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Abstract. We present an improved treatment for the scattering of heavy dark matter from the

ion constituents of a white dwarf. In the heavy dark matter regime, multiple collisions are required

for the dark matter to become gravitationally captured. Our treatment incorporates all relevant

physical effects including the dark matter trajectories, nuclear form factors, and radial profiles for

the white dwarf escape velocity and target number densities. Our capture rates differ by orders of

magnitude from previous estimates, which have typically used approximations developed for dark

matter scattering in the Earth. We also compute the time for the dark matter to thermalize in the

center of the white dwarf, including in-medium effects such as phonon emission and absorption from

the ionic lattice in the case where the star has a crystallized core. We find much shorter thermal-

ization timescales than previously estimated, especially if the white dwarf core has crystallized. We

illustrate the importance of our improved approach by determining the cross section required for

accumulated asymmetric dark matter to self-gravitate.
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1 Introduction

White dwarfs (WDs) are the most abundant stellar remnants; in fact more than 90% of the stars in

the Galaxy are WDs. Due to their high density, extreme conditions and the existence of observational

data, they have recently been used to test and constrain dark matter (DM) models. This generally

involves the accumulation of DM particles, which leads to observational signatures such as an increase

in their luminosity [1–8] or DM-triggered supernova ignition/black hole formation [9–14]. The latter

scenario specifically requires the capture of heavy DM of order 100 TeV, or above. For these masses,

multiple collisions of the DM with the WD constituents are required for the DM to lose sufficient

energy to become gravitationally bound to the star.

Analytical approaches in the literature that deal with capture of heavy DM via multiple scat-

tering in stars [5, 15–17] are based on Gould’s seminal work for capture in the Earth [18]. It is worth

noting that in the case of the Earth, the main contribution comes from the scattering of DM with

iron nuclei. Gould’s formalism was derived under the following assumptions: (i) DM trajectories

are unaffected by collisions, (ii) constant escape velocity, (iii) constant iron density, (iv) DM follows

linear trajectories outside and inside the Earth’s core, thereby neglecting gravitational focusing. All

of these assumptions approximately hold in the Earth’s core, where the iron density profile is rather
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flat, and the gravitational potential of the Earth is weak, meaning that the DM escape velocity is

much smaller than the average DM halo speed. However, in the case of the Earth, a Monte Carlo

simulation is in fact best suited to tackle multi-scattering capture of light DM [19].

For WDs, on the other hand, we have a very different kinematic regime. This enables an

analytical approach to be attempted. For capture in WDs, the infalling DM particles are accelerated

to velocities that are a sizeable fraction of the speed of light and hence orders of magnitude greater

than the DM halo speed. In this regime, the assumptions (ii)–(iv) above do not hold. (Assumption (i)

remains well justified.) In this paper, we relax all the non-valid simplifying assumptions, and derive a

sound formalism for multiple scattering capture in WDs. We show that the simplifying assumptions

would lead to an overestimation of the DM capture rate, with the difference becoming more severe

for heavier DM.

Our formalism is based on a response function that properly encodes the relevant physical

effects, including the cross section suppression due to the nuclear form factors; non-constant escape

velocity; and gravitational focusing when calculating the probability for DM to undergo more than

one collision and lose enough energy in the process to become bound to the WD. We shall begin by

considering DM scattering from a single type of WD constituent. As we shall see, this method can

be generalized to the more realistic case of WDs made of more than one ionic species.

Following gravitational capture, the DM particles will continue to scatter with the WD con-

stituents until an equilibrium state is reached. The timescale for this process to occur has previously

been estimated [12–14] by using the average DM energy loss in an energy regime that is suited for

capture, i.e. for high energy transfers. We show that due to finite temperature effects the average

energy loss has a different scaling with the DM kinetic energy and DM mass for high and low energy

momentum transfers. The latter is more important for thermalization. In addition, if the WD is old

enough that its core has begun to crystallize, then the ions will form a Coulomb lattice, in particular

in the region near the center of the star. In this case, collective excitations of the ionic targets

introduce an additional correction which we find to increase the thermalization time by less than an

order of magnitude, much less than previously estimated.

Finally, to showcase the effect of using our revised calculations for capture and thermalization in

the multiple-scattering regime, we consider the accumulation of heavy non-annihilating dark matter.

Such non-annihilating dark matter is expected in asymmetric dark matter models, where the DM

abundance in the present-day Universe consists entirely of DM particles and no DM antiparticles (or

vice-versa). We shall use our formalism to estimate the size of the DM-nucleon cross section required

for non-annihilating DM accumulated in the WD core to self-gravitate. Since we are dealing with

a DM population that grows over time, the time evolution of the WD core temperature and hence

that of thermalization time is considered. Depending on the composition and compactness of the

WD, we find at least one order of magnitude difference with previous results.

This paper is organized as follows. In section 2, we briefly review the physics of WDs relevant

to this work and how to model it in order to use observational data. In section 3, we derive the

response function for DM collisions in the multiple-scattering regime, both for scattering from a

single target species, and from multiple targets. The timescale for thermalization of heavy DM is

discussed in section 4. The condition for self-gravitation of asymmetric DM is examined in section 5

and our conclusions are given in section 6.
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2 White Dwarfs

White dwarfs are the most abundant stars in the Galaxy, being the end points of main sequence

stars with mass ≲ 8− 10 M⊙, depending on metallicity. This compact stellar remnant is supported

from gravitational collapse by electron degeneracy pressure. WDs are born at high temperatures,

∼ 108K, and cool over billions of years to ∼ 105K. Below we discuss how the internal structure is

modeled from an appropriate equation of state, and summarize the observational data used in this

work.

2.1 Evolution and Internal Structure

WDs are born as extremely hot, compact objects, whose fate is to cool slowly by radiating light.

There is no longer nuclear burning in the core of these collapsed objects. The only energy source,

responsible for the star’s luminosity, is of thermal origin: the kinetic motion of the non-degenerate

ions which are completely decoupled from the electrons. The degenerate electrons do not contribute

to the cooling process. They determine the star’s stellar structure and hence the WD mass radius

relation. In addition, as excellent heat conductors, electrons are very efficient at thermalizing the

WD core, and hence we can model this region of the WD as an isothermal sphere that accounts for

∼ 99% of the star’s mass. As the WD evolves (cools), its ionic constituents undergo phase transitions

from a hot gas to a liquid and finally to a crystal, i.e an ion lattice. A significant amount of energy

is released in the latter first-order phase transition, which slows down the cooling process. The WD

solidifies from the center to the surface. The remaining ∼ 1% of the WD mass is in the form of a

heat-blanketing envelope, whose composition, mainly hydrogen and helium, plays a key role in the

cooling process.

In ref. [8], we modeled the WD core as being composed of only one element, namely carbon,

by solving the structure equations, the Tolman-Oppenheimer-Volkoff (TOV) equations [20, 21] cou-

pled to the zero-temperature Feynman-Metropolis-Teller (FMT) equation of state (EoS) [22, 23].

In the present work, we adopt a more realistic approach to match observations. Specifically, we

consider stratified WDs made of two elements, 50% each, namely carbon-oxygen (CO) for WDs of

mass ≲ 1.05M⊙, and oxygen-neon (ONe) above this mass threshold. In addition, we use the finite

temperature extension of the FMT EoS presented in ref. [24]. While the zero-temperature approach

is adequate for WDs with masses ≳ 0.7 − 0.8 M⊙, the predicted mass-radius relation in this ap-

proximation begins to deviate from observations for lower masses. These deviations are expected

to stem from finite temperature effects [24]. In the relativistic FMT EoS at finite temperature, the

thermal energy of the nuclei is considered when calculating the energy density and pressure within a

Wigner-Seitz cell1. The electron energy density and pressure depend on the degeneracy parameter

and ultimately on the temperature of the system; for further details see ref. [24]. EoSs for C, O and

Ne were obtained and later used together with the TOV equations to obtain WD radial profiles.

This includes the radial profiles of the escape velocity, vesc, an example of which can be found in

Fig. 1 of ref. [8].

2.2 Observations

Over the past few decades, our understanding of white dwarfs has greatly been improved with the aid

of large-area surveys, in particular the Sloan Digital Sky Survey (SDSS) [29] which has produced the

1A Wigner-Seitz cell encloses a cloud of electrons surrounding a finite size nucleus so that the system is neutral.
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WD name
Teff M⋆ Cool. age Distance T⋆(t⋆) Onset

(K) (M⊙) t⋆ (Gyr) (pc) (106 K) crys. (Gyr)

WD 0821-669 (CO) 4808 [25] 0.53 [25] 6.58 [25] 10.68 [26] 1.8 3.09

GJ 3182 (CO) 4980 [25] 0.62 [25] 7.24 [25] 10.87 [26] 1.9 2.36

SDSS J232257.27+252807.42 (ONe) 6190 [27] 1.11 [27] 4.58 [27] 199.17 [26] 2.1 2.73

Table 1: Old WDs within 200 pc with spectral type DA. The first 3 WD properties, namely cooling

ages, effective surface temperatures and masses for the last two WDs are given in refs. [25, 27], while

the last two columns, core temperature at the cooling age and onset of crystallization, were obtained

by using the evolutionary sequences of refs. [28] and [27] for carbon-oxygen and oxygen-neon WDs,

respectively.

largest catalogue of spectroscopically confirmed WDs, see e.g. refs. [30–32]. Spectroscopy provides

measurements of the effective temperature Teff and surface gravity g of a WD, from which the WD

mass M⋆ and radius R⋆ can be inferred. Spectroscopic data also give us information about the

composition of the atmosphere of a white dwarf (spectral type). These outer layers are key to

determining the core temperature T⋆, cooling age and other WD properties, with the help of model

atmospheres.

