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A binary stellar system that ventures too close to a supermassive black hole can become tidally
separated. In this article, we investigate the role of relativistic effects in these encounters through
3-body simulations. We use the Hybrid Relativistic-Newtonian Approximation (HRNA), which com-
bines the exact relativistic acceleration from a Schwarzschild black hole with a Newtonian description
of the binary’s self-gravity. This method is compared against Newtonian and Post-Newtonian (1PN)
simulations. Our findings show good agreement between HRNA and 1PN results, both of which
exhibit substantial differences from Newtonian simulations. This discrepancy is particularly pro-
nounced in retrograde encounters, where relativistic simulations predict up to 30% more separation
events and an earlier onset of binary separation (β = 2 compared to 2.5 in Newtonian simulations,
with β the impact parameter). Additionally, the HRNA model predicts about 15% more poten-
tial extreme mass ratio inspirals and generate a higher number of hypervelocity star candidates,
with velocities up to 2,000 km/s faster than those predicted from Newtonian simulations. Further-
more, compared to Newtonian cases, relativistic encounters are more likely to result in direct stellar
collisions and binary mergers.

I. INTRODUCTION

When a binary stellar system ventures sufficiently close
to a black hole (BH), the tidal forces exerted by the BH
can become comparable to the binary’s self-gravity, lead-
ing to tidal separation [1]. In scenarios where the binary
approaches the BH along a parabolic orbit, this sepa-
ration results in one member of the binary being grav-
itationally bound to the BH, while the other becomes
unbound, receding with velocities reaching several thou-
sand km/s.

Stars ejected from such events are commonly referred
to as hypervelocity stars (HVS), a concept first proposed
by Hills in 1988 [2]. The observational discovery of HVSs,
initially reported by Brown [3] and recently summarized
in Ref. [4], has sparked significant interest in the astro-
physical community (e.g. Refs. [5–8]). Alternative mech-
anisms for producing fast-moving, unbound stars from
galactic centers have also been discussed in the literature
(see, e.g. Refs. [9–11]).

Several studies have focused instead on the fate of the
star that remains bound to the SMBH. For instance, in
the context of elucidating the origin of stellar popula-
tions in close orbits around SMBHs, such as the S-stars
around Sgr A* [12, 13]. If this former member of the
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binary system is a compact object, it may evolve into a
source of extreme mass-ratio inspirals (EMRI) [14, 15],
a phenomenon that could soon be observed with LISA
[16].
Tidal separation encounters can give rise to other

types of interesting phenomena, including double tidal
disruption events [17, 18], stellar collisions [19], and
binary mergers [20–22]. Comprehensive explorations
of the relevant parameter space for these encounters
have been conducted through numerical simulations of
the corresponding (full or restricted) 3-body problem
(e.g. Refs. [7, 8, 15, 23–25]). However, these studies have
been limited to encounters occurring within a Newtonian
regime.
In this work, we consider tidal separation events oc-

curring within the relativistic regime near a central non-
rotating BH characterized by Schwarzschild spacetime.
We adopt the approximated relativistic treatment intro-
duced by Tejeda et al. in Ref. [26], referred to here-
after as the Hybrid Relativistic-Newtonian Approxima-
tion (HRNA).
This approach combines exact relativistic accelerations

due to the central BH with a Newtonian description of
the binary self-gravity. As demonstrated in Ref. [26],
HRNA accurately captures relativistic effects, particu-
larly in scenarios where the gravitational field of the cen-
tral BH dominates the curvature of the overall spacetime.
To identify the primary features of a relativistic de-

scription of binary tidal separations, we perform a prelim-
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inary parameter space exploration. This entails compar-
ing the outcomes of HRNA simulations with their Newto-
nian counterparts. Furthermore, we validate the HRNA
method by performing first-order Post-Newtonian (1PN)
simulations for the same set of encounters. Our analy-
sis reveals a robust agreement between HRNA and 1PN
outcomes, highlighting consistent predictions from both
relativistic approaches. Notably, these predictions signif-
icantly diverge from results obtained through Newtonian
simulations of retrograde encounters.

An advantage of the HRNA method over the PN for-
malism lies in its versatility, enabling its application to
any black hole (BH) spacetime, whether prescribed ana-
lytically or numerically. While our focus in this study
centers on tidal separations by a Schwarzschild BH,
HRNA offers the flexibility to explore other spacetime
metrics, such as those surrounding a rotating BH (Kerr
spacetime), as demonstrated in Ref. [26, 27].

This versatility stands in contrast to the PN formal-
ism, where the accuracy hinges on the order of the ex-
pansion utilized, with higher orders necessitating increas-
ingly complex computations [28].

The paper is organized as follows. In Section II we
describe the problem at hand, focusing on identifying
the regime where relativistic effects become significant.
Here, the HRNA method is introduced, detailing its prin-
ciples and outlining self-consistency and validation tests
to ensure its reliability. Section III follows, detailing the
numerical setup employed in the study. This includes
a comprehensive description of the parameter space ex-
plored and its relevance to various astrophysical scenar-
ios. In Section IV, the simulation results are presented
and analyzed. Key metrics such as separation fraction
and properties of separated binaries are discussed, along
with a thorough examination of different outcomes such
as hypervelocity stars, possible EMRI sources, stellar col-
lisions, and binary mergers. Finally, Section V summa-
rizes the findings and conclusions of the study.

II. PROBLEM DESCRIPTION

Consider a binary system comprising two stars with
masses m1 and m2, with an initial separation a0, ap-
proaching a BH of mass M . Similar to tidal disruption
events of individual stars, the relative strength of a given
encounter can be characterized in terms of the impact
parameter

β =
rt
rp

, (1)

where rp is the distance of closest approach between the
binary’s center of mass (CM) and the BH (pericenter

distance), and rt is the tidal radius defined as

rt ≡
(

M

mb

)1/3

a0

≃ 101.3

(
M

106 M⊙

)−2/3(
mb

M⊙

)−1/3 ( a0
0.01 au

)
rg,

(2)

where mb = m1 + m2 is the total binary mass and
rg ≡ GM/c2 is the gravitational radius of the BH.1 The
tidal radius has been expressed in terms of physical pa-
rameters adequate for describing a binary system formed
by two 0.5M⊙ white dwarfs.
In general, tidal binary separation is expected for en-

counters with β ≳ 1. However, it is important to stress
that rt provides only an order-of-magnitude estimate of
where tidal forces significantly influence binary dynam-
ics. As previously discussed in the literature [29], a criti-
cal factor determining the outcome of such encounters is
the spatial orientation with which the binary approaches
the central object.
Consider, for example, the scenarios depicted in Fig. 1,

where we illustrate a binary’s trajectory with β = 8,
along with the outcomes of three encounters viewed from
a reference frame comoving with the binary’s CM. All
three encounters share the same parameters, except for
the initial angular phase φ of the binary. As evidenced
by this figure, even minors variations in φ can decisively
impact the binary’s fate.
In broad terms, general relativistic effects are expected

to become significant for tidal separation events when the
pericenter distance is less than 100 rg (see Ref. [26], for
a detailed description of the relativistic effects relevant
for tidal encounters). In Fig. 2, we display rt for various
BH masses and initial binary separations. For instance,
considering a supermassive BH with M = 106 M⊙, rel-
ativistic effects are predicted to be relevant for close bi-
naries with initial semi-major axes a0 < 0.01 au. Fur-
thermore, the importance of these effects increases for a
broader range of binary separations as we consider larger
BH masses.
General relativity naturally limits the maximum at-

tainable impact parameter before the binary plunges
whole onto the BH’s event horizon. For parabolic-like
trajectories (zero asymptotic velocity), this limit corre-
sponds to the radius of the marginally bound circular
orbit and is equal to 4 rg for a Schwarzschild BH. From
this condition we find

βmax ≃ 25.3

(
M

106 M⊙

)−2/3(
mb

M⊙

)−1/3 ( a0
0.01 au

)
.

(3)

1 Unless otherwise stated, for the rest of this work we adopt the
geometrized unit system where G = c = 1. Since then rg = M ,
we shall use these two variables interchangeably.
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FIG. 1. Examples of different possible outcomes of the en-
counter between a binary system and a supermassive BH.
The central object is a Schwarzschild BH with M = 106 M⊙,
with a corresponding gravitational radius of rg ≃ 0.01 au.
The binary consists of two equal mass stars with m1 =
m2 = 0.5M⊙, placed initially on a circular orbit separated
by a0 = 0.01 au ≃ rg. The corresponding tidal radius is of
rt = 101.3 rg, while the impact parameter for this encounter is
β = 8. The binary is on a retrograde orbit co-planar with the
CM trajectory. The figure shows the trajectory of the binary’s
CM around the BH (the relativistic precession of pericenter is
clearly visible). The magnified inset shows the binary system
in its initial position (in this case at a distance r0 = 10 rt).
The top panel shows the whole binary evolution as seen from
the CM reference frame. The outcome of three encounters
with different initial phases (φ) are shown: φ = 0.5 leading
to binary separation, φ = 0.3 resulting in a surviving binary
that has become wider, and φ = 0.2 leaving behind a surviv-
ing binary that has become more compact. Given the very
eccentric orbit of the latter, this encounter might actually re-
sult in a stellar collision once the finite radius of each star is
considered.

As evidenced by the strong pericenter shift of the CM
trajectory in Fig. 1, these encounters correspond to sim-
ulations run with the HRNA method that we describe in
further detail next.

