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Abstract—In the context of prediction-as-a-service, concerns
about the privacy of the data and the model have been brought
up and tackled via secure inference protocols. These protocols are
built up by using single or multiple cryptographic tools designed
under a variety of different security assumptions.

In this paper, we introduce SECO, a secure inference protocol
that enables a user holding an input data vector and multiple
server nodes deployed with a split neural network model to
collaboratively compute the prediction, without compromising
either party’s data privacy. We extend prior work on secure
inference that requires the entire neural network model to be
located on a single server node, to a multi-server hierarchy, where
the user communicates to a gateway server node, which in turn
communicates to remote server nodes. The inference task is split
across the server nodes and must be performed over an encrypted
copy of the data vector.

We adopt multiparty homomorphic encryption and multiparty
garbled circuit schemes, making the system secure against
dishonest majority of semi-honest servers as well as protecting
the partial model structure from the user. We evaluate SECO
on multiple models, achieving the reduction of computation and
communication cost for the user, making the protocol applicable
to user’s devices with limited resources.

Index Terms—Distributed machine learning, Security and
privacy

I. INTRODUCTION

Prediction-as-a-service using neural network models enables
a company to deploy a neural network on the cloud and
allows users to upload their input and obtain the correspond-
ing prediction results. However, this may lead to privacy
concerns and legal issues. There are regulatory constraints
such as Health Insurance Portability and Accountability Act
(HIPAA) and EU General Data Protection Regulation (GDPR),
restricting the way data could be used or shared. A secure
inference protocol enables a user, holding its input, and
servers deployed with the neural network to collaboratively
evaluate the prediction result, preserving the privacy of both
the input and the model parameters. Many cryptographic
tools, such as Homomorphic Encryption (HE) [1] and secure
multiparty computation (MPC), have been applied in this area.
Homomorphic encryption allows the data holder to encrypt
its data with the public key, any other party who obtains the
encrypted data can compute on it without decryption, and only
the party holding the secret key can decrypt the computed
result. MPC is usually a mixed approach that combines secret
sharing and Garbled Circuit [2], etc. Both HE and MPC can
protect data privacy. Pure HE-based secure inference protocols
[3][4][5][6] provides the data and model confidentiality as well

as protects the structure of the model. However, it involves
heavy computation and does not immediately generalize to
non-linear function computations used during predictions. One
popular approach in HE-based protocols is to replace the
activation functions in neural networks with approximated
polynomials at the cost of reduced accuracy. While MPC
protocols are not as computationally heavy as HE-based
protocols, they require multiple rounds of communication
and can also leak some information about the model to the
users. Furthermore, there are hybrid approaches that combine
HE and MPC. GAZELLE [7] relies on a hybrid approach
by employing HE and two-party computation, performing
linear function evaluation with HE and non-linear function
evaluation with Garbled Circuit. DELPHI [8] builds upon
techniques from GAZELLE and modifies it to a two-phase
protocol. It reduces the use of heavy cryptographic tools in
the online phase, thus speeding up online inference. However,
these methods come with certain limitations. Firstly, they
reveal the neural network’s architecture to the user, which
is problematic when the model’s structure is intended to
remain confidential, a common scenario with today’s large
language models. Secondly, they require user equipment to
possess substantial computational power and communication
capabilities. Additionally, they operate under the assumption
that the model is hosted on a single server, which is impractical
for very large models. For instance, processing a model with
the size of GPT-4 necessitates a cluster of multiple GPUs.
To process such a large model effectively, distributing the
model parameters across several servers, each with limited
GPU resources, can enhance processing power.

With these considerations, we propose SECO, a hybrid HE-
MPC secure inference protocol that involves a hierarchy of
servers as shown in Figure 1. The user communicates with a
gateway server that stores a part (the parameters associated
with the first few layers) of the neural network model. The
remainder of the neural network model is stored on remote
servers, with each server holding a share of the weights
of the linear layers. Our setup extends the secure inference
protocol proposed in [8] to such a multi-server scenario,
which has several advantages. First, the user only needs to
participate during the evaluation involving part of the network
model stored on the gateway server. It does not need to
participate during evaluations involving the network model
stored on the remote servers. This reduces the communication
and computational requirements for the user device while
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Fig. 1. Protocol Architecture

increasing the load on the servers, which enables the use of
SECO on lightweight user devices. Furthermore although as
in prior works [8], the structures of the layers in the neural
network model stored on the gateway server must be revealed
to the user, the structures of the layers on the remote server are
not revealed to the user. SECO offers the benefit of hiding most
of the neural network’s architecture, crucial for protecting the
proprietary structures of large models like GPT-4, where both
the model’s parameters and the model’s design are valuable
assets. We demonstrate that a straightforward application of
prior works to the hierarchical server setting can lead to
information leakage. Our proposed setting involves storing a
secret share of model weights at the remote server. However,
for secure inference of the partial model on the remote servers,
a straightforward extension of DELPHI’s 2PC protocol to
three-party setting with distributed weights is not privacy-
preserving due to the limitation of the plain HE scheme. To
privately perform the execution of secure inference on the
remote servers, we design a sub-protocol relying on multiparty
HE, secret sharing, and multiparty Garbled Circuit schemes,
ensuring the privacy of each individual data while facilitating
efficient communication. We achieve this by 1) designing new
secret sharing scheme and integrating it with multiparty HE
for secure computation of linear functions 2) departing from
the conventional approach for the use of Garbled Circuits (GC)
in DELPHI by redesigning the assignment of roles for secure
computation of non-linear functions. We formally demonstrate
that our proposed method prevents information leakage in the
presence of dishonest majority of honest-but-curious servers.
We have implemented SECO and reported the performance.
The results indicate that SECO significantly enhances effi-
ciency by reducing the user’s online participation time by
up to 9.9× and decreasing the user’s online communication
costs by as much as 18.5× compared to DELPHI. It also
provides a versatile tradeoff between the communication and
computation loads between the user and server in addition to
protecting more information about the neural network than
prior works [8].

II. RELATED WORK

A. Privacy-Preserving Inference on Neural Networks

Secure Inference has received considerable attention in
recent years. It is developed based on the following techniques:
homomorphic encryption [9], secret sharing and garbled cir-
cuits [2]. Some earlier works utilize a single technique and
their models are simple machine learning models such as linear
regression [10] [11], linear classifiers [12] [13] [14], etc.

a) HE-based Protocols: Pure HE-based protocols usu-
ally protect the complete model information including the
architecture but lack support for non-approximated activation
functions. CryptoNets [3] was one of the earliest works to
use homomorphic encryption on neural network inference.
CryptoDL [4] improves upon CryptoNets by choosing the
interval and the degree of approximations based on heuristics
on the data distribution. CHET [5] also improves upon Cryp-
toNets by modifying the approximated activation function that
CryptoNets uses to f(x) = ax2+bx with learnable parameters
a and b. TAPAS [6] utilizes FHE [15] to allow arbitrary-layer
neural network processing and proposes tricks to accelerate
computation on encrypted data. nGraph-HE [16] develops
HE-aware graph-compiler optimizations on general matrix-
matrix multiplication operations and convolution-batch-norm
operation. CHIMERA [17] uses different HE schemes for
ReLU functions and other neural network functions. It needs to
switch between two HE schemes to evaluate the model, leading
to high computational costs. Cheetah [18] presents a set of
optimizations to speed up HE-based secure inference, includ-
ing auto-tuning HE security parameters, the order scheduler
for HE operations, and a hardware accelerator architecture.
Pure HE-based protocols involve heavy computation and their
performance are not practical due to their costly homomorphic
computations.

b) MPC-based Protocols: Pure MPC-based protocols
are usually high-throughput but with high communication
overhead due to multiplication operations. Furthermore, they
usually need to expose the structure of the model to all parties.
ABY [19] is a 2PC protocol that supports arbitrary neural
network functions by combining Arithmetic, Boolean circuits,
and Yao’s garbled circuits. ABY3 [20] improves ABY by
extending it to 3-party settings and optimizing the conversion
between Arithmetic, Boolean circuits, and garbled circuits.
3PC protocol SecureNN [21] distributes 2-out-of-2 secret
sharing of the input among two of three servers. However,
it is only demonstrated on small DNNs. FALCON, a 3PC
protocol proposed by Wagh et al.[22] uses replicated secret
sharing to reduce the number of interactions. However, the
use of replicated secret sharing in the context of prediction-
as-a-service necessitates an increase in communication costs
for the user. To sum up, MPC-based protocols rely on as-
sumptions such as non-collusion, or an honest majority among
the servers. Such a strong assumption of the system might
not always align with the practical environments. Conversely,
SECO assumes dishonest majority among servers, meaning the
user’s input privacy can be protected even when most of the



servers are corrupted by the adversary. Thus, SECO can offer a
higher degree of trustworthiness to users than pure MPC-based
protocols. Furthermore, these 3PC protocols require the user to
divide the input into multiple random shares. Each input share
is then dispatched to three different servers, thereby increasing
the communication costs for the user.

c) HE-MPC-based Protocols: HE-MPC-based Protocols
are designed by using both HE and MPC in a hybrid scheme.
GAZELLE [7] designs schemes for HE neural network opera-
tions. It uses HE to evaluate linear layers and Garbled Circuits
to evaluate non-linear layers, achieving efficient secure infer-
ence with high accuracy. DELPHI [8] modifies GAZELLE by
designing two phases with the offline phase using HE, speed-
ing up the online inference by evaluating the neural network in
plaintext. It also proposes a novel neural network architecture
search planner to determine where to approximate ReLU in the
neural network, trading off between performance and accuracy.
MP2ML [23] is proposed based on a novel combination of
nGraph-HE [16] and ABY [19], combining additive secret
sharing and CKKS [24] HE scheme. However, HE-MPC-based
Protocols face several limitations. Firstly, they require reveal-
ing the neural network’s architecture to users, problematic for
confidential models like large language models. Secondly, they
demand substantial computational power and communication
capabilities from user equipment, which can be a barrier for
those with limited resources. Thirdly, these methods assume
the model is hosted on a single server, impractical for large
models like GPT-4 that need multiple GPUs. SECO is derived
from these 2PC HE-MPC-based Protocols and is optimized to
address the mentioned limitations.

