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Functionals that explicitly depend on occupied, unoccupied, or fractionally-occupied orbitals are
rigorously formalized using Clifford algebras, and a variational principle is established that facil-
itates orbital (and occupation) optimization as a formal implementation method. Theoretically,
these methodologies circumvent the limitations encountered in the original Kohn-Sham and related
methods, particularly when the interacting system’s electron density does not match that of any
noninteracting reference system. This work redefines orbital (and occupation) functionals from a
novel perspective, positioning them not merely as extensions of traditional density functionals, but
as superior, rigorous alternatives.

The Hohenberg-Kohn (HK) theorems fundamentally
established the basis for the original density functional
theory (DFT) by demonstrating the one-to-one corre-
spondence between the external potential and electron
density for nondegenerate ground states, and by estab-
lishing a variational principle to compute the ground-
state energy directly from densities [1]. However, the
HK theorems and their extensions to ensemble degener-
ate states [2–5] do not resolve all challenges associated
with the implementation and application of functional
theories for many-electron systems. Notably, issues re-
lated to density v-representability are crucial—a density
is deemed v-representable if it is a ground-state density
for some external potential[1, 6].

Overall, v-representability issues stem from two crit-
ical perspectives: the Hohenberg-Kohn (HK) varia-
tional principle[1] and the Kohn-Sham (KS) method[6].
The HK variational principle restricts densities to those
of the interacting system under some external poten-
tial, thereby introducing the interacting v-representable
(IVR) condition[1]. However, the absence of explicit con-
straints for IVR densities hampers the variational pro-
cess, necessitating the inclusion of non-IVR trial densi-
ties. Levy addressed this issue through the constrained
search formulation [7], proposing a universal functional
over easily realizable N -representable (NR) densities—
those derivable from any antisymmetric wavefunction.
Further efforts on this v-representability issue have been
made [8–10], with notable contributions from Yang, Ay-
ers, and Wu, who approached the issue through potential
functional theory [10].

Another v-representability issue emerges in the KS
method, which presupposes the existence of a noninter-
acting reference system governed by an effective potential
such that its density matches the ground-state density
of the interacting system[6]. This prerequisite, known
as the KS v-representable (KSVR) assumption, is essen-
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tial for the original KS method and related methodolo-
gies [6, 10–20], facilitating the simplification of the vari-
ational determination of density and energy. However,
the KSVR assumption reveals its limitations when the
interacting system’s ground-state density is non-KSVR,
potentially corresponding to an excited state or failing
to match any stationary state of a noninteracting sys-
tem [4, 10, 21–25]. This KSVR problem thus compro-
mises the reliability of computational results. Moving be-
yond traditional functionals like the generalized gradient
approximations (GGAs) [26–30] and hybrid functionals
[31–41], emerging functionals that explicitly depend on
occupied, unoccupied, or fractionally-occupied orbitals
demonstrate superior performance [42–61]. Although it
remains feasible to adhere to the KSVR assumption and
use the optimized effective potential (OEP) method [11–
20], to obtain density and orbitals for these new function-
als, the KSVR problem persists. Beyond the KS method,
new implementations such as orbital optimization [62–66]
(or equivalently, generalized OEP (GOEP) [67]), along-
side combined orbital and occupation optimization [68–
71], have emerged. However, the theoretical foundations
of these new functionals and implementations require fur-
ther demonstration. This work aims to provide a solution
to the KSVR problem and establish a rigorous theoreti-
cal basis for various orbital functionals and orbital (and
occupation) optimization implementations.
For an N -electron interacting system subject to an ex-

ternal potential v (Ĥv = T̂ + V̂ee +
∑N

i v(ri)), the Levy
constrained search formulation determines the ground-
state energy through the following variational principle
[7]:

Ev = min
ρ

EL
v [ρ], (1)

where the trial density ρ can be any NR density, and
EL

v [ρ] is the energy functional given by

EL
v [ρ] = min

Ψ→ρ
⟨Ψ|Ĥ|Ψ⟩, (2)

in which the minimization searches all normalized an-
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tisymmetric wavefunctions that yield ρ to identify the
minimizing wavefunction Ψmin

ρ . Upon successful mini-
mization of Eqs. 1 and 2, the resultant energy Ev and
the corresponding ground-state density and wavefunc-
tion, denoted ρv and Ψv, respectively, are obtained.

