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Abstract 

True random numbers play a critical role in secure cryptography. The generation relies on a 

stable and readily extractable entropy source. Here, from solution-processed structurally 

metastable 1T’ MoTe2, we prove stable output of featureless, stochastic, and yet stable 

conductance noise at a broad temperature (down to 15 K) with minimal power consumption 

(down to 0.05 µW). Our characterizations and statistical analysis of the characteristics of the 

conductance noise suggest that the noise arises from the volatility of the stochastic polarization 

of the underlying ferroelectric dipoles in the 1T’ MoTe2. Further, as proved in our experiments 

and indicated by our Monte Carlo simulation, the ferroelectric dipole polarization is a reliable 

entropy source with the stochastic polarization persistent and stable over time. Exploiting the 

conductance noise, we achieve the generation of true random numbers and demonstrate their 

use in common cryptographic applications, for example, password generation and data 

encryption. Besides, particularly, we show a privacy safeguarding approach to sensitive data 

that can be critical for the cryptography of neural networks. We believe our work will bring 

insights into the understanding of the metastable 1T’ MoTe2 and, more importantly, underpin 

its great potential in secure cryptography. 

 

1. Introduction 

Cryptography is of critical importance in the modern electronics era when the exponentially 

growing data is at risk of being attacked and sabotaged [1]. Secure cryptographic strategies are 

thus being sought for [1]. Random numbers, a string of random bits, play a central role in this. 

Amongst them, the random numbers generated using the entropy noise harnessed from the 

physical systems, such as the thermal noise, charge dynamics in semiconductors, oscillator 

jitters, and delays in microelectronic circuits [2], are particularly promising for extensive secure 

cryptography, as the entropy noise is intrinsically stochastic and the random numbers generated 

are truly random and cannot be predicted or reproduced [3]. However, harnessing the entropy 

noise from the physical systems can be energy consuming, and the entropy noise can be 

vulnerable to ambient noise and cryogenic attacks, undermining its reliability for true random 

number generation [4]. 

Intriguingly, the advances in nanomaterials science present new exciting opportunities for true 

random number generation. Quantum phenomena widely presented in nanomaterials, such as 

quantum tunnelling, electron correlation and electron-phonon interactions, and the Rashba 

effect, are proven inherently unpredictable [5–7] and, as discussed, the unpredictability can be a 
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key attribute of entropy for secure cryptography. State-of-the-art research shows that two-

dimensional (2D) materials hold great interest for secure cryptography in modern electronics, 

given their unique material properties and the possibility for integration and synergy with 

modern electronics [2,8]. Particularly, with atomic thickness and innate quantum confinements, 

2D materials can present stochasticity in the underlying electronic, optoelectronic, and photonic 

processes, as well as the chemical structures, giving rise to stable and readily extractable 

entropy noise [9–12]. For example, molybdenum ditelluride (MoTe2) is one type of transition 

metal dichalcogenide, and, interestingly, in the mono- and few-layer forms MoTe2 can appear 

as trigonal prismatic-orthorhombic (2H-1T) intermediate monoclinic (1T’) phase [13]. The 

inherent structural metastability in the 1T’ phase, along with the atomic thickness and innate 

quantum confinement, can induce volatile, stochastic polarization of the ferroelectric dipoles 

and as such, reliable entropy noise in the electronic properties of MoTe2 
[14]. Studies suggest 

that the structural metastability can even be resilient to ambient environmental, thermal, and 

electromagnetic disturbances [15,16], manifesting the potential of harnessing the entropy noise 

from 1T’ MoTe2 for reliable random number generation. 

Here, we report true random number generation using structurally metastable 1T’ MoTe2. We 

prepare the 1T’ MoTe2 via electrochemical exfoliation of the counterpart bulk, and probe the 

conductance noise from electrical characterizations as the entropy source. Particularly, we 

prove featureless, stochastic, and yet stable conductance noise output at a broad temperature 

spanning 15 K to 300 K, with an ultralow power consumption of down to 0.05 µW. Our 

characterizations and statistical analysis of the characteristics of the conductance noise suggest 

that the noise arises from the volatility of the stochastic polarization of the ferroelectric dipoles 

in the 1T’ MoTe2. As proved by our electrical characterizations and further indicated by our 

Monte Carlo simulation of the ferroelectric dipole polarization process, the polarization is a 

reliable entropy source with the stochastic polarization persistent and stable over time. 

Exploiting the conductance noise, we achieve true random number generation, and demonstrate 

cryptographic applications in password generation and data encryption. Furthermore, we show 

an interference and proffer safeguarding of neural networks using the random numbers, proving 

a novel privacy protection measure for sensitive data that can be critical for the cryptography 

of neural networks. 

 

2. Results 

2.1. 1T’ metastable MoTe2 
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MoTe2 is a 2D layered transition metal dichalcogenide material. In its stable form, MoTe2 

predominantly exhibits a semiconducting trigonal prismatic (2H) lattice structure [17] – the 

monolayer consists of a plane of hexagonally bonded Mo atoms sandwiched between two 

planes of Te atoms via chemical bonds. However, as schematically illustrated in Fig. 1a, the 2H 

MoTe2 can have local lattice distortions along the 𝑦 -axis, where the Te atoms form an 

octahedral coordination around the Mo atoms to give an alternating Te-Mo-Te stacking [18,19]. 