A. Hybrid relativistic-Newtonian approximation

In the present work we treat the interaction between
the binary stars as an external, Newtonian force acting
on top of the fixed background metric of a Schwarzschild
BH. In what follows, we refer to this treatment as Hybrid
Relativistic-Newtonian Approximation (HRNA). A test
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FIG. 2. Parameter space for the tidal separation of a binary
system, consisting of two equal 1M⊙ stars with varying bi-
nary semi-major axes. The vertical axis represents the peri-
center distance of the parabolic trajectory along which the
binary approaches the central BH, whose mass M is shown
on the horizontal axis. The blue lines indicate the tidal radii
rt for different binary separations. The black horizontal line
marks the limit of direct capture (4 rg) in Schwarzschild space-
time. General relativistic effects become relevant (order 1
percent or higher) for encounters that occur within the blue-
shaded region.

particle, with rest mass m and coordinates xα in a curved
spacetime subjected to an external force fα, obeys the
equation of motion2 [30]

d2xα

dτ2
+ Γα

µν

dxµ

dτ

dxν

dτ
=

1

m
fα, (4)

where τ is the proper time of the test particle and Γα
µν

are the Christoffel symbols associated to the spacetime
metric gµν . We shall thus take as external force

fα = Pαβ ∂Φ

∂xβ
, (5)

where

Pαβ = gαβ + UαUβ (6)

is the projection tensor that ensures that the resulting 4-
acceleration fα/m is always orthogonal to the 4-velocity
Uα = dxα/dτ . On the other hand, in this work we model
the binary’s self-gravity via the Newtonian gravitational
potential

Φ = − m1 m2

|x1 − x2|
, (7)

2 Here and in what follows we adopt Einstein’s convention of sum-
mation over repeated indices, with Greek indices running over
spacetime components and Latin indices over spatial ones.
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where x refers to the spacial part of xµ and |x1 − x2|
is the Euclidean distance between the two stars, that we
treat here as point particles.

Even though introducing the potential in Eq. (7) is in
violation of general relativity’s covariance principle and
thus, constitutes at most an ad-hoc approximation, it
is still accurate for situations in which the mass of the
central BH is much larger than the mass-energy con-
tent of the surrounding matter. This has been shown
in Refs. [26] where the same methodology was employed
to study the tidal disruptions of individual stars by su-
permassive BHs.3

Given that the proper time of each individual star will
progress at slightly different rates, we follow Ref. [26]
and rewrite the spatial part of Eq. (4) in terms of the
coordinate time t as

ẍi =−
(
giλ − g0λ ẋi

)
×
[

1

mΓ2

∂Φ

∂xλ
+

(
∂gµλ
∂xν

− 1

2

∂gµν
∂xλ

)
ẋµ ẋν

]
,

(8)

where an over-dot indicates derivative with respect to t,
m refers to the mass of the star in question (i.e. m1 or
m2), Φ is the binary’s self-gravitational field defined in
Eq. (7), and Γ is the generalized Lorentz factor of the
particle given by

Γ = (−gµν ẋ
µ ẋν)

−1/2
. (9)

For numerically implementing this equation, we take

− 1

m

∂Φ

∂xi
= ai, (10)

with ai the usual Newtonian acceleration due to the bi-
nary interaction. Also note that, according to Eq. (7),
∂Φ/∂t = 0.

B. Self-consistency and validation tests

A self-consistency criterion that was proposed in
Ref. [26] for the validity of the HRNA method is to ask
for the length scale on which self-gravity acts to be much
smaller than the local radius of curvature R due to the
BH. For a Schwarzschild BH we have R = (r/rg)

3/2 rg
and, thus, we need to verify that for all of the encoun-
ters considered in this work the following expression is
satisfied

α =
a

R ≪ 1, (11)

where, provided that the binary remains self-bound, a
is the binary separation. Once the binary is separated,

3 Note that the method employed in Ref. [26] does not consider
the projection operator, nevertheless it is simple to check that
the resulting evolution equations (with respect to the coordinate
time t) are the same in both cases.

the acceleration due to the self-gravity potential becomes
negligible and each star effectively moves along indepen-
dent geodesic trajectories of Schwarzschild spacetime.
As we discuss in further detail in Appendix A,

α ∼ 10−5 for most of the simulation time of the encoun-
ters studied in this article. Nevertheless, for some of
the deepest encounters, this parameter can reach values
as large as 0.2 during a short interval of time centered
around the binary’s pericenter passage.
In Ref. [26] several tests were presented as proof of

concept of the HRNA method. These tests included:

• Geodesic motion limit. In both Schwarzschild and
Kerr spacetimes, it was demonstrated that the ex-
act geodesic motion is recovered under circum-
stances where self-gravity is negligible compared to
the gravitational attraction due to the central BH.
This typically applies to the CM motion when the
system is well outside its tidal radius, or to the
motion of individual particles after the system has
been completely disrupted.

• Comparison with previous studies of relativistic
tidal disruption events (see, e.g. Refs. [31–34]).

• Covariance principle. To evaluate the extent to
which the HRNA method adheres to the covari-
ance principle of general relativity, the outcome
of several simulations with the same exact invari-
ant initial conditions were compared using two dif-
ferent coordinate systems (Kerr-Schild and Boyer-
Lindquist).

As an additional validation test, using a harmonic os-
cillator as a toy model of a self-interacting system, in
Appendix B we demonstrate that the HRNA method cor-
rectly captures the relativistic dilation of time. Specifi-
cally, we show that the time scale associated to the in-
ternal interaction of a bound system dilates in the same
manner as that of a free-falling, virtual test particle po-
sitioned at the system’s CM.4 This confirms that the
HRNA method does not introduce any artificial ampli-
fication of tidal effects attributable to relativistic time
dilation.

III. NUMERICAL SETUP

As previously mentioned, this work involves numerical
studies of close encounters between a binary stellar sys-
tem, modeled as two point masses, and a supermassive
BH. In order to explore the role of general relativistic
effects in this kind of interactions, we compare the out-
come of each encounter when evolved under three differ-
ent gravity descriptions:

4 This observation is made from the perspective of a physical ob-
server located asymptotically far from the central BH.
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i) Newton’s gravity law.

ii) The hybrid relativistic-Newtonian approximation
(HRNA) described in Section II.

iii) First-order, post-Newtonian interactions (1PN) [35,
36]. A summary of the 1PN evolution equations for a
restricted three-body system is given in Appendix C.

The gravitational encounter between three bodies com-
prises at least 21 different parameters (mass, initial po-
sition and velocity for each particle). In this work we
reduce the number of degrees of freedom by adopting the
following restrictions:

i) The central BH is considered to be much more mas-
sive than the binary system. Therefore, we neglect
any kind of back-reaction from the binary on to the
central BH and fix its position at the origin of a
global reference frame.

ii) The binary system consists of two-equal mass stars
(m1 = m2) in a circular orbit around each other
in the beginning of the simulation. We call a0 their
initial separation and φ the initial orbital phase (true
anomaly). The angle φ is measured with respect to
the x axis of the global reference frame.

iii) The binary system approaches the central BH follow-
ing a parabolic-like trajectory, that is, the binary’s
CM has a zero kinetic energy asymptotically far away
from the central object.

iv) The binary and CM trajectories are co-planar, i.e. all
the encounters are restricted to one plane that, for
simplicity, we take as z = 0.

The previous restrictions leave us with 7 model param-
eters: BH mass M , total binary mass mb, initial binary
separation a0, impact parameter β, initial orbital phase
φ, initial binary distance from the BH r0, and sense of
rotation of the binary with respect to its CM motion (i.e.
prograde or retrograde motion). Further details for im-
plementing the initial conditions for each gravity law are
given in Appendix D.

Since the binary is assumed to approach the central BH
from infinity, our results should in principle be indepen-
dent from r0 provided that r0 ≫ rt.

5 We take r0 = 50 rt
as fiducial value for the initial distance of the CM tra-
jectory. From this point, we evolve the system in time
as the binary approaches the central BH, passes through
pericenter, and then recedes until the distance from the

5 As we define the initial orbital phase φ with respect to the x
axis of the global reference frame, the outcome of an individ-
ual encounter certainly depends on the initial distance r0 from
which the binary is released. However, we are not concerned with
the outcome of any given encounter with a particular initial φ,
but rather, with the outcome of a large ensemble of encounters
spanning all possible initial phases φ ∈ [0, 2π].

binary’s CM to the origin exceeds 150 rt, at which point
we terminate the simulation. An analysis concerning the
convergence of the simulations with respect to the initial
and final points is discussed in Appendix E.
The parameter space can be further reduced to five

dimensions by noticing that this problem can be rendered
scale free by adopting M as unit of mass and length,
i.e. for a given sense of rotation and fixed values of β and
φ, encounters with same mass ratios mb/M and same
initial distances (a0/rg and r0/rg) are equivalent to one
another.
We will consider as fixed model parameters

mb = 10−6M and a0 = 1.013 rg, and study the re-
sulting three-dimensional parameter space: β and φ
as continuous variables, and sense of rotation as a
discrete parameter corresponding to either prograde or
retrograde orbits. From Eqs. (2) and (3), with these
parameters we have a tidal radius of rt = 101.3 rg and a
maximum impact parameter of βmax = 25.3. However,
as shown in Appendix A, the self-consistency parameter
α in Eq. (11) is an increasing function of β and, already
for β = 10, a substantial fraction of encounters reach
α ≳ 0.1. For this reason, we restrict our exploration to
β ≤ 10.
With these fixed parameters, the initial (unperturbed)

binary period is given by

T0 = 2π

√
a30
mb

= 6, 406M ≃ 8.8

(
M

106 M⊙

)
hr,

(12)

while an estimate of the time taken by the binary to reach
rp from r0 is given by

∆t ≃ 4

3

(r0
2

)3/2
M

= 170, 000M ≃ 232

(
M

106M⊙

)
hr.