In Table 1, we show three old WDs within 200 pc from the Sun, distances measured by Gaia

EDR3 [26]. These WDs have spectral type DA, i.e. a hydrogen rich atmosphere. In order to model

these stars, rather than simulating their full evolution, one can track how the core temperature and

other relevant properties change over time by using evolutionary tracks based on model atmospheres

such as those given in ref. [28] for CO WDs and ref. [27] for ONe WDs 2. The most massive WDs

are expected to be made of oxygen and neon, hence their effective surface temperature, mass, core

temperature (T⋆), cooling age and age at the onset of core crystallization have been calculated

using the evolutionary tracks for massive WDs of ref. [27]. The remaining less massive WDs, on

the other hand, are expected to be a mixture of carbon and oxygen, so that their corresponding

inferred properties were estimated using the cooling models of ref. [28]. The evolution of the core

temperature as a result of the cooling processes for the WDs in Table 1 is depicted in the left panel

of Fig. 1. On the right panel of this figure, we show the radial density profiles of the WD core for

the same stars, obtained as outlined in section 2.1, using the finite temperature FMT EoS for the

core temperature at the WD cooling age t⋆ listed in Table 1.

3 Multiple Scattering Capture

In this section, we review the formalism for single-scattering capture of DM in white dwarfs. Build-

ing upon it, we derive a proper treatment for multiple-scattering capture, by including the radial

dependence of the escape velocity and target number density, the effect of the nuclear form factors,

as well as considering that DM trajectories follow the rules of gravity. Next, we generalize this

formalism to the case of multiple targets.

2Evolutionary sequences for CO WDs of various masses can be found at: https://www.astro.umontreal.ca/

~bergeron/CoolingModels/ and for ONe WDs at http://evolgroup.fcaglp.unlp.edu.ar/TRACKS/ultramassive.

html.
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Figure 1: Left: Evolution of the core temperature T⋆ for the WDs in Table 1. Right: Radial profiles

of the core density for the same WDs with core temperatures listed in Table 1.

3.1 Single Scattering

We begin by considering the situation where a single collision with the non-relativistic, non-degenerate

ions in the WD core is enough for DM to become gravitationally bound to the star. In this case,

the most general expression for the DM capture rate C1 in the optical thin limit is given by [8]

C1 =
ρχ
mχ

∫ R⋆

0
dr4πr2

∫ ∞

0
duχ

w(r)

uχ
fMB(uχ)Ω

−
T (w), (3.1)

with

Ω−
T (w) =

∫ vesc(r)

0
dv R−

T (w → v), (3.2)

R−
T (w → v) =

∫ ∞

0
ds

∫ ∞

0
dt
32µ4

+√
π

k3nT (r)
dσTχ

d cos θcm

vt

w
e−k2u2

TΘ(t+ s− w)Θ(v − |t− s|), (3.3)

where ρχ is the DM density, mχ is the DM mass, nT is the target number density, and w(r) =√
u2χ + v2esc(r) and v are the DM velocity before and after the collision, respectively. Kinematic

quantities are defined in the center of mass (cm) frame, where θcm is the center of mass angle, σTχ

is the DM-ion cross section, s is the cm speed, t is the velocity of the DM in the cm frame prior to

the interaction, k2 = mT /2T⋆, mT is the mass of the target and uT is the speed of the target before

the collision in the cm frame:

u2T = 2µµ+t
2 + 2µ+s

2 − µw2, (3.4)

µ =
mχ

mT
, µ± =

µ± 1

2
. (3.5)

We assume that the DM speed distribution in Eq. 3.1, uχ, follows a Maxwell-Boltzmann (MB)

distribution, which reads [33]

fMB(uχ)duχ =
uχ
vdv⋆

√
3

2π

(
exp

[
− 3

2v2d
(uχ − v⋆)

2

]
− exp

[
− 3

2v2d
(uχ + v⋆)

2

])
duχ, (3.6)
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where vd is the velocity dispersion of the halo and v⋆ is the WD velocity in the Galactic rest frame.

In the T⋆ → 0 limit the interaction rate Ω−, Eq. 3.2, becomes [33]

Ω−
T (w) =

4µ2
+

µw
nT (r)

∫ vesc(r)

w(r)
|µ−|
µ+

dvv
dσTχ

d cos θcm
(w, q2tr(w, v)), (3.7)

where qtr is the momentum transferred during the collision. Note that the differential cross section

depends on the DM initial velocity w and the momentum transfer through the form factors F
(N,N ′)
i,j .

We express the cross section as

dσTχ

d cos θcm
(w, q2tr) =

1

32π

|MT |2(w, q2tr)
(mχ +mT )2

, (3.8)

|MT |2(w, q2tr) =
m2

T

m2
N

∑
i,j

∑
N,N ′

CN
i CN ′

j F
(N,N ′)
i,j (w, q2tr), (3.9)

where N = {p, n}, the spin averaged squared matrix elements are given in the basis of non-relativistic

(NR) operators [34], and the Ci are the coefficients that accompany the corresponding NR operators

as given in Table 2. The nuclear response functions F
(N,N ′)
i,j (w, q2tr) are given in appendix C of ref. [35].

Note that we have assumed fermionic DM colliding with ion nuclei, with interactions described by

the 6-dimensional Effective Field Theory (EFT) operators of Table 2. Note also that since WDs

are composed mainly of ionic species with no nuclear spin, namely 4He, 12C, 16O and 20Ne, only

scattering operators with spin-independent (SI) interactions are relevant. For these elements in

particular, only three response functions are non-zero, namely WM ,WMΦ′′ ,WΦ′′ [35, 36].

At low energy, the cross section for scattering on target nuclei, σTχ, can be related to the SI

cross section on a single nucleon, σNχ, using

dσNχ

d cos θcm
(w, q2tr) =

1

32π

1

(mχ +mN )2

∑
i,j

CN
i CN

j F̂
(N,N)
i,j (w, q2tr), (3.10)

where F̂ is the nuclear response function for a nucleon N . Thus, in the low energy limit (w →
0, q2tr → 0) we have

dσTχ

d cos θcm
=

(mχ +mN )2

(mχ +mT )2
m2

T

m2
N

∑
i,j

∑
N,N ′ CN

i CN ′
j F

(N,N ′)
i,j (w → 0, q2tr → 0)∑

i,j CN
i CN

j F̂
(N,N)
i,j (w → 0, q2tr → 0)

dσNχ

d cos θcm
. (3.11)

For operators D1, D2, D5 and D6, for which only the WM response function is present, this simplifies

to
dσTχ

d cos θcm
=

(mχ +mN )2

(mχ +mT )2
m2

T

m2
N

A2 dσNχ

d cos θcm
→ A4 dσNχ

d cos θcm
, (3.12)

where the final expression is obtained by taking the large mχ limit. For D10, the precise coefficient

that multiplies the DM-nucleon cross section in the RH expression of Eq. 3.12 depends on the target,

being γA4 with γ = 1 for He, γ = 1.56 for C, γ = 1.02 for O and γ = 1.22 for Ne.