B. Split Neural Network

Split neural network is a specific type of neural network
architecture. In this method, the neural network is divided
into two or more sections, and each section is processed on
different devices or servers. It is often used to reduce load for
devices with limited resources. SplitFed [25] is a federated
learning framework that combines federated learning with
split learning for better model privacy. However, it applies
differential privacy rather than cryptographic tools. Pereteanu
et al. introduce Split HE [26], a framework where the server
provides the user with the middle portion of the neural
network. In this setup, the user conducts plaintext inference on
the middle section of the network, while the server manages
the inference of other parts under homomorphic encryption.
However, this approach harms the privacy of the deployed
model. Khan et al. propose a secure training protocol named
Split Ways [27] based on U-shaped split learning, which
incorporates homomorphic encryption on the client side to
protect user input privacy. However, while they deploy only the
fully-connected layer on the server, the user is still responsible
for training the majority of the neural network. Split HE and
Split Ways explore the integration of split neural networks
with cryptographic tools. However, they do not fully utilize
the server’s computing resources and continue to depend
significantly on the user’s device.

III. PRELIMINARIES

A. Split Neural Network

Split Neural Network [28][29] involves splitting a neural
network model at different intermediate layers. Consider a
neural network function F composed of a sequence of layers
{F1, ...,FL}. Each layer Fi can be a linear layer or an activa-
tion layer. The prediction result of the model for a given input
x1 can be computed by F(x1) = FL(FL−1(...(F1(x1)))).
We split the model at the lth layer to get two models
FI = {F1, ...,Fl}, FII = {Fl+1, ...,FL} which could be
stored at two different nodes. The output can be expressed as
F(x1) = FII(FI(x1)). We adjust l to adjust the processing
(training or inference) load for the parties deployed with FI

and FII .

B. Cryptographic Blocks

We use the following cryptographic blocks to build the
protocol.

1) The Plain BFV Homomorphic Encryption: The
Brakerskil-Fan-Vercauteren scheme [1] is a Ring-Learning
with Errors (RLWE)-based cryptosystem that supports additive
and multiplicative homomorphic operations. We define the
plaintext space to be Rt = Zt[X]/(Xn+1) and the ciphertext
space to be Rq = Zq[X]/(Xn + 1), where n is a power
of 2. We denote ∆ = ⌈ qt ⌉. BFV Homomorphic Encryption
scheme can be expressed as a tuple of functionalities
HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval). The
scheme is based on two kinds of distributions: the key
distribution R3 = Z3[X]/(XN + 1) with coefficients
uniformly distributed in {−1, 0, 1}; the error distribution χ
over Rq with coefficients distributed according to a centered
discrete Gaussian.

• HE.KeyGen(Params) → (pk, sk):It takes a security
parameter as input and returns a public key pk and a
secret key sk.

Algorithm 1 HE.KeyGen(params)→ (pk, sk)
1: Sample s← R3

2: Let sk = s. Sample p1 ← Rq , e← χ
3: pk = (p0, p1) = (−sp1 + e, p1). Output (pk, sk)

• HE.Enc(pk,m)→ ct: It takes as input the public key pk
and message m, and outputs the ciphertext of m denoted
as ct.

Algorithm 2 HE.Enc(pk,m)→ ct

1: Let pk = (p0, p1). Sample u← R3, e0, e1 ← χ
2: Output ct = (∆m+ up0 + e0, up1 + e1)

• HE.Dec(sk, ct)→ m: It takes as input the secret key sk
and the ciphertext ct, and outputs message m.

Algorithm 3 HE.Dec(sk, ct)→ m

1: Let sk = s, ct = (c0, c1)
2: Output m = [⌊ t

q
[c0 + c1s]q⌉]t



• HE.Eval(pk, {cti, pti}, f) → ctf : It takes as input the
public key pk, valid ciphertexts {cti} encrypting {mi}
or plaintexts {pti} encoding {mi} and operation f , and
returns a valid ciphertext ctf encrypting f({mi}i). The
class of function f(·) that are supported include element-
wise addition Add, subtraction Sub and multiplication
Mul and slot rotation Rot, as well as a combination of
those basic operations.

2) Multiparty BFV Homomorphic Encryption (MPHE):
The Multiparty version of BFV Homomorphic Encryption
scheme (MPHE) [30] is extended from the plain BFV scheme.
It enables multiple distributed parties, each with input in
private, to collaboratively compute a function of those inputs
without leaking any party’s input. In this scheme, a common
public key collectively generated by parties is known to all
parties, while the corresponding secret key csk is distributed
among parties. Below we introduce the main functions used
in the protocol. Consider a scenario that N parties want to
collaboratively compute a function of their private inputs.

• MPHE.KeyGen(params)→ (pki, ski) :Each party runs
HE.KeyGen(params) and generates a public key pki
and secret key ski. This procedure requires a public
polynomial p1, which is agreed upon by all N parties.

• MPHE.DKeyGen({pki}
N−1
i=0 ) → cpk :It returns a com-

mon public key cpk, for a set of public keys {pki}
N−1
i=1 .

Its corresponding secret key csk is the aggregation of
{ski}N−1

i=1 .

Algorithm 4 MPHE.DKeyGen({pki}
N−1
i=0 )→ cpk

1: Let pki = (p0,i, p1)
2: Output cpk = ([

∑N−1
i=0 p0,i]q, p1)

• MPHE.Enc(cpk,m) → ct :It returns a ciphertext ct by
running HE.Enc(cpk,m).

• MPHE.Eval(cpk, {cti, pti}, f) → ctf :It returns a ci-
phertext ctf by running HE.Eval(cpk, {cti, pti}, f).

• MPHE.Reconstruct(ct, ski)→ pdi :Used by each party
i. It takes as input a publicly known ciphertext ct, party’s
secret key ski, outputs a partial decryption pdi.

Algorithm 5 MPHE.Reconstruct(ct, ski)→ pdi
1: Let ski = si, ct = (c0, c1). Sample ei ← χ
2: Output pdi = sic1 + ei

• MPHE.Dec({pdi}N−1
i=0 , ct) → m′: It takes as input

a set of partial decryption {pdi}N−1
i=0 and the corre-

sponding publicly known ciphertext ct. By aggregating
the partial decryption, it outputs m′ which is equal to
HE.Dec(ct, csk), provided that the noise powers are
again selected in a suitable manner.

3) Oblivious Transfer (OT): Oblivious transfer [31] [32] is
a protocol involving two parties, a sender who has an input
two messages m0,m1, and a receiver who holds a bit b as
input. Via OT, the receiver obtains mb. The security of the
protocol guarantees that the sender does not learn anything

Algorithm 6 MPHE.Dec({pdi}N−1
i=0 , ct)→ m′

1: Let ct = (c0, c1)
2: Compute

c0 + c1s = c0 +

N−1∑
i=0

pdi = c0 + c1(

N−1∑
i=0

si) +

N−1∑
i=0

ei

3: Output m′ = [⌊ t
q
[c0 + c1s]q⌉]t

about bit b and the receiver does not learn anything about the
message m1−b.

4) Garbled Circuits: A Garbled Circuit scheme [2] [33] is
a cryptographic tool involving two parties joint computing a
function C(x1, x2) where x1 and x2 are inputs provided by
the garbler and the evaluator. The scheme should keep the
inputs fully private. It is consists of a tuple of algorithms
GC=(GC.Garble, GC.Transfer, GC.Eval) with the following
syntax:

• GC.Garble(Params, C) → (C̃, label): Used by the
garbler. Assume C is composed of G gates (e.g., XOR,
AND, etc.) in total. The garbler garbles the circuit by
1) Assigning two random k-bit labels to each wire in
the circuit C corresponding to 0 and 1 where k is
the security parameter usually set to 128; 2) For each
gate g, g ∈ [G] in C, computing a garbled table C̃g

with 4 rows corresponding to 4 combinations of inputs
labels. Each row is the encryption of the output with two
corresponding input labels as the encryption key [34].
Output C̃ = {C̃g}G−1

g=0 and labels corresponding to input
wires label.