This leads to a phase transition from 2H to a trigonal prismatic-orthorhombic (2H-1T) 

intermediate monoclinic phase (1T’) [18]. Different from the stable 2H phase, studies show that 

this intermediate 1T’ phase can present structural metastability involving substantial 

instabilities in the underlying electronic structures [20]. Specifically, as the electronic properties 

are governed by the electronic structures [21,22], the structural metastability of the 1T’ MoTe2 

can lead to stochastic noise in the electronic properties, for instance, the material electrical 

conductance (referred to as conductance). Here we aim to exploit the conductance noise from 

the 1T’ MoTe2 arising from its structural metastability as the entropy source for the generation 

of true random numbers. 

1T’ MoTe2 can be produced through physical and chemical engineering processes, such as 

defect doping, electrostatic modulation, and strain engineering [23–25]. Solution-based 

techniques facilitate high-yield, low-temperature, and cost-effective production of 2D materials 

[26,27]. Given this consideration, and the integration capability of the solution-processed 2D 

materials with the semiconducting manufacturing and emerging printing technologies for 

practical cryptographical applications [26,27], we prepare the 1T’ MoTe2 by electrochemical 

exfoliation, following the method reported in Ref. (28) (see Methods). Briefly, as illustrated in 

Fig. 1b, in a typical electrochemical exfoliation process, bulk MoTe2 and platinum are used as 

the electrodes, and tetrahexylammonium cation (THA) dispersion in dimethylformamide 

(DMF) is used as the electrolyte. Upon exfoliation, the organic molecule THA intercalates into 

the bulk MoTe2 and as such, weakens the van der Waals forces and expands the interlayer 

spacing, leading to the exfoliation of nanosheets from the bulk with mild sonication [28]. Figure 

1c shows a solution of the as-exfoliated MoTe2. 

We use transmission electron microscopy (TEM) to assess the structural and morphological 

characteristics of the as-exfoliated MoTe2 nanosheets. Figure 1d shows the morphology of 

typical nanosheets of a few layers and a large cross-sectional area (~500 nm), suggesting that 

the electrochemical exfoliation has been successfully implemented to exfoliate the MoTe2. 

Figure 1e presents a high-resolution TEM image of a typical nanosheet, revealing a lattice 
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spacing of 3.4Å and a non-hexagonal atomic structural arrangement. This indicates a 1T’ phase 

of the as-exfoliated MoTe2 nanosheets [28]. Further electron diffraction pattern proves a non-

hexagonal rhombic but a tetragonally symmetric lattice structure, confirming the 1T’ phase of 

the as-exfoliated MoTe2. Meanwhile, complementary X-ray photoelectron spectroscopic (XPS) 

analysis demonstrates 33.28:66.72 (in %) for the Mo and Te atoms in the as-exfoliated MoTe2 

nanosheets (Fig. S1), suggesting that the electrochemical exfoliation process leads to minimal 

defects and that the 1T’ phase primarily arises from exfoliation-induced lattice distortions. We 

anticipate that the 1T’ MoTe2 can exhibit the conductance noise required for the true number 

generation. 

 

2.2. 1T’ MoTe2 conductance noise 

To probe the conductance noise from the 1T’ MoTe2, we fabricate a vertical device with the 

1T’ MoTe2 sandwiched between gold electrodes, as shown in Fig. 2a (see Methods). This 

simplest device structure allows convenient current-voltage measurement. Upon measurement, 

the noise probed in the device current output can be considered as the conductance noise from 

the 1T’ MoTe2. Note that owning to solution processing, the device fabrication is scalable with 

a high yield (>90%); Fig. 2b. The cross-sectional scanning electron microscopic and elemental 

analyses prove clear 1T’ MoTe2/Au interfaces; Fig. 2c, d.  

We first assess the conductance noise from the 1T’ MoTe2 at room temperature. Figure 2e 

shows the device current output at 0.05 V, and Fig. S2a-h show the outputs at 0.01-5 V. As 

observed, the device proves a featureless, stochastic, and yet stable noise in the current outputs 

at all the different voltages and, notably, an ultralow voltage of 0.05 V is sufficient to probe the 

substantial current output noise, i.e. the conductance noise of the 1T’ MoTe2. To further 

investigate the pattern and distribution of the conductance noise, we calculate the transient 

gradients of the current outputs, i.e. the difference between two neighboring current states 

divided by the time interval. As demonstrated in Fig 2g and Fig. S2i-p, the gradient histograms 

all establish Gaussian distributions with the gradients. This shows that the conductance noise 

indeed has no distinctive features from a statistical perspective, proving a high degree of 

unpredictability and randomness [3]. As such, the featureless gradient distribution profiles imply 

that the conductance noise may be well suited to the true random number generation [29]. 