(13)

By adopting re-scaled physical units, our fixed model
parameters are suitable for describing a continuum of
possible encounters. From this broad spectrum, we can
highlight the following representative types of encoun-
ters:

type 1: M = 106M⊙, mb = 1M⊙, a0 = 0.01 au,

type 2: M = 107M⊙, mb = 10M⊙, a0 = 0.1 au,

type 3: M = 108M⊙, mb = 100M⊙, a0 = 1.0 au,

with type 1 consisting of a close binary composed of two
0.5M⊙ white dwarfs; type 2 consisting of two main se-
quence 5M⊙ stars; and type 3 consisting of two 50M⊙
BHs (with an initial separation wide enough to ensure
that their orbital motion can be treated within the New-
tonian regime).
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IV. SIMULATION RESULTS

We explore a broad parameter space by sampling 200
equally spaced values of the impact parameter β, rang-
ing from 0.1 to 10. For each value of β, we consider 400
initial phases φ, uniformly distributed between 0 and π.6

For every pair of parameters (β, φ), we run six indepen-
dent simulations, one for each gravity law (Newtonian,
HRNA and 1PN) and for both prograde and retrograde
encounters. This approach resulted in a total of 480,000
simulations performed to conduct this initial exploration.

The simulations are carried out with the N-body code
rebound [37], employing the 15th-order, implicit inte-
grator with adaptive time stepping IAS15 developed by
Rein and Spiegel [38].7 We have augmented the code
by introducing a modulus that computes the accelera-
tion due to a central BH according to both HRNA and
1PN descriptions. We have compared the outcome of the
simulations against an independent Julia code using the
Tsit5 integrator [39], finding a close agreement between
the two sets of results.

At every point along the trajectory of a given simula-
tion, we store the positions x1, x2 and velocities ẋ1, ẋ2

of each particle. We then introduce the binary’s CM and
relative position vectors (as computed in flat spacetime):

xcm =
m1 x1 +m2 x2

m1 +m2
=

x1 + x2

2
, (14)

x12 = x1 − x2, (15)

and the associated velocities

ẋcm =
ẋ1 + ẋ2

2
, (16)

ẋ12 = ẋ1 − ẋ2. (17)

From these quantities, we compute instantaneous val-
ues for the specific energy Eb, angular momentum Lb

and eccentricity eb of the binary system according to the
Newtonian expressions

Eb =
1

2
|ẋ12|2 −

mb

|x12|
, (18)

Lb = |x12 × ẋ12| , (19)

eb =

√
1 +

2EbL2
b

m2
b

. (20)

On the other hand, employing appropriate expressions
for each gravity law,8 we also compute instantaneous val-

6 We only need to consider half of the full interval of the initial
phase φ ∈ [0, 2π] given that the assumption m1 = m2 ensures
its symmetry.

7 rebound is an open-source code that can be downloaded freely
at http://github.com/hannorein/rebound.

8 In the Newtonian case we employ the usual expressions for the
motion of a test particle; for the relativistic approach we employ
the exact expressions for conserved quantities in a Schwarzschild
spacetime (see, e.g. Ref. [26]); for 1PN interactions we employ
Eqs. (D12) and (D13).

ues for the specific energies E1, E2, Ecm and angular mo-
menta L1, L2, Lcm of each binary member as well as of
a virtual test particle located at the CM, all of these
measured with respect to the central BH.
It is clear that neither the energies nor the angular

momenta defined above are expected to be strictly con-
served quantities, as the interactions between the binary
and tidal forces continuously alter their values. However,
at distances significantly greater than the tidal radius,
the impact of tidal forces diminishes to the extent that
the binary’s orbital motion can be considered effectively
decoupled from the motion of the CM. As a result, we
can expect that Eb, Lb, Ecm and Lcm will remain ap-
proximately constant for rcm = |xcm| ≫ rt.
Note that this assumption should remain valid both as

the binary system approaches the black hole at the start
of the simulation and also at its conclusion, provided the
binary survives the encounter as a bound system. How-
ever, the values of these quantities may differ between
these two points.
We say that a binary has survived an encounter if, by

the end simulation, Eb settles to a constant value Eb < 0
(in which case, according to Eq. (20) eb < 1). Conversely,
if Eb > 0 by the simulation’s conclusion, the binary is
considered to have separated, with each star now follow-
ing independent trajectories as test particles about the
central BH. Therefore, for separation encounters, we can
expect E1, E2, L1, L2 to reach approximately constant
quantities by the end of the simulation.
An example of a separation encounter is illustrated in

Fig. 3, depicting an HRNA simulation of a prograde en-
counter with β = 5 and φ = 1.41. The top panels show
the binary’s trajectory as observed from the BH’s refer-
ence frame (left-hand side) and from a comoving refer-
ence frame (right-hand side). The time evolution of the
energies E1 and E2 is shown on the bottom left panel,
while the bottom right panel shows the evolution of Eb

and Ecm. From this figure we see that, for a separation
encounter, E1 and E2 reach constant values (one positive
and the other negative) at late times after separation.
Equal symbols on each panel correspond to the parti-

cles’ positions at the following instants of time:

□ The binary enters the tidal radius.

× The binary reaches pericenter.

3 The binary exits the tidal radius.

# The binary separation exceeds 2a0.

We take the last point as a proxy for indicating the
moment of separation, defining the time ts such that

a(ts) = 2a0. (21)

We have experimented with various multiplicative fac-
tors for determining this moment, yielding qualitatively
similar results across the board. For the encounter rep-
resented in Fig. 3, we have

ts = −0.01T0, rcm(ts) = 31 rg,

http://github.com/hannorein/rebound
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FIG. 3. Example of a prograde separation encounter, corresponding to an HRNA simulation with β = 5 and φ = 1.41.
Top-left panel: binary trajectory as seen in the central BH’s reference frame. Top-right panel: binary trajectory as
seen in the comoving reference frame. Bottom-left panel: time evolution of the energies E1 and E2 expressed in units of
E0 =

√
(Mmb/(a0 rt)) ≃ 10−4. Bottom-right panel: time evolution of the energies Eb and Ecm expressed in units of

Eb0 = mb/(2 a0) ≃ 5× 10−7. Equal symbols on each panel correspond to the same instants of time. Time is measured in units
of the binary’s orbital period T0 = 6, 406M .

where t = 0 corresponds to the pericenter passage.
In Fig. 4, we present another example of a separation

encounter, this time along a retrograde trajectory with
φ = 1.57. This also corresponds to an HRNA simulation
with β = 5. In this instance, we have

ts = 0.08T0, rcm(ts) = 107 rg,

indicating that the binary separated after pericenter, and
at a greater distance from the BH compared to the previ-
ous example. From this figure, we can also notice that the
binary’s sense of rotation has reversed from retrograde to
prograde before separation. This reversal in rotation is
consistently observed in other separation encounters in-
volving retrograde trajectories.

Finally, in Fig. 3 we show an example of a retrograde
surviving encounter with φ = 2.04. As before this corre-
sponds to an HRNA simulation with β = 5. From this
figure we can see that, in a surviving encounter, the en-
ergies E1 and E2 are constantly interchanging values in a
symmetric way as the binary members orbit each other,
with a marked shift in the binary period after pericenter
passage at t = 0. On the other hand, Eb is approximately

constant at early and late times. Also notice that, as in
the previous example, the sense of rotation of the binary
has reversed by the end of the interaction.

In Fig. 6, we present a histogram depicting the sepa-
ration times ts as defined in Eq. (21) for encounters with
β = 5 across the three gravitational models. The fraction
is calculated relative to the number of separation encoun-
ters in each case. The histogram for prograde encounters
is shown in the top panel, while retrograde encounters
are displayed in the bottom panel. It is notable that the
majority of prograde encounters experience separation
close to and before pericenter. Conversely, retrograde
encounters occur later and after pericenter. Moreover,
while the distributions for prograde encounters are sim-
ilar across all three gravity laws, retrograde encounters
under Newtonian physics show significant deviation from
those predicted by HRNA and 1PN models.
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FIG. 4. Example of a separation retrograde encounter, corresponding to an HRNA simulation with β = 5 and φ = 1.57.
Panels and units are the same as in Fig. 3 .

A. Separation fraction

With our exploration of 400 initial phases φ for each
impact parameter value β, we find that separation en-
counters cluster together within intervals of the form
[φi, φj ] ∈ [0, π].9 We refine the search for the exact
boundary where the transition from separation to sur-
viving takes place by conducting a bisection root find-
ing algorithm until two solutions φ1 ∈ [φi−1, φi] and
φ2 ∈ [φj , φj+1] are found within a precision of 10−4.
In average, each root is found after 7 iterations of the
bisection algorithm.

Once we identify the interval [φ1, φ2] enclosing all of
the separation encounters for a given β, we define the
separation fraction as10

s. f. =
φ2 − φ1

π
. (22)

9 For some values of β, separation encounters can be split into two
intervals [0, φi] and [φj , π]. This still corresponds to a simply
connected interval [φj , π + φi], as the whole range of the initial
phase is φ ∈ [0, 2π].

10 In the case of prograde encounters, there are some values of β
with two or more disjoint intervals enclosing separation encoun-
ters. In these cases, we take the length of the union of all these
intervals as numerator of Eq. (22).

As discussed in more detail in Appendix E, the relative
error of the separation fraction with respect to the initial
distance r0 corresponds to ∼ 10−3 for Newtonian and
1PN simulations and to ∼ 10−2 for HRNA simulations.