• GC.Transfer(label, xi) → labelxi : This function in-
volves both the garbler and the evaluator. If i = 2, for
input x2 held by the garbler, the garbler maps x2 with
the labels generated for input wire corresponding to x2

to obtain labelx2 , then sends labelx2 to the evaluator.
If i = 1, for input x1 held by the evaluator, the
evaluator cannot simply send x1 to the garbler to obtain
labelx1

. This undermines input privacy. The garbler and
the evaluator engage in an OT protocol where the garbler
provides labels for inputs wires belonging to the evaluator
and the garbler provides the bit-expression of x1. The
evaluator will receive the labels corresponding to x1

without exposing x1 to the garbler via OT. This step
outputs the correct labels labelxi

corresponding to actual
input xi.

• GC.Eval(C̃, {labelxi}i∈{1,2}) → y: Used by the eval-
uator. The evaluator starts from the first gate and uses
two input labels with the garbled table C̃0 to obtain the
output. Then the evaluator performs the evaluation for
each gate in order until obtaining the output y of the last
gate, where y = C(x1, x2).

A two-party Garbled Circuit scheme can be easily extended
to a multiparty computations scheme of arbitrary complexity
with an arbitrary number of participants providing inputs. The
input providers obtain the labels for their private inputs via OT



from the garbler, then they transmit the labels to the evaluator,
which reveals nothing about the inputs since the labels are
random.

5) Additive Secret Share: Let q be a prime. A 2-of-2
additive secret sharing of x ∈ Zq is a pair (⟨x⟩1, ⟨x⟩2) =
(x−r, r) ∈ Z2

q for a random r ∈ Zq such that x = ⟨x⟩1+⟨x⟩2.
Additive secret sharing is perfectly hidden, for example, given
a share ⟨x⟩1 or ⟨x⟩2, the value x is perfectly hidden. n-of-
n additive secret sharing can be easily extended from 2-of-2
additive secret sharing. A n-of-n additive secret sharing of x ∈
Zq can be constructed by generating (r1, ..., rn−1) ∈ Zn−1

q

uniformly at random and setting rn = x−
∑n−1

i=1 ri(mod q).

C. Prior Work: DELPHI

Here we describe the protocol we built upon: DELPHI [8].
DELPHI is a cryptographic neural network inference protocol.
There are two parties in the system of DELPHI: the user
and the server. DELPHI uses additive secret sharing pre-built
with homomorphic encryption to evaluate linear layers, and
garbled circuits pre-built to evaluate activation functions. Let
F = {Fi}Li=1 described in Section III-A be the deployed
model on the server, xi = Fi−1(Fi−2(...(F1(x1)))) is the the
intermediate prediction result of the first i − 1 layers where
x1 ∈ Zq is the input held by the user.

In the preprocessing phase, the client and the server pre-
compute the secret share which will be used for the inference
phase. For each linear layer i ∈ [L], with the user providing the
ciphertext of ri and the server providing the plaintext of Fi and
si, two parties interact to compute Firi−si where ri and si are
the random masks for building secret shares, resulting in each
of the party holding one of the two secret shares of Firi. For
ReLUs following linear layers, the server constructs a garbled
circuit C̃i based on circuit C computing ReLU function. Then
the server transmits C̃i to the user and input labels of Firi−si
and ri+1 via Oblivious Transfer to the user. We note that the
algorithm for computing the ciphertext of Firi in DELPHI
relies on GAZELLE’s design [7] for HE linear operations
(convolutional and fully-connected layer). We do not provide
details of this algorithm but represent it as a function Lin-
OP. With function Lin-OP, ciphertext ctri encrypting ri and
plaintext ptFi

encoding Fi as input, HE.Eval will output the
ciphertext of Firi.

In the inference phase, assuming xi is the prediction result
of the first i − 1 layers, at the beginning of the ith layer, the
server and the user hold the shares of xi: xi− ri and ri. The
server evaluates to get Fi(xi−ri)+ si, resulting in the server
and the user holding the secret shares of Fixi. For evaluating
ReLU, the server transmits the input labels corresponding to
its secret share to the user. Then the client evaluates C̃i to
obtain a secret share of the ReLU output.

IV. SECURE INFERENCE: HIERARCHICAL SERVER
CONFIGURATIONS

Our proposed setup involves splitting the neural network
model across three server nodes. We assume that the user
communicates with a gateway server that holds part of the

neural network model. The remainder of the model is stored
on remote servers that do not directly communicate with the
user. One motivation for considering such a scenario is that
the interactions of the user and the server are required in
computing each layer in the DELPHI protocol. This increases
the computational and communication load on the user. Fur-
thermore, the user gets access to information about the neural
network including the shape of each layer and the total number
of model layers since the user needs to generate randomness
for each linear layer to build up additive secret shares, which
is undesirable. By deploying a subset of the model on remote
servers that do not directly interact with the user we can
partially address these concerns.

A. Baseline Configuration

We now explain why a straightforward extension of the
DELPHI protocol that splits the neural network model across
two server nodes as shown in Fig. 2 will lead to information
leakage. In this setting, the user and the gateway server as
well as the gateway server and the remote server respectively
execute DELPHI to evaluate the two split models in order as
Figure 2 shows. In this case, the user can be offline when two
servers evaluate the second split model and the architecture of
the second split model can be kept secret from the user.

Let us consider deploying FI ,FII (described in Sec-
tion III-A) on server A and B respectively. When evaluating
FII involving server A and B, server B holds the masked
intermediate prediction result xi − ri while randomness ri is
only contributed by server A. Note that if the two servers
collude to recover xi they can get access to full parameters
of the first i − 1 layers, then execute the white-box model
inversion attack proposed in [35] to reconstruct the user’s
input.

Gateway 
Server 

Remote
Server

The user Delphi Delphi

Fig. 2. DELPHI extended to Split Neural Network

B. Proposed Scheme

We consider a setting with a hierarchy of servers where there
are a gateway server and two remote servers as Figure 1 shows.
We deploy FI on the gateway server A and the processing
of it follows DELPHI. For the second split model FII , the
linear layers are randomly divided into 2 shares. We distribute
the shares among 2 remote servers. We summarize the main
advantages of our proposed architecture as follows: 1) hide
partial architecture information of the model from the user



and reduce the user’s computation and communication cost 2)
defend the possible white-box model inversion attack resulting
from the model leakage and intermediate prediction result
recovery caused by server collusion. We give the detailed
description of the protocol in Section VI.

V. SYSTEM OVERVIEW

As shown in Figure 1, there are four parties in our setting: a
user, and hierarchical service providers including server A, B,
and C. The hierarchy contains two layers of servers: gateway
server A in the first layer, and server B and C in the second
layer. Three servers cooperate to provide prediction service of
a model F. The model F can be expressed as F = (FA :
{Fi}i∈{1,...,l},FBC : {Fi}i∈{l+1,...,L}) where L is the total
number of model layers. Server A holds the first l layers FA.
For ith layer i ∈ {l + 1, ..., L}, Server B and C hold the
random share of linear layer Fi, which can be expressed as
Fi =

∑3
j=2 F

j
i (j = 2 for server B, j = 3 for server C).

A. Threat Model and Privacy Goals
a) Threat model.: We assume a passive-adversary model

with corruption of a user or up to two servers (any two). The
parties will not deviate from the protocol but the adversary
can corrupt the user or up to 2 servers so can know corrupted
parties’ private data and the observations. We assume the
adversary cannot corrupt the user and the server simultane-
ously. Additionally, we assume server A belongs to the service
provider while server B and C are external. Deployment of
random shares on external servers won’t compromise the
proprietary model privacy.

b) Privacy Goals.: For the user, we aim to design a
protocol that enables the user to only learn the result of the
inference and the architecture of the model on gateway server
A. All other information about the model including the model
parameters, the total number of layers, and the architecture of
the layers on server B, C should be kept secret from the user.

Assuming up to 2 servers corrupted by the adversary, we
have the privacy goals for the servers as the followings:
1) the adversary should not learn any honest party’s model
parameters or the intermediate prediction result xi; 2) the
adversary should not infer the user’s input.

VI. THE PROTOCOL: FORMAL DESCRIPTION

In this section, we introduce our secure inference protocol.
The protocol takes as input the user’s data x1 ∈ Zq and the
split model (FA = {Fi}i∈{1,...l},FBC = {Fi}i∈{l+1,...L}),
and enables four parties to execute secure inference collabo-
ratively. The protocol can be considered as the combination of
a 2-PC protocol, executed between the user and the gateway
server for the inference of FA, and a 3-PC protocol, executed
between the gateway server and two remote servers for the
inference of FBC . The 2-PC protocol is adapted from DELPHI
[8] and the 3-PC protocol is designed to achieve the secure
neural network computations in the presence of dishonest
majority of honest-but-curious servers. The protocol consists
of three phases as shown in Figure 3: a setup phase, a
preprocessing phase, and an online inference phase.

Server A

Server B

Server C

Setup
MPHE key generation
Preprocessing of 𝑭𝑩𝑪

Server A
Server B

Server C

Preprocessing
Preprocessing of 𝑭𝑨

Server A

Server B

Server C

Inference of 𝑭𝑨 Inference of 𝑭𝑩𝑪

Fig. 3. SECO’s 3 phases

A. Setup Phase

The setup phase is executed before the user appears in the
system.