Considering the potential exposure to the cryogenic attacks, we now extend the assessment 

from room temperature to low and even cryogenic temperature temperatures (down to 15 K). 

As proved in Fig. 2f, the device again proves a featureless, stochastic, and yet stable noise in 
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the current outputs at all the low and cryogenic temperatures. The gradient histograms estimated 

from the current outputs also establish Gaussian distributions; Fig. 2h-j. This demonstrates that 

the conductance noise from the 1T’ MoTe2 may be exploited as a reliable entropy source even 

at cryogenic temperatures. We conclude that the above assessments demonstrate the possibility 

of probing and extracting the conductance noise from the 1T’ MoTe2 with minimal power 

consumption with reliable results at cryogenic temperatures. 

The noise from thermal and electronic systems stands as a primary entropy source for true 

random number generation [30]. Yet, as discussed, harnessing the noise demands substantial 

energy costs [4]. To exclude that the conductance noise demonstrated above originates from the 

ambient noise from thermal and the electrical characterization system, we concurrently assess 

the ambient noise by characterizing a blank sample. As clearly shown by the grey current 

outputs in Fig. 2e, f, the ambient noise distinctly deviates from the current noise (smaller by 

several orders of magnitude), though the ambient noise is also featureless, stochastic, and yet 

stable. As such, though taking the interference from the ambient noise into account, the origin 

of the conductance noise is primarily attributed to the intrinsic metastable properties of the 1T’ 

MoTe2. 

 

2.3. Origin of the current noise 

Studies show that the non-centrosymmetric lattice distortions in the monoclinic 1T’ MoTe2 can 

induce ferroelectric properties [14], and that the structural metastability can induce volatile, 

stochastic polarization of the underlying ferroelectric dipoles [31]. From our above conductance 

noise investigations, we infer that the conductance noise originates from the intrinsic metastable 

properties of the 1T’ MoTe2. Herein, we hypothesize that the conductance noise arises from the 

volatile, stochastic ferroelectric dipole polarization in the 1T’ MoTe2. 

We present in Fig. 3a the current output of a typical MoTe2 device at 0.05 V and 300 K and the 

corresponding cumulative charge in the sampling time-step intervals (note the minimal 

sampling time-step is 0.067 s). The cumulative charge may correspond to the polarization of 

the ferroelectric dipoles in the 1T’ MoTe2 [32]. We therefore intend to study the cumulative 

charge characteristic to understand the polarization behavior of the ferroelectric dipoles. As 

observed, the cumulative charge also proves a featureless, stochastic, and yet stable noise, 

indicating that the polarization of the ferroelectric dipoles is volatile and stochastic. We further 

use the weighted time-lag method, a technique widely adept at analyzing the random telegraph 
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noise [33], to statistically evaluate the noise in the cumulative charge. Briefly, as plotted in Fig. 

3d, the distribution of the cumulative charge is defined with a weighted time-lag, 𝑇𝐿 =

 𝑙𝑔 (𝐾 ∑
1

2𝜋𝛼2  exp (−
[(𝑄𝑛−𝑥)2+(𝑄𝑛+1−𝑦)2]

2𝛼2 )𝑁−1
𝑛 ) , where 𝑄𝑛  and 𝑄𝑛+1  are the cumulative 

charge states at the 𝑛 -th and (𝑛 + 1) -th moments, (𝑥, 𝑦)  denotes the corresponding 

coordinates in the 𝑇𝐿 plot, 𝑁 is the total number of the moments, and 𝛼 and 𝐾 are the fitting 

parameters to ensure that the maximum of 𝑇𝐿 plot before logarithm equals to 1. Note that the 

cumulative charge states in the plot are distributed in ascending order, and that a 𝑇𝐿 

approaching 0 means a stronger correlation between the cumulative charge state with the next 

state. As observed, the 𝑇𝐿 plot establishes a uniform, stochastic, and bimodal aggregation 

distribution along the diagonal, with both the larger and smaller cumulative charge states having 

a stronger correlation with their next states, and the medium cumulative charge states having a 

weaker correlation. Considering the polarization of the ferroelectric dipoles, this indicates that 

the ferroelectric dipoles are uniformly distributed with bimodal aggregations, and that the 

strongly polarized dipoles may require a strong current (i.e. the cumulative charge in our 

investigation) to reverse. Importantly, the uniform, stochastic distribution pattern suggests the 

polarization of the ferroelectric dipoles in the 1T’ MoTe2 is volatile and stochastic 34. 