In Fig. 7 we compare the resulting separation fraction
as a function of the impact parameter for each gravity
law, showing both prograde and retrograde orbits. From
this figure we can see that prograde orbits are separated
at smaller values of the impact parameter than those
needed for retrograde orbits. This result is consistent
with the findings of previous works [15, 23] and is pri-
marily due to the fact that the binary rotation in pro-
grade orbits facilitates the separation process, whereas
in retrograde orbits it acts in opposition.

Notably, from Fig. 7 we see that the separation frac-
tion of prograde encounters is essentially the same for all
three gravity laws. In other words, most of the prograde
encounters are being tidally separated in such a way that
relativistic effects are hardly noticeable.

On the other hand, relativistic effects are more promi-
nent among retrograde encounters, as evidenced in Fig. 7
where we see a clear distinction between Newtonian,
HRNA and 1PN encounters. For instance, we see that
relativistic encounters (both HRNA and 1PN) start to
break up at smaller impact parameters (β ≃ 2) than
Newtonian encounters (β ≃ 2.5). Moreover, when con-
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FIG. 5. Example of a surviving retrograde encounter, corresponding to an HRNA simulation with β = 5 and φ = 2.04. Panels
and units are the same as in Fig. 3.

sidering a particular β, relativistic models produce sepa-
ration fractions that exceed those from Newtonian mod-
els by up to 30%.

From Fig. 7 we can also notice that HRNA and 1PN
results are in good agreement with each other for values
of β ≲ 5. These two curves start to deviate from one an-
other for the deepest encounters (rp ≲ 20 rg), a regime in
which a 1PN description is insufficient to capture higher
order relativistic effects.

B. Properties of the separated binaries

After a separation encounter, we can analyze in detail
the kinematics of the former binary members, as each
star is now moving along free-fall trajectories (geodesic
motion). From this analysis we calculate conserved quan-
tities such as energy and angular momentum, their asso-
ciated radial turning points ra and rp, and define the

eccentricity of the resulting orbit as11

e =
ra − rp
ra + rp

. (23)

In Fig. 8 we show the resulting eccentricity distribu-
tions for all values of β ∈ [0.1, 10]. Prograde encounters
are shown on the top-panel and retrograde ones on the
bottom-panel. Values of e < 1 correspond to bound tra-
jectories, while e > 1 to unbound ones. As for the sep-
aration fraction, from this figure we see that relativistic
effects are more prominent among retrograde encounters,
where we see a broader distribution in final eccentricities
obtained from HRNA simulations as compared to New-
tonian results. On the other hand, results from HRNA
and 1PN simulations are in good agreement with each
other.
The spread in eccentricities of former binary members

observed in Fig. 8 is consistent with the analytic estimate

11 Note that for bound trajectories 0 < rp < ra and we can identify
rp, ra with pericenter and apocenter radii, respectively. Instead,
for unbound trajectories ra < 0. In the relativistic case there is
a third real root 0 < rb < rp of the radial motion, which is not
relevant for our present analysis.
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FIG. 6. Distribution of separation times ts for encounters
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ity descriptions. Prograde encounters are shown in the top
panel, while retrograde encounters are displayed in the bot-
tom panel.

given by Ref. [15]:

e ≃ 1± 0.02β

(
mb

M⊙

)1/3(
M

106M⊙

)−1/3

. (24)

In Fig. 9 we show the distribution of the resulting semi-
major axis (ra+ rp)/2 of the former binary member that
remains bound to the central BH after a separation en-
counter. In this case, we observe that relativistic simu-
lations (both HRNA and 1PN) of retrograde encounters
tend to produce bound stars with a smaller semi-major
axis than Newtonian encounters. The properties of this
population of bound stars are of interest in connection to
the demographics of S-stars at the galactic center [13].

Finally, in Fig. 10 we compare in detail the eccentricity
distributions of retrograde trajectories for specific values
of β = 3, 5, 7, 10. From this figure we notice that HRNA
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FIG. 7. Separation fraction as a function of the impact
parameter β for prograde and retrograde orbits. Results are
shown for each of the three gravity laws considered in this
work.

and 1PN simulations are in reasonable agreement with
each other (especially for β ≤ 5) while, as noted before,
Newtonian simulations give place to a narrower eccen-
tricity distribution.

C. Bound star as an EMRI source

Under appropriate conditions, the former binary mem-
ber that remains bound to the SMBH can become a
source of gravitational waves as an EMRI. For the as-
sociated signal to lay within the observational window of
the future LISA observatory, the bound star would need
to be a compact object (either a neutron star or a solar
mass BH), on a highly eccentric orbit [16]. For instance, if
the bound object is a 50M⊙ BH (type 3 encounter), the
system is expected to merge due to gravitational wave
emission within a Peters lifetime [40]

Tgw =
3 a4i

85M2m
f(ei)

≃ 1.3
f(ei)

f(0.99)

( ai
103 au

)4
×
(

M

108M⊙

)−2(
m

50M⊙

)−1

Myr,

(25)

where m is the mass of the bound compact object, ei and
ai are its (post-encounter) eccentricity and semi-mayor
axis, and

f(e) = (1− e2)7/2. (26)
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rograde ones. The fraction is normalized with respect to the
total number of encounters (both surviving and separation).

In Fig. 11, we display the final distribution of ei and ai
as derived from the HRNA simulations. Additionally, we
include contour level lines representing equal Tgw. Tak-
ing into account the distinct set of parameters used in our
study, this figure can be compared to Fig. 6 of Ref. [23].
The visible gap in the distribution observed in our results
arises because our analysis is confined to co-planar en-
counters, whereas Ref. [23] incorporates encounters with
arbitrary orientations.

In Fig. 12, we present the distribution of Tgw, ex-
pressed as a fraction of the total number of encoun-
ters, comparing the outcomes from Newtonian, HRNA
and 1PN simulations across all values of β and for both
prograde and retrograde trajectories. The figure illus-
trates that while results from HRNA and 1PN are in rea-
sonable agreement, HRNA simulations predict approxi-
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FIG. 9. Histograms of the semi-major axis of the bound star
in separation encounters. The top-panel shows prograde en-
counters and the bottom-panel shows retrograde ones. In
both cases, the fraction is normalized with respect to the total
number of encounters.

mately 15% more EMRI candidates than the Newtonian
simulations for Peters lifetimes ranging from Tgw = 106

to 108 yr.

D. Velocity of the ejected star

Given that the binary system approaches the BH along
a parabolic-like trajectory (Ecm = 0 initially), the out-
come of separation encounters invariably results in one
former member of the binary remaining gravitationally
bound to the BH (say, E1 < 0), while the other is ejected
out on a hyperbolic-like trajectory (E2 > 0), in such a
way that E1 + E2 ≃ 0. This symmetry between E1 and
E2 is also apparent in their associated eccentricity values,
as illustrated above in Fig. 10.
We define the asymptotic velocity v∞ of the ejected
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FIG. 10. Histograms of eccentricities of separated binaries for Newtonian, HRNA and 1PN encounters in retrograde trajectories.
Each panel corresponds to a different impact parameter β as indicated on the legend title. The fraction is taken with respect
to the total number of encounters.

star, an HVS candidate, according to

v∞ =
√
2max(E1, E2). (27)

In Fig. 13, we present the resulting values of v∞ from
the same Newtonian and HRNA encounters shown in
Fig. 7. The top panel illustrates the results of prograde
encounters, while the bottom panel displays those for ret-
rograde encounters. In both panels, shaded areas encom-
pass all separation encounters, and solid lines represent
the average values for each case. We have omitted 1PN
results from this figure to maintain clarity, as the corre-
sponding curves closely mirror those of the HRNA simu-
lations.

From Fig. 13, we observe a trend consistent with the
previously discussed separation fraction: relativistic ef-
fects are notably more pronounced in retrograde encoun-
ters compared to prograde ones. However, in deeper pro-
grade encounters (β > 9), the maximum velocity of the
ejected star can be up to 2,000 km/s higher in HRNA sim-

ulations compared to their Newtonian counterparts. De-
spite this significant difference, such high-velocity stars
are rare and therefore have a minimal impact on the over-
all average velocity.

Furthermore, in line with previous works
(e.g. Ref. [23]), we find that prograde encounters
consistently result in higher asymptotic velocities
compared to retrograde encounters. Additionally, in
retrograde trajectories, relativistic encounters exhibit
average velocities that are up to 30% higher than those
observed in Newtonian simulations.

Fig. 14 shows the distribution of v∞ in polar represen-
tation as a function of the two model parameters, β and
φ, for HRNA prograde encounters. Distributions from
to Newtonian and 1PN simulations are essentially indis-
tinguishable in this case. This reaffirms that relativistic
effects are scarcely noticeable in such encounters. We can
also notice that encounters with the largest values of v∞
are concentrated along a narrow strip within the white
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empty belt formed by surviving encounters.

In Fig. 15 we now show the distributions of v∞ in the
case of retrograde trajectories for Newtonian and HRNA
simulations. In contrast to prograde trajectories, surviv-
ing encounters in this case cluster together within a sim-
ply connected belt-like region (white empty area). In ac-
cordance with the results shown in Fig. 13, by comparing
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FIG. 13. Asymptotic velocity v∞ of the ejected star (an HVS
candidate) as a function of the impact parameter for prograde
orbits (top panel) and retrograde ones (bottom panel). The
shaded area shows the complete spread of the corresponding
v∞ distribution, while average values are shown with solid
lines in each case.

the left and right-hand panels, it is clear that relativistic
encounters are more effective at separating binaries and,
moreover, that they imprint larger asymptotic velocities
on the ejected star.
In Fig. 16 we compare in more detail the distribution

of v∞ of Newtonian, HRNA and 1PN simulations along
retrograde trajectories, for values of β = 3, 5, 7, 10. In
this figure we corroborate that relativistic encounters re-
sult in more and faster HVS candidates, with maximum
velocities of up to 30% larger than for Newtonian encoun-
ters. Moreover, we can also note that for β ≲ 5, v∞ fol-
lows roughly a power law distribution with qualitatively
similar shapes for Newtonian and relativistic encounters.
Instead, for β > 5 a bimodal distribution starts develop-
ing for relativistic encounters.