In most cases, for WDs in the solar neighborhood, we have vesc(r) ≫ uχ and hence w(r) ∼
vesc(r). Using this approximation, we can rewrite Eqs. 3.1 and 3.7 in terms of the recoil energy of

the target ER

ER =
q2tr
2mT

, ER = Emax
R

(
1− cos θcm

2

)
, (3.13)
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Name Operator Coupling MNR
N = CN

i ONR
i

D1 χ̄χ N̄N cSN/Λ2 4
icSN
Λ2 mχmNONR

1

D2 χ̄γ5χ N̄N icSN/Λ2 −4
icSN
Λ2 mNONR

11

D5 χ̄γµχ N̄γµN cVN/Λ2 4
cVN
Λ2mχmNONR

1

D6 χ̄γµγ
5χ N̄γµN cVN/Λ2 8

cVN
Λ2 (mχmNONR

8 +mχONR
9 )

D10 χ̄σµνγ
5χ N̄σµνN icTN/Λ2 8

icTN
Λ2 (mχONR

11 −mNONR
10 − 4mχmNONR

12 )

Table 2: Relationship between high energy EFT scattering operators (second column) and the non-

relativistic (NR) operators MNR
N = CN

i ONR
i [34] (fourth column) for spin-independent interactions,

where Λ is the cutoff scale, and the coefficients cSN , cVN and cTN are the hadronic matrix elements,

which can be found in appendix B of ref. [8].

where

Emax
R = 2mT vesc(r)

2

(
mχ

mT +mχ

)2

, (3.14)

Emin
R = 0. (3.15)

Trading θcm and the DM final speed v for the recoil energy ER, we obtain

dσTχ

d cos θcm
=

Emax
R

2

dσTχ

dER
, (3.16)

Ω−
T (w) =

4µ2
+

µw
nT (r)

Emax
R (vesc,mχ,mT )

2mχ

∫ Emax
R

Emin
R

dER
dσTχ

dER
(vesc, ER). (3.17)

In the original derivation of Eq 3.1, an average over the DM angular momentum J (angle of

incidence) was performed [37]. Here, we reintroduce this average explicitly since it will become

relevant in the optically thick and multiple scattering regimes that depend on the specific trajectory

and hence angle of incidence. Note that this does not affect the result for single scattering in the

optically thin limit. Reintroducing the average over J and substituting the last expression into

Eq. 3.1, leads to

C1 =
ρχ
mχ

∫ R⋆

0
dr4πr2nT (r)σTχ(vesc(r))v

2
esc(r)

∫ 1

0

ydy√
1− y2

∫ ∞

0
duχ

fMB(uχ)

uχ
, (3.18)

where y = J/Jmax, and Jmax is the maximum value of J at a given distance from the center of the

star. Note that, thanks to the assumption uχ ≪ vesc, the integral over uχ can be factored out from

the integral over the volume.

When the DM-target cross section is larger than a threshold value, the capture rate approaches

the geometric (optically thick) limit. In this regime, the flux of DM particles that traverses the star is

considerably attenuated, hence the optically thin approximation is no longer appropriate. To account

for this, an optical factor η(r) is introduced in Eq. 3.1, which removes captured DM particles from

the incoming flux. This η(r) factor, defined in terms of the optical depth for DM-target interactions,

depends on the trajectory followed by the DM particle until it is captured [8, 33, 38]. There exist two
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equally probable paths a DM particle can follow to reach a given point r within the WD. Therefore,

there are two corresponding optical depths τ−χ (shortest path) and τ+χ (largest path) given by [8, 38]

τ−χ (r, y) =

∫ R⋆

r

dx√
1− y2 Jmax(r)2

Jmax(x)2

Ω−(w(x))

vesc(x)
√

1− v2esc(x)
, (3.19)

τ+χ (r, y) =

∫ rmin

r
+

∫ R⋆

rmin

dx√
1− y2 Jmax(r)2

Jmax(x)2

Ω−(w(x))

vesc(x)
√
1− v2esc(x)

= 2τ−χ (rmin, y)− τ−χ (r, y), (3.20)

where rmin is the position of the perihelion. For details on the derivation of these expressions, see

Appendix C.1 of ref. [38]. Then, the optical factor averaged over the two possible trajectories and

the DM angular momentum is

η(r) =
1

2

∫ 1

0

ydy√
1− y2

(
e−τ−(r,y) + e−τ+(r,y)

)
. (3.21)

Finally introducing this factor in Eq. 3.18, the full expression for the capture rate in the single

scattering regime reads

C1 =
ρχ
mχ

∫ ∞

0
duχ

fMB(uχ)

uχ

∫ R⋆

0
dr4πr2nT (r)v

2
esc(r)σTχ(vesc(r))η(r). (3.22)

For large DM masses, however, this expression will overestimate the true capture rate. This is

because it assumes that a single collision is enough to capture a DM particle, consistent with the

use of Emin
R = 0. In the next section, we go beyond this limitation by developing a formalism to

handle capture in the multiple-scattering regime.

3.2 Response Function for Multiple Scattering

When the DM is heavy enough, Eq. 3.22 (which assumes a capture probability ∼ 1) would over-

estimate the correct result. In this regime, more than one collision is necessary for the DM to be

captured. To account for this, we construct a function that incorporates both of the non-linear

effects into the capture rate, namely the star opacity and the multiple-interactions with the ionic

target species.

First, we define a probability density function for the energy lost by a DM particle in a collision

as

f(ER) =
1

σTχ

dσTχ

dER
(ER). (3.23)

Then, the probability that the DM loses an amount of energy of at least δE = mχu
2
χ/2 after a single

collision is given by

F1(δE) =

∫ ∞

δE
dERf(ER), (3.24)

where we have extended the upper integration limit from Emax
R to infinity. This is valid for white

dwarfs, as the escape velocity is very large. In the same way, the probability of losing the same

amount of energy after N scatterings is

FN (δE) =

∫ δE

0
dERFN−1(δE − ER)f(ER). (3.25)
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For simplicity, we assume that the DM-target cross section is well approximated by

dσTχ

d cos θcm
∝ e

−ER
E0 , (3.26)

where ER is the recoil energy and E0 depends on the specific nuclear target. That is, we assume

exponential nuclear form factors similar to the Helm approximation. This leads to

f(ER) =
Θ(ER)

E0
e
−ER

E0 , (3.27)

F1(δE) = e
− δE

E0 . (3.28)

Defining the dimensionless quantity

δ =
δE

E0
=

mχu
2
χ

2E0
, (3.29)

and taking the Laplace transform of the F functions written in terms of δ, we find

F̃1(s) =
1

1 + s
, F̃N (s) =

1

(1 + s)N
, (3.30)

where the last expression corresponds to

FN (δ) =
e−δδN−1

N − 1!
. (3.31)

To account for multiple collisions, we define the probability that the DM undergoes N scat-

terings with nuclei. For DM passing through the same path length τχ, this is given by the Poisson

distribution [18]

pN (τχ) = e−τχ
τNχ
N !

. (3.32)

Substituting F1(δ) and p0 into Eq. 3.18, we obtain for single scattering

C1 =
ρχ
mχ

∫ R⋆

0
dr4πr2nT (r)σTχ(vesc(r))v

2
esc(r)

∫ 1

0

ydy√
1− y2

∫ ∞

0
duχ

fMB(uχ)

uχ
p0(τχ)F1(δ). (3.33)

This is equivalent to Eq. 3.22, which accounts for the star opacity, once we average over the two

equally probable optical depths, τ+χ and τ−χ . Note that F1 indicates the probability for DM to

be captured after a single collision. We can now generalize the above expression to the case of N

scatterings as

CN =
ρχ
mχ

∫ R⋆

0
dr4πr2nT (r)σTχ(vesc(r))v

2
esc(r)

∫ 1

0

ydy√
1− y2

∫ ∞

0
duχ

fMB(uχ)

uχ
pN−1(τχ)FN (δ).

(3.34)

The total capture rate is given by the sum over all N collisions,

C =
∑
N

CN . (3.35)

Next, instead of first evaluating the integrals in Eq. 3.34 and then summing over N , we sum

the series first by introducing the response function, G(τχ, δ)

G(τχ, δ) ≡
∞∑

N=1

pN−1(τχ)FN (δ) =
∞∑

N=1

e−τχτN−1
χ

(N − 1)!

e−δδN−1

(N − 1)!
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= e−τχ−δI0

(
2
√
τχδ
)
, (3.36)

where I0 is the modified Bessel function of the first kind In for n = 0. This response function encodes

the probability to lose an amount of energy of at least δE through multiple collisions. Therefore,

G(τχ, δ)dτχ is the probability that DM collides with an ionic target and loses at least an energy δE

in the scattering process, after travelling a differential length δτχ in the medium, from a region of

the stellar interior with optical depth τχ.

To account for the two possible optical depths, given by Eqs. 3.19 and 3.20, we average over

them and over the DM angular momentum, as in section 3.1. This leads to

G̃(r, δ) =

∫ 1

0
dy

ydy√
1− y2

G(τ−χ (r, y), δ) +G(τ+χ (r, y), δ)

2
. (3.37)

Note that the response function depends on the radial coordinate through the optical depth and on

the DM velocity at infinity, uχ. Finally, the total capture rate that accounts for the stellar structure,

star opacity and multiple scattering reads

C =
ρχ
mχ

∫ R⋆

0
dr4πr2nT (r)v

2
esc(r)σTχ(vesc(r))

∫ ∞

0
duχ

fMB(uχ)

uχ
G̃

(
r,
mχu

2
χ

2E0

)
, (3.38)

where the average over the DM angular momentum has been absorbed in the definition of G̃(r,
mχu2

χ

2E0
).