To exclude that the above noise in the cumulative charge and the distribution pattern of the 𝑇𝐿 

plot originate from the ambient noise, we again concurrently assess a blank sample. As shown 

in Fig. 3b, e, the cumulative charge shows stable fluctuations accompanied by certain unstable 

spikes, while the 𝑇𝐿 plot establishes a monostable aggregation pattern with weak correlations 

in the cumulative charge states. This proves that the distinctly different characteristics in the 

cumulative charge and 𝑇𝐿 plot of the 1T’ MoTe2 device are primarily governed by the intrinsic 

material properties of the 1T’ MoTe2. Besides, we also assess a device fabricated with liquid-

phase exfoliated MoS2 (see Methods). MoS2 is also a layered transition metal dichalcogenide 

material, but structurally stable with a centrosymmetric lattice structure [34]. MoS2 is reportedly 

used in true random number generation for cryptography based on a charge trapping and de-

trapping mechanism in the MoS2 material [35,36]. Indeed, as clearly shown in Fig. 3c, the current 

output and the corresponding cumulative charge present the typical characteristics of charge 

trapping and de-trapping [35]. The 𝑇𝐿 plot, as shown in Fig. 3f, establishes a few random 

aggregation regions with strong correlations in the cumulative charge states, which may be a 

result of charge trapping and de-trapping. The comparison of the cumulative charge 

characteristics and 𝑇𝐿 plots between the 1T’ MoTe2 and MoS2 devices suggests that the non-
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centrosymmetric lattice distortions of the 1T’ MoTe2 give rise to the volatile, stochastic 

polarization of the ferroelectric dipoles.  

Our above investigation and analysis favor our hypothesis that the conductance noise arises 

from the volatile, stochastic polarization of the ferroelectric dipoles in the 1T’ MoTe2, as 

schematically illustrated in Fig. 3g. We conduct Monte Carlo simulation of the polarization of 

the ferroelectric dipoles (see Methods). Based on our hypothesis, we assume that the 

ferroelectric dipoles in the 1T’ MoTe2 are uniformly and stochastically distributed, and that the 

ferroelectric dipoles undergo stochastic reverses. Upon conductance noise probing of a 1T’ 

MoTe2 device with a constant bias, the volatile, stochastic polarization of the ferroelectric 

dipoles and the stochastic reverses can lead to fluctuations in the bound charges and as such, 

the conductance noise. Based on the Monte Carlo simulation, the current output is stable over 

a prolonged period with featureless and stochastic noise, consistent with the experiment testing, 

as shown in Fig. 3h. This indicates that the stochastic and volatile polarization of the 

ferroelectric dipoles is persistent and stable over time, and suggests the potential of exploiting 

the conductance noise as a reliable entropy source for true random number generation. 

 

2.4. True Random number generation 

To harness the above conductance noise from the 1T’ MoTe2 for true random number 

generation, we design a circuit as illustrated in Fig. 4a. Briefly, the circuit consists of a 1T’ 

MoTe2 device, an I/V converter, a high-sass filter, a comparator, and a Non-Linear Feedback 

Shift Register (NLFSR) module. Upon operation, the I/V converter transforms the current 

signal from the 1T’ MoTe2 device into a voltage signal that is convenient for subsequent 

processing. As shown in Fig. 4b, the voltage signal, i.e. ‘output 1’, demonstrates a voltage 

profile with featureless, stochastic, and yet stable noise. This proves that the circuit has captured 

the conductance noise from the 1T’ MoTe2. The gradients of the voltage signal statistically 

establish a Gaussian distribution, as shown in Fig. 4c, again demonstrating that the voltage 

signal has no distinctive features statistically. As discussed, again, a featureless gradient 

distribution implies that the voltage signal with the noise may be well suited to the true random 

number generation [29]. The voltage signal is then passed through the high-pass filter to extract 

the noise in the form of differentiated stochastic voltage spikes, as shown by the ‘output 2’ in 

Fig. 4b. The gradients of the voltage spikes also establish a Gaussian distribution, as shown in 

Fig. 4d, again implying that the noise retains the featureless randomness and may therefore be 

well suited to the true random number generation. The comparator then processes the stochastic 
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voltage spikes to yield a voltage output in the form of a binary number string of 0’s and 1’s, as 

shown by the ‘output 3’ in Fig. 4b (see Fig. S3 for a zoomed-in distribution of the 0’s and 1’s 

in the time domain). As observed, the binary number string shows a random distribution of the 

0’s and 1’s, with a ratio of ~1:1 (Fig. 4e). This indicates the binary number string generated 

from the circuit is random and potentially useful for secure cryptography. 

To verify that the binary number string is truly random, we test its randomness using the 

National Institute of Standards and Technology (NIST) randomness testing suite. As presented 

in Table 1, the binary number string successfully passes the randomness test without post-

processing. This proves the true randomness of the binary number string, and that the binary 

number string can be used in secure cryptographic applications [37]. However, the throughput 

of the true random binary number string is only approximately 10 bit/s, limiting its practical 

usefulness in high-throughput secure cryptographic applications. To address this limitation, 

employing a common approach for cryptographic random number generation [38], we use the 

true random binary number string as the seed, and then introduce the true random binary number 

string to an NLFSR module for high-throughput output of random binary number string with a 

data rate of, say, 1 Mbit/s, as shown in Fig. 4a. See the circuit design of the NLFSR in Fig. S4. 

As a demonstration, we present a high-throughput random binary number bitmap in Fig. S5.  