E. Surviving binaries and close encounters

As the binary system approaches the central BH, tidal
forces perturb the binary orbit by modifying both its
eccentricity and the separation between the stars. These
effects become larger and more dominant as rcm → rt.
Even binary systems that survive the encounter can end
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up with their orbital elements highly modified.

In Fig. 17 we show the eccentricity of surviving binaries
eb as a function of the model parameters β and φ. Re-
sults of Newton and HRNA retrograde simulations are
shown side-by-side. The distribution obtained for 1PN
simulations is qualitatively very similar to the HRNA re-
sults. From this figure we see that relativistic simulations
result in larger values of the final binary eccentricity.

In Fig. 18 we show the minimum binary separation at-
tained during the evolution of retrograde trajectories. By
comparing Figs. 17 and 18, we can see a tight correlation
between eb and amin: those binaries that experience the
largest changes in their eccentricities also face the closest
encounters during their evolution.

In Fig. 19 we show the resulting distribution of amin

for HRNA prograde encounters. The corresponding re-
sults obtained for Newtonian and 1PN simulations are
qualitatively very similar. From Figs. 18 and 19, it is
apparent that close encounters are predominantly found
among surviving encounters.

In Fig. 20 we show the cumulative fraction
of binaries that reach a minimum separation
amin/a0 ≤ 0.8, 0.6, 0.4, 0.3, 0.01. By comparing New-
tonian and HRNA results, we confirm the previous
observation that relativistic simulations produce a larger
fraction of close encounters. From this figure, we observe
that the largest fraction of close encounters occurs
for values of β that coincide with the onset of binary
separation, i.e. for β ≃ 2, 2.5 for HRNA and Newtonian

simulations, respectively. Moreover, we can also notice a
prominent overabundance of very close encounters with
amin ≤ 0.01 a0 for HRNA encounters in the window
4.2 ≤ β ≤ 7.
As a related quantity of interest, in Fig. 21 we show

the cumulative fraction of surviving binaries that end up
with an eccentricity eb ≥ 0.3, 0.4, 0.5, 0.7, 0.9. From this
figure we see that relativistic encounters can produce up
to 15% of binaries with eb ≥ 0.9.

F. Stellar collisions

Once an astrophysical scenario is selected (e.g., one
of the three type of encounters listed at the end of Sec-
tion III), the physical size of each binary member be-
comes a relevant parameter. Consequently, a fraction
of the closest encounters discussed above could poten-
tially lead to direct collisions between the binary mem-
bers. Since this study treats each star as a point particle,
detailed tracking of such collisions is unfeasible. How-
ever, given a stellar model, we can identify the fraction
of potential collisions.
Let now consider the example of a type 1 encounter

(a 106M⊙ BH and a binary of 0.5M⊙ white dwarfs,
each with a radius R∗ ≃ 0.015R⊙ ≃ 0.007 rg [41]).
In this case, with a given initial separation of a0 =
0.01 au = 1.013 rg, we can expect collisions whenever
amin ≤ 0.01 a0. Encounters that attain this or smaller
values of amin are shown enclosed within a dotted con-
tour line in Fig. 18. This reference value is also shown
as a cumulative fraction in Fig. 20. From these figures
we notice that this type of collisions are rare, especially
for Newtonian encounters. As mentioned previously, rel-
ativistic simulations seem to predict a narrow window of
the impact parameter 4.2 ≲ β ≲ 7 where these encoun-
ters are more abundant, attaining up to a 10% of the
total fraction.
On the other hand, for a type 2 encounter (a 107M⊙

BH and a binary formed by two main sequence stars, each
with a mass of 5M⊙ and a radius of R∗ ≃ 3R⊙ ≃ 0.14 rg
[42]), with an initial separation of a0 = 0.1 au = 1.013 rg,
we should expect a collision whenever amin ≤ 0.3 a0. This
reference value of amin is shown in Fig. 18 by a dashed-
line black contour, as well as in Fig. 20. From these fig-
ures we see that collisions between main sequence stars
can be found for fraction of up to 20% of encounters
among both Newtonian and HRNA simulations. Note,
however, that in the former case these collisions take
place predominantly from β = 4 onward while, in the
latter, they occur for 2.4 ≲ β ≲ 7.5.
It is worth noting at this point that type 2 encoun-

ters with β ≥ 5 are also prone to producing double tidal
disruption events, since in this case the tidal radius for
individual encounters is rt ≃ 18 rg [26]. Double tidal dis-
ruption events have been studied by e.g., Refs. [17, 18].

Finally, for a type 3 encounter involving a 108M⊙ BH
and a binary formed by two 50M⊙ BHs, collisions would
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FIG. 15. Same as Fig. 14, but now for retrograde trajectories for Newtonian (left-hand panel) and HRNA (right-hand panel)
encounters. Results from 1PN simulations are very similar to HRNA ones.

occur only for an extremely small fraction of encounters
with amin ≤ 10−6. We thus conclude that a type 3 en-
counter is highly unlikely to result on a BH collision.
Nonetheless, as depicted in Fig. 21, such an encounter
can lead to the formation of binaries with large eccen-
tricities eb > 0.9. We discuss the future evolution of
these eccentric, compact binaries in the next sub-section.

G. Binary mergers

A compact binary, composed of two 50M⊙ BH in cir-
cular orbit around each other with an initial separation
of a0 = 1au, is expected to merge due to gravitational
wave emission within a Peters lifetime [40] of

Tgw,0 =
5 a40
64m3

b

≃ 1.3× 1012
( a0
1 au

)4( mb

100M⊙

)−3

yr.

(28)

This timescale being two orders of magnitude greater
than the Hubble time, justifies our initial treatment of
the binary within the Newtonian regime.

However, should the binary survive a close encounter
with the SMBH, its modified orbital parameters (ab, eb)
may push it into a relativistic regime [20]. This shift is
characterized by a substantially reduced Peters lifetime
Tgw, potentially turning the binary into a gravitational
wave source detectable by instruments like LIGO [43].

In Fig. 22, we present a comparison of the post-
encounter distribution of Tgw for the three gravitational

models. The fraction of each outcome is calculated rela-
tive to the total number of encounters. The time Tgw has
been determined using Eq. (5.14) from [40], which is ap-
plicable to orbits with arbitrary eccentricities 0 < eb < 1.
The results clearly demonstrate that HRNA simula-

tions predict a higher fraction of surviving binaries with
relatively short coalescence times compared to Newto-
nian simulations. Specifically, HRNA predicts twice as
many surviving binaries with Tgw ≤ 108 yr (1.4% versus
0.76%), and almost four times as many for Tgw ≤ 104 yr
(0.33% versus 0.08%).
Furthermore, if a binary BH remains bound to the

SMBH following the tidal encounter, it can become an
interesting dual source of gravitational waves: with high-
frequency emissions associated with the binary’s internal
motion detectable by LIGO, and low-frequency emissions
from the binary as whole acting as an EMRI source, po-
tentially detectable by LISA [15, 16, 44].

H. Subsequent encounters

As demonstrated by the previous results, even bina-
ries that survive an encounter with the central BH can
undergo significant alterations to both their internal and
CM orbital elements. Notably, a considerable portion
of surviving encounters culminates in binaries becoming
gravitationally bound to the BH (Ecm < 0). Conse-
quently, these binaries are bound to return to the vicinity
of the central BH for at least a second encounter, dur-
ing which the system could potentially become tidally
separated [1].
In Fig. 23 we show the relative fraction of binaries
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FIG. 16. Comparison between the resulting distributions of v∞ for Newtonian, HRNA and 1PN retrograde encounters for
different values of the impact parameter β.

among surviving encounters that remain bound to the
BH as a function of the impact parameter for retrograde
orbits and for each gravity law.

One notable observation from Fig. 23 is the substan-
tial disparities between Newtonian and relativistic simu-
lations, consistent with earlier findings. Conversely, re-
sults from 1PN and HRNA simulations are in quite good
agreement with each other for β ≤ 6. Additionally, it is
apparent that for β > 8, over 50% of HRNA surviving
encounters are bound to return, contrasting with approx-
imately 30% of Newtonian surviving encounters exhibit-
ing the same behavior.

Another interesting result is that despite all retrograde
encounters with 0.5 ≲ β ≲ 1.2 surviving (c.f. Fig. 7),
essentially all of them become bound to the central BH
after their initial encounter. Consequently, they are com-
pelled to undergo a second close encounter. Notably, this
observation remains valid for approximately 70% of the
binaries prior to the onset of actual separations during
the first encounter (β ≃ 2, 2.5 for relativistic and New-
tonian encounters, respectively).

The extensive computational time required to numer-
ically evolve any of these surviving binaries bound to
return for a second encounter with the central BH lies
beyond the scope of the current study. We leave a de-
tailed study of these cases to future research.

V. SUMMARY AND CONCLUSIONS

We have studied the role of general relativistic ef-
fects on the tidal separation of binary stellar systems by
non-rotating supermassive BHs (as described in Schwarz-
schild spacetime). These effects have been modeled us-
ing the Hybrid Relativistic Newtonian Approximation
(HRNA), first introduced in Ref. [26]. Within this ap-
proximation, a Newtonian description of the binary in-
teraction is combined with an exact relativistic treatment
of the acceleration exerted by the central BH on each bi-
nary member.

