νX(aY X)).

Some necessary conventions: left-guarded and leftmost. Crucially, due to
the asymmetry in the definition of the product of infinite words, we must employ
further conventions to ensure soundness and completeness of ∞-proofs for L(·).
Our choice of conventions is inspired by the usual ‘leftmost’ semantics of ‘ω-CFGs’,
which we shall see in the next section.

First, we shall henceforth work with a lefmost restriction of µνHKA in order to
maintain soundness for L(·):

Definition 39. A µνHKA preproof is leftmost if each logical step has principal
formula the leftmost formula of its cedent, and there are no k

r-steps. Write µνℓHKA
for the restriction of µνHKA to only leftmost steps and µνℓHKA∞ for the class of
∞-proofs of µνℓHKA.

We must also restrict ourselves to left-guarded expressions in the sequel:

Convention 40. Henceforth, all expressions are assumed to be left-guarded.

Let us justify both of these restrictions via some examples.

Remark 41 (Unsound for non-leftmost). Unlike the µ-only setting it turns out that
µνHKA∞ is unsound without the leftmost restriction, regardless of left-guardedness.
For instance consider the preproof,

...
ν-r a, •

→ [a, νX(aX)]
·-r

→ [aνX(aX)]
ν-r •

→ [νX(aX)]

where a, • roots the same subproof as •, but for an extra a on the left of every
RHS. Of course the endsequent is not valid, as the LHS denotes {ε} while the
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Position Available move(s)
(aw, [a,∆]) (w,∆)
(w, [1,∆]) (w,∆)

(w, [e + f,∆]) (w, [e,∆]), (w, [f,∆])
(w, [ef,∆]) (w, [e, f,∆])

(w, [µXf(X),∆]) (w, [f(µXf(X)),∆])
(w, [νXf(X),∆]) (w, [f(νXf(X)),∆])

Figure 5. Rules of the evaluation puzzle.

RHS denotes {aω}. Note also that, while it is progressing thanks to the thread in
magenta, it is not leftmost due to the topmost displayed ν-r step.

Remark 42 (Incomplete for unguarded). On the other hand, without the left-
guardedness restriction, µνℓHKA∞ is not complete. For instance the sequent νXX →
[ ], {[a, νXX ]}a∈A is indeed valid as both sides compute all of P(A≤ω): any word
is either empty or begins with a letter. However the only available (leftmost) rule
application, bottom-up, is ν-l, which is a fixed point of leftmost proof search, ob-
viously not yielding a progressing preproof.

6. Metalogical results: a game-theoretic approach

Now we return to addressing the expressiveness of both the syntax of µν-expressions
and our system µνℓHKA∞, employing game-theoretic methods.

6.1. Evaluation puzzle and soundness. As an engine for our main metalogical
results about µνℓHKA, and for a converse to Proposition 35, we first characterise
membership via games:

Definition 43. The evaluation puzzle is a puzzle (i.e. one-player game) whose
positions are pairs (w,Γ) where w ∈ A≤ω and Γ is a cedent, i.e. a list of µν-
expressions. A play of the puzzle runs according to the rules in Fig. 5: puzzle-play
is deterministic at each state except when the expression is a sum, in which case
a choice must be made. During a play of the evaluation puzzle, formula ancestry
and threads are defined as for µνℓHKA preproofs, by associating each move with
the LHS of a left logical rule. A play is winning if:

• it terminates at the winning state (ε, [ ]); or,
• it is infinite and has a ν-thread (along its right components).

Example 44. Define d := µX(〈〉 + 〈X〉X), the set of non-empty well-bracketed
words. Let dω := νY dY . Let us look at a play from (〈ω , [dω]).

(〈ω,[dω]) (〈ω,[ddω]) (〈ω,[d,dω]) (〈ω ,[〈〉+〈d〉d,dω]) (〈ω,[〈d〉d,dω])

. . . (〈ω,[d,〉d,dω]) (〈ω ,[d〉d,dω]) (〈ω,[〈,d〉d,dω])

The play continues without dω ever being principal (essentially, going into deeper
and deeper nesting to match a 〈 with a 〉). Since even the first match is never made,
there is no hope of progress. The play (and, in fact, any play) is thus losing. On
the other hand, consider the following play from (u, [dω]) where u = (〈〉)ω . It is,
indeed winning and its ν-thread is indicated in magenta.