Indeed, Eqs. 1 and 2 correspond respectively to the
implementation method and the energy functional re-
quired. In practice, an effective strategy is essential to
search reasonable NR densities for approaching ρv. The
KS method restricts densities to those corresponding to
a noninteracting reference system with an effective po-
tential ws, i.e., the KSVR densities ρws [6, 72]. This
method not only simplifies the search but also leads to
a set of orbitals, known as KS orbitals, which are used
to generate ρws

and to construct both the kinetic energy
functional and the exchange-correlation functional in Eq.
2 [25]. However, since ρv is not necessarily a KSVR den-
sity, thus potentially rendering the KS implementation
ineffective.

This work abandons the traditional use of a nonin-
teracting reference system to address the limitations as-
sociated with KSVR densities. Subsequent discussions
transition from a generalized Slater determinant to fo-
cusing on orbital functionals. Unlike the ground-state
wavefunction of noninteracting systems, which is com-
posed of occupied KS orbitals, the determinant in this
study is constructed from an arbitrary set of orthonormal
one-electron functions. To explore a more comprehensive
scenario, hypercomplex orbitals are employed [24]:

φn,i(r) = ϕ0
i (r) +

n∑
µ=1

ϕµ
i (r)eµ, (3)

with {ϕµ
i } as real functions and {e1, . . . , en} as a basis in

a Clifford algebra of dimension n [73], satisfying:

e2µ = −1; eµeν = −eνeµ. (4)

The determinant constructed from {φn,i} is denoted Φn.
At n = 0, {φn,i} and Φn revert to traditional real orbitals
and determinant. With this construction, the density for
Eq. 1 can be obtained via:

⟨Φn|ρ̂|Φn⟩ = 2
∑
i

|φn,i(r)|2 = 2
∑
p

λn,p|χn,p(r)|2, (5)

where the last equality was derived in Ref. 24, and
{χn,p, λn,p} represent hierarchically correlated orbitals
(HCOs) and their occupations [74]. As indicated by Eq.
5, the density remains invariant under the unitary rota-
tion of {φn,i} and of {χn,p} with the same occupation.
Theorem 1: The mappings among Φn, {φn,i}, and

{χn,p, λn,p} are surjective for a given n, as shown in:

Φn ⇔ {φn,i} ⇔ {χn,p, λn,p}. (6)

Specifically, there exists a one-to-one mapping between
Φn and {φn,i}, and a many-to-one mapping between
{φn,i} and {χn,p, λn,p}, within the unitary rotation of

•

•

•
•
•

•

•

•
•
•

•

•

FIG. 1. Mappings among the domains of Φn, {φn,i}, and
{χn,p, λn,p}.

{φn,i} and of {χn,p} with the same occupation. Refer to
Fig. 1 for visualization.
Proof 1: The proof of this theorem is detailed in the

supplementary material [75]. □
Theorem 1 establishes that the densities derived from

Φn, {φn,i}, and {χn,p, λn,p}—collectively referred to as
ρn—share the same domain. The subsequent theorem
will delve deeper into the properties of ρn and delineate
their advantages over ρws

.
Theorem 2: The domain of ρn expands as n increases,

exhibiting a matryoshka-like structure. The relationships
among the domains of ρws

, ρv, and ρn from n = 0 to
n = ∞ are shown as:

domρws
⊆ domρn=0 ⊆ domρn=1 · · · ⊆ domρn=∞ ⊇ domρv

(7)
This indicates that the domain of ρn fully encompasses
KSVR densities and progressively includes all IVR den-
sities, as depicted in Fig. 2.

…

FIG. 2. The matryoshka-like structure of ρn domains across
different n levels, illustrating their relationships with KSVR
and IVR densities.

Proof 2: Initially, consider the relationship between
ρws

and ρn=0. Since the ground state of a noninteract-
ing reference system is typically represented by a Slater
determinant, all ρws

inherently reside within the domain
of ρn=0. However, certain ρn=0 densities are identified as
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non-KSVR, either corresponding to excited states or not
aligning with any stationary state of a non-interacting
system, establishing the first relation in Eq. 7. This
analysis assumes ρws

is derived from conventional real
KS orbitals. Should complex KS orbitals be used, ρn=0

transitions to ρn=1, with no additional modifications re-
quired.