Recall that we assumed exponential nuclear form factors to derive Eq. 3.38. As in ref. [8],

we now introduce the nuclear response functions given in appendix C of ref. [35] in Eq. 3.8. In

principle, we can proceed in a similar fashion to the exponential form factor case and derive their

corresponding FN functions, as well as the response function for multiple scattering, which is more

involved and is given in terms of generalized hypergeometrical functions. A way to circumvent this

is to approximate the form factor with an exponential. For instance, if we consider WDs made of

carbon, and interactions described by the scalar-scalar operator (D1), we have

dσTχ

dER
∝ e

−ER
E1

(
1− x0

ER

E1

)2

, (3.39)

with x0 ∼ 0.22 and E1 ∼ 1.25MeV, where these factors come from the nuclear response function for
12C. This function is well approximated by e−ER/E0 where E0 is given by

E0 = lim
mχ→∞

∫∞
0 dER

dσTχ

dER
ER∫∞

0 dER
dσTχ

dER

. (3.40)

This value of E0 is then used in the response function G̃. We have checked that this approximation

holds for the spin independent operators D1 and D5 for carbon, oxygen and neon targets.

In Fig. 2, we compare our approach (magenta) with previous calculations in the literature that

made use of simplifying assumptions, namely those of ref. [15] (light blue) and ref. [5] (orange).

We consider scalar-scalar interactions of 103GeV and 106GeV mass DM, for a 1M⊙ WD made of

carbon, located in the solar neighborhood, i.e., we assume ρχ = 0.4GeV/ cm3, v⋆ = 220 km/s and

vd = 270 km/s. Radial profiles for the carbon number density and escape velocity for this WD were

– 10 –



Figure 2: Capture rate in the multiple scattering regime (magenta) for a 1M⊙ WD made of carbon,

considering scalar-scalar interactions (D1) and mχ = 103GeV and 106GeV. We also show results

obtained using the prescriptions in refs. [15] (light blue) and [5] (orange).

obtained in ref. [8], Our results are given in terms of the maximal capture rate that can be achieved,

the so-called geometric limit, which is given by

Cgeom =
πR2

⋆ρχ
mχ

∫ ∞

0

w2(R⋆)

uχ
fMB(uχ)duχ, (3.41)

=
πR2

⋆ρχ
3v⋆mχ

[
(3v2esc(R⋆) + 3v2⋆ + v2d) Erf

(√
3

2

v⋆
vd

)
+

√
6

π
v⋆vde

− 3v2⋆
2v2

d

]
. (3.42)

As can be seen from Fig. 2, approaches that do not incorporate the radial dependence of the

escape velocity, the ionic target number density and form factors, as well as a DM-target relative

velocity distribution, overestimate the capture rate by at least one order of magnitude (orange lines)

for DM-nucleon cross sections σpχ ≲ 10−42 cm2. We note that ref. [5] assumed that the nuclear form

factor saturates to ∼ 0.3, while ref. [15] considered 0.5, which we find is the main cause of the large

discrepancy. Recall that we have retained the full radial dependence of the form factors and recoil

energies, rather than averaging them over the NS radius. We find that F
(N,N ′)
i,j saturates to ∼ 0.034,

for the scalar-scalar operator and recoil energies lower than order MeV. Note also that the approach

of ref. [5] does not reach the geometric limit for large cross sections; this occurs because they truncate

the sum over CN at a certain maximum value of N , Nmax, which neglects important terms when the

cross section is sufficiently large. There is another substantial difference when comparing our results

with those calculated using the prescription of ref. [15] (light blue lines), which neglects the motion

of the WD. That approach overestimates both the capture rate and the threshold cross section at

which the capture rate saturates the geometric limit.

Regarding the remaining operators in Table 2, operators D2 and D10 are momentum suppressed

in the non-relativistic limit, meaning that their matrix elements are proportional to the squared

momentum transfer q2tr. Therefore, the approximation in Eq. 3.26 does not hold. Following the

procedure outlined above for non-suppressed interactions, we find that the response function takes
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the form of a linear combination of hypergeometric functions. For D6, whose cross section also

depends on the DM velocity, we can still use the response function in Eq. 3.36, but in this case the

value of E0 will depend on uχ.

3.3 Multiple scattering with multiple targets

The response function obtained in the previous section is valid for white dwarfs made of a single

ionic species. However, the core of real WDs is composed mainly of two elements plus small traces

of other elements. In this section, we generalize our previous result to the case of scattering on

two ionic species. Each target i will have a different optical depth, τ iχ; the total optical depth τχ is

simply the sum of the contributions from each of the target species.

First, as in the previous section, we consider the probability for DM to interact with a target

i and lose energy of at least δE, while travelling a length dτ iχ, starting from a layer in the WD with

optical depth τ iχ. This is given by the differential element G(τ iχ, δi)dτ
i
χ, where

δi =
δE

Ei
0

, (3.43)

and the energy scale Ei
0 depends on the target i and is calculated using Eq. 3.40. Thus, the

probability to interact and lose the same amount of energy when DM travels a path-length τ iχ is

simply the integral of the differential element over the trajectory, i.e.

G(τ iχ, δi) =
∫ τ iχ

0
dτ G(τ, δi). (3.44)

Note that this probability satisfies all the expected properties:

lim
τ iχ→0

G(τ iχ, δi) = 0, (3.45)

lim
τ iχ→∞

G(τ iχ, δi) = 1, (3.46)

lim
δi→0

G(τ iχ, δi) = 1− e−τ iχ . (3.47)

The first property applies when the DM particle travels through a region that does not contain the

target i. The second limit tells us that by taking a sufficiently large optical depth, it is possible to

make the probability to interact and lose an arbitrary amount of energy as close to 1 as desired.

Finally, the third property gives us the probability that DM interacts with the target i; this expression

takes the expected form, given that e−τ iχ is the probability of no interaction with the medium. Note

that G(τ iχ, δi), can be rewritten as

G(τ iχ, δi) =
∫ ∞

δi

dδ k(τ iχ, δ), (3.48)

where k(τ iχ, δ) is a probability density function, obtained by differentiating Eq. 3.44

∂

∂δi
G(τ iχ, δi) = −k(τ iχ, δi). (3.49)
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Figure 3: Capture rate in the multiple-scattering regime (magenta) for a 0.94M⊙ WD made of

carbon and oxygen, for scalar-scalar interactions (D1) and a DM mass of 103GeV (left panel) and

106GeV (right panel). We also show results obtained using the prescription in ref. [17] (light blue).

Next, we introduce a second target species. In the presence of these two ionic targets, the

cumulative probability of DM to lose an energy δE after travelling an optical depth τ iχ in the target

i and τ jχ in the second target j is found to be

G2,ij(δE) =

∫ δE/Ej
0

0
dz G

(
τ iχ,

δE − zEj
0

Ei
0

)[
− ∂

∂z
G(τ jχ, z)

]
. (3.50)

Since the previous expression is a cumulative probability, to calculate the capture rate when the last

scattering is over the target i, we differentiate Eq. 3.50 with respect to τ iχ to obtain3

G2,ij(δE) =

∫ δE/Ej
0

0
dz G

(
τ iχ,

δE − zEj
0

Ei
0

)[
− ∂

∂z
G(τ jχ, z)

]
. (3.51)

This is the probability for DM to be captured between τ iχ and τ iχ + dτ iχ.

We are now ready to obtain the capture rate for scattering with two targets. In the previous

expression, we have considered that the DM energy is reduced below the threshold for capture to

occur after subsequent scatterings with two targets i and j; however, capture can happen after

collisions with only one ionic species. This is accounted for in the following expression

G12,ij = G(τ iχ, δi)e
−τ jχ +G2,ij , (3.52)

where the first term represents capture after interactions only with the element i. As in section 3.2,

we average Eq. 3.52 over the 2 possible trajectories τ−χ and τ+χ and the DM angular momentum

3Note that, technically, we should differentiate Eq. 3.50 with respect to τ j
χ. However, once we add G(τ i

χ, δi)e
−τj

χ

(which is already differentiated with respect to τ i
χ) to Eq. 3.51 and arrive at Eq. 3.52, we realize that the integral of

the latter is symmetric in the indices i, j. Thus, one can differentiate with respect to either τ i
χ or τ j

χ, so we chose the

former for convenience.
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Figure 4: Contribution of DM scattering with carbon (orange) and oxygen (blue) targets to the

total capture rate in a 0.94M⊙ WD, for scalar-scalar interactions (D1) and a DM mass of 103GeV

(left panel) and 106GeV (right panel).

to obtain the multiple target response function G̃12,ij . Thus, the capture rate for the case where

scattering from species i dominates is given by

Ci =
ρχ
mχ

∫ R⋆

0
dr4πr2v2esc(r)

∫ ∞

0
duχ

fMB(uχ)

uχ

∑
i

ni(r)σiχ(r)G̃12,ij

(
r,
mχu

2
χ

2Ei
0

)
. (3.53)

The contribution of the second target, Cj , is obtained by interchanging i with j in Eq. 3.53. Adding

the two contributions results in a total capture rate of

Ctot = Ci + Cj . (3.54)

In principle, this procedure can be generalized to any number of targets.