 

2.5. Privacy safeguarding 

The high-throughput random binary numbers generated can be used in secure cryptographic 

applications. For example, we show in Fig. S6 and Supplementary Video 1 the generation of 

one-time and strongly randomized passwords, relying on the unpredictability provided by the 

random numbers. Besides the password generation, data encryption can also make use of the 

unpredictability provided by the random numbers. We show in Fig. S7 and Supplementary 

Video 2 and 3 the use of the random numbers in the encryption (and decryption) of video and 

audio files. More explicitly, the encryption begins with integrating the random numbers into a 

mature encryption algorithm (e.g. AES encryption) to produce a unique key for encryption 

[39,40], and the encryption key is then used to encrypt (and decrypt) the data. The effectiveness 

of this data encryption approach lies in the fact that the encryption key is virtually impossible 

to predict or reproduce, thereby reducing the chances of successful brute-force attacks [41,42]. 

Besides the above common cryptographic applications, the importance of secure cryptography 

using the random numbers is magnified by the rapid advancements of the neural networks. In 

the context of machine learning and artificial intelligence using neural networks, adversarial 



 

10 

 

attacks pose a significant threat to data privacy [43]. Here we adopt a differential data privacy 

safeguarding strategy and investigate the effectiveness of this approach to obfuscate the 

sensitive data in neural networks [44]. As schematically shown in Fig. S8, the differential data 

privacy framework injects random numbers as the noise to the target data for encryption. 

Following this approach, we first train a Residual neural network (Resnet) model for pet cat 

recognition (Fig. 5a; see Methods). Resnets are a widely used neural network framework in 

image and pattern recognition [45]. After training, the model can perform successful pet 

recognition with an accuracy of 92%. Note that the confusion matrix and detailed performance 

(including the training and validation accuracy and loss) of the well-trained Resnet variant 

model are shown in Fig. S9.  

We then inject the random numbers as the noise to the target validation data. Interestingly, as 

shown in Fig. 5a, taking the image of a Siamese cat for demonstration, the noise perturbation 

appears negligible to the human eyes, manifesting that the random numbers as a minor and 

almost imperceptible noise perturbation to the data. This is ascribed to the innate ability of the 

human brain to process visual information holistically, i.e. focusing on the broader picture 

rather than the minute details [46]. However, as demonstrated in Fig. 5b, the noise perturbation 

substantially affects the recognition of the well-trained Resnet variant model at all the different 

convolution layers. As shown in Fig. 5c, d, the confusion matrix (see also Fig. S10 for the 

confusion matrix details) and the accuracy (~78%) show the Resnet variant with the noise 

perturbation has a relatively poor performance in recognition. Particularly, comparing the 

accuracies with and without the noise perturbation, as shown in Fig. 5d, a little noise 

perturbation can cause a substantial degradation in the classification accuracy. This is because 

the noise disrupts the feature detection capability of the well-trained Resnet variant model in 

the initial layers of the network, which is then propagated to the deeper layers, leading to the 

exacerbation of the error [47]. The further detailed difference (i.e. ∆) between the two success 

rates in the different 37 categories can be found in Fig. 5e. The findings prove that injecting the 

random numbers as noise perturbations that are not discernible to the human eyes can 

substantially interfere with the neural networks and as such, enhance the data privacy. 

 

3. Conclusion 

In this work, we have reported true random number generation using structurally metastable 

1T’ MoTe2. The 1T’ MoTe2 is produced via a scalable, low-cost, and low-temperature solution-

based electrochemical exfoliation approach. To extract the entropy noise from the 1T’ MoTe2, 



 

11 

 

we develop solution-processed devices from the 1T’ MoTe2, and probe the variations in the 

current output as the conductance noise. We prove a featureless, stochastic, and yet stable noise 

at a broad temperature spanning from 15 K to 300 K, with an ultralow power consumption of 

down to ~0.05 µW. Through detailed characterizations, statistical analysis of the characteristics 

of the conductance noise, and Monte Carlo modelling of the ferroelectric dipoles in the 1T’ 

MoTe2, we understand that the conductance noise arises from the volatility of the stochastic 

polarization of the underlying ferroelectric dipoles in the 1T’ MoTe2, and that the polarization 

is a reliable and robust entropy source. Taking advantage of the conductance noise, we design 

a simplified circuit to extract and convert the conductance noise for the generation of random 

numbers. The random numbers generated successfully pass the NIST test, demonstrating true 

randomness. Using the true random numbers as the seed, we achieve high throughput random 

number generation with a rate of 1 Mbit/s, and demonstrate their practical secure cryptographic 

applications, such as password generation and data encryption.  

Beyond the common cryptographic applications, we have demonstrated privacy safeguarding 

of sensitive data in neural networks using the random numbers. Neural networks are a 

technology widely used in machine learning and artificial intelligence to undertake tasks in, for 

instance, image recognition, healthcare, autonomous driving, manufacturing, monitoring, and 

even defense, where sensitive data can be constantly involved. Our safeguarding approach 

therefore can serve as a novel privacy protection measure to avoid the leakage of the critical 

data without causing destructive interferences to the neural networks. Given this, and the 

scalability of solution processing, our approach of true random number generation using 

structurally metastable 1T’ MoTe2 holds great potential enabling secure neural networks. 