1) Key Generation: This step is to generate keys for ho-
momorphic computation.

1) Each server runs HE.KeyGen to generate key pair
(skj ,pkj) (j = 0 for the user, j = 1 for server A,
j = 2 for server B, j = 3 for server C).

2) Server A collects the public keys from the three servers,
runs MPHE.DKeyGen to obtain a common public key
cpk, then transmits cpk to the user, server B and C.

At the end of the step, each server holds a common public
key cpk.

2) Model Preparation: : This step is the preparation for
FBC which can be executed before the user appears in the
system. Like in DELPHI, the key insight is to pre-compute the
additive secret shares of Firi for each linear layer of FBC .
Server A, B, and C collaboratively compute the secret shares
of Firi with MPHE scheme, where Fi is distributed among
server B and C and the randomness ri is solely contributed by
the user if i = l + 1 or jointly contributed by three servers if
i ∈ {l+2, ..., L}. The preprocessing of the l+1th linear layer
is required for a secure transition from the inference of FA

to FBC . Additionally, three servers construct garbled circuits
for each activation layer in FBC .

a) Preprocessing for other linear layers.: For the ith

layer i ∈ {l + 2, ...L}, server A, B, and C contribute to the
randomness ri and collaborate to compute three secret shares
of (F2

l+1 + F3
l+1)rl+1 . With server B and C providing the

ciphertexts of private model parameter Fj
i , input randomness

rji and output randomness sji , server A computes its share
E1

i = (F2
i +F3

i )(r
1
i + r2i + r3i )− s2i − s3i , resulting in building



the additive shares of (F2
i + F3

i )(r
1
i + r2i + r3i ) among three

servers. See Algorithm 8 for details. In Algorithm 8, we use
MPHE.DisDec (Algorithm 7) which is a protocol for the
distribute decryption of MPHE scheme involving three servers.

b) Preprocessing for activation layers: Three servers
collaborate to build the garbled circuit on server A and prepare
the evaluation of the activation layers. With server B as the
garbler, server C as the evaluator, and server A providing input
as the third party, server B first prepares the garbled circuit
C̃i and labels by running GC.Garble(Params, Ci) where
Params is the security parameters and Ci is described in
Algorithm 9. To transmit the labels corresponding to actual
input values, server B sends the labels of the input value
provided by itself to server C through a public channel. For
input values from server A and C, server A and C first obtain
the actual labels from server B via OT. Then server C collects
the labels obtained by server A through a public channel.

B. Preprocessing Phase

In the preprocessing phase, the user first generates a key pair
(sk0,pk0) and broadcasts pk0 to each server in the system
through Server A. Server A sends common public key cpk
to the user. For preprocessing of FA, the user and server
A collaboratively pre-compute the secret shares of weights
for linear layers and construct garbled circuits for activation
layers.

1) Preprocessing for FA: This step follows the approach
in DELPHI.

a) Preprocessing for linear layers.: For the ith linear
layer i ∈ [1, ..., l], with the user providing the ciphertext of ri,
server A computes the ciphertext of Firi− si where ri is the
randomness of the layer’s input size and si is the randomness
of the layer’s output size, then the user decrypts it using sk0,
resulting in the user holding Firi − si and server A holding
si which are two additive shares of Firi.

b) Preprocessing for activation layers.: After the prepro-
cessing for linear layers, the user and server A collaborate to
build the garbled circuits for activation layers in FA. Ci is
the circuit to compute the activation function. Server A will
execute GC.Garble to generate a set of the garbled tables C̃i

according to gates in circuit Ci and labels corresponding to
all input wires in Ci. Then server A transmits the labels for
actual input values to the user. For input values held by server
A such as one-time password di+1, server A generates labels
based on the bit expression of di+1 and directly sends it to the
user. For input values held by the user such as Firi−si, ri+1,
server A and the user engage in OT protocol to let the user
obtain the corresponding labels without server A knowing the
actual value.

c) Preprocessing for the l+1th linear layer.: In this step,
the protocol involves 4 parties to prepare for the transition
from the inference of FA to FBC . The user, server A, B, and
C collaborate to build the additive shares of (F2

l+1+F3
l+1)rl+1

among three servers, that is, with server B and C providing the
ciphertexts of their own Fj

l+1 and the ciphertxts of the output
randomness sji+1, with the user providing the ciphertext of

Algorithm 7 MPHE.DisDec
Inputs: ct: the ciphertext of m; skj : the plain secret key
generated by the contributor of cpk
Server A:

Transmit ct to server B and C
MPHE.Reconstruct(ct, sk1)→ pd1

Server B and C:
MPHE.Reconstruct(ct, skj)→ pdj
Transmit pdj to server A

Server A:
Run MPHE.Dec(ct, {pdj}{j∈{1,2,3}}) to obtain m

input randomness rl+1, server A homomorphically computes
the ciphertext of El+1 = (F2

l+1 + F3
l+1)rl+1 − s2l+1 − s3l+1

and then involves server B and C to decrypt it. At the end of
the preprocessing of the l+1th linear layer, three server holds
the respective secret share of (F2

l+1+F3
l+1)rl+1. Note all the

encryption in this stage are conducted with MPHE public key
cpk.

Algorithm 8 Pre-Compute the share for the ith linear layer,
i ∈ {l + 2, ...L}

Inputs: (qi, wi): the input and output shape of the ith layer; cpk:
common public key
Server A:

r1i ← Z
qi
q

Compute ctr1i
= MPHE.Enc(cpk,r1i )

Server B and C:
rji ← Z

qi
q , sji ← Z

wi
q

Compute ct
r
j
i

= MPHE.Enc(cpk,rji ), ct
s
j
i

=

MPHE.Enc(cpk, sji ), ctF j
i
= MPHE.Enc(cpk,Fj

i )

Transmit (ct
r
j
i
, ct

s
j
i
, ct

F
j
i
) to server A

Server A:
MPHE.Eval(ctF2

i
, ctF3

i
,Add)→ ctFi

MPHE.Eval(cts2i , cts3i ,Add)→ ctsi
MPHE.Eval(ctr1i , ctr2i , ctr3i ,Add)→ ctri
MPHE.Eval(ctFi , ctri , Lin-OP)→ ctFiri

MPHE.Eval(ctFiri , ctsi ,Sub)→ ctFiri−si

Transmit ctFiri−si to server B and C
Server A, B, C:

Run MPHE.DisDec(ctFiri−si , {skj}j∈{1,2,3})
Server A obtains Ei = (F2

i +F3
i )ri − s2i − s3i where ri =

r1i + r2i + r3i

C. Online Inference Phase

This section introduces the inference phase in the order of
model layers. First, as preamble, the user computes x1 − r1
and sends it to server A.

a) Inference of FA: The inference of FA involves the
participation of the user and server A. Before evaluating the
ith, i ∈ [1, ..., l] layer, server A holds the masked input xi− ri
and the user holds the input randomness ri+1 for next layer.
Server A first computes Fi(xi−ri)+ si to evaluate the linear
part and sends the labels of it to the user. Collecting the labels
of all the input wires in C̃i, the user executes GC.Eval to
obtain a masked ReLU output as the masked input for the
next layer.



Algorithm 9 A circuit Ci that computes ReLU function of
the ith layer i ∈ {l + 1, ..., L}

Input from server A: (F2
i + F3

i )ri − s2i − s3i , r
1
i+1

Input from server B: F2
i (xi − ri) + s2i , r

2
i+1

Input from server C: F3
i (xi − ri) + s3i , r

3
i+1

1: Compute (F2
i + F3

i )xi = (F2
i + F3

i )ri − s2i − s3i + F2
i (xi −

ri) + s2i + F3
i (xi − ri) + s3i

2: Compute xi+1 = ReLU((F2
i + F3

i )xi)
3: Output xi+1 − ri+1 = xi+1 − r1i+1 − r2i+1 − r3i+1

b) Transition: After the evaluation of FA, server A holds
xl+1 − rl+1. Server A forwards it to server B and C as a
transition step from the inference of FA to FBC .

c) Inference of FBC: The inference of FBC involves
the participation of server A, B, and C. At the beginning of
the inference for ith layer i ∈ {l + 1, ..., L}, server B and C
hold xi − ri where ri is solely contributed by the user when
i = l + 1, and is contributed by server A, B and C for linear
other layers of FBC . Server A, B and C collaborate to do
inference on ith layer i ∈ {l + 1, ..., L}. First server B and
C will compute Ej

i = Fj
i (xi − ri) + sji , resulting in three

servers holding three additive shares of the real prediction
result for the current layer (F2

i +F3
i )xi. The garbled circuit C̃i

(Algorithm 9) first aggregates shares to recover (F2
i +F3

i )xi,
then computes ReLU of it, finally masks the ReLU output with
the randomness of the next layer contributed by three servers.
The entire process is in the encrypted domain. The garbled
circuit for each ReLU layer of FBC are located at server C.
Thus server C can evaluate the garbled circuit when collecting
all labels for input wires of C̃i in a secure way.