(u,[dω]) (u,[d,dω]) (u,[〈〉+〈d〉d,dω]) (u,[〈〉,dω]) (u,[〈,〉,dω]) (〉u,[〉,dω])
2
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Theorem 45 (Evaluation). w ∈ L(Γ) ⇔ there is a winning play from (w,Γ).

The proof is rather involved, employing the method of ‘signatures’ common in
fixed point logics, cf. e.g. [NW96], which serve as ‘least witnesses’ to word mem-
bership via carefully managing ordinal approximants for fixed points. Here we
must be somewhat more careful in the argument because positions of our puz-
zle include cedents, not single formulas: we must crucially assign signatures to
each formula of a cedent. Working with cedents rather than formulas allows the
evaluation puzzle to remain strictly single player. This is critical for expressivity:
alternating context-free grammars and pushdown automata compute more than
just CFLs [MHHO05, CKS81].

The next subsection is devoted to a proof of the Evaluation Theorem above.
Before that, let us give an important consquence:

We can now prove the soundness of µνℓHKA∞ by reduction to Theorem 45:

Theorem 46 (Soundness). µνℓHKA ⊢∞ Γ → S =⇒ L(Γ) ⊆ L(S).

Proof sketch. Let P be a ∞-proof of Γ → S and w ∈ L(Γ). We show w ∈ L(S).
First, since w ∈ L(Γ) there is a winning play π from (w,Γ) by Theorem 45, which
induces a unique (maximal) branch Bπ of P which must have a progressing thread
τ . Now, since π is a winning play from (w, e), τ cannot be on the LHS, so it is an
RHS ν-thread following, say, a sequence of cedents [Γi]i<ω . By construction [Γi]i<ω

has an infinite subsequence, namely whenever it is principal, that forms (the right
components of) a winning play from (w,Γ0), with Γ0 ∈ S. Thus indeed w ∈ L(S)
by Theorem 45. �

6.2. Proof of the Evaluation Theorem. Let us now revisit the argument for
Theorem 45 more formally. This subsection may be safely skipped by the reader
comfortable with that result.

Write ⊑ for the subformula relation. Recalling Definition 8, let us write e ≤FL f
if e ∈ FL(f), e <FL f if e ≤FL f 6≤FL e and e =FL f if e ≤FL f ≤FL e.

Definition 47 (Dependency order). Let the dependency order be � :=≤FL × ⊒,
i.e. e � f if either e <FL f or e =FL f and f ⊑ e.

Note that, by the properties of FL closure, � is a well partial order on expressions.
In the sequel, we assume an arbitrary extension of � to a total well-order ≤.

Definition 48 (Signatures). Let M and N be finite sets of µ-expressions {µX0e0 ≻
· · · ≻ µXn−1en−1} and {νX0e0 ≻ · · · ≻ νXn−1en−1} respectively. A µ-signature
(respectively, a µ-signature) is a sequence ~α = (αi)

n−1
i=0 of ordinals indexed by M

(respecively, N). Signatures are ordered by the lexicographical product order.

Let us temporarily expand the language of expressions by,

e, f, . . . ::= . . . | µαXe | ναXe

where α ranges over ordinals.

Definition 49. Fix a finite set of µ-formulas {µX0e0 ≻ · · · ≻ µXn−1en−1} and
a µ-signature ~α = (αi)

n−1
i=0 . Given an expression e, its corresponding µ-signed

formula e~α is one where every occurrence µXiei has been replaced by µαiXiei.
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Similarly, given a finite set of ν-formulas, a ν-signature ~α, and an expression
e, its corresponding ν-signed formula e~α is one where every occurrence of a ν-
subformula has been replaced by its corresponding approximant.

We interpret such expressions by the inflationary and deflationary constructions
respectively:

• L(µ0Xe(X)) := ∅

• L(µα+1Xe(X)) := L(e(µαXe(X)))
• L(µλXe(X)) :=

⋃

α<λ

L(µαXe(X)), when λ is a limit ordinal.

• L(ν0Xe(X)) := A≤ω

• L(να+1Xe(X)) := L(e(ναXe(X)))
• L(νλXe(X)) :=

⋂

α<λ

L(ναXe(X)), when λ is a limit ordinal.