In order to perform a first exploration of this type
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FIG. 17. Binary eccentricity of the surviving encounters as a function of β and φ for retrograde trajectories. The left-hand
panel shows Newtonian encounters and the right-hand panel HRNA ones.
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FIG. 18. Minimum binary separation attained during the evolution as a function of β and φ for retrograde trajectories. The
left-panel shows Newtonian encounters while the right-panel shows HRNA ones. The belt delimited by two solid lines on each
plot corresponds to the surviving binaries. Encounters inside the dashed contour line (a < 0.3 a0) would result in collisions
between two main sequence stars (type 2 encounter), while those inside the dotted line (a < 0.01 a0) would result in collisions
between two white dwarfs (type 1 encounter).

of tidal interactions with the HRNA method, we have
adopted a restricted parameter space. Specifically, we
have considered only equal mass binary members on an
initial circular orbit, approaching the central BH along
a parabolic-like trajectory. All motions were restricted
to the equatorial plane of the central BH. Additionally,

we have considered encounters with a fixed mass ra-
tio of mb/M = 10−6 and an initial binary separation of
a0 = 1.013 rg.

We have systematically explored the resulting three
dimensional parameter space spanned by the impact pa-
rameter β ∈ [1, 10], initial orbital phase φ ∈ [0, 2π], and
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FIG. 19. Minimum binary separation attained during the
evolution as a function of β and φ for prograde HRNA en-
counters.
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panel shows relativistic ones. In both cases, only results for
retrograde encounters are shown.
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of the total number of encounters.
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FIG. 23. Fraction of surviving encounters that end up bound
to the central BH after a first passage as a function of β. As
a result, these binaries are bound to return to the vicinity
of the central BH for a second encounter. Only results for
retrograde encounters are shown for the three gravity laws
considered in this work.

binary sense of rotation (i.e. prograde and retrograde or-
bits).

To understand the effects of general relativity in these
encounters, as well as to gauge the adequacy and lim-
itations of the HRNA method, we have compared in
detail the outcome of simulations performed with this
method against the results of Newtonian and first order,
Post-Newtonian (1PN) simulations for the same set of
encounter parameters.

Relativistic effects are generally subdominant
(< 0.1%) for prograde encounters in quantities such as
separation fraction, post-encounter eccentricity distribu-
tion, average velocity of the ejected star, among others.
In these cases, results from Newtonian, 1PN and HRNA
simulations show good agreement.

The exception occurs in very deep encounters (β ≥
9), where we observe a few cases where ejected stars
reach maximum asymptotic velocities up to 2,000 km/s
greater than those predicted by Newtonian simulations
(see Fig. 13).

On the other hand, relativistic effects become crucial
for retrograde encounters, where HRNA simulations no-
tably diverge from Newtonian results. Results from both
HRNA and 1PN simulations exhibit strong agreement
for impact parameters up to β = 5. However, for deeper
encounters (5 ≤ β ≤ 10), deviations between the two
methodologies increase, reaching up to 10%.

In retrograde encounters, tidal separation starts at
lower values of the impact parameter (β ≃ 2) in both
HRNA and 1PN simulations, in contrast to Newtonian

simulations (β ≃ 2.5). Additionally, for a given β, rel-
ativistic simulations lead to separation fractions up to
30% larger than those derived from Newtonian simula-
tions (see Fig. 7).
Similarly, ejected stars during relativistic simulations

of retrograde encounters attain average asymptotic ve-
locities up to 500 km/s higher than those ejected during
Newtonian simulations (see Figs. 15 and 16).
The observation that relativistic effects are more pro-

nounced in retrograde encounters compared to prograde
ones can be understood through their distinct dynamics.
In prograde trajectories, tidal separation typically occurs
abruptly and close to pericenter passage, as illustrated
in Fig. 3. In contrast, during retrograde encounters, the
tidal field initially acts to slow down and reverse the bi-
nary’s sense of rotation, as shown in Fig. 4. This process
not only delays the eventual separation but also prolongs
the binary’s interaction with the BH’s tidal field, thus
amplifying the overall impact of these encounters.
Binaries that survive the tidal interaction with the

SMBH do not emerge unaltered. We observe that the
majority of these binaries are left bound to the central
BH after the tidal interaction (see Fig. 23). This implies
that they are likely to undergo one or more subsequent
close encounters with the SMBH in the future, poten-
tially leading to their eventual separation.
This significant observation might go unnoticed in

studies based on restricted three-body simulations
[e.g. 24, 25], which assume that the CM motion remains
unaffected during the tidal interaction. Our findings un-
derscore the importance of considering changes to the
CM motion in simulations to fully capture the dynamics
and long-term evolution of binary systems in the vicinity
of SMBHs.
Moreover, when considering the finite radii of the bi-

nary members, a significant fraction of these encounters
that apparently survive could, in fact, result in stellar col-
lisions (see Fig. 20). For the explored parameters, both
Newtonian and relativistic simulations indicate the po-
tential for collisions between two main sequence stars.
However, encounters resulting in collisions between two
white dwarfs are predominantly found among relativistic
encounters, especially for 2.4 ≤ β ≤ 7.5.
Surviving binary systems composed of two BHs are

significantly affected by their tidal encounters with a
SMBH, driving them into a regime where gravitational
wave emission becomes a critical factor in their future
evolution. These interactions can drastically reduce the
coalescence times of the binaries (Tgw), with reductions
up to 13 orders of magnitude shorter than those with-
out such an interaction (see Fig. 22). Moreover, HRNA
simulations predict that the number of surviving binaries
with Tgw ≤ 108 yr is twice that predicted by Newtonian
simulations.
In conclusion, we have conducted a first study of the

influence of general relativity on tidal encounters between
binary systems and SMBHs. We have demonstrated that
relativistic effects are crucial for accurately predicting the
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dynamics of such encounters, particularly in retrograde
orbits where relativistic effects are most pronounced.

Additionally, we have validated the HRNA method as
a reliable and efficient tool for examining relativistic ef-
fects in astrophysical systems. Our findings provide valu-
able insights into the dynamics of binary tidal separations
that extend across a range of phenomena. These include
increased rates of binary separation, variations in the ve-
locities of ejected stars, and heightened probabilities of
stellar collisions and binary mergers; each essential for
understanding stellar dynamics near SMBHs.

The implications of our research are relevant to studies
on the properties and dynamics of stellar populations in
the vicinity of SMBHs as well as for gravitational wave
astronomy. Moreover, a deeper understanding of the dy-
namics of star systems around BHs can provide crucial
insights into the evolution of galaxies and the intrinsic
properties of BHs themselves. Furthermore, our results
support the necessity for incorporating relativistic mod-
els in simulations of galactic centers, especially to predict
the characteristics of hypervelocity stars.

For future research, it would be beneficial to expand
this study to include non-equatorial orbits and to ex-
plore the effects of different binary mass ratios and or-
bital configurations. Additionally, investigating the influ-
ence of the BH’s spin could provide deeper insights into
the complex interplay between stellar dynamics and BH
physics, potentially revealing new facets of these complex
systems.
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counters of separation and survival of the binary system. The
simulations correspond to relativistic encounters (evolved un-
der the HRNA method) in retrograde orbits with impact pa-
rameter β = 8.5, initial phase φ = 1.7 (binary survives) and
φ = 1.8 (binary separated). Time zero corresponds to the
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sage.

Appendix A: Self-consistency criterion

In Eq. (11) the parameter α = a/R was introduced
as a self-consistency criterion for the applicability of the
HRNA method. When α ≪ 1, the length scale on which
the binary’s self-gravity operates (a) is much smaller than
the local radius of curvature of the spacetime (R) and,
thus, the assumptions behind the HRNA method are ex-
pected to be valid.

In Fig. 24 we show representative examples of the time
evolution of α for two encounters with β = 8.5, one re-
sulting in binary separation and the other in survival.
From this figure it is clear that α ∼ 10−5 for most of the
simulation time, even though values as large as α ∼ 0.1
are reached for a brief interval of time around pericenter.

In Fig. 25 we show the maximum and minimum values
of α achieved at pericenter among the 400 phases ex-
plored for each value of the impact parameter. From this
figure we observe that there is a larger spread of values
for prograde encounters as compared to retrograde ones.

From these results we can conclude that the condition
in Eq. (11) is satisfied for most of the simulation time
of each encounter. It remains unclear, however, whether
the brief interval of time during which α ∼ 0.1 could
compromise the consistency of the method.

Appendix B: Relativistic time dilation in HRNA

In this appendix, we showcase the ability of the HRNA
method to accurately capture the effects arising from
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FIG. 25. Maximum and minimum values of the parameter
α = a/R achieved during pericenter passage among the 400
simulations run for each value of the impact parameter β.
Results for prograde (retrograde) trajectories are shown in
red (blue) color lines.

both special and general relativistic dilation of time.

To more effectively isolate this phenomenon, we take a
harmonic oscillator as the self-interacting system in the
evolution equation Eq. (8). That is, we consider two
equal masses m1 = m2 = m coupled by a Hooke-type
potential given by

Φ =
1

2
k (|x2 − x1| − l0)

2
, (B1)

where l0 is the equilibrium distance between the two
masses.

In order to eliminate confounding effects from torques
and rotational motion, the two masses are aligned per-
pendicularly to the radial direction. Additionally, we
take as fixed parameters k/m = 1/5 and l0 = 3 rg/40.
In all simulations reported bellow, the oscillator is ini-
tially perturbed with an elongation of |x2 − x1| = 4 l0/3.