Algorithm 10 Inference for the ith layer, i ∈ {l + 1, ..., L}
Inputs: xi − ri: held by server B and C; C̃i: the garbled
circuit of circuit in Algorithm 9; label: random labels for
input wires of Algorithm 9; r1i+1: randomness from server A;
labelE1

i
, labelr2i+1

, labelr3i+1
: labels for actual input values held

by server A
Server B and C:

Compute Ej
i = Fj

i (xi − ri) + sji
GC.Transfer(label, E3

i )→ labelE3
i

Server C obtains labelE3
i

Server C:
GC.Eval(C̃i, labelE2

i
, labelE3

i
, labelE1

i
, labelr1i+1

,

labelr2i+1
)→ xi+1 − r1i+1 − r2i+1

Compute xi+1 − ri+1 = xi+1 − r1i+1 − r2i+1 − r3i+1

Transmit xi+1 − ri+1 to server B

D. Output

After the evaluation of FBC , server A holds the share (F2
L+

F3
L)rL−s2L−s3L, server B holds F2

L(xL−rL)+s2L and server
C holds F3

L(xL − rL) + s3L.
1) Server B and C computes HE.Enc(pk0,F

i
L(xL−rL)+

siL) and sends this ciphertext to server A.
2) Server A homomorphically add the received ciphertext

to compute the ciphertexts ctŷ of prediction result ŷ
where ŷ = (F 2

L+F 3
L)xL, then transmits ctŷ to the user.

TABLE I
THE COLUMNS DEPICT THE THREE DISTINCT SEGMENTS OF THE

DEPLOYED MODEL, EACH ILLUSTRATING CONTRIBUTIONS FROM THE
INVOLVED PARTIES AND DIFFERENT COMPUTATIONAL GOALS.

FA FBC Transition

User ri ri

Server A Fi,si r1i

Server B r2i ,F2
i ,s2i F2

i ,s2i
Server C r3i ,F3

i ,s3i F3
i ,s3i

Shares
Firi − si

(F2
i + F3

i )(r
1
i + r2i + r3i ) (F2

i + F3
i )ri

to compute −(s2i + s3i ) −(s2i + s3i )

3) The user decrypts ctŷ with sk0 to obtain the prediction
result ŷ.

E. Discussion

We next highlight key technical contributions and the mo-
tivations for our design choices.

a) Secret Sharing for 3PC and Integration with MPHE:
To sum up, during the executions, the protocol processes
model FA and FBC . The processing of FA follows DELPHI
which uses plain HE scheme to build two secret shares of
Firi among two parties in the preprocessing phase, where ri
is randomly generated by the user; In the inference phase, ri
will be used as the mask for the intermediate prediction result
xi and it can be canceled by the secret share built in the
preprocessing phase. Our protocol follows this idea to build
three secret shares of {Firi}Li=l+1 in the preprocessing phase
of FBC , where each of the servers contributes its own part
to the randomness ri. However, using a plain HE scheme to
compute the secret shares is not privacy-preserving in this case
because the model parameters and randomness are distributed.
To ensure that each of the three servers exclusively accesses
its designated information and no extraneous data, we design
a new secret sharing scheme as in Table I, so the shares can
be computed with MPHE using the supported operations as
described in Section III-B1, enabling secure computation of
linear functions.

b) Assignments of Servers in GC: For the secure com-
putation of non-linear functions, we deviate from the con-
ventional approach of assigning the layer’s input provider
as the evaluator in Garbled Circuits (GC), like in DELPHI.
Instead, we appoint a remote server as the evaluator and
another as the garbler. This approach substantially diminishes
the communication complexity during the inference phase, as
communication now occurs exclusively between these two re-
mote servers. Additionally, our protocol maintains the security
of user’s input even in the event of two remote servers being
compromised, because of the gateway server’s contribution to
the masking term during the setup phase. Last but not the
least, we design a transition from user-server interaction to
server-server interaction to ensure no information leakage in
this process.



VII. INFORMATION LEAKAGE ANALYSIS

In this section, we show the protocol described in Section VI
achieves the privacy goals described in Section V-A under a
passive-adversary model. Based on Composition Theorem for
semi-honest model (Theorem 7.3.3 in [36]), by proving the
security of the protocol in each phase, the security of the entire
protocol is proven.

We prove the security of the preprocessing and inference
phase following the simulation paradigm [37]. According to
the simulation paradigm, a protocol is secure if whatever
can be computed by a party involved in the protocol can be
computed given only the input and the output of the party. So
the security can be modeled by defining a simulator that can
generate the view of the party during the procedure given the
input and the output. If the view of the party can be simulated
based on the input and the output only and is computationally
indistinguishable from the real view of the party, it implies the
party only learns what can be computed given the input and
the output, so the protocol is secure.

A. Setup phase

The setup phase is independent of the rest of the protocol.
For a given user and the servers, it has to be run only once.
The protocol used in the setup phase is a composition of
HE.KeyGen(.) and MPHE.DKeyGen(.).

In Mouchet et al. [30], it shows that the protocol in the
setup phase can securely and correctly generate a valid plain
BFV key pair. Provided with valid plain BFV key pair,
HE.Enc and MPHE.Enc can output valid BFV ciphertext,
which guarantees the semantic security of HE and MPHE
schemes described in Proposition VII.1 and Proposition VII.2.
The semantic security of HE and MPHE schemes provides the
security basis for the following two phases.

Proposition VII.1 (HE semantic security). For any two
messages m1,m2, no adversary has an advantage (better
than 1/2 chance) in distinguishing between distributions
HE.Enc(pk,m1) and HE.Enc(pk,m2).

Proposition VII.2 (MPHE-based MPC semantic security).
For any subsets of at most colluded N − 1 clients, for any
two messages m1 and m2, no adversary has an advantage
(better than 1/2 chance) in distinguishing between distribu-
tions MPHE.Enc(cpk,m1) and MPHE.Enc(cpk,m2).

B. Preprocessing and Inference Phase

In this section, we prove the privacy goals in Section V-A
are achieved in the preprocessing and inference phase follow-
ing the simulation paradigm [37].

We can prove the security of the preprocessing and inference
phase by 1) providing the real view of the adversary for the
case when the user or two servers are corrupted 2) describing
simulators for cases where two servers or the user are cor-
rupted 3) comparing each term in the view of the adversary
and proving the indistinguishability. We have three privacy
goals that are to preserve the privacy of 1) the user’s input
2) the intermediate prediction result 3) the complete model

parameters. Intuitively, by distributing the model parameters,
the honest server’s partial model parameters are protected
thus the adversary cannot obtain the complete model. The
user’s input and the intermediate prediction result are protected
by the randomness. To prove they are fully secure, we can
determine the indistinguishability of each element in the view
separately. Note Composition Theorem [36] can be applied to
the sequential compositions of arbitrary protocols involving
multiple parties. Based on Composition Theorem [36], the
security of the protocols for two phases is proven when the
composing sub-protocols are secure. The security proof of
cryptographic sub-protocols (section III-B) are provided in
[30][38][39] assuming the passive adversary model.

We name the protocols of two phases as PRE and INF and
define the corresponding ideal functionality as

fpre(pk0, cpk, {Ci}Li=1, {Fi}li=1, {F
j
i}

i=L
i=l+1,j=2,3)

= {{shareU
i }li=1, {shareA

i }Li=l+1, {C̃i}Li=1} (1)

finf (x1, {shareU
i }li=1, {shareA

i }Li=l+1, {C̃i}Li=1)

= {{mski}Li=1} (2)

where {shareU
i = Firi− si}li=1, {shareA

i = (F2
i +F3

i )(r
1
i +

r2i + r3i )− s2i − s3i }Li=l+1, {mski = xi − ri}Li=1. Next we we
discuss the cases where server A and B are corrupted and the
user is corrupted. The proofs for other cases, wherein either
servers B and C or servers A and C are corrupted, can be
readily extended based on the methodology outlined in the
following proof.

a) Server A, B corrupted: The real view vAB of the
adversary corrupting server A and B includes:

1) Ciphertexts set ctSAB
= {{ctri}l+1

i=1, {ctr2i , ctr3i }
L
i=l+2,

{ctF 2
i
, ctF 3

i
, cts2i , cts2i }

L
i=l+2, {ctshareA

i
}Li=l+1}

2) The masked input {mski = xi − ri}l+1
i=1, {mski = xi −

r3i }
L+1
l+2

3) The secret shares set shareA
i = (F2

i+F3
i )ri−s2i−s3i , i ∈

{l + 1, ..., L}
4) Garbled circuit {C̃i}Li=1 and labels {labeli}Li=l+1

We define a simulator SAB that simulates the view of an
adversary corrupting server A and B. For a given value x, we
denote the simulated equivalent by x̃ and the encryption of
it by ctx. SAB is given pk0, cpk,FA, {F2

i }Li=l+1, (qi, wi)
L
i=1

and proceeds as follows:

1) SAB chooses a uniform random tape for server A and
B.