The matryoshka-like structure of the domains of ρn
for different n levels is elucidated by Eq. 3. As n in-
creases, the degrees of freedom for {φn,i} increase, broad-
ening the domain of ρn. Moreover, {φn,i} at lower n
can be dimensionally reduced from those at higher n,
ensuring that the domain of ρn at higher n fully encom-
passes that at lower n. Additionally, the constraints on
{χn,p, λn,p} [24, 76] illustrate another aspect: at n = 0,
{χn,p, λn,p} are subject to stringent constraints—{χn,p}
are orthonormal and {λn,p} are integers, with N being
1 and the rest 0; as n increases, these constraints relax,
thereby extending ρn’s domain.

Regarding the domain of ρn=∞, as n approaches in-
finity, the constraints on {χn,p, λn,p} become minimal,
described by [24]:

⟨χn,p|χn,q⟩ = δpq, (8)

0 ≤ λn,p ≤ 1,
∑
p

λn,p = N/2. (9)

As detailed in Eq. 5, the density ρn in terms of
{χn,p, λn,p} is:

ρn(r) = 2
∑
p

λn,p|χn,p(r)|2. (10)

With these constraints, Eq. 10 can reproduce any NR
density, conclusively establishing that the domain of
ρn=∞ encompasses that of ρv. □

The above two theorems confirm that Φn, {φn,i}, and
{χn,p, λn,p} are equivalent for generating trial densities.
The resulting densities, ρn, are notable for their scala-
bility, extending their domain with increasing n to cover
a broader range of plausible NR densities. Additionally,
as derived from Ref. 77, under the ideal complete basis
set limit, ρn=0 can produce any NR density, making the
domain of ρn uniform across all n. Consequently, ρn are
termed meta-NR densities, highlighting their ability to
transcend traditional density search paradigms. Build-
ing on these insights, further discussions will elucidate
how Φn, {φn,i}, and {χn,p, λn,p} serve as fundamental
descriptors of the system.

Taking {χn,p, λn,p} as an example, the following vari-
ational principle is constructed:

En,v = min
{χn,p,λn,p}

Epw
n,v[{χn,p, λn,p}], (11)

with the energy functional defined as:

Epw
n,v[{χn,p, λn,p}] = min

Ψ→ρ{χn,p,λn,p}
⟨Ψ|Ĥv|Ψ⟩, (12)

where the superscript pw stands for present work. Eq.
11 seeks to minimize across the domain of {χn,p, λn,p},
with the density of each trial {χn,p, λn,p} given by
ρ{χn,p,λn,p} = 2

∑
p λn,p|χn,p(r)|2.

Theorem 3: Assume ρv is a meta-NR density for a
given n. Then, Epw

n,v[{χn,p, λn,p}] is stationary with re-
spect to variations in {χn,p, λn,p} when ρ{χn,p,λn,p} = ρv,
reaching its minimum and providing the ground state en-
ergy:

Ev = En,v. (13)

Proof 3: The variational principle in Eq. 1 stipulates
that when the trial density equals the ground state den-
sity (ρ = ρv), the Euler-Lagrange equation is satisfied
[72]:

δEL
v [ρ]

δρ(r)

∣∣∣∣
ρ(r)=ρv(r)

= µ, (14)

where µ is the chemical potential ensuring the density
is NR. For Epw

n,v[{χn,p, λn,p}], consider small variations
within {χn,p, λn,p}’s domain:

δEpw
n,v[{χn,p, λn,p}]
δ{χn,p, λn,p}

=

∫
δEpw

n,v[{χn,p, λn,p}]
δρ{χn,p,λn,p}(r)

δρ{χn,p,λn,p}(r)

δ{χn,p, λn,p}
dr.

(15)
Upon comparing the definitions of EL

v [ρ] and
Epw

n,v[{χn,p, λn,p}] (namely Eqs. 2 and 12), when
ρ{χn,p,λn,p} = ρv, the above equation simplifies to:

δEpw
n,v[{χn,p, λn,p}]
δ{χn,p, λn,p}

= µ

∫
δρ{χn,p,λn,p}(r)

δ{χn,p, λn,p}
dr = 0, (16)

confirming that Epw
n,v[{χn,p, λn,p}] is stationary. Further-

more, the following can be obtained:

Epw
n,v[{χn,p, λn,p}]|ρ{χn,p,λn,p} ̸=ρv

= min
Ψ→ρ{χn,p,λn,p}

⟨Ψ|Ĥv|Ψ⟩

≥ min
Ψ→ρv

⟨Ψ|Ĥv|Ψ⟩ = Epw
n,v[{χn,p, λn,p}]|ρ{χn,p,λn,p}=ρv

,

(17)

indicating that Epw
n,v[{χn,p, λn,p}] reaches the minimum

En,v when ρ{χn,p,λn,p} = ρv and equals Ev. □
Theorem 3 thus demonstrates that {χn,p, λn,p} fun-

damentally defines the system, with the ground
state energy obtainable by minimizing the functional
Epw

n,v[{χn,p, λn,p}]. For simplicity, Epw
n,v[{χn,p, λn,p}] is de-

composed as:

Epw
n,v[{χn,p, λn,p}] = Tn[{χn,p, λn,p}] + J [ρ{χn,p,λn,p}]

+ En,xc[{χn,p, λn,p}] +
∫

v(r)ρ{χn,p,λn,p}(r) dr, (18)

where Tn represents the kinetic energy [24],

Tn[{χn,p, λn,p}] = −
∑
p

λn,p⟨χn,p|∇2|χn,p⟩. (19)
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J denotes the Coulomb energy, En,xc is the exchange-
correlation energy accounting for the remaining kinetic
and electron interaction energies not covered by Tn and
J , and the final term represents the external potential
energy.

The above derivations and conclusions require only mi-
nor modifications to apply to Φn and {φn,i}. Specifi-
cally, in Eqs. 11-19, replace {χn,p, λn,p} with Φn and
{φn,i} respectively, substituting ρ{χn,p,λn,p} with ρΦn

=

⟨Φn|ρ̂|Φn⟩ and ρ{φn,i} = 2
∑

i |φn,i(r)|2. The energy
functionals Epw

n,v[Φn] and Epw
n,v[{φn,i}] follow the decom-

position in Eq. 18, with Tn of Eq. 19, expressed respec-
tively in terms of Φn and {φn,i}, given by[24]:

Tn[Φn] = ⟨Φn|T̂ |Φn⟩, (20)

Tn[{φn,i}] = −
∑
i

⟨φn,i|∇2|φn,i⟩. (21)

Further clarifications on the theorems are provided
here. While current discussions primarily address pure
ground states of interacting systems, extensions to en-
semble states are feasible. This involves generalizing ρv
to ensemble IVR densities and redefining energy func-
tionals in Eqs. 2 and 12, as detailed in Ref. 8. Specifi-
cally, for a g-fold ensemble state, Eq. 12 is reformulated
as:

Epw
n,v[{χn,p, λn,p}] = min

{Ψk,dk}→ρ{χn,p,λn,p}

g∑
k=1

dk⟨Ψk|Ĥv|Ψk⟩,

(22)
where the search for g anti-symmetric wavefunctions
{Ψk} (each with its density ρk) and their weights {dk}
(satisfying 0 ≤ dk ≤ 1 and

∑g
k=1 d

k = 1) ensures the en-
semble density matches ρ{χn,p,λn,p}, i.e.,

∑g
k=1 d

kρk(r) =
ρ{χn,p,λn,p}. Concerning g, by assigning it a sufficiently
large number, non-contributing weights will reduce to
zero during the minimization process, thereby effectively
capturing the system’s true degeneracy. The energy func-
tionals Epw

n,v[Φn] and Epw
n,v[{φn,i}] are adapted similarly.

Notably, even degenerate systems managed with a single
Slater determinant Φn benefit from using hypercomplex
orbitals {φn,i}, equating to the application of HCOs and
their occupations {χn,p, λn,p}, thus effectively represent-
ing ensemble IVR densities and strong correlation effects
[24, 74, 76].

Moreover, the theoretical framework can be extended
to handle excited states, including ensemble excited
states. According to the Levy constrained search method
and its extension [7, 78–80], when the trial density cor-
responds to an excited state, it identifies a stationary
point rather than the global minimum. Thus, by modi-
fying the minimization process in Eqs. 1 and 11 to target
these stationary points, the theorems can be applied to
compute the energies and densities of excited states.