 

4. Experimental Methods 

Material exfoliation and device fabrication: Raw MoTe2 and MoS2 and all the other chemicals 

are purchased from Alpha Aeser and Sigma-Aldrich, and are used as received. The 

electrochemical exfoliation and ink formulation of MoTe2 follow the method reported in Ref. 

(28). The liquid-phase exfoliation and ink formulation of MoS2 follow the method reported in 

Ref. (27). For device fabrication, the Au/MoTe2/Au and Au/MoS2/Au devices are fabricated on 

Si/SiO2 wafer, where the MoTe2 and MoS2 are deposited by spin coating, and the gold 

electrodes are deposited by electron-beam evaporation. The electron-beam evaporator is IVS 

EB-600. The MoTe2 and MoS2 after deposition are baked at 400 oC for 0.5 hours under nitrogen. 
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Electrical characterizations: Tektronix Keithley 4200-SCS parameter analyzer is used to 

measure the electrical characteristics of the devices under 300 K. For the 15 K, 100 K, and 200 

K tests, FS-Pro is used under vacuum (~10-6 mbar). 

Monte Carlo simulation: Assuming a constant electric field, the change in the polarization of 

the ferroelectric dipoles will not affect the field, but the internal polarization state of the 

ferroelectric dipoles in the 1T’ MoTe2 will change. The fluctuation of the polarization can lead 

to fluctuating bound charges, which can in turn cause fluctuations in the conductance state of 

the 1T’ MoTe2.  

The polarization can switch between two states, i.e. P1 and P2, and the switching follows the 

Arrhenius law [48]. The polarization can thus be modelled as a Poisson process, meaning that 

the probability of a switch in a small interval of time 𝑑𝑡 is given by λ*dt, where λ is the rate 

of the process. The rate follows the Arrhenius law, given by λ = A ∗ exp(−E/(k ∗ T)), where 

𝐴 is the pre-exponential factor, 𝐸 is the energy barrier, 𝑘 is the Boltzmann constant, and 𝑇 

is the temperature. However, the switch in polarization now results in fluctuations in the bound 

charge instead of a change in the electric field. The bound charge 𝜌𝐵  is related to the 

polarization 𝑃 by the relation 𝜌𝐵 = −𝑑𝑖𝑣𝑃, where 𝑑𝑖𝑣 is the divergence operator, indicating 

that the bound charge is related to the spatial variation of the polarization. In a simple one-

dimensional case, this can be described as 𝜌𝐵 = −𝑑𝑃/𝑑𝑥. Now assume that the change in 

polarization is uniform across the material, the bound charge will change by ∆𝜌𝐵 proportional 

to the change in polarization ∆P, expressed as ∆𝜌𝐵 = −∆P/L, where 𝐿 is a characteristic 

length scale of the system. This change in voltage can cause a current to flow.  

We propose that the change in the bound charge affects the resistance 𝑅 of the material. A 

simple model assumes that the resistance is inversely proportional to the absolute value of the 

bound charge, R = R0/𝜌𝐵, where R0 is a constant initial resistance. Finally, apply a constant 

voltage 𝑉 across this variable resistor, the current 𝐼 through the material at any time would 

be given by Ohm's law, I(t) = V/R(t). The charge from the current can be described by 𝑄𝑖 =

 ∫ 𝑑𝐼/𝑑𝑡
𝑡=𝑖+1

𝑡=𝑖
. So every time the polarization switches, it will change the bound charge, which 

will then change the resistance and hence, the current fluctuations. 

Consider a common effect often found in materials known as Poole-Frenkel behavior [49], the 

current through the material (and hence the resistance) is affected by the applied electric field 

(which in our case can be linked to the bound charge), and the current density J is given by J =
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J0 ∗ exp(β ∗ √𝜀), where J0 is the current density at zero field, 𝜀 is the electric field, and β is 

a material constant. In our scenario, we now link the bound charge and the electric field 𝜀. 

Assume that the change in the bound charge ∆𝜌𝐵 is proportional to the change in electric field 

∆𝜀 , the bound charge is expressed by ∆𝜌𝐵 = −∆𝜀/𝐿 . Then, the current density will be 

dependent on the bound charge. Note that the 𝑠𝑞𝑟𝑡(𝜀) means that this is not a simple linear or 

inversely proportional relationship. 

Neural network recognition: The neural network security is carried out in Python 3 and is based 

on the Resnet framework. The Resnet variant is based on a Resnet 34 structure, consisting of 

convolution layers, residual blocks, and so on. The information about the Resnet 34 can be 

found at: https://pytorch.org/vision/main/models/generated/torchvision.models.resnet34.html. 

The public dataset is from the Visual Geometry Group at the University of Oxford (available at 

https://www.robots.ox.ac.uk/~vgg/data/pets/). The dataset consists of a 37-category pet dataset 

with roughly 200 images for each class with different scales, poses, and lighting. All the images 

have an associated ground truth annotation of breed, head ROI, and pixel-level trimap 

segmentation, and those are used for training and testing. 
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Figures 

 

Figure 1. 1T’ MoTe2 by electrochemical exfoliation. (a) Schematic hexagonal symmetry and 

the distorted quadrilateral symmetry crystalline structures of 2H and 1T’ MoTe2, respectively. 

