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Abstract

Given a causal graph representing the data-generating process shared across different domains/distributions,
enforcing sufficient graph-implied conditional independencies can identify domain-general (non-spurious)
feature representations. For the standard input-output predictive setting, we categorize the set of graphs
considered in the literature into two distinct groups: (i) those in which the empirical risk minimizer
across training domains gives domain-general representations and (ii) those where it does not. For the
latter case (ii), we propose a novel framework with regularizations, which we demonstrate are suffi-
cient for identifying domain-general feature representations without a priori knowledge (or proxies) of
the spurious features. Empirically, our proposed method is effective for both (semi) synthetic and real-
world data, outperforming other state-of-the-art methods in average and worst-domain transfer accuracy.

1 Introduction

A key feature of machine learning is its capacity to generalize across new domains. When these domains
present different data distributions, the algorithm must leverage shared structural concepts to achieve out-
of-distribution (OOD) or out-of-domain generalization. This capability is vital in numerous important real-
world machine learning applications. For example, in safety-critical settings such as autonomous driving,
a lack of resilience to unfamiliar distributions could lead to human casualties. Likewise, in the healthcare
sector, where ethical considerations are critical, an inability to adjust to shifts in data distribution can result
in unfair biases, manifesting as inconsistent performance across different demographic groups.

An influential approach to domain generalization is Invariant Causal Prediction (ICP; [Peters et al.,
2016]). ICP posits that although some aspects of data distributions (like spurious or non-causal mechanisms
[Pearl, 2010]) may change across domains, certain causal mechanisms remain constant. ICP suggests fo-
cusing on these invariant mechanisms for prediction. However, the estimation method for these invariant
mechanisms suggested by [Peters et al., 2016| struggles with scalability in high-dimensional feature spaces.
To overcome this, Arjovsky et al. [2019] introduced Invariant Risk Minimization (IRM), designed to identify
these invariant mechanisms by minimizing an objective. However, requires strong assumptions for identify-
ing the desired domain-general solutions [Ahuja et al., 2021, Rosenfeld et al., 2022]; for instance, observing
a number of domains proportional to the spurious features’ dimensions is necessary, posing a significant
challenge in these high-dimensional settings.

Subsequent variants of IRM have been developed with improved capabilities for identifying domain-
general solutions [Ahuja et al., 2020, Krueger et al., 2021, Robey et al., 2021, Wang et al., 2022, Ahuja et al.,
2021]. Additionally, regularizers for Distributionally Robust Optimization with subgroup shift have been
proposed (GroupDRO) [Sagawa et al., 2019]. However, despite their solid theoretical motivation, empirical
evidence suggests that these methods may not consistently deliver domain-general solutions in practice
Gulrajani and Lopez-Paz [2020], Kaur et al. [2022], Rosenfeld et al. [2022].
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Kaur et al. [2022] demonstrated that regularizing directly for conditional independencies implied by the
generative process can give domain-general solutions, including conditional independencies beyond those
considered by IRM. However, their experimental approach involves regularization terms that require direct
observation of spurious features, a condition not always feasible in real-world applications. Our proposed
methodology also leverages regularizers inspired by the conditional independencies indicated by causal graphs
but, crucially, it does so without necessitating prior knowledge (or proxies) of the spurious features.

1.1 Contributions

In this work,

e we outline sufficient properties to uniquely identify domain-general predictors for a general set of
generative processes that include domain-correlated spurious features,

e we propose regularizers to implement these constraints without independent observations of the spuri-
ous features, and

e finally, we show that the proposed framework outperforms the state-of-the-art on semi-synthetic and
real-world data.

The code for our proposed method is provided at https://github.com/olawalesalaudeen/teri.