While Φn, {φn,i}, and {χn,p, λn,p} all serve as fun-
damental variables of the system, only HCOs and their

occupations, {χn,p, λn,p}, are real values [24]. Addition-
ally, Theorem 1 indicates that {χn,p, λn,p} possess the
smallest domain, enhancing their operability and opti-
mizations. Furthermore, the fractional occupations of
HCOs can effectively capture strong correlation effects,
offering advantages in functional development. Notably,
at n = 0, HCO occupations are strictly binary—either
1 or 0—clearly delineating occupied from unoccupied
orbitals. This scenario allows the above three theo-
rems to lay a rigorous theoretical foundation for vari-
ous (occupied and unoccupied) orbital functionals [42–
53] and corresponding orbital optimization [62–67] im-
plementations. In fact, even at n = 0, this approach
can circumvent many issues associated with KSVR densi-
ties, thereby explaining the favorable outcomes observed
in existing orbital-optimization calculations [63–67, 81].
When n = ∞, the constraints on {χn,p, λn,p} imposed
by Eqs. 8 and 9 align precisely with the ensemble N -
representability constraints on natural orbitals and their
occupations, thereby enabling these theorems to demon-
strate the rigor of reduced density matrix functional the-
ory [7, 8, 82–84] from another perspective.

The above addresses the spin-compensated case of N/2
electrons for each spin. As for spin-polarized systems
containing Nα and Nβ electrons with differing spins, Φn

then comprisesNα orbitals {φα
n,i} andNβ orbitals {φβ

n,i},
each linked to distinct sets of HCOs and their occupa-
tions, specifically {χα

n,p, λ
α
n,p} and {χβ

n,p, λ
β
n,p}. In this

scenario, the densities—including ρv, ρws , and ρn—are
accordingly decomposed into components for α and β
spins. Consequently, similar derivations can be carried
out for both spins, details of which are not repeated here.

In summary, this study integrates various
functionals—those dependent on occupied, unoccu-
pied, or fractionally-occupied orbitals—into a unified
framework. Each type of functional corresponds to
a Clifford algebra with a specific dimensional basis,
with their theoretical rigor thoroughly demonstrated.
Specifically, Theorem 3 establishes a variational prin-
ciple that lays a robust theoretical foundation for
both orbital optimization and simultaneous orbital
and occupation optimization. Furthermore, Theorem 2
investigates the domains of densities determined by the
basis dimensions within Clifford algebras, confirming
that these methodologies can effectively overcome the
limitations posed by the KSVR assumption. Moreover,
when properly implemented, these methodologies can
also resolve common issues encountered in GGA and
hybrid functional calculations, particularly when the
desired solutions incorrectly target excited states of
noninteracting systems—this work ensures the validity
of such implementation.

Support from the National Natural Science Foundation
of China (Grants No. 22122303 and No. 22073049) and
Fundamental Research Funds for the Central Universities
(Nankai University, Grant No. 63206008) is appreciated.
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Appendix A: Details of the proof of Theorem 1

Theorem 1: The mappings among Φn, {φn,i}, and
{χn,p, λn,p} are surjective for a given n, as shown in:

Φn ⇔ {φn,i} ⇔ {χn,p, λn,p}. (A1)

Specifically, there exists a one-to-one mapping between
Φn and {φn,i}, and a many-to-one mapping between
{φn,i} and {χn,p, λn,p}, within the unitary rotation of
{φn,i} and of {χn,p} with the same occupation.

Proof 1: The one-to-one surjective mapping be-
tween Φn and {φn,i}, within the unitary rotation of
{φn,i}, is evident. The demonstration below illustrates
the many-to-one surjective mapping between {φn,i} and
{χn,p, λn,p}, within the unitary rotation of {φn,i} and of
{χn,p} with the same occupation.
For completeness, a brief review of relevant concepts is

provided. Hypercomplex orbitals are defined as [24]

φn,p(r) = ϕ0
p(r) +

n∑
µ=1

ϕµ
p (r)eµ, (A2)

where {e1, e2, . . . , en} form a basis in a Clifford algebra
of dimension n [73]. For constructing Φn, N/2 hyper-
complex orbitals are utilized; without loss of generality,
the first N/2 orbitals, denoted {φn,i}, are selected. The
set {ϕµ

p} consists of real functions expanded on a set of
orthonormal functions {ξp}, which does not compromise
generality:

ϕµ
p (r) =

K∑
q=1

ξq(r)V
µ
pq, (A3)

where K is the dimension of the basis set, and {V µ}
are a set of n + 1 K × K matrices, each V µ represent-
ing the expansion coefficients for the µ-th component of
the hypercomplex orbitals. These matrices preserve the
orthonormality of the hypercomplex orbitals, leading to
the following conditions on {V µ}:

∑n
µ=0 V

µV µT = IK ,∑n
µ=0 V

µTV µ = IK ,

V µV νT = V νV µT ,

V µTV ν = V νTV µ,

(A4)

where IK is the K × K identity matrix, and the super-
script T denotes the matrix transpose. Through a series
of derivations [24], the density can be represented on the
set {χn,p, λn,p}, as given by:

ρn(r) = 2
∑
p

λn,p|χn,p(r)|2. (A5)

Here, {χn,p, λn,p} correspond to the eigenvectors and
eigenvalues, respectively, of the symmetric matrix Dn,
defined by:

Dn =

n∑
µ=0

V µT I
N/2
K V µ, (A6)

where I
N/2
K is a K × K diagonal matrix, with the first

N/2 diagonal entries set to 1, and the rest set to 0. The
spectral decomposition of Dn is given by:

Dn = UΛUT . (A7)

where Λ is a diagonal matrix containing the eigenvalues
{λn,p}, and U , a unitary matrix, defines {χn,p} as χn,p =∑K

q=1 ξqUqp. Thus, {χn,p} are orthonormal:

⟨χn,p|χn,q⟩ = δpq. (A8)

Interestingly, the constraints on {λn,p} depend on the
dimension n of the Clifford algebra. Specifically, for any
n, all {V µ} that satisfy Eq. A4 define the domain Ωn

for {χn,p, λn,p}. Notably, at n = 0, Ωn=0 encompasses
{χn,p} that meet Eq. A8, withN/2 of them having an oc-
cupation of 1 and the rest 0, thereby clearly delineating
occupied from unoccupied orbitals. For further discus-
sion, see Refs. 24 and 76.

The surjectivity of the mapping between {φn,i} and
{χn,p, λn,p} is first established. For any orthonormal
set {φn,i}, a corresponding set {V µ} exists that satisfies
Eq. A4, thus ensuring the presence of {χn,p, λn,p} in Ωn.
Conversely, for each {χn,p, λn,p} in Ωn, there must be a
set {V µ} compliant with Eq. A4, defining a compatible
set {φn,i}. Without such a set {V µ}, {χn,p, λn,p} would
not fall within Ωn. This confirms the surjective nature
of the mapping between {φn,i} and {χn,p, λn,p}.

For any unitary rotation of the first N/2 hypercomplex
orbitals {φn,i}, it corresponds to the following transfor-
mation on all matrices in {V µ}:

V ′µ = WV µ, (A9)

where W is defined as:

W =

[
Q ON/2,K−N/2

OK−N/2,N/2 IK−N/2

]
, (A10)

with Q being a N/2 × N/2 unitary matrix, and OI,J

denoting an I × J zero matrix. It can be derived that
for any {V µ} satisfying Eq. A4, and its corresponding
Dn defined by Eq. A6, applying the transformation in
Eq. A9 to all matrices in {V µ} yields a new set {V ′µ}
that also satisfies Eq. A4, producing the same Dn as de-
fined by Eq. A6. Therefore, the transformed and original
matrices correspond to the same {χn,p, λn,p}. Moreover,
if Dn has identical eigenvalues, i.e., multiple orbitals in
{χn,p} have the same occupations, any unitary rotation
among these orbitals, by the spectral decomposition de-
fined in Eq. A7, leads to the same Dn before and af-
ter the transformation, thus corresponding to the same
{V µ} and their defined {φn,i}. In fact, the invariance
under these transformations also applies to the energy
functionals defined in this work. The mappings between
{φn,i} and {χn,p, λn,p} discussed below do not account
for the changes these transformations impart to {φn,i}
and {χn,p, λn,p}.
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Lastly, the many-to-one mapping between {φn,i} and
{χn,p, λn,p} is confirmed. For a given set of {φn,i},
there is a specific set of {V µ} that satisfies Eq. A4 and
a distinct matrix Dn, thus associating a unique set of
{χn,p, λn,p} with it. Additionally, if the roles of two bases
in all hypercomplex orbitals (Eq. A2), such as eµ and
eν , and the functions ϕµ

p and ϕν
p are interchanged, this is

equivalent to swapping the coefficient matrices V µ and
V ν . Clearly, such a transformation cannot be achieved

by a unitary rotation of {φn,i}; however, it is evident that
the new matrices {V ′µ} also satisfy Eq. A4, and the Dn

defined by Eq. A6 remains unchanged after the trans-
formation. Therefore, the mapping between {φn,i} and
{χn,p, λn,p} is many-to-one. This discussion only men-
tions a simple transformation; there are evidently other
more complex transformations involving hypercomplex
orbitals that leave {χn,p, λn,p} unchanged, hence the do-
main of {χn,p, λn,p} is considerably smaller. □
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