Finally, we extend the notion of µ and ν signatures to lists of expressions by writ-
ing Γ~α and Γ

~α
(parameterised by lists of vectors of ordinals now, by abuse of nota-

tion) for the corresponding µ and ν-signed lists of Γ. Spelt out, [e1, . . . , en]~α1::···::~αn

is a shorthand for [e~α1

1 , . . . , e~αn
n ] (similarly for ν-signed). Lists of vectors are lexico-

graphically ordered.
Recall that least and greatest fixed points can be computed as limits of approx-

imants. In particular, we have,

• L(µXe) =
⋃

α∈Ord

L(µαXe)

• L(νXe) =
⋂

α∈Ord

L(ναXe)

where α ranges over ordinals. Thus we have immediately:

Proposition 50. Suppose Γ is a list of expressions. We have:

• If w ∈ L(Γ) then there is a µ-signature ~α such that w ∈ L(Γ~α).

• If w /∈ L(Γ) then there is a ν-signature ~α such that w /∈ L(Γ
~α
).

We are now ready to prove our characterisation of evaluation:

Proof of Theorem 45. ( =⇒ ) Suppose w ∈ L(Γ). By Proposition 50, there is a least
µ-signature ~α such that w ∈ L(Γ~α). We will construct a winning play (wi,Γi)i∈λ

and sequence of signatures ( ~αi)i∈λ from (w,Γ) such that:

• (w0,Γ0, ~α0) = (w,Γ, ~α);

• for all i ∈ λ, ~αi is a µ-signature such that wi ∈ L(Γ
~αi

);

where λ ∈ ω + 1. If the play is finite then it is winning by construction, so assume
it is infinite i.e. λ = ω.

We will construct it by induction on i. The base case is already defined. For the
induction case, assume Γi = f,∆ and ~αi = ~α :: ~α and we will do a case -analysis
on f .

• Suppose f = f0 + f1.
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wi ∈ L([f0 + f1,∆]~α::~α) [By induction hypothesis]

=⇒ wi ∈ L([f0 + f ~α
1 ,∆

~α])

=⇒ wi ∈ L([f ~α
0 ,∆

~α]) or wi ∈ L([f ~α
1 ,∆

~α])

=⇒ wi ∈ L([f0,∆]
~αi

) or wi ∈ L([f1,∆]
~αi

)

Wlog, assumewi ∈ L([f0,∆]
~αi

). Choose (wi+1,Γi+1, ~αi+1) = (wi, [f0,∆], ~αi).
• Suppose f = f0 · f1.

wi ∈ L([f0 · f1,∆]~α::~α) [By induction hypothesis]

=⇒ wi ∈ L([f ~α
0 , f

~α
1 ,∆

~α])

=⇒ wi ∈ L([f0, f1,∆]~α::~α::~α)

Choose (wi+1,Γi+1, ~αi+1) = (wi, [f0, f1,∆], ~α :: ~α :: ~α).
• Suppose f = a for some a ∈ A.

wi ∈ L([a,∆]~α::~α) [By induction hypothesis]

=⇒ wi ∈ L([a~α,∆~α])

=⇒ wi = aw′ and w′ ∈ L(∆~α)

Choose (wi+1,Γi+1, ~αi+1) = (w′,∆, ~α).
• Suppose f = νXf0.

wi ∈ L([νXf0,∆]~α::~α) [By induction hypothesis]

=⇒ wi ∈ L([νXf ~α
0 ,∆

~α])

=⇒ wi ∈ L([f0(νXf0)
~α,∆~α]) [L(νXe,Γ) = L(e(νXe),Γ)]

=⇒ wi ∈ L([f0(νXf0),∆]~α::~α)

Choose (wi+1,Γi+1, ~αi+1) = (wi, [f0(νXf0),∆], ~αi)
• Suppose f = µXf0.

wi ∈ L([µXf0,∆]~α::~α) [By induction hypothesis]

=⇒ wi ∈ L([µαjXf0,∆
~α]) [where ~α = (αi)]

=⇒ wi ∈ L([f0(µ
βXf0),∆

~α]) [for some β < αj ]

=⇒ wi ∈ L([f0(µXf0),∆]~α
′::~α) [~α′ = ~α[β/αj ]]

Choose (wi+1,Γi+1, ~αi+1) = (wi, [f0(νXf0),∆], ~α′ :: ~α) works.