In Fig. 3, we compare our approach with that of ref. [17] which addresses multi-target multiple-

scattering capture in stars, neglecting the stellar structure. We consider a 0.94M⊙ WD, which is

composed mainly of carbon and oxygen. The radial profiles of the constituent number densities

were obtained by running a simulation of the evolution of a 6M⊙ main sequence star with solar

metallicity, using the public stellar evolution code Modules for Experiments in Stellar Astrophysics

(MESA) [39–43] package, version 21.12.1. As in the previous section, we assume the D1 EFT operator,

since ref. [17] only deals with the case of constant DM-nucleon cross section. As we can see, the

difference between the two approaches is not as striking as that observed in Fig. 2, with capture

rates from ref. [17] (light blue lines) being at most a factor ∼ 2 larger than our results (magenta

lines) for mχ = 106GeV (right panel). This is due to the fact ref. [17] adopted the parametrization

of the Helm form factor given in ref. [44], and averaged the form factor and scattering angles for

every DM mass considered, which yields more realistic results than those of refs. [15] and [5]. Even

so, the discrepancy with our results increases with the DM mass.

In Fig. 4, we show the contribution of each WD constituent to the total capture rate for the WD

in Fig. 3. We immediately notice that at large cross sections, in the region where the capture rate
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saturates the geometric limit, scattering off carbon dominates the capture rate for both DM masses

considered. This is due to the fact that in the outer layers of the WD core there are significantly

more carbon than oxygen targets, and in this regime capture occurs closer to the surface. For smaller

cross sections, we observe that collisions with oxygen nuclei contribute a significant fraction of the

total capture rate, even surpassing the carbon contribution for mχ = 103GeV. This occurs because,

for smaller cross sections, DM can be captured deeper inside the core, where the oxygen capture

rate exceeds its carbon counterpart, thus resulting in a more sizeable oxygen contribution. It is also

worth noting that oxygen and carbon form factors do not suppress the capture rate to the same

degree; the oxygen form factor gives a larger suppression than that of carbon at high recoil energies,

and less at low recoil energies.

4 Thermalization

Once captured, the DM will continue to scatter within the WD, gradually losing energy until it

thermalizes in the innermost regions of the star. In section 4.1, we outline the calculation of the

thermalization timescale for the DM-ion interactions listed in Table 2. As WDs cool, their ions begin

to crystallize, forming an ion lattice. The effect of the lattice structure on the thermalization time

is discussed in section 4.2.

4.1 Thermalization time

The thermalization process can be broadly divided into two stages. The first stage is where the

orbit of the captured DM is not wholly contained within the star. The second stage begins once the

orbit is fully contained within the star and ends when the DM has reached thermal equilibrium at

the WD center. The first stage typically proceeds significantly faster than the second, making up

less than 1% of the total thermalization time [12, 45, 46]. Therefore, we focus on the second stage

to determine the thermalization time. During this last stage, there are two distinctive kinematic

regimes depending on whether the DM or target velocity dominates the relative velocity of the

interactions. The core of a WD is expected to be quite homogeneous in terms of density (see right

panel of Fig. 1) and temperature. As most of the time required to thermalize is confined to the

second kinematic regime when DM reaches small energies, we can consider interaction rates in the

central region of the WD.

To estimate the thermalization time, we use the temperature dependent differential interaction

rate Eq. 3.3, which accounts for the thermal motion of the nuclei. Summing over the average time

between interactions until the energy transferred by the DM reaches the core temperature of the

WD [47], ⟨∆Kχ⟩ < T⋆, we obtain

ttherm =

N∑
n=0

1

Ω−(w(xn))
, (4.1)

where xn is the ratio of the DM kinetic energy Kχ to the WD core temperature T⋆ after n scatterings,

and the sum ends for N such that xN < 1. Each subsequent energy transfer is computed by first

calculating the average energy lost in each collision using

⟨∆x⟩ =
E(x)

Ω−(w(x))
, (4.2)
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E(x) =

∫ x

0
dy(x− y)R−(x → y), (4.3)

where the normalized differential interaction rate (Eq. 3.3) is given in terms of x = Kχ/T⋆ and

represents the probability distribution function for scattering from an initial energy xT⋆ to a final

energy y T⋆. From now on, and in Appendix A, we will indicate with Ω−(x) the interaction rate

as a function of the dimensionless variable x, and similarly, we will indicate with R−(x → y) the

differential scattering rate from an initial energy x to a final energy y.

While the summation in Eq. 4.1 can formally be evaluated analytically for some interactions, in

general it must be computed numerically. When doing so, numerical instabilities in the computation

of the thermalization time arise from the small nuclear velocities and large DM masses. A sounder

approach is then to analytically calculate the dominant terms of the interaction rate at high and

low (close to thermalization) energy transfers, and use these results to approximate the effects of

the thermal motion of the targets.

To obtain analytic expressions for the thermalization time, we can instead approximate the

sum in Eq. 4.1 to an integral [47]

dx

dt
= E(x), (4.4)

ttherm =

∫ ∞

1

dx

E(x)
, (4.5)

where we have set the initial energy to infinity for simplicity, as the initial energy of the dark matter

will be significantly larger than when it is thermalized. The validity of this approximation improves

for smaller fractional energy losses as an increasing number of collisions are required to thermalize

the DM. Specifically, at low energies, we have ⟨∆x⟩ ≈ O(1)×
√

x/µ, while at high energy we have

⟨∆x⟩ ≈ 2x/µ; both approximations are more accurate for large DM masses. Note also that we

neglect the up-scattering rate. We expect up-scattering to be negligible at large energies and only

start to play a role close to thermalization, affecting the result by an O(1) factor. Hence, all the

results presented in this section should be taken as order of magnitude estimates.

To further simplify the analysis, we neglect the effect of the nuclear form factors on the thermal-

ization time. We discuss the effect of including them in Appendix A.4. In summary, the exponential

suppression of the form factors is relevant for energy losses greater than ⟨∆Kχ⟩ ∼ 2Kχ/µ ≳ E0 ≈
O(MeV). As the thermalization time is dominated by the interactions at lower energies, it is not

impacted by the form factors.

Eq. 4.3 can be evaluated analytically for two distinct scenarios: when Kχ ≫ T⋆ (high en-

ergy) and when Kχ ∼ T⋆ (low energy), which correspond to x ≫ 1 and x ∼ 1, respectively (see

Appendix A.2). We set E(x) equal to the sum of the high-energy and low-energy contributions

to obtain an approximate expression for the energy transfer E(x). For differential cross sections

proportional to powers of the DM-ion relative velocity v2mrel , i.e., cross sections of the form

dσTχ

d cos θcm
=

σT
2
v2mrel , (4.6)

where σT is a proportionality constant, we obtain

E(x) ∼ nc
T σT v2m+1

T

√
x

µ

[
2

(
x

µ

)m+1

+
1√
π
Γ

(
m+

3

2

)]
, (4.7)
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where v2T = 3T⋆/mT . Similarly, for differential cross sections proportional to powers of the momen-

tum transfer q2mtr ,
dσTχ

d cos θcm
=

σT (m+ 1)

2m+1

q2mtr
q2m0

, (4.8)

where σ and q0 are constants, we find

E(x) ∼ 2nc
T σT vT

(
m+ 1

m+ 2

)(
2v2Tm

2
T

q20

)m√
x

µ

[
2

(
x

µ

)m+1

+
1√
π
Γ

(
m+

3

2

)]
. (4.9)

We can now calculate the corresponding thermalization times using Eq. 4.5; see Appendix A.3.

It is worth noting that the high energy term does not affect this timescale; it is only necessary to

ensure that the integral converges at large energies. The resulting thermalization time for differential

cross sections proportional to powers of the relative speed v2mrel is given by

ttherm ∝ µ

nc
TσT vT

1

v2mT
, (4.10)

where nc
T = nT (0) is the ion number density at the WD center. For interactions with cross sections

proportional to powers of the momentum transfer q2mtr , we find that the thermalization time reads

ttherm ∝ µ

nc
TσT vT

(
q20

2v2Tm
2
T

)m

. (4.11)

The precise value of the O(1) proportionality constant in Eqs. 4.10 and 4.11 is determined by the

coefficients of the expansion of E(x) in x/µ at all orders, whereas we have only included the highest

and lowest order. The exact thermalization time also depends on the up-scattering rate, which

we expect to have an impact near the point of thermalization (x ∼ 1). It is worth noting that

neglecting the low energy term contribution in E(x), would have resulted in an incorrect scaling of

the thermalization time with respect to µ at large mass, with a scaling of ttherm ∝ µ3/2+m instead

of the correct scaling of ttherm ∝ µ.