2) In the preprocessing phase:

a) SAB , as the user, computes {c̃tri =
HE.Enc(pk0, r̃i)}

l+1
i=1 and sends it to server

A where r̃i ← Z
qi
q . Then SAB receives the

evaluated ciphertext from server A.
b) With SAB as the evaluator of the garbled circuits

for ith, i ∈ {1, ..., l} non-linear layer, SAB receives
C̃i from server A and labels corresponding to
random input generated by SAB .



c) Server B computes and sends the ciphertexts

ctF 2
i
= MPHE.Enc(cpk,F2

i )

ctr2i = MPHE.Enc(cpk, r2i )

cts2i = MPHE.Enc(cpk, s2i )

to server A.
d) SAB , as server C, sets F̃3

i = 0, then generates
r̃3i ← Z

qi
q , s̃3i ← Z

wi
q and encrypts them with cpk;

During distribute decryption, server B receives the
evaluated ciphertext from server A and server A
computes ˜share

A

i = (F2
i + F̃3

i )(r
1
i + r2i + r̃3i ) −

s2i − s̃3i
3) In the inference phase:

a) Preamble: SAB , as the user, sends −r̃1 to server A
to evaluate the first linear layer. Then SAB receives
the corresponding GC label.

b) SAB evaluates C̃i to obtain the output of garbled
circuits and sends it to server A.

c) Transition: SAB , as server C, receives the output
of first l layers

d) SAB obtains labels corresponding to s̃3i and r̃3i+1

from server B, computes the output of garbled
circuits and sends it to server B

Theorem VII.1. The view simulated by SAB is computaion-
ally indistinguishable from the real view vAB when the adver-
sary is corrupting server A and B.

Proof. We observe that the PRE and INF protocol can be
privately reducible to the HE, MPHE, GC and other protocols.
Therefore, the secuirty of PRE and INF protocol follow
from the standalone security of each protocol by applying
Composition Theorem for semi-honest model [36]. The in-
distinguishability of ciphertext is guaranteed by the semantic
security (Proposition VII.1 and Proposition VII.2) of protocol
HE and MPHE, and the indistinguishability of garbled circuits
with labels is guaranteed by the security property of protocol
GC [38]. We only need to show the indistinguishability of
the masked input and the the secret shares, then we can
prove that PRE and INF preserve their security. Due to
using different random values which share identical distribu-
tion hence are statistically equivalent, we get {m̃ski}Li=1

c≡
{mski}Li=1, { ˜share

A

i }Li=l+1

c≡ {shareA
i }Li=l+1.

The arguments above yields the following security property.

Proposition VII.3. SECO introduced in Section VI securely
realizes fpre and finf in the presence of semi-honest adver-
sary controlling server A and B.

1) The user corrupted: We prove that the simulated view
and the real view are computationally indistinguishable, thus
information such as the model parameters which is beyond the
view cannot be computed if the adversary corrupts the user.

The real view vU of the adversary corrupting the user
includes:

1) The masked input {mski = xi − ri − di}li=1

2) The additive share {shareU
i = Firi − si}li=1

3) Garbled circuit {C̃i}li=1 and labels {labeli}li=1

We define a simulator SU that simulates the view of an
adversary corrupting the user. SU is given x1,pk0, cpk and
proceeds as follows:

1) SU chooses a uniform random tape for the user.
2) In the preprocessing phase:

a) SU , as server A, receives {ctri =
HE.Enc(pk0, ri)}

l+1
i=1 with ri ← Z

qi
q . With

F̃i set to 0, the user receives the evaluated
{ctsi = HE.Enc(pk0,−s̃i)}

l+1
i=1 from SU for a

randomly chosen s̃i from Z
wi
q .

b) With SU acting as the garbler of the garbled
circuits for ith, i ∈ {1, ..., l} non-linear layer, the
user receives C̃i from SU and labels corresponding
to ri and s̃i. SU sets the output of the circuit to be
a random value.

3) In the inference phase:
a) Preamble: SU , as server A, receives x1 − r1 from

the user
b) SU , as server A, sets the Fi = 0 evaluates to obtain

s̃i and sends the corresponding simulated labels to
the user.

c) The user evaluates C̃i to obtain the output of
garbled circuits which is set randomly, then sends
it to SU .

Theorem VII.2. The view simulated by SU is computaionally
indistinguishable from the real view vU when the adversary is
corrupting the user.

Proof. Similar to the proof of Theorem VII.1, the views
are computationally indistinguishable based on the security
properties of HE, MPHE, GC and the use of randomness that
are statistically equivalent.

The arguments above yields the following security property.

Proposition VII.4. SECO introduced in Section VI securely
realizes fpre and finf in the presence of semi-honest adver-
sary controlling the user.

VIII. EXPERIMENTS

In this section, we experimentally evaluate the performance
of SECO and present our experimental results comparing
SECO and other protocols. Currently, SECO supports the
deployment of CNN models.

A. Implementation

Our implementation is based on SEAL library [40] and
DELPHI’s open source code 1. We first implemented the oper-
ations for multiparty key-generation and distribute-decryption
for BFV scheme [30] in SEAL. Then we modified DEL-
PHI’s implementation to support the collaborative inference
involving multiple parties as described in Section VI. For

1https://github.com/mc2-project/delphi



convolutional functions, we employ modulus-switching to
reduce the ciphertext size as in Cryptflow2 [41]. We use the
same BFV security parameters as DELPHI uses, with 8192
as the degree of polynomial modulus and 2061584302081 as
plaintext modulus.

(a) ResNet32 online time

(b) ResNet32 preprocessing time

Fig. 4. Comparison of SECO and DELPHI on execution time of ResNet32

(a) ResNet32 online communication

(b) ResNet32 preproccessing communication

Fig. 5. Comparison of SECO and DELPHI on communication cost of
ResNet32

B. Setup

We run our benchmarks in the WLAN setting with four
instances in Australia or North America. All the instances
have Intel Xeon Processor running at 2.3 GHz with 32GB of
RAM. Each experiment is conducted 5 times, and the results
presented are the average of these runs.

C. Performance

1) Compare with HE-MPC-based Protocols: We exper-
imentally evaluate SECO in terms of execution time and
communication cost for preprocessing and inference phase
with the deployed model split at different layers. We present
the comparison results of SECO, DELPHI [8], and DELPHI-
3. DELPHI-3 is a straightforward extension of DELPHI to
3PC setting. This extension employs MPHE for processing
linear functions, while utilizing Garbled Circuits (GC) for non-
linear operations. A key distinction between DELPHI-3 and
SECO, lies in the allocation of roles within the GC scheme.
In SECO, two remote servers are designated as the garbler and
the evaluator in the GC process. In DELPHI-3, the gateway
server assumes the role of the evaluator, while a remote server
functions as the garbler. This will lead to different performance
of SECO and DELPHI-3 in only online inference phase. We
evaluate three schemes on ResNet32 [42] (with 62 layers in
total).

a) User’s experience: Figure 4(a) shows the comparison
of the online execution time. As illustrated in the figure, the
blue bars indicate the duration for which the user must remain
connected and actively process the computation while the light
blue bars represent the time required to process the model
on remote servers. The total height of the bars in the figure
represents the user’s waiting time, spanning from the start of
the query to the receipt of the prediction result. We can tell
that the fewer layers deployed on gateway server A, the less
execution time of SECO in the preprocessing phase. When all
the layers of the model are on server A, SECO is reduced
to DELPHI and only the user and server A are involved in
the computation. When the number of layers on server A is
reduced to two, SECO offers the most efficient experience in
terms of both the shortest waiting and participation time for the
user comparing to DELPHI, thereby potentially minimizing
the user’s computational burden. We note that SECO can
operate on a device with just 2 GB of memory as the user
device (with less than 10 layers of ResNet32 on the gate-
way server), whereas DELPHI cannot support such a device,
making meaningful comparison impossible. This capability
allows SECO to utilize lightweight devices, such as the smart
watch, as user devices. Depending on the numbers of layers on
server A, SECO’s results are between 2.6×−1× faster than
DELPHI in terms of user’s waiting time. Accordingly, SECO’s
efficiency ranges from 9.9×−1× faster than DELPHI in terms
of user’s participation time.

Figure 4(b) shows the comparison of the preprocessing
execution time, revealing a similar trend as the observation
in Figure 4(a). Depending on the numbers of layers on server
A, SECO’s results are between 11×−1× faster than DELPHI
in terms of user’s preprocessing time. We note that SECO’s
preprocessing only involves the preprocessing of FA. The
three server pre-compute the secret shares for FBC before
the user appears in the system.

As illustrated in Figure 5(a) and Figure 5(b), SECO demon-
strates up to 18.5× more efficient compared to DELPHI in
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Fig. 6. Comparison of SECO and DELPHI-3 on execution time and
communication cost of ResNet32

terms of the user’s online communication cost, additionally,
it is up to 16.6× more efficient than DELPHI regarding
the user’s preprocessing communication cost. Even though
SECO’s total communication cost in the online inference
phase is higher than DELPHI’s, SECO reduces the user’s
cost. Figure 5(a) shows that SECO can provide a tradeoff in
communication load between user and server nodes, which
might be desirable to service provider.

b) Effect of schemes with different assignments of servers
in GC: Figure 6(a) and Figure 6(b) depict the online per-
formance of SECO, DELPHI, and DELPHI-3. We can tell
from figures, the time and the cost for processing FA are
the same for SECO and DELPHI-3 as the 2PC protocol in
both cases is derived from DELPHI. However, the time and
cost for processing FBC are significantly reduced in SECO.
The inefficiency in DELPHI-3 arises because the evaluator of
the garbled circuit obtains labels for server A’s share during
FBC pre-computation, making server A’s participation in the
inference phase unnecessary. In contrast, SECO designates
server C as the evaluator, involving only servers B and C
in the inference phase. Our approach streamlines the process,
avoiding the need for three-server involvement as in DELPHI-
3.