We now claim that this play is winning. Suppose not. Then, the smallest formula
principal infinitely often is µ. We follow its thread and obtain a strictly decreasing
sequence of ordinals. Contradiction.
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( ⇐= ) For the converse direction, we will prove the contrapositive. Suppose
w 6∈ L(Γ). Fix an arbitrary play π = (wi,Γi)i∈λ from (w,Γ) for some λ ∈ ω +
1. By inspection of the puzzle rules, non-membership is preserved i.e. we always
have wi /∈ L(Γi). By Proposition 50, there are ν-signatures ~αi such that wi /∈
L(Γ

~αi
). Following an argument like above, the signature corresponding to a thread

is a monotone non-increasing sequence. Moreover, if π is winning, it is strictly
decreasing. Therefore, π is not winning. �

6.3. ω-context-freeness via Muller grammars. We can now use the adequacy
of the evaluation puzzle to recover a converse of Proposition 35. For this, we
need to recall a grammar-formulation of CFω, due to Cohen and Gold [CG77] and
independently Nivat [Niv77, Niv78].

A Muller (ω-)CFG (MCFG) is a CFG G, equipped with a set F ⊆ P(V) of
acceptable sets. We define a rewrite relation →G ⊆ (V ∪A)∗× (V ∪A)∗, leftmost
reduction, by ~aXv →G ~auv whenever ~a ∈ A∗, X → u is a production of G and
v ∈ (V∪A)∗. A leftmost derivation is just a maximal (possibly infinite) sequence
along →G . We say G accepts w ∈ A≤ω if there is a leftmost derivation δ such that
δ converges to w and the set of infinitely often occurring states that are LHSs of
productions along δ is in F . We write L(G) for the set of words G accepts.

Theorem 51 ([CG77, Niv77, Niv78]). Let L ⊆ Aω. L ∈ CF
ω ⇔ L = L(G) for a

MCFG G.

Now we have a converse of Proposition 35 by:

Proposition 52. For each expression e there is a MCFG G s.t. L(e) = L(G).

Proof sketch. Given a µν-expression e, we construct a grammar just like in (3),
but with extra clause XνXf(X) → Xf(νXf(X)). We maintain two copies of each
non-terminal, one magenta and one normal, so that a derivation also ‘guesses’ a
ν-thread ‘on the fly’. Formally, the magenta productions of our grammar are:

X1 → ε
Xa → a

Xf+g → Xf | Xg

Xfg → XfXg | XfXg

XµXf(X) → Xf(µXf(X))

XνXf(X) → Xf(νXf(X))

Productions for normal non-terminals have only normal non-terminals on their
RHSs.

Now set F , the set of acceptable sets, to include all sets extending some {Xf :
f ∈ E}, for E with smallest expression a ν-formula, by normal non-terminals. Now
any accepting leftmost derivation of a word w from Xe describes a winning play of
the evaluation puzzle from (w, e) and vice-versa. �

6.4. Proof search game and completeness. In order to prove completeness of
µνℓHKA∞, we need to introduce a game-theoretic mechanism for organising proof
search, in particular so that we can rely on determinacy principles thereof.

Definition 53 (Proof search game). The proof search game (for µνℓHKA) is a
two-player game played between Prover (P), whose positions are inference steps of
µνℓHKA, and Denier (D), whose positions are sequents of µνℓHKA. A play of the
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game starts from a particular sequent: at each turn, P chooses an inference step
with the current sequent as conclusion, and D chooses a premiss of that step; the
process repeats from this sequent as long as possible.

An infinite play of the game is won by P (aka lost by D) if the branch con-
structed has a progressing thread; otherwise it is won by D (aka lost by P). In the
case of deadlock, the player with no valid move loses.

Proposition 54 (Determinacy (∃0#)). The proof search game is determined, i.e.
from any sequent Γ → S, either P or D has a winning strategy.

Note that the winning condition of the proof search game is (lightface) ana-
lytic, i.e. Σ1

1: “there exists a progressing thread”. Lightface analytic determinacy
lies beyond ZFC, as indicated equivalent to the existence of 0# [Har78]. Further
consideration of our metatheory is beyond the scope of this work.

It is not hard to see that P-winning-strategies are ‘just’ ∞-proofs. Our goal is
to show a similar result for D, a sort of ‘countermodel construction’.

Lemma 55. D has a winning strategy from Γ → S =⇒ L(Γ) \ L(S) 6= ∅.

Before proving this, let us point out that Lemma 17 applies equally to the system
µνHKA. We also have the useful observation:

Proposition 56 (Modal). L(aΓ) ⊆ {ε} ∪
⋃

a∈A

L(aSa) =⇒ L(Γ) ⊆ L(Sa).