To derive ttherm for the operators in Table 2, we use the proportionality constants σT and q0
in Eqs. 4.6 and 4.8, their corresponding thermalization times given by Eqs. 4.10 and 4.11, Eq. 3.12

to relate the DM-nucleus to the DM-nucleon cross section, and the expressions for the differential

DM-nucleon cross sections for each operator in the non-relativistic limit given in Appendix A of

ref. [48]. We obtain

t
(D1)
therm ∼

πmχm
2
NΛ4

nc
T (c

S
N )2

√
1

3m9
TT⋆

, (4.12)

t
(D2)
therm ∼

2πm3
χm

2
NΛ4

3nc
T (c

S
N )2

√
1

3m11
T T 3

⋆

, (4.13)

t
(D5)
therm ∼

πmχm
2
NΛ4

nc
T (c

V
N )2

√
1

3m9
TT⋆

, (4.14)

t
(D6)
therm ∼

πmχm
2
NΛ4

2nc
T (c

V
N )2

√
1

3m7
TT

3
⋆

, (4.15)

t
(D10)
therm ∼

πmχm
2
NΛ4

12γnc
T (c

T
N )2

√
1

3m7
TT

3
⋆

, (4.16)

where γ in Eq. 4.16 is a constant that depends on the specific target (see section 3.1).
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4.2 Effect of the lattice structure

If crystallization has already started at the very central region of the WD then, because the mo-

mentum transfer becomes increasingly smaller during thermalization, the lattice structure of the

WD becomes relevant. In this regime, we can no longer assume DM scattering off a free gas of

nuclei, and instead must consider the Coulomb lattice of ions as a collective medium. This amounts

to considering phonon excitations within the lattice. To account for these effects, we include the

dynamic structure function of the lattice S(qtr) in the differential cross section

dσTχ

d cos θcm
→ S(qtr)

dσTχ

d cos θcm
. (4.17)

This structure function for a Coulomb lattice is well known [49, 50], and consists of contributions

from elastic Bragg scattering and inelastic phonon scattering/absorption. However, only the latter

contribute to this current application. For momentum transfers greater than the Brillouin zone,

qB = (6π2nT )
1/3, the structure factor can be approximated as

S(qtr) ≈ 1− e−2W (qtr), (4.18)

where W (qtr) is the Debye-Waller factor, which for body centered cubic lattices is given by

W (qtr) =
⟨r2T ⟩q2tr

6
, (4.19)

where ⟨r2T ⟩ is the mean squared separation of ions in the Coulomb lattice. An analytical fit to W (qtr)

with 1% error is given in ref. [51] as

W (qtr) ≃
q2tr

2mTωp

(
1.4e−9.1T⋆/ωp + 13

T⋆

ωp

)
=

q2tr
2q2sup

, (4.20)

q2sup =
mTωp

1.4e−9.1T⋆/ωp + 13T⋆/ωp
, (4.21)

ωp =
√

4πZ2e2nT /mT , (4.22)

where ωp is the ion plasma frequency.

If q2tr ≪ q2sup, one can power expand the exponential in the structure factor, and therefore the

interaction rate effectively becomes suppressed by an additional power of q2tr. Following a similar

treatment to the case of cross sections proportional to q2tr, we find that Eqs. 4.10 and 4.11 now

receive an additional suppression factor4

q2sup
6mTT⋆

. (4.23)

This amounts to increasing the thermalization time by an O(1) factor that depends on the equilib-

rium temperature when accounting for phonon emission. Note that this approximation is valid at

O(6mTT/q
2
sup) since we have performed an expansion of the Debye-Waller structure factor. When

6mTT/q
2
sup > 1, which occurs for some period of time after the onset of crystallisation in the lighter

WDs in Table 1, a sound approximation for the thermalization time is obtained by multiplying

Eqs. 4.10 and 4.11 by max
[
1, q2sup/(6mTT⋆)

]
.

4Note that we neglect the additional O(1) factor 2(m+ 1)/(m+ 2).
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Figure 5: Thermalization time as a function of the WD cooling age for the WD SDSS

J232257.27+252807.42 (M⋆ = 1.11M⊙), DM of mass mχ = 106GeV, and a DM-proton scalar-scalar

cross section of σpχ = 10−41 cm2. Our result is depicted in magenta, obtained using the prescription

for the second stage of thermalization from ref. [12] is shown in light blue, while results using the

corresponding prescriptions from refs. [13] and [14] are depicted in orange and green, respectively.

The dashed blue line represents the onset of crystallisation.

Introducing the factor in Eq. 4.23 into Eqs. 4.12-4.16, we find the following thermalization

times for the SI EFT operators

t
(D1)
therm ∼

πmχm
2
NΛ4q2sup

6nc
T (c

S
N )2

√
1

3m11
T T 3

⋆

, (4.24)

t
(D2)
therm ∼

πm3
χm

2
NΛ4q2sup

9nc
T (c

S
N )2

√
1

3m13
T T 5

⋆

, (4.25)

t
(D5)
therm ∼

πmχm
2
NΛ4q2sup

6nc
T (c

V
N )2

√
1

3m11
T T 3

⋆

, (4.26)

t
(D6)
therm ∼

πmχm
2
NΛ4q2sup

12nc
T (c

V
N )2

√
1

3m9
TT

5
⋆

, (4.27)

t
(D10)
therm ∼

πmχm
2
NΛ4q2sup

72γnc
T (c

T
N )2

√
1

3m9
TT

5
⋆

. (4.28)

Fig. 5 illustrates the variation of the thermalization timescale across the evolution (cooling

time tcool) of the 1.11M⊙ WD SDSS J232257.27+252807.42, using the temperature evolution in the

left-hand side of Fig. 1. We consider the scalar-scalar operator (D1), DM of mass mχ = 106GeV

and a DM-proton cross section of σpχ = 10−41 cm2. Before the core of the WD begins solidifying

(at tcool < 2.73Gyr for this particular WD; see Table 1) we use Eq. 4.12, and after the onset of

crystallisation we use Eq. 4.24. Note the sudden increase in the thermalization time (magenta line)

once the crystallisation front starts moving from the WD center onwards.

For comparison, we also show in Fig. 5 results using other prescriptions in the literature. The

prescription for the second stage of thermalization from ref. [12], which accounts for the effect of the

lattice structure so that it holds after the onset of crystallisation, is shown in light blue. This result is
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orders of magnitude greater than ours. This is mainly due to the fact that this prescription is based

on the expression for the average energy loss at high energy, which, as mentioned in section 4.1,

scales as ⟨∆Kχ⟩ ∼ 2Kχ/µ. Conversely, we find that at the energy relevant for thermalization and,

in particular, for phonon emission and absorption (i.e., the low energy transfer regime in which

the thermal motion of the targets – which is included in the scattering rate – cannot be neglected)

the average energy loss is ⟨∆Kχ⟩ ≈ O(1) ×
√

KχT⋆/µ. Results from the prescriptions in refs. [13]

and [14], which are quite similar and do not consider the lattice structure factor, are depicted in

orange and green, respectively. Since these two studies do not account for phonons, comparison with

our results should be fair for tcool < 2.73Gyr (right hand side of the dashed blue line). The main

difference between these two calculations is a factor A2 missing in the definition of the DM-target

cross section in ref. [14], which is also one of the main sources of discrepancy with our findings. The

other main difference with our results is that both refs. [13] and [14] use the DM average energy loss

at high energy, thereby neglecting finite temperature effects.

5 Self-gravitation of asymmetric DM within WDs

In this section, to showcase the importance of using a proper formalism for capture and thermaliza-

tion of heavy DM in WDs, we consider the case of asymmetric DM that accumulates in the WD core

over time by scattering with the ionic target species. Further collisions, following capture, allow the

DM to thermalize to the WD core temperature. In this way, DM settles in the WD interior, forming

a DM sphere close to the center of the star. The general form of the potential energy of this DM

cloud, including the WD gravitational potential and self-gravitation, is given by [14]

UNχ = −4πGmχNχ(t)

∫ ∞

0
M(r)nχ(r)rdr − 4πGmχNχ(t)

∫ ∞

0
Mχ(r)nχ(r)rdr, (5.1)

where Nχ is the number of accumulated DM particles. The quantity M(r) is the WD mass enclosed

in a radius r, while Mχ(r) is the mass of DM particles enclosed in the same radius, given by

Mχ(r) = 4πmχNχ(t)

∫ r

0
nχ(r

′)r′2dr′. (5.2)

The number density of DM particles, nχ, follows a Maxwell-Boltzmann distribution

nχ(r) =
exp [−mχϕ(r)/T⋆]∫∞

0 4πr2 exp [−mχϕ(r)/T⋆]
≃ 1

π3/2r3χ
exp [−r2/r2χ], (5.3)

where ϕ(r) = −
∫∞
r GM(r′)/r′2dr′ is the gravitational potential and

rχ =

√
3T⋆

2πGρcmχ
(5.4)

is the scale radius of the DM sphere, which can be obtained using the virial theorem, in the absence

of the self-gravitation term. In the right-hand side of Eq. 5.3, we have assumed a constant density

in the innermost regions of the WD core [8]. Using this expression in Eq. 5.1, the mean potential

energy per DM particle from Eq. 5.1 reads

U = −2πGρcmχr
2
χ −

Gm2
χNχ(t)√
2πrχ

, (5.5)
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where ρc = ρ(0) is the central density of the WD.