2) Compare with MPC-based protocols: In this section, we
compare SECO with pure MPC-based protocols. To make a
fair comparison, we deploy all the layers of the model on
remote servers in SECO. So the user can send the masked
input and receive the prediction result without further inter-
action like in pure MPC-based protocols. Figure 7 shows the

TABLE II
COMPARISON OF EXECUTION TIME AND COMMUNICATION COST

MiniONN LeNet

Time (s) Comm. cost (MB) Time (s) Comm. cost

SecureNN 183.493 177.264 - -
Falcon 8.426 1.097 9.303 1.611
SECO 4.776 50.479 4.862 58.888

communication cost for the user in protocols including SECO,
Falcon [22], and SecureNN [21]. Although there is only a
one-way transmission from user to servers, due to the use of
replicated secret shares, the user in Falcon needs to duplicates
each of the three input shares, and the user must transmit
two distinct shares to the respective server. This process leads
to a communication cost that is 6× greater compared to that
in SECO. SecureNN uses a 2-out-of-2 secret sharing scheme
between two servers, and the user needs to deliver each of two
shares to the respective servers. It differs from the 2-out-of-
2 secret sharing used between a user and a server in SECO.
This process results in the communication cost 2× greater
compared to SECO. Furthermore, we assess the execution
time starting from when the user transmits the input until the
user receives the prediction result. In Table II, we evaluate
3 protocols on MiniONN and LeNet. The outperformance of
SECO is attributed to the online inference only involving two
(remote) servers while other protocols are executed between
three servers. Although SECO is faster than other MPC-based
protocols, it incurs a communication cost between servers that
is 36 to 48 times higher than that of Falcon. We remind that
SECO operates under a different system and threat model.
SECO can protect the user’s input even when the adversary
corrupts two of the three servers while other protocols assume
non-collusion between servers. The increase in communication
cost can be justified by SECO’s emphasis on enhancing the
system’s robustness and trustworthiness for the user.

Fig. 7. User’s communication cost comparison

IX. CONCLUSION

In this paper, we design and implement SECO, a novel
hybrid HE-MPC-based secure inference protocol with model
splitting in a multi-server hierarchy setting. SECO ensures



the confidentiality of the input data withstanding passive
adversaries corrupting up to 2 servers, and also protects the
model parameters from the user. Furthermore, SECO hides
more information about the model architecture than other HE-
MPC-based protocols and pure MPC-based protocols. In the
experiments, SECO is shown to minimize the user device’s
obligation in computation and communication, making it ap-
plicable to devices with limited resources.
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APPENDIX A
NOTATION

Table III provides the summary of the symbols used
throughout this work.

APPENDIX B
SECURITY PROOF

We provide the security proof for other cases when server
B and C are corrupted or server A and C are corrupted.

a) Server B, C corrupted: The real view vBC of the
adversary corrupting server B and C includes:

1) Ciphertexts set ctSBC
= {{ctr2i , ctr3i }

L
i=l+2,

{ctF 2
i
, ctF 3

i
, cts2i , cts2i }

L
i=l+2, {ctshareA

i
}Li=l+1}

2) The masked input of mski = xi − r1i , i ∈ {l+ 2, ..., L}
3) Garbled circuit {C̃i}Li=l+1 and {labeli}Li=l+1 obtained

by Server B and C
We define a real-world simulator SBC that simulates the
view of an adversary corrupting server B and C. SBC is
given {F2

i ,F
3
i }Li=l+1,pk0, cpk, {(qi, wi)}Li=l+1,mskl+1 and

proceeds as follows:
1) SBC chooses a uniform random tape for server B and

C.
2) In the preprocessing phase:

a) SBC , as server A, receives ciphertexts
MPHE.Enc(cpk,Fj

i ),
MPHE.Enc(cpk, rji ),MPHE.Enc(cpk, sji ) from
server B and C.

b) SBC generates r̃1i ← Z
qi
Q and computes ˜share

A

i =
(F3

i + F2
i )(r̃

1
i + r2i + r3i )− s3i − s2i

c) Server B sends the garbled circuit C̃i and labels
for inputs from server B to server C; SBC obtains
the labels from server B and forwards it to server
C

3) In the inference phase:
a) Transition: SBC generates a random value as the

output of the first l layers mskl+1 and sends it to
server B and C

Theorem B.1. The view simulated by SBC is computaionally
indistinguishable from the real view vBC when the adversary
corrupting server B and C.

Proof. Similar to the proof of Theorem VII.1, the views
are computationally indistinguishable based on the security
properties of HE, MPHE, GC, and the use of randomness
that are statistically equivalent.

The arguments above yields the following security property.

Proposition B.1. SECO introduced in Section VI securely re-
alizes fpre and finf in the presence of semi-honest adversary
controlling server B and C.

b) Server A, C corrupted: The real view vAC of the
adversary corrupting server A and C includes:

1) Ciphertexts set ctSAC
= {{ctri}l+1

i=1, {ctr2i , ctr3i }
L
i=l+2,

{ctF 2
i
, ctF 3

i
, cts2i , cts2i }

L
i=l+2, {ctshareA

i
}Li=l+1}

2) The masked input of the ith, i ∈ {l + 2, ..., L} layer
mski = xi − r2i

3) The additive secret shares set shareA
i = (F2

i +F3
i )ri−

s2i − s3i , i ∈ {l + 1, ..., L}
4) Garbled circuit {C̃i}Li=1 and {labeli}Li=l+1 for garbled

circuits

We define a real-world simulator SAC that simulates the view
of an adversary corrupting server A and C. SAC is given
{F3

i , (qi, wi)}
L

i=l+1, FA,pk0, cpk and proceeds as follows:

1) SAC chooses a uniform random tape for server A and
C.

2) In the preprocessing phase:
a) SAC , as the user, computes HE.Enc(pk0, r̃i), i ∈
{1, ..., l + 1} to server A where r̃i is randomly
chosen from Z

qi
Q . Then SAC receives the evaluated

ciphertext from server A.
b) With SAC as the evaluator of the garbled circuits

for ith, i ∈ {1, ..., l} non-linear layer, SAC receives
C̃i, i ∈ {1, ..., l} from server A and labels corre-
sponding to random input generated by SAC .

c) SAC , as server B, sets F̃2
i = 0, then generates

r̃2i ← Z
qi
Q , s̃2i ← Z

wi

Q and encrypts them respec-
tively with cpk; For processing distribute decryp-
tion, server C receives the evaluated ciphertext
from server A and ˜share

A

i = (F3
i + F̃2

i )(r
3
i + r̃2i +

r1i )− s3i − s̃2i from SAB

d) SAC , as server B, runs the simulator for garbled
circuits and generates C̃i, i ∈ {l + 1, ..., L}, then
sends labels corresponding to r̃2i to server C

3) In the inference phase:
a) Preamble: SAC sends −r̃1 to server A to evaluate

the first linear layer.
b) SAC , as the user, obtains labels from server A
c) SAC , as the user, sends a random value as the

output of garbled circuits back to server A.
d) Transition: SAC , as server B, receives the output

of the first l layers
e) SAC , as server B, sends labels corresponding to s̃2i

to server C
f) SAC receives the output of garbled circuits from

server C

Theorem B.2. The view simulated by SAC is computaionally
indistinguishable from the real view vAC when the adversary
corrupting server A and C.

Proof. Similar to the proof of Theorem VII.1, the views
are computationally indistinguishable based on the security
properties of HE, MPHE, GC, and the use of randomness
that are statistically equivalent.

The arguments above yields the following security property.

Proposition B.2. SECO introduced in Section VI securely re-
alizes fpre and finf in the presence of semi-honest adversary
controlling server A and C.