We first focus on the gravitational redshift component
of the dilation by fixing the center of mass of the oscil-
lator at a distance r from the central BH (as if held in
place by a rocket exactly counteracting the gravitational
attraction of the BH). The natural frequency of the os-
cillator, as measured by a local co-moving observer, is
given by

f0 =
1

2π

√
2k

m
. (B2)

Nevertheless, during a numerical simulation of this sys-
tem using the HRNA method, the obtained frequency
measurement should agree with the description done by a
distant observer using coordinate time t. In other words,
in this scenario, we should expect to measure a gravita-
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tionally redshifted frequency given by

fst = f0/Γst, (B3)

Γst =

(
1− 2M

r

)−1/2

, (B4)

where Γst is the Lorentz factor for a static observer at a
fixed r (c.f. Eq. 9).

In Fig. 26 we show the results of several realizations
of this configuration for different radii between r = 10 rg
and r = 200 rg. The corresponding frequency at each
point is computed as the inverse of the time lapse be-
tween successive maxima of the separation of the two
masses. As we can see from this figure, there is an ex-
cellent agreement between numerical measurements and
the analytic expression in Eq. (B3).

In a second numerical experiment combining both spe-
cial and general relativistic effects, we take the oscillator
in radial free-fall towards the central BH. Considering
that the oscillator’s CM starts from rest at infinity, in
this case we expect to measure a frequency shift of

fff = f0/Γff , (B5)

Γff =

(
1− 2M

r

)−1

. (B6)

The obtained numerical results are also shown in
Fig. 26, where we find again an excellent agreement be-
tween the numerically measured averaged frequency and
Eq. (B5).
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FIG. 26. Relativistic time dilation of a harmonic oscillator
evolving under the HRNA method. A first series of experi-
ments with the CM of the oscillator fixed at a given radius
is shown with red circles. The result of a second experiment
with the oscillator in radial free-fall towards the central BH
is shown with orange diamonds. For comparison, the analyti-
cally expected trends in each case are indicated by continuous
blue and black lines, respectively.

Appendix C: Evolution equations in
post-Newtonian gravity

The evolution equations for a general N -body system
to first order in post-Newtonian approximation are given
by [35, 36]

ẍa =−
∑
b̸=a

mb

(
xab

r3ab

)[
1− 4

∑
c̸=a

mc

rac
− 5

ma

rab
+ ẋ2

a − 4 ẋa · ẋb +
∑
c ̸=a,b

mc

(
− 1

rbc
+

xab · xbc

2 r3bc

)
+ 2 ẋ2

b −
3

2

(
ẋb · xab

rab

)2
]

− 7

2

∑
b ̸=a

(
mb

rab

) ∑
c̸=a,b

mcxbc

r3bc
+
∑
b̸=a

mb

r3ab
xab · (4 ẋa − 3 ẋb) (ẋa − ẋb) , (C1)

where (a, b, c) are particle labels and summations run over the whole N -body system.
In the special case of a restricted three-body system, in which one body is much more massive than the other two

(M ≫ m1, m2), we can consider the former as fixed at origin of coordinates. With this approximation, Eq. (C1)
reduces to

ẍ1 = −m2
x12

r312

[
1− 4m2

r12
− 4M

r1
+M

(
− 1

r2
+

x12 · x2

2 r32

)
− 5m1

r12
+ ẋ2

1 − 4 ẋ1 · ẋ2 + 2 ẋ2
2 −

3

2

(
ẋ2 · x12

r12

)2
]

−M
x1

r31

[
1− 4m2

r12
− 4M

r1
+m2

(
− 1

r2
− x1 · x2

2 r32

)
− 5m1

r1
+ ẋ2

1

]
− 7Mm2 x2

2 r32

(
1

r12
− 1

r1

)
+

m2

r312
x12 · (4 ẋ1 − 3 ẋ2) (ẋ1 − ẋ2) +

4M

r31
(x1 · ẋ1) ẋ1, (C2)

an equivalent equation of motion is obtained for ẍ2 by interchanging the particle labels 1 ↔ 2.

Appendix D: Initial conditions

In this Appendix we describe the initial conditions for
the simulations presented in the body of the article.

For all three gravity laws considered in this work (New-
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ton, HRNA, and 1PN), we prescribe the initial conditions
for each member of the binary system according to the
usual Newtonian expressions

x{1,2} = xcm ± m{1,2}
mb

a cosφ, (D1)

y{1,2} = ycm ± m{1,2}
mb

a sinφ, (D2)

z{1,2} = 0, (D3)

ẋ{1,2} = ẋcm ∓ m{1,2}
mb

a φ̇ sinφ, (D4)

ẏ{1,2} = ẏcm ± m{1,2}
mb

a φ̇ cosφ, (D5)

ż{1,2} = 0, (D6)

where the upper (lower) sign corresponds to binary mem-
ber 1 (2), and

φ̇ = ±
√

mb

a3
(D7)

is the Newtonian angular velocity for circular orbits, with
the ± sign corresponding to either prograde or retro-
grade orbits, respectively. All quantities in Eqs. (D1)-
(D7) are to be evaluated at the initial time ti of the sim-
ulation. Additionally, without loss of generality, we take
(xcm, ycm) = (r0, 0), as the initial position of the CM.

On the other hand, the initial CM velocity is different
for each gravity law as we describe next.

The resulting expressions are such that the resulting
trajectory of a virtual test particle with mass mb placed
at the binary’s CM would follow a parabolic-like trajec-
tory with a pericentre distance rp = rt/β (cf. Eq. 1)
under the corresponding gravity law.

1. Initial CM velocities in Newtonian gravity

In Newtonian gravity, the motion of a test particle in
orbit around a central mass M is characterized by the
existence of two conserved quantities: the specific energy
E and the specific angular momentum L. In the case of
a parabolic orbit we have E = 0 and L =

√
2Mrp and

the following initial CM velocities:

ẋcm = ṙ0 = −
√

2M

r0
− L2

r20
, (D8)

ẏcm =
L

r0
. (D9)

2. Initial CM velocities in
Schwarzschild spacetime

As discussed in more detail in the Appendix A of
[26], the motion of a test particle in Schwarzschild space-
time in a parabolic-like trajectory has E = 0 and L =

√
2Mr2p/(rp − 2M). In this case the initial CM velocities

are given by

ẋcm = ṙ0 = −
(
1− 2M

r0

)√
2M

r0
− L2

r20

(
1− 2M

r0

)
,

(D10)

ẏcm =

(
1− 2M

r0

)
L

r0
. (D11)

3. Initial CM velocities in post-Newtonian gravity

The evolution to first order in the post-Newtonian ex-
pansion of a test particle in a general trajectory around
a gravitational mass M is characterized by the conserved
quantities:

E =
1

2
v2 − M

r
+

3

8
v4 +

M

2r

(
3 v2 +

M

r

)
, (D12)

L = r2ϕ̇

(
1 +

1

2
v2 + 3

M

r

)
, (D13)

where v =

√
ṙ2 + r2ϕ̇2.

In the case of a parabolic-like trajectory we have E =
0. Taking this into account, and evaluating Eqs. (D12)
and (D13) at pericentre (where ṙ = 0), it follows

L = rp vp

(
1 +

1

2
v2p + 3

M

rp

)
, (D14)

v2p =
2(rp + 3M)

3rp

(√
1 +

3M(2rp −M)

(rp + 3M)2
− 1

)
. (D15)

Next we evaluate Eqs. (D12) and (D13) at r0 and ob-
tain

ẋcm = −
√

v20 − Ẏ 2
0 , (D16)

ẏcm =
L

r0 (1 + v20/2) + 3M
, (D17)

v20 =
2(r0 + 3M)

3r0

(√
1 +

3M(2r0 −M)

(r0 + 3M)2
− 1

)
. (D18)

Appendix E: Convergence with respect
to the initial distance

As mentioned in Section III, in this work we consider
binary systems that approach the central BH along a
parabolic-like trajectory. From a numerical perspective,
we must ensure that our results are, as much as possible,
independent from the choice of initial CM distance r0.
To test the degree of convergence of the separation

fraction, the main focus of this work, with respect to
the initial distance, we have run a series of simulations
varying the initial distance r0 by integral steps between
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r0 = rt and r0 = 100 rt for several values of the β pa-
rameter and for the three gravity laws.

Following the same procedure described in Section III,
for each value of the initial distance r0, we perform an
initial exploration based on 400 simulations varying the
initial orbital phase ϕ ∈ [0, π]. We then employ the
bisection algorithm to refine the search of the boundary
between survival and separation encounters down to a
precision of 10−4. The separation fraction is then defined
according to Eq. (22).

In the top panel of Figure (27) we show the separation
fraction obtained for the three gravity laws and for a
representative value of β = 4.7. The bottom panel shows
the relative difference between the separation fraction at
a given r0 and its total average value. Qualitatively sim-
ilar results are obtained for other values of β.
In Figure (27) we see a well-behaved convergence with

respect to r0 for both Newtonian and 1PN simulation.
The relative difference decreases as the ratio r0/rt in-
creases from 1 to 70. This trend stalls for r0 ≳ 70 rt as
the obtained precision is comparable to the prescribed
10−4 accuracy of the bisection method. On the other
hand, there seems to be a weaker convergence for the
HRNA results, as the average resulting precision stalls
at around 10−2 already from r0 ≳ 20 rt.

We have also explored the convergence of the simula-
tions with respect to the final time of the simulation.
Finishing the simulations at increasing final distances
from the central BH, taking values of rf = 150 rt up
to rf = 300 rt, the obtained results do not show a strong
dependence on this parameter.