The DM core will grow in mass as the accretion process continues, because asymmetric DM

does not self-annihilate. When considering the full expression for the potential energy per DM

particle (Eq. 5.5) in the virial theorem, we find that the necessary condition for collapse is 5

Nχ(t) ≥
4
√
2π3/2r3χρc

3
√
3mχ

= Ncrit. (5.6)

The number of DM particles that have thermalized within the WD center is given by [14]

dNχ

dt
=

C(t)

(
1 +

dttherm
dt

)−1

, t ≥ ttherm(t)

0, t < ttherm(t).

(5.7)

Integrating this expression, we can calculate the number of DM particles accumulated within the

WD throughout its lifetime. Comparing this result with the collapse condition of Eq. 5.6 allows us

to obtain the cutoff scale Λ required for collapse and, hence, the corresponding DM-nucleon cross

section.

Note that, in principle, the capture rate C depends on time through the WD temperature (see

Fig. 1). We have checked that for the DM mass range considered here, C(t) can be taken as constant

and equal to the value in the T⋆ → 0 approximation derived in section 3. The thermalization time

is also a function of the cooling time through the WD core temperature, as shown in Fig. 5. This

time dependence of ttherm will be accounted for in our results.

In Fig. 6, we show the DM-proton cross section required to reach Ncrit as a function of the DM

mass, for two of the local, old WDs in Table 1, assuming DM-nucleon scalar-scalar interactions. We

arrive at these conclusions by integrating Eq. 5.7, using the radial profiles for the target number

densities obtained in section 2 to compute the capture rates given in section 3, together with the

thermalization time in Eqs. 4.12 or 4.24 using the WD cooling curves given in the left panel of Fig. 1.

We note that the time derivative of the thermalization timescale in Eq. 5.7, which is proportional

to mχ, starts to have an impact for mχ ≳ 1012GeV (0.62M⊙ WD) and mχ ≳ 1011GeV (1.11M⊙
WD). As we move to heavier DM masses, we reach a DM mass above which the thermalization is

greater than the age of the WD. This is shown by the shaded grey area in Fig. 6, and it is responsible

for the changes of slope in σpχ. We compare these results with the prescription given in ref. [12] (light

blue lines) which neglects the requirement that the DM particles captured in a time interval dt must

thermalize before being added to the DM cloud that has sunk to the center of the WD. The main

source of discrepancy with our results, responsible for cross sections that are smaller by ∼ 1 (top

panel) and ∼ 3 (bottom panel) orders of magnitude, stems from the computation of the capture rate.

This highlights the importance of including the relevant physics of our more complete treatment.

Specifically, including the radial profiles of the escape velocity and target number densities, as well as

the nuclear form factors, in the multiple scattering capture rate, together with a proper estimation

of the thermalization time. It is the latter which imposes an upper bound on the mass of non-

annihilating DM that can reach self-gravitation in a WD.

5This condition is obtained from the largest real solution of the cubic equation that results from the virial theorem.
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Figure 6: DM-proton cross section required to reach the self-gravitation condition in Eq. 5.6,

assuming scalar-scalar interactions (D1, in magenta) for the heaviest old WDs in Table 1. For

comparison we show in light blue results obtained used the condition given in ref. [12].

6 Conclusions

In this paper we have revisited the calculation of the capture rate of heavy dark matter (DM) in

white dwarfs (WDs). In this mass regime, more than one collision is required for the DM to become

gravitationally bound to the star. We have extended our formalism for DM capture from the single-

scattering to the multiple-scattering regime, by introducing a response function that encodes the

cumulative probability for DM to lose an amount of energy of at least δE through multiple collisions.

Our treatment incorporates gravitational focusing, nuclear form factors, the variation of the escape

velocity along the WD interior and the DM-target relative velocity. We have shown the inclusion

of these effects, which are often neglected in the literature, alters the capture rate by orders of

magnitude, with the corrections being more critical for very heavy DM. The response function

method is able to handle DM-nucleon interactions that are momentum or velocity suppressed, and

can be extended to the case of DM-capture via collisions with multiple targets.

Following capture, the DM will continue to scatter in the star, progressively losing energy until

it settles at the center of the star. Eventually, it will reach thermal equilibrium. We have estimated
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the time required for this steady state to be reached, for both a non-crystallized and a crystallized

core. In the case of the latter, in-medium effects such as phonon emission and absorption delay

thermalization, because the final stages of that process are characterized by low-momentum-transfer

DM-target interactions. However, we find that this delay amounts to less than an order of magnitude

increase in the thermalization time, which is much smaller than previous estimates.

Finally, to highlight the importance of correctly calculating the multi-scattering capture rate

and the thermalization time, we have applied our approach to the case of non-annihilating DM

accumulated in a WD core throughout its lifetime. In doing so, we have found orders of magnitude

corrections to the DM-nucleon cross sections for which the accumulated DM achieves self-gravitation.
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A Analytic derivation of the thermalization time

In this section, we derive analytic expressions for the thermalization time for heavy DM. In sec-

tion A.1, we calculate the interaction rate for finite temperature in the high and low energy transfer

regimes. In section A.2, we estimate the corresponding average energy transfer, and the derivation

of the thermalization time can be found in section A.3. We discuss the effect considering nuclear

form factors in the above mentioned calculation in section A.4.

A.1 Interaction rate for thermalization

To avoid numerical precision issues, it is convenient to obtain an expansion of the interaction rate

for low values of T⋆. To this end, we revisit the expression for the differential interaction rate for

finite temperature Eq. 3.3,

R−
T (w → v) =

∫ ∞

0
ds

∫ ∞

0
dt F (s, t)

4µ2
+

µ

nT (r)v

w

dσTχ

d cos θcm
(s.t, w, v)Θ(v − |t− s|), (A.1)

F (s, t) =
8µ2

+√
π
k3tµ e−k2u2

TΘ(t+ s− w) . (A.2)

Next, we define the following functions

δEXP(x, x0, c) = c e−c(x−x0)Θ(x− x0), (A.3)

δG(x, x0, c) =
c√
π
e−c2(x−x0)2 , (A.4)
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where x, x0, and c are generic variables. In the limit c → ∞, these functions tend to delta functions,

i.e.

lim
c→∞

∫ ∞

−∞
dx δEXP(x, x0, c)f(x) → f(x0), (A.5)

lim
c→∞

∫ ∞

−∞
dx δG(x, x0, c)f(x) → f(x0), (A.6)

where f is a generic function. Using the functions in Eqs. A.3 and A.4, we rewrite F (s, t)

F (s, t) ds dt = δEXP(t
2, (w − s)2, 2µµ+k

2) dt2 δG

(
s,

µw

2µ+
, 2µ+k

)
ds. (A.7)

To express the differential interaction rate in terms of the initial and final kinetic energy of the

DM, we make the following substitutions

w =

√
x

µ
vT , v =

√
y

µ
vT , (A.8)

s =
a√
1 + µ

vT , t =
b√

1 + µ
vT , (A.9)

where v2T = 3T⋆/mT , x is the ratio of the DM initial kinetic energy to T⋆, which is O(1) close to

thermalization, and y represents the final DM kinetic energy ratio. This leads to

R−
T (x → y) =

∫ ∞

−∞
da

∫ ∞

−∞
db F (a, b)

2µ2
+

µ

nT (r)√
x

vT√
µ
Θ

(
√
y −

√
µ|a− b|
√
1 + µ

)
×

dσTχ

d cos θcm

(
a√
1 + µ

vT ,
b√

1 + µ
vT ,

√
x

√
µ
vT ,

√
y

√
µ
vT

)
, (A.10)

where

F (a, b) da db = δEXP

[
b2,

(√
1 + µ
√
µ

√
x− a

)2

, µ

]
db2δG

(
a,

√
µx

√
1 + µ

,
√
1 + µ

)
da. (A.11)

In the large DM mass regime, the third parameter in δG and δEXP in the previous expression

is large since µ ≫ 1, hence we can expand these functions around the following points

a =

√
µx

√
1 + µ

, (A.12)

b =

√
1 + µ
√
µ

√
x− a =

√
x√

µ(1 + µ)
. (A.13)

Integrating over the delta functions, the resulting expression for the interaction rate is

R−
T (x → y) =

2µ2
+

µ3/2

nT (r)vT√
x

dσTχ

d cos θcm

(√
x

√
µ
vT ,

√
y

√
µ
vT

)
Θ

(
y −

µ2
−

µ2
+

x

)
. (A.14)

We consider differential cross sections proportional to powers of the DM-ion relative velocity

v2mrel = w2m and to powers of the momentum transfer q2mtr , namely

dσTχ

d cos θcm
=


σT
2
w2m =

σT
2

(
xv2T
µ

)m

, dσTχ ∝ v2mrel

σT (m+ 1)

2m+1q2m0

(
m2

χ

w2 − v2

µ

)m

=
σT (m+ 1)

2m+1

(
m2

T v
2
T

q20

)m

(x− y)m, dσTχ ∝ q2mtr

(A.15)
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where σT and q0 are normalization constants.