Notation: Capital letters denote bounded random variables, and corresponding lowercase letters denote
their value. Unless otherwise stated, we represent latent domain-general features as Zg, € Zq, = R” and
spurious latent features as Zsp, € Zopu = R°. Let X € X = R4 be the observed feature space and the output
space of an invertible function I' : Zqs X Zepy — X and Y € Y = {0,1,..., K — 1} be the observed label
space for a K-class classification task. We then define feature extractors aimed at identifying latent features
Pag 1 X = R™, Oy : X > R s0 that ® : X — R™ T (that is ®(z) = [Pag(2); Pepu(x)]Vz € X). We define
e as a discrete random variable denoting domains and € = {P°(Zqg, Zspu, X,Y) 1 € =1,2,...} to be the set
of possible domains. &, C & is the set of observed domains available during training.

2 Related Work

The source of distribution shift can be isolated to components of the joint distribution. One special case
of distribution shift is covariate shift [Shimodaira, 2000, Zadrozny, 2004, Huang et al., 2006, Gretton et al.,
2009, Sugiyama et al., 2007, Bickel et al., 2009, Chen et al., 2016, Schneider et al., 2020], where only the co-
variate distribution P(X') changes across domains. Ben-David et al. [2009] give upper-bounds on target error
based on the H-divergence between the source and target covariate distributions, which motivates domain
alignment methods like the Domain Adversarial Neural Networks [Ganin et al., 2016] and others [Long et al.,
2015, Blanchard et al., 2017]. Others have followed up on this work with other notions of covariate distance
for domain adaptation, such as mean maximum discrepancy (MMD) [Long et al., 2016], Wasserstein dis-
tance [Courty et al., 2017], etc. However, Kpotufe and Martinet [2018] show that these divergence metrics
fail to capture many important properties of transferability, such as asymmetry and non-overlapping support.
Furthermore, Zhao et al. [2019] shows that even with the alignment of covariates, large distances between
label distributions can inhibit transfer; they propose a label conditional importance weighting adjustment to
address this limitation. Other works have also proposed conditional covariate alignment [des Combes et al.,
2020, Li et al., 2018¢,b].

Another form of distribution shift is label shift, where only the label distribution changes across domains.
Lipton et al. [2018] propose a method to address this scenario. Schrouff et al. [2022] illustrate that many
real-world problems exhibit more complex 'compound’ shifts than just covariate or label shifts alone.

One can leverage domain adaptation to address distribution shifts; however, these methods are contingent
on having access to unlabeled or partially labeled samples from the target domain during training. When such
samples are available, more sophisticated domain adaptation strategies aim to leverage and adapt spurious
feature information to enhance performance [Liu et al., 2021, Zhang et al., 2021, Kirichenko et al., 2022].
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However, domain generalization, as a problem, does not assume access to such samples [Muandet et al.,
2013].

To address the domain generalization problem, Invariant Causal Predictors (ICP) leverage shared causal
structure to learn domain-general predictors [Peters et al., 2016]. Previous works, enumerated in the intro-
duction (Section 1), have proposed various algorithms to identify domain-general predictors. Arjovsky et al.
[2019]’s proposed invariance risk minimization (IRM) and its variants motivated by domain invariance:
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where R¢(w o ®) = E[{(y,w - ®(z))], with loss function ¢, feature extractor ®, and linear predictor w. This
objective aims to learn a representation ® such that predictor w that minimizes empirical risks on average
across all domains also minimizes within-domain empirical risk for all domains. However, Rosenfeld et al.
[2020], Ahuja et al. [2020] showed that this objective requires unreasonable constraints on the number of
observed domains at train times, e.g., observing distinct domains on the order of the rank of spurious
features. Follow-up works have attempted to improve these limitations with stronger constraints on the
problem — enumerated in the introduction section.

Our method falls under domain generalization; however, unlike the domain-general solutions previously
discussed, our proposed solution leverages different conditions than domain invariance directly, which we
show may be more suited to learning domain-general representations.