(b) Schematic electrochemical exfoliation of MoTe2, and the schematic intercalation of 

molecular compounds between the MoTe2 layers. Pt and MoTe2 are used as the electrodes. (c) 

Image of an as-exfoliated MoTe2 dispersion. (d, e) Transmission electron microscopic images 

of the as-exfoliated MoTe2 nanosheets. Inset of (e) shows the selected electron diffraction 

pattern, proving a distorted quadrilateral symmetrical crystalline structure.   
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Figure 2. 1T’ MoTe2 device and the conductance noise. (a) Schematic configuration of the 

1T’ MoTe2 device. MoTe2 is sandwiched between e-beam evaporated gold electrodes. The 

substrate is Si/SiO2. (b) Image of an array of 10 ×10 1T’ MoTe2 devices. (c) Cross-sectional 

scanning electron microscopic image of the device, and (d) the corresponding elemental 

analysis of the selected areas for the Au, Mo, and Te elements. (e) Current profile in blue as 

probed from a typical MoTe2 device at 300 K, and the detailed current profiles at the different 

short periods. (f) Current profiles in blue as detected from the MoTe2 device at the other 

temperatures. The operation voltage is 0.05 V. The current profiles from a blank sample are in 

grey. (g-j) The histograms and Gaussian fittings of the slope distributions from (e, f). The slope 

is obtained by dividing the current increment at each time step by the time interval. Scale bar – 

(b) 1 cm, (c) 300 nm, and (d) 300 nm.   
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Figure 3. The origin of the conductance noise of 1T’ MoTe2. Current profiles and the 

corresponding cumulative charge fluctuations from (a) a typical 1T’ MoTe2 device, (b) a blank 

device, and (c) a MoS2 device. The operation voltage is 0.05 V. The operation temperature is 

300 K. The cumulative charge is integrated in the sampling time-step intervals. The minimal 

sampling time-step is 0.067 s. The time-lag plot for the cumulative charge fluctuations of (d) 

the MoTe2 device, (b) the blank device, and (c) the MoS2 device. (g) Schematic representation 

of the 𝑛-th and (𝑛 + 1)-th polarization states of the underlying ferroelectric dipoles in the 1T’ 

MoTe2 in our proposed current noise mechanism, showing the volatility and stochasticity of the 

polarization of the ferroelectric dipoles. (h) The charge profile from the Monte Carlo simulation 

compared with the experimental charge profile from the 1T’ MoTe2 device.   
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Figure 4. True random number generation. (a) Circuit design of true random number 

generator (TRNG), consisting of a typical 1T’ MoTe2 device, I/V converter, high pass filter, 

comparator, and NLFSR. (b) The outputs obtained from the TRNG at port 1, 2, and 3, including 

the converted voltage noise, the filtered voltage noise, and the output of the 0’s and 1’s. (c, d) 

The histograms and Gaussian fittings of the voltage slope distributions from (b). The voltage 

slope is obtained by dividing the voltage increment at each time step by the time interval. (e) 

The histogram of the output 0’s and 1’s from (b). The ratio of the 0’s and 1’s is 48.6:51.14 (%).  



 

22 

 

 

Figure 5. Interference and proffer safeguarding in neural networks. (a) Resnet variant 

architecture for the recognition of a cat without and with noise perturbation. The noise map is 

produced using the true random numbers generated. (b) The cat images without and with noise 

perturbation at the intermediate convolution layers, showing that the perturbed images lose 

certain features of the cat at the convolution layers. (c) Confusion matrix for the Resnet variant 

recognition with noise perturbation. The scale corresponds to the success rate of predicted 

labels. The 𝑥 and 𝑦 coordinates denote the predicated and true labels of the 37 different 

classifications in the training dataset. (d) The accuracy with and without noise perturbation at 

different numbers of tests. (e) The difference between the success rates in confusion matrices 

with and without noise perturbation along the diagonal. The 𝑦  coordinate denotes the 

difference in the success rate on the diagonal, and the 𝑥  coordinate the 37 different 

classifications. The confusion matrix with the success rate values is presented in Fig. S10.  
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Table 1. NIST test of the true random number generator. 

# Name P-value Success Post-processing 

01 Approximate entropy 1.0 Success No 

02 Block frequency 0.824 Success No 

03 Cumulative sums 0.728, 0.526 Success No 

04 FFT 0.041 Success No 

05 Frequency 0.823 Success No 

06 Linear complexity - - Limited throughput 

07 Longest run 0.445 Success No 

08 Non overlapping template 0.999 Success No 

09 Overlapping template - - Limited throughput 

10 Random excursions - Success No 

11 Random excursions variant - Success No 

12 Rank - - Limited throughput 

13 Runs 0.017 Success No 

14 Serial 0.499, 0.499 Success No 

15 Universal - - Limited throughput 
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Supporting Information for 

True random number generation using metastable 1T’ molybdenum ditelluride 

 

Yang Liu et al. 