Plugging the appropriate differential cross section in Eq. A.14 and integrating over y, we recover

the interaction rate at high energy. Thus, for dσTχ ∝ w2n

Ω−
T (x) =

∫ x

0
dy R−

T (x → y) = nT (r)σTw
2n+1, (A.16)

and for dσTχ ∝ q2mtr , we obtain

Ω−
T (x) = nT (r)σTw

[
2µ2w2m2

T

(µ+ 1)2q20

]m
≃ nT (r)σTw

(
2w2m2

T

q20

)m

. (A.17)

To obtain the previous results, we have made two assumptions. First, by approximating the

integral over dt to a delta function integral, we are assuming that the DM-target relative speed is

equal, in magnitude, to the difference between the center of mass velocity and the DM speed. This

approximation only holds when one of the two particles has negligible velocity compared to the other.

Second, by approximating the integral over s to a theta function, we are effectively assuming that

for µ ≫ 1 the relative velocity is equal to the DM speed w, thus a negligible target speed is assumed.

To calculate the interaction rate in the regime where the DM velocity is negligible compared to the

target speed, we only make the first assumption and approximate δEXP to a delta function. Thus,

we return to Eq. A.10, and only integrate over b, so that the interaction rate becomes

Ω−
T (x) =

2µ2
+

µ3/2

nT (r)vT√
x

∫ ∞

−∞
da

∫ x

0
dy δG

(
a,

√
µx

√
1 + µ

,
√
1 + µ

)
Θ

(
√
y −

∣∣∣∣2a √
µ

√
1 + µ

−
√
x

∣∣∣∣)
×

dσTχ

d cos θcm

(
a√
1 + µ

vT ,

√
x(1 + µ)− a

√
µ√

µ(1 + µ)
vT ,

√
x

√
µ
vT ,

√
y

√
µ
vT

)
, (A.18)

where we have swapped the integration order. The theta function sets a lower limit on the integration

intervals for y and a, which leads to

Ω−
T (x) =

2µ2
+

µ3/2

nT (r)vT√
x

∫ √
x(1+µ)/µ

0
da δG

(
a,

√
µx

√
1 + µ

,
√
1 + µ

)
×
∫ x

ymin(a)
dy

dσTχ

d cos θcm

(
a vT√
1 + µ

,

√
x

√
µ
vT − a vT√

1 + µ
,

√
x

√
µ
vT ,

√
y

√
µ
vT

)
(A.19)

where

ymin(a) =

(√
x− 2a

√
µ

√
1 + µ

)2

. (A.20)

Next, we rescale a → (z +
√
µx)/

√
1 + µ for δG to become a pure Gaussian.

As in the high energy transfer regime, we consider cross sections proportional to powers of the

DM-target relative velocity which in the low energy regime read

dσTχ

d cos θ cm
≃ σT

2
uT

2m =
σT
2
v2mT z2m, (A.21)

and cross sections that depend on the momentum transfer,

dσTχ

d cos θcm
=

σT (m+ 1)

2m+1q2m0
(2m2

χt
2)m

[
1− (s2 + t2 − v2)(s2 + t2 − w2)

4s2t2

]m
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=
σT (m+ 1)

2m+1

(
mT vT
q0

)2m(√
µx− zµ

√
µx+ z

)m

(x− y)m. (A.22)

To estimate the interaction rate in this regime, we keep the dominant terms in µ, for the case

of cross sections proportional to v2mrel , this leads to

Ω−
T (x) ∼ −

2µ2
+

µ3/2

nT (r)vT√
x

∫ √
x/µ

−√
µx

dz δG(z, 0, 1)
4z

√
x

√
µ

σT
2

(
v2T z

2
)m

(A.23)

∼ 1√
π
nT (r)σT v

2m+1
T

∫ ∞

0
dz z2m+1e−z2 =

m!

2
√
π
nT (r)σT v

2m+1
T . (A.24)

Similarly, for cross sections that depend on the momentum transfer q2mtr , we find

Ω−
T (x) ∼ −

2µ2
+

µ3/2

nT (r)vT√
x

∫ √
x/µ

−√
µx

dz δG(z, 0, 1)σ

(
mT

q0

)2m

2m+1z2m+1v2mT

√
x

√
µ

(A.25)

∼ m!

2
√
π
nT (r)σvT

(
2m2

T v
2
T

q0

)m

. (A.26)

A.2 Average energy transfers

From the previous section, the energy transfer in units of T⋆ is given by x − y. Hence, the average

energy lost per collision is given by

⟨∆x⟩ = E(x)

Ω−(w(x))
=

∫ x
0 dy R−

T (x → y)(x− y)∫ x
0 dy R−

T (x → y)
. (A.27)

As we shall see in the next section, the computation of the thermalization time only requires evalu-

ating the energy transfer E(x). This can be done in the same manner as for the interaction rate in

section A.1. In the high energy transfer regime x ≫ 1, we obtain

E(x) ≃


2nT (r)σT

(
x

µ

)m+3/2

v2m+1
T , dσTχ ∝ v2mrel

4(m+ 1)

m+ 2
nT (r)σT vT

(
x

µ

)m+3/2(2m2
T v

2
T

q20

)m

, dσTχ ∝ q2mtr

(A.28)

In the low energy regime, i.e. x ∼ 1 we find for cross sections proportional to powers of the

DM-ion relative velocity v2mrel

E(x) ∼ Γ

(
m+

3

2

)
nT (r)σT√

π

√
x

µ
v2m+1
T , (A.29)

while for differential cross sections proportional to q2mtr we have

E(x) ∼ Γ

(
m+

3

2

)
2(m+ 1)

m+ 2

nT (r)σT vT√
π

√
x

µ

(
2m2

T v
2
T

q20

)m

. (A.30)
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A.3 Thermalization times

Having calculated the expression for the energy transfer in the high-energy and low-energy regimes,

we can now evaluate Eq. 4.5. The high energy term of E(x) primarily serves as a regulator, allowing

us to set the initial temperature to infinity for convenience, which has a negligible impact on the

overall result. For cross sections proportional to v2mrel , we obtain

E(x) ∼ nc
T σT v2m+1

T

√
x

µ

[
2

(
x

µ

)m+1

+
1√
π
Γ

(
3

2
+m

)]
. (A.31)

Plugging this result in Eq. 4.5, we calculate the thermalizaton time

ttherm =

∫ ∞

1

dx

nc
T σT v2m+1

T

√
x
µ

[
2
(
x
µ

)m+1
+ 1√

π
Γ
(
3
2 +m

)] (A.32)

∼ Cm
µ

nc
TσT vT

1

v2mT
, (A.33)

where Cm is a constant of order O(1) for m = 0, 1, 2

Cm =
π

2(m+ 1)
csc

(
π

2m+ 2

)[
2
√
π

Γ
(
m+ 3

2

)] 2m+1
2m+2

. (A.34)

For differential cross sections proportional to powers of the momentum transfer q2mtr , we obtain

a similar result

ttherm ∼ Cm
µ

nc
TσT vT

(
q20

2v2Tm
2
T

)m

, (A.35)

Cm =
π(m+ 2)

4(m+ 1)2
csc

(
π

2m+ 2

)[
2
√
π

Γ
(
m+ 3

2

)] 2m+1
2m+2

. (A.36)

Note that the exact value of the Cm coefficients actually depends on all terms of the series

expansion, while here, we have calculated only the dominant terms at high and low energy. Thus,

we will consider them to be O(1) numbers. Here, we have neglected up-scattering, which we expect

it to have also an O(1) effect.

A.4 Effect of the form factors

We can determine the effect of the nuclear form factors on the thermalization time by calculating

the new value of EFF(x) when accounting for them, and comparing it to the expression without

them, i.e.

EFF(x)

E(x)
=

∫ x
0 dy(x− y)R−

T (x → y) exp
[
−(x− y) T⋆

E0

]
∫ x
0 dy(x− y)R−

T (x → y)
(A.37)

∼ 1 +O
(
T⋆

E0

)
, (A.38)

where E0 is at most O(MeV), their exact value depending on the type of the interaction and the

ion target, much greater than the WD core temperature (see Fig. 1).

– 27 –



As stated in the previous section, the thermalization timescale only depends on the low energy

behaviour of the energy transfer, so that when calculating thermalization times, it does not matter

that the form factor suppresses the energy transfer at high energies, as this regime does not play

any role close to thermalization.
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