The tests conducted in this work are not enough to
clarify the reasons behind the weaker convergence of the
HRNA method with respect to r0 as compared to Newto-
nian and 1PN simulations. We speculate that this behav-
ior might stem from the inherent approximated nature of
HRNA. Studying the convergence properties of HRNA in
more detail might help establishing its limits of applica-
bility.
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FIG. 27. The top-panel shows the separation fraction as a
function of the initial distance r0 for an impact parameter β =
4.7. The bottom-panel shows the relative difference between
the separation fraction and its global average.
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Gravitational Waves and X-Ray Signals from Stellar Dis-
ruption by a Massive Black Hole, Astrophysical Journal
615, 855 (2004), astro-ph/0404173.

[33] M. Kesden, Black-hole spin dependence in the light

https://doi.org/10.1088/0004-637X/713/1/90
https://arxiv.org/abs/0909.1959
https://doi.org/10.1038/331687a0
https://doi.org/10.1038/331687a0
https://doi.org/10.1086/429378
https://doi.org/10.1086/429378
https://arxiv.org/abs/astro-ph/0501177
https://doi.org/10.1146/annurev-astro-082214-122230
https://doi.org/10.1146/annurev-astro-082214-122230
https://doi.org/10.1086/379546
https://doi.org/10.1086/379546
https://arxiv.org/abs/astro-ph/0309084
https://arxiv.org/abs/astro-ph/0309084
https://doi.org/10.1086/508419
https://arxiv.org/abs/astro-ph/0608159
https://arxiv.org/abs/astro-ph/0608159
https://doi.org/10.1088/0004-637X/722/2/1744
https://doi.org/10.1088/0004-637X/722/2/1744
https://arxiv.org/abs/1105.1432
https://doi.org/10.1088/0004-637X/795/2/125
https://doi.org/10.1088/0004-637X/795/2/125
https://arxiv.org/abs/1307.1134
https://doi.org/10.1088/2041-8205/771/2/L28
https://doi.org/10.1088/2041-8205/771/2/L28
https://arxiv.org/abs/1305.4634
https://doi.org/10.1088/0004-637X/806/1/124
https://arxiv.org/abs/1411.5022
https://doi.org/10.3847/1538-4357/ab1c5d
https://doi.org/10.3847/1538-4357/ab1c5d
https://arxiv.org/abs/1810.12354
https://doi.org/10.1088/0004-637X/768/2/153
https://doi.org/10.1088/0004-637X/768/2/153
https://arxiv.org/abs/1210.1901
https://doi.org/10.3847/1538-4357/ab94bc
https://doi.org/10.3847/1538-4357/ab94bc
https://arxiv.org/abs/2002.10547
https://doi.org/10.1086/497335
https://doi.org/10.1086/497335
https://arxiv.org/abs/astro-ph/0507133
https://doi.org/10.1007/s10714-019-2523-4
https://doi.org/10.1007/s10714-019-2523-4
https://doi.org/10.1007/s41114-022-00041-y
https://arxiv.org/abs/2203.06016
https://doi.org/10.1088/2041-8205/805/1/L4
https://doi.org/10.1088/2041-8205/805/1/L4
https://arxiv.org/abs/1504.02787
https://doi.org/10.1093/mnras/stz062
https://doi.org/10.1093/mnras/stz062
https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/484/1/1301/27579705/stz062.pdf
https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/484/1/1301/27579705/stz062.pdf
https://doi.org/10.1111/j.1365-2966.2007.11461.x
https://doi.org/10.1111/j.1365-2966.2007.11461.x
https://arxiv.org/abs/astro-ph/0609440
https://arxiv.org/abs/astro-ph/0609440
https://doi.org/10.1088/0004-637X/757/1/27
https://doi.org/10.1088/0004-637X/757/1/27
https://arxiv.org/abs/1203.2938
https://doi.org/10.1093/mnras/stx1007
https://doi.org/10.1093/mnras/stx1007
https://arxiv.org/abs/1703.05796
https://arxiv.org/abs/1703.05796
https://doi.org/10.1093/mnras/stz1353
https://doi.org/10.1093/mnras/stz1353
https://arxiv.org/abs/1805.09593
https://doi.org/10.1088/0004-637X/708/1/605
https://arxiv.org/abs/0911.1136
https://arxiv.org/abs/0911.1136
https://doi.org/10.1088/0004-637X/748/2/105
https://arxiv.org/abs/1201.4794
https://doi.org/10.1093/mnras/sty1069
https://doi.org/10.1093/mnras/sty1069
https://arxiv.org/abs/1804.02911
https://arxiv.org/abs/1804.02911
https://doi.org/10.1093/mnras/stx1089
https://doi.org/10.1093/mnras/stx1089
https://arxiv.org/abs/1701.00303
https://doi.org/10.1093/mnras/stz1530
https://doi.org/10.1093/mnras/stz1530
https://arxiv.org/abs/1903.09147
https://doi.org/10.1086/113445
https://doi.org/10.1086/113445
https://doi.org/10.1086/172321
https://doi.org/10.1086/172321
https://doi.org/10.1086/424684
https://doi.org/10.1086/424684
https://arxiv.org/abs/astro-ph/0404173


26

curves of tidal disruption events, Phys. Rev. D 86, 064026
(2012), arXiv:1207.6401.

[34] E. Gafton, E. Tejeda, J. Guillochon, O. Korobkin, and
S. Rosswog, Relativistic effects on tidal disruption kicks
of solitary stars, Monthly Notices of the Royal Astronom-
ical Society 449, 771 (2015), arXiv:1502.02039 [astro-
ph.HE].

[35] N. Straumann, The post-newtonian approximation, in
General Relativity (Springer Netherlands, Dordrecht,
2013) pp. 307–373.

[36] D. Merritt, Orbital motion in galactic nuclei, in Astro-
physical Black Holes, edited by F. Haardt, V. Gorini,
U. Moschella, A. Treves, and M. Colpi (Springer Inter-
national Publishing, Cham, 2016) pp. 145–203.

[37] H. Rein and S.-F. Liu, REBOUND: an open-source
multi-purpose N-body code for collisional dynam-
ics, Astronomy and Astrophysics 537, A128 (2012),
arXiv:1110.4876 [astro-ph.EP].

[38] H. Rein and D. S. Spiegel, IAS15: a fast, adaptive, high-
order integrator for gravitational dynamics, accurate to

machine precision over a billion orbits, Monthly Notices
of the Royal Astronomical Society 446, 1424 (2015),
arXiv:1409.4779 [astro-ph.EP].

[39] C. Tsitouras, Runge–kutta pairs of order 5(4) satisfying
only the first column simplifying assumption, Computers
& Mathematics with Applications 62, 770 (2011).

[40] P. C. Peters, Gravitational Radiation and the Motion of
Two Point Masses, Physical Review 136, 1224 (1964).

[41] S. Shapiro and S. Teukolsky, Black Holes, White Dwarfs
and Neutron Stars (John Wiley & Sons, 1983).

[42] R. Kippenhahn, A. Weigert, and A. Weiss, Stellar Struc-
ture and Evolution (Springer Berlin Heidelberg, 2013).

[43] B. P. Abbott, R. Abbott, T. D. Abbott, and et al., Ob-
servation of Gravitational Waves from a Binary Black
Hole Merger, Phys. Rev. Lett. 116, 061102 (2016),
arXiv:1602.03837 [gr-qc].

[44] Z.-C. Chen, F. Huang, and Q.-G. Huang, Stochastic
Gravitational-wave Background from Binary Black Holes
and Binary Neutron Stars and Implications for LISA, As-
trophys. J. 871, 97 (2019), arXiv:1809.10360 [gr-qc].

https://doi.org/10.1103/PhysRevD.86.064026
https://doi.org/10.1103/PhysRevD.86.064026
https://arxiv.org/abs/1207.6401
https://doi.org/10.1093/mnras/stv350
https://doi.org/10.1093/mnras/stv350
https://arxiv.org/abs/1502.02039
https://arxiv.org/abs/1502.02039
https://doi.org/10.1007/978-94-007-5410-2_6
https://doi.org/10.1007/978-3-319-19416-5_5
https://doi.org/10.1007/978-3-319-19416-5_5
https://doi.org/10.1051/0004-6361/201118085
https://arxiv.org/abs/1110.4876
https://doi.org/10.1093/mnras/stu2164
https://doi.org/10.1093/mnras/stu2164
https://arxiv.org/abs/1409.4779
https://doi.org/https://doi.org/10.1016/j.camwa.2011.06.002
https://doi.org/https://doi.org/10.1016/j.camwa.2011.06.002
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1007/978-3-642-30304-3
https://doi.org/10.1007/978-3-642-30304-3
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.3847/1538-4357/aaf581
https://doi.org/10.3847/1538-4357/aaf581
https://arxiv.org/abs/1809.10360

	Relativistic tidal separation of binary stars by supermassive black holes
	Abstract
	Introduction
	Problem description
	Hybrid relativistic-Newtonian approximation
	Self-consistency and validation tests

	Numerical setup
	Simulation results
	Separation fraction
	Properties of the separated binaries
	Bound star as an EMRI source
	Velocity of the ejected star
	Surviving binaries and close encounters
	Stellar collisions
	Binary mergers
	Subsequent encounters

	Summary and conclusions
	Acknowledgments
	Self-consistency criterion
	Relativistic time dilation in HRNA
	Evolution equations in post-Newtonian gravity
	Initial conditions
	Initial CM velocities in Newtonian gravity
	Initial CM velocities inSchwarzschild spacetime
	Initial CM velocities in post-Newtonian gravity

	Convergence with respect to the initial distance
	References