TABLE III
NOTATION SUMMARY

Symbol Description

j Party index (0 for the user, 1 for server A, 2 for server B, 3 for server C)
Zq [− q

2
, q
2
)

Rt Plaintext space for HE scheme
Rq Ciphertext space for HE scheme
L Total number of layers of the model
l The number of layers stored on server A
qi Input size of ith layer
wi Output size of ith layer
FA The partial model on server A
FBC The partial model on server B and C
Fi Model parameter of the ith layer
Fj

i Model parameter of the ith layer on Party j
xi The input of the model’s ith layer
ŷ The prediction result
ri Randomness masking the input of ith layer
si Randomness masking the output of ith layer

(skj , pkj) Key pair generated by party j
cpk Common public key
ctx Ciphertext of message x
Ci Circuit for computing the ith ReLU layer
C̃i Garbled circuit correspongind to Ci

labelx Garbled circuit input labels corresponding to value x

APPENDIX C
DELPHI-3

DELPHI-3 is a 3PC protocol directly expanded from DEL-
PHI. DELPHI-3 sets server B as the garbler and server A as
the evaluator for GCs.

a) Preprocessing for FBC: The preprocessing of linear
layers is the same with SECO as described in Algorithm 8. The
preprocessing of ReLU is as follows: with server B as the gar-
bler, server A as the evaluator, and server C providing input as
the third party, server B first prepares the garbled circuit C̃i and
labels by running GC.Garble(Params, Ci) where Params is
the security parameters and Ci is described in Algorithm 9 in
Appendix F. To transmit the labels corresponding to actual
input values, server B sends the labels of the input value
provided by itself to server A through a public channel. For
input values from server A and C, server A and C first obtain
the actual labels from server B via OT. Then server A collects
the labels obtained by server C through a public channel.

b) Online-inference for FBC: The inference of FBC

involves the participation of server A, B, and C. At the
beginning of the inference for ith layer i ∈ {l+1, ..., L}, server
B and C hold xi − ri where ri is solely contributed by the
user when i = l+1, and is contributed by server A, B and C
for linear other layers of FBC . Server A, B and C collaborate
to do inference on ith layer i ∈ {l + 1, ..., L}. First server
B and C will compute Fj

i (xi − ri) + sji , resulting in three
servers holding three additive shares of the real prediction
result for the current layer (F2

i + F3
i )xi. The garbled circuit

C̃i on server A (Algorithm 9 in Appendix F) first aggregates
shares to recover (F2

i + F3
i )xi, then computes ReLU of it,

finally masks the ReLU output with the randomness of the next
layer contributed by three servers. The entire process is in the

encrypted domain. Server A can evaluate the garbled circuit
when collecting all labels for input wires of C̃i. Note the
inefficiency of this method is that despite three servers holding
the respective additive shares of the real prediction result, the
evaluator of the garbled circuit already obtains the labels for
server A’s share during the pre-computation for FBC . Thus
server A does not need to involve in the inference phase of
FBC . We observe this inefficiency and set server C as the
evaluator in SECO instead.

APPENDIX D
SETUP PHASE IN SECO

The setup phase in SECO includes the MPHE key genera-
tion and the preparation for FBC . This phase involves three
servers. In Table IV and Table V, we provide the execution
time and communication cost for the setup phase.

APPENDIX E
STRUCTURES OF NEURAL NETWORKS

a) MiniONN: This is a 4 layer network with 2 convolu-
tional and 2 fully-connected layers selected from prior work
MiniONN [43]. The structure is provided in Table VI. It has
around 10,500 parameters in total.

b) LeNet: This network, proposed by LeCun et al. [44]
contains 2 convolutional layers and 2 fully connected layers
with about 431K parameters. Table VII shows the structure.

APPENDIX F
PSEUDOCODE



TABLE IV
SETUP PHASE OF SECO ON RESNET32 (1)

Numbers of layers on server B,C 60 56 52 48 44 40 36 32

Execution time (s) 290.202 271.366 250.965 233.168 215.994 192.566 175.395 162.568
Comm. cost (GB) 21.609 19.920 18.230 16.541 14.851 13.161 11.747 10.621

TABLE V
SETUP PHASE OF SECO ON RESNET32 (2)

Numbers of layers on server B,C 28 24 20 16 12 8 4

Execution time (s) 148.177 136.214 117.166 91.340 68.487 41.719 16.042
Comm. cost (GB) 9.495 8.368 7.242 5.822 4.404 2.985 1.567

Layer Type Input Size Output Size Details
1 Convolution 28×28×1 24×24×16 5×5 filters, stride 1
2 Subsampling 24×24×16 12×12×16 2×2 average pooling, stride 2
3 ReLU 1 × 2304 1 × 2304
4 Convolution 12×12×16 8×8×50 5×5 filters, stride 1
5 Subsampling 8×8×16 4×4×16 2×2 average pooling, stride 2
6 ReLU 1×256 1×256
7 Fully Connected 256 100
8 ReLU 100 100
9 Fully Connected 100 10

TABLE VI
STRUCTURE OF MINIONN

Layer Type Input Size Output Size Details
1 Convolution 28×28×1 24×24×20 5×5 filters, stride 1
2 Subsampling 24×24×20 12×12×20 2×2 average pooling, stride 2
3 ReLU 1 × 2880 1 × 2880
4 Convolution 12×12×20 8×8×50 5×5 filters, stride 1
5 Subsampling 8×8×50 4×4×50 2×2 average pooling, stride 2
6 ReLU 1×800 1×800
7 Fully Connected 800 500
8 ReLU 500 500
9 Fully Connected 500 10

TABLE VII
STRUCTURE OF LENET

Algorithm 11 A circuit Ci that computes ReLU function of
the ith layer, i ∈ {1, ..., l}

Input from the user: Firi − si, ri+1

Input from server A: Fi(xi − ri) + si,di+1

1: Compute Fixi = Fi(xi − ri) + si + Firi − si
2: Compute xi+1 = ReLU(Fixi)
3: Output xi+1 − ri+1 − di+1

Algorithm 12 Pre-Compute the share for the ith linear layer,
i ∈ {1, ...l}

Inputs: (qi, wi): the input and output shape of the ith

layer; (sk0,pk0): the plain HE key pair generated by the
user
The user:

ri ← Z
qi
q

Encrypt ctri = HE.Enc(pk, ri)
Transmit ctri to server A

Server A:
si ← Z

wi
q

Compute HE.Enc(pk,Firi − si) and transmit this
ciphertext to the user
The user:

Decrypt the ciphertext to obtain Firi − si using sk0



Algorithm 13 Pre-Compute the share for the l + 1th linear
layer

Inputs: (ql+1, wl+1): the input and output shape of the
l + 1th layer; cpk: common public key;
The user:

rl+1 ← Z
ql+1
q

Compute ctrl+1
= MPHE.Enc(cpk, rl+1)

Transmit ctrl+1
to server A

Server B and C:
sjl+1 ← Z

wl+1
q

Compute MPHE.Enc(cpk, sjl+1) → ctsjl+1
,

MPHE.Enc(cpk,Fj
l+1) → ctF j

l+1

Transmit (ctsjl+1
, ctF j

l+1
) to server A

Server A:
MPHE.Eval(ctF 2

l+1
, ctF 3

l+1
,Add)→ ctFl+1

MPHE.Eval(cts2l+1
, cts3l+1

,Add)→ ctsl+1

MPHE.Eval(MPHE.Eval(ctFl+1
, ctrl+1

,Lin-OP)
, ctsl+1

,Sub)→ ctFl+1rl+1−sl+1

Server A, B, C:
MPHE.DisDec(ctFl+1rl+1−sl+1

, {skj}j∈{1,2,3})
Server A obtains (F2

l+1 + F3
l+1)rl+1 − s2l+1 − s3l+1

Algorithm 14 Construct Garbled Circuit for the ith activation
layer, i ∈ {1, ..., l}

Inputs: Params: Garbled Circuit security parameters, Ci:
the circuit in Algorithm 11; (Firi − si, ri+1): the pre-
computed additive share of ith layer and the randomness
for next layer held by server A ; qi: the input shape of ith

layer
Server A:

di+1 ← Z
qi
q

GC.Garble(Params, Ci)→ C̃i, label
Transmit C̃i to the user

The user and server A:
GC.Transfer(label,Firi − si)→ labelFiri−si

GC.Transfer(label, ri+1)→ labelri+1

GC.Transfer(label,di+1)→ labeldi+1

The user obtains labelFiri−si , labelri+1
, labeldi+1

Algorithm 15 Inference for the ith layer, i ∈ {1, ..., l}
Inputs: (Fi,xi−ri, si): held by server A; C̃i: the garbled
circuit of Algorithm 11; label: random labels for input
wires of Algorithm 11; labelFiri−si , labelri+1

, labeldi+1
:

labels tranmitted to the user
Server A:

Compute Fi(xi − ri) + si
Server A and the user:

GC.Transfer(label, di,Fi(xi− ri)+ si)→ labeldi
,

labelFi(xi−ri)+si

The user obtains labelFi(xi−ri)+si , labeldi

The user:
GC.Eval(C̃i, labelFi(xi−ri)+si , labeldi , labelri+1 ,

labelFiri−si)→ xi+1 − ri+1 − di+1

Send xi+1 − ri+1 − di+1 to Server A
Server A:

Compute xi+1 − ri+1

Algorithm 16 Construct the Garbled Circuits for the ith

activation layer i ∈ {l + 1, ..., L}
Inputs: Ci: the circuit in Algorithm 9; E1

i : the pre-
computed additive share held by server A; r2i+1: the
randomness generated by server B
Server B:

GC.Garble(Params, Ci)→ C̃i, label
Transmit C̃i to server C

Server A and B:
GC.Transfer(label,E1

i )→ labelE1
i

Server A obtains labelE1
i

transmits it to server C
Server B and C:

GC.Transfer(label, r3i+1)→ labelr3i+1

Server C obtains labelr3i+1
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