This follows directly from the definition of L(·). Now we can carry out our ‘coun-
termodel construction’ from D-winning-strategies:

Proof of Lemma 55. Construct a P-strategy p that is deadlock-free by always pre-
serving validity, relying on Lemma 17 and Proposition 56. In more detail p does
the following:

(1) Apply leftmost logical steps (on LHS or RHS) as long as possible.
(2) If the LHS is empty and the RHS contains an empty list, then weaken the

remainder of the RHS and apply init.
(3) Otherwise, if the LHS has form aΓ and RHS has form aSa, S, where S

contains only lists that are empty or begin with some b 6= a, then apply
w-r and k

l
a to obtain the sequent Γ → Sa and go back to 1.

Now each iteration of 1 must terminate by left-guardedness and leftmostness. This
must end at a valid sequent, by Lemma 17, each of whose lists are either or begin
with a letter, by inspection of the rules. Now, if the LHS is empty, then the RHS
must contain an empty list, and so step 2 successfully terminates the preproof. If
the LHS has form aΓ, then step 3 applies and preserves validity by Proposition 56.
Note that any infinite play of p must repeat step 3 infinitely often, as each iteration
of 1 terminates, and so has infinitely many k

l steps and is not ultimately stable.
Now, suppose d is a D-winning-strategy and play p against it to construct a

play B = (Si)i<ω = (Γi → Si)i<ω . Note that indeed this play must be infinite
since (a) p is deadlock-free; and (b) d is D-winning. Now, let w =

∏

kla∈B

a be the

product of labels of k steps along B, in the order they appear bottom-up. We claim
w ∈ L(Γ) \ L(S):

• w ∈ L(Γ). By construction [Γi]i has a subsequence forming an infinite play
π of the evaluation puzzle from (w,Γ). Since the play B is won by D, B
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cannot have a µ-thread so it must have a ν-thread (since it is i.o.p.), and
so π is winning. Thus w ∈ L(Γ) by Theorem 45.

• w /∈ L(S). Take an arbitrary play π of the evaluation puzzle from some
(w,∆) with ∆ ∈ S. This again induces an infinite sequence of cedents
[∆i]i<ω along the RHSs of B. Now, [∆i]i<ω cannot have a ν-thread by
assumption that B is winning for D, and so π is not a winning play of the
evaluation puzzle from (w,∆). Since the choices of ∆ ∈ S and play π were
arbitrary, indeed we have w /∈ L(S) by Theorem 45.

�

Now from Proposition 54 and Lemma 55, observing that P-winning-strategies
are just ∞-proofs, we conclude:

Theorem 57 (Completeness). L(Γ) ⊆ L(S) =⇒ µνℓHKA ⊢∞ Γ → S.

7. Complexity matters and further perspectives

In this subsection we make further comments, in particular regarding the com-
plexity of our systems, at the level of arithmetical and analytical hierarchies. These
concepts are well-surveyed in standard textbooks, e.g. [MW85, Sac17], as well as
various online resources.

Complexity and irregularity for finite words. The equational theory of
µ-expressions in L(·) is actually Π0

1-complete, i.e. co-recursively-enumerable, due to
the same complexity of universality of context-free grammars (see, e.g., [JEH01]).
In this sense there is no hope of attaining a finitely presentable (e.g. cyclic, in-
ductive) system for the equational theory of µ-expressions in L(·). However it
is not hard to see that our wellfounded system µHKAω enjoys optimal Π0

1 proof
search, thanks to invertibility and termination of the rules, along with decidability
of membership checking. Indeed a similar argument is used by Palka in [Pal07]
for the theory of ‘∗-continuous action lattices’. Furthermore let us point out that
our non-wellfounded system also enjoys optimal proof search: µHKA ⊢∞ Γ → S is
equivalent, by invertibility, to checking that every sequent of form ~a → S reachable
by only left rules in bottom-up proof search has a polynomial-size proof (bound
induced by length of leftmost derivations). This is a Π0

1 property.