E-mail: ghhu@ee.cuhk.edu.hk 

 

 

This section contains: 

Supplementary Figure S1-S10 

Supplementary References  
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Figure S1. Analysis of the as-exfoliated 1T’ MoTe2 nanosheets. Energy dispersive X-ray 

spectrometry (EDS) element mapping of the as-exfoliated 1T’ MoTe2 nanosheets. The ratio of 

Mo and Te atoms is 33.28:66.72 (%), suggesting that there are minimal defects in the 1T’ 

MoTe2 nanosheets.   
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Figure S2. 1T’ MoTe2 conductance noise under the different voltages. (a)-(h) Current 

profiles of a typical 1T’ MoTe2 device at 0.1 V, 0.2 V, 0.3 V, 0.4 V, 0.5 V, 1 V, 2 V, and 5 V. 

Temperature 300 K. (i)-(p) The corresponding histograms and Gaussian fittings of the slope 

distribution. The slope is obtained by dividing the current increment at each time step by the 

time interval. 
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Figure S3. The sequence of the 0's and 1's generated during the 47 to 52 seconds as shown 

in Fig. 4b. It is shown that the 0's and 1's are produced in a uniformly distributed and randomly 

irregular sequence.  
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Figure S4. 4-bit nonlinear feedback shift register (NLFSR) circuit design. The random 

number sequence generated by the true random number generator in this work is used as the 

seed input. A high throughput random number sequence is obtained by setting a high clock 

frequency, e.g. 1 Mhz.  
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Figure S5. A 1024*1024 bitmap composed of a sequence of binary random numbers. (a) 

High-data-volume bitmap graph. Four randomly selected regions along the diagonal are shown 

in (b). (c) The corresponding histograms showing the distributions of the 0's and 1's. The ratios 

of the 0's and 1's are close to 1 to 1.  
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Figure S6. Password generation. (a) Schematic generation and the use of one-time password 

(OTP). OTP [1] is a unique code that is valid for only one login session and transaction. It is 

often used as a second factor in two-factor authentication (2FA) [2] and multi-factor 

authentication (MFA) [2] systems. (b) Schematic generation and the use of strongly randomized 

passwords. Strongly randomized passwords can be stored in systems for the application 

scenarios that require a high level of password security. Please the generation of the passwords 

in Supplementary Video 1.  
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Figure S7. Data encryption. (a) Encryption and decryption of an image in Supplementary 

Video 2. The encryption and decryption processes are conducted by performing the common 

encryption/decryption operations (e.g., AES [3] encryption/decryption, etc.) on the pixels of the 

images using the random numbers generated in this work. Our proposed method of encrypting 

and decrypting images is also applicable to other images. (b) Acoustic spectrograms for audio 

encryption and decryption, showing a four-second audio, the audio after bit-by-bit encryption, 

and the audio after decryption. Please the encryption and decryption of the video and audio in 

Supplementary Video 2 and 3. 
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Figure S8. Data privacy protection strategy. (a) Differential data privacy workflow. 

Differential privacy is a robust framework used in statistical and machine learning analysis of 

datasets [4]. The core idea is to ensure that the release of the data (or the statistics derived from 

the data) does not compromise the privacy of any individuals in the dataset, and that the dataset 

with the noise perturbation retains the key features. (b) A case example showing injecting noise 

to a dataset for data privacy protection. The left side shows the noise data, and the bottom side 

the original raw data. The noise data is injected into the original data. (c) The trade-off curve 

between the privacy sensitivity (Epsilon) and the stochastic property change. It is possible to 

achieve an optimal level of noise injection depending on the application scenarios. 
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Figure S9. Confusion matrix without noise perturbation and the training performance of 

the Resnet model. (a) Confusion matrix without noise perturbation. The 𝑥 and 𝑦 coordinates 

denote the predicated and true labels of the 37 different classifications in the training dataset. 

The scale (i.e. the success rate of classification) corresponds to the ratio of the number of the 

correct predicted labels to the number of the true labels. The values shown in the confusion 

matrix represent the success rate of the predicted labels. The success rate shows that the trained 

Resnet variant achieves a good performance (~92%). (b) The training accuracy and training 

loss of the Resnet variant. (c) The validation accuracy and validation loss of the Resnet variant. 

Based on the performance of (b) and (c), it can be concluded that the Resnet variant is well-

trained for the Oxford pet-iii dataset.  
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Figure S10. Confusion matrix after noise perturbation, with the success rate values shown. 

The 𝑥  and 𝑦  coordinates denote the predicated and true labels of the 37 different 

classifications in the training dataset. The scale (i.e. the success rate of classification) 

corresponds to the ratio of the number of the correct predicted labels to the number of the true 

labels. The values shown in the confusion matrix represent the success rate of the predicted 

labels. Comparison with the confusion matrix in Fig. S9a proves that the noise perturbation 

reduces the accuracy of the Resnet variant model. 
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