Complexity and inaxiomatisability for infinite words. It would be natural
to wonder whether a similar argument to Section 4 gives rise to some infinitary
axiomatisation of the equational theory of µν-expressions in L(·). In fact, it turns
out this is impossible: the equational theory of ω-CFLs is Π1

2-complete [Fin09], so
there is no hope of a Π0

1 (or even Σ1
2) axiomatisation. In particular, the projection

argument of Section 4 cannot be scaled to the full system µνℓHKA because · does
not distribute over

⋂

in L(·), for the corresponding putative ‘right ω steps’ for ν.
For instance 0 = ((aa)∗ ∩ a(aa)∗)a∗ 6= (aa)∗a∗ ∩ a(aa)∗a∗ = aa∗. Indeed let us
point out that here it is crucial to use our hypersequential system HKA as a base
rather than, say, the intuitionistic systems of other proof theoretic works for regular
expressions (and friends) [Pal07, DP18]: the appropriate extension of those systems
by µs and νs should indeed enjoy an ω-translation, due to only one formula on the
right, rendering them incomplete.

Again let us point out that ∞-provability in µνℓHKA, in a sense, enjoys optimal
complexity. By determinacy of the proof search game, µνℓHKA ⊢∞ Γ → S if and
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only if there is no D-winning-strategy from Γ → S. The latter is indeed a Π1
2

statement: “for every D-strategy, there exists a play along which there exists a
progressing thread”.

Comparison to [GHK13]. Our method for showing completeness of µHKAω

is quite different from the analogous result of [GHK13] which uses the notion of
‘rank’ for µ-formulas, cf. [AKS14]. Our result is somewhat stronger, giving cut-
free completeness, but it could be possible to use ranks directly to obtain such a
result too. More interestingly, the notion of projections and ω-translation should be
well-defined (for LHS µ formulas) even in the presence of νs, cf. [DDS23], whereas
the rank method apparently breaks down in such extensions. This means that
our method should also scale to µνHKA ∞-proofs where, say, each infinite branch
has a LHS µ-thread. It would be interesting to see if this method can be used to
axiomatise some natural fragments of ω-context-free inclusions.

Note that, strictly speaking, our completeness result for µCA was only given for
the guarded fragment. However it is known that µCA (and even weaker theories)
already proves the equivalence of each expression to one that is even left-guarded,
by formalising conversion to Greibach normal form [EL05].

8. Conclusions

In this work we investigated of the proof theory of context-free languages (CFLs)
over a syntax of µ-expressions. We defined a non-wellfounded proof system µHKA∞

and showed its soundness and completeness for the model L(·) of context-free lan-
guages. We used this completeness result to recover the same for a cut-free ω-
branching system µHKAω via proof-theoretic techniques. This gave an alternative
proof of the completeness for the theory of µ-continuous Chomsky algebras from
[GHK13]. We extended µ-expressions by greatest fixed points to obtain a syn-
tax for ω-context-free languages. We studied an extension by greatest fixed points,
µνℓHKA∞ and showed its soundness and completeness for the model L(·) of context-
free languages, employing game theoretic techniques.

Since inclusion of CFLs is Π0
1-complete, no recursively enumerable (r.e.) system

can be sound and complete for their equational theory. However, by restricting
products to a letter on the left one can obtain a syntax for right-linear grammars.
Indeed, for such a restriction complete cyclic systems can be duly obtained [DD24].
It would be interesting to investigate systems for related decidable or r.e. inclu-
sion problems, e.g. inclusions of context-free languages in regular languages, and
inclusions of visibly pushdown languages [AM04, AM09].

The positions of our evaluation puzzle for µν-expressions use cedents to decom-
pose products, similar to the stack of a pushdown automaton, rather than requiring
an additional player. Previous works have similarly proposed model-checking games
for (fragments/variations of) context-free expressions, cf. [Lan02, LMS04], where
more complex winning conditions seem to be required. It would be interesting to
compare our evaluation puzzle to those games in more detail.

Note that our completeness result, via determinacy of the proof search game,
depends on the assumption of (lightface) analytic determinacy. It is natural to
ask whether this is necessary, but this consideration is beyond the scope of this
work. Let us point out, however, that even ω-context-free determinacy exceeds the
capacity of ZFC [Fin13, LT17].
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Finally, it would be interesting to study the structural proof theory arising from
systems µHKA∞ and µνHKA∞, cf. [DP18]. It would also be interesting to see if the
restriction to leftmost ∞-proofs can be replaced by stronger progress conditions,
such as the ‘alternating threads’ from [DG22, DG23], in a similar hypersequential
system for predicate logic. Note that the same leftmost constraint was employed
in [HK22] for an extension of HKA to ω-regular languages.
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