3 Causality and Domain Generalization

We often represent causal relationships with a causal graph. A causal graph is a directed acyclic graph
(DAG), G = (V, E), with nodes V representing random variables and directed edges F representing causal
relationships, i.e., parents are causes and children are effects. A structural equation model (SEM) provides
a mathematical representation of the causal relationships in its corresponding DAG. Each variable Y € V
is given by Y = fy(X) + ey, where X denotes the parents of Y in G, fy is a deterministic function, and
€y is an error capturing exogenous influences on Y. The main property we need here is that fy is invariant
to interventions to V\{Y} and is consequently invariant to changes in P(V) induced by these interventions.
Interventions refer to changes to fz, Z € V\{Y'}.

In this work, we focus on domain-general predictors d, that are linear functions of features with domain-
general mechanisms, denoted as g4g := w o ®qq, where w is a linear predictor and @4, identifies features with
domain-general mechanisms. We use domain-general rather than domain-invariant since domain-invariance
is strongly tied to the property: Y L e|Zyy [Arjovsky et al., 2019]. As shown in the subsequent sections,
this work leverages other properties of appropriate causal graphs to obtain domain-general features. This
distinction is crucial given the challenges associated with learning domain-general features through domain-
invariance methods [Rosenfeld et al., 2020].

Given the presence of a distribution shift, it’s essential to identify some common structure across domains
that can be utilized for out-of-distribution (OOD) generalization. For example, Shimodaira [2000] assume
P(Y|X) is shared across all domains for the covariate shift problem. In this work, we consider a setting
where each domain is composed of observed features and labels, X € XY € ), where X is given by an
invertible function I' of two latent random variables: domain-general Zg, € Z4, and spurious Zspu € Zspu-
By construction, the conditional expectation of the label Y given the domain-general features Zg, is the
same across domains, i.e.,

Ee, [Y|Zag = 2ag] = Ee, [Y[Zag = 2ag] (1)
Vng S ng,VeZ— # €; € E.

Conversely, this robustness to e does not necessarily extend to spurious features Zgyy; in other words, Z,p,,
may assume values that could lead a predictor relying on it to experience arbitrarily high error rates. Then,
a sound strategy for learning a domain-general predictor — one that is robust to distribution shifts — is to
identify the latent domain-general Zg, from the observed features X.



Figure 1: Partial Ancestral Graph representing all non-trivial and valid generative processes (DAGs); dashed
edges indicate that an edge may or may not exist.

The approach we take to do this is motivated by the Reichenbach Common Cause Principle, which claims
that if two events are correlated, there is either a causal connection between the correlated events that is
responsible for the correlation or there is a third event, a so-called (Reichenbachian) common cause, which
brings about the correlation [Hitchcock and Reédei, 2021, Rédei, 2002]. This principle allows us to posit the
class of generative processes or causal mechanisms that give rise to the correlated observed features and
labels, where the observed features are a function of domain-general and spurious features. We represent
these generative processes as causal graphs. Importantly, the mapping from a mode’s causal parents to
itself is preserved in all distributions generated by the causal graph (Equation 1), and distributions can vary
arbitrarily so long as they preserve the conditional independencies implied by the DAG (Markov Property
[Pearl, 2010]).

We now enumerate DAGs that give observe features with spurious correlations with the label.

Valid DAGs. We consider generative processes, where both latent features, Zgpu, Z4g, and observed X
are correlated with Y, and the observed X is a function of only Zg, and Zgp, (Figure 1).

Given this setup, there is an enumerable set of valid generative processes. Such processes are (i) without
cycles, (ii) are feature complete — including edges from Zg, and Zg,, to X, ie., Zag = X ¢ Zgpu, and
(iii) where the observed features mediate domain influence, i.e., there is no direct domain influence on the
label e A Y. We discuss this enumeration in detail in Appendix B. The result of our analysis is identifying
a representative set of DAGs that describe valid generative processes — these DAGs come from orienting
the partial ancestral graph (PAG) in Figure 1. We compare the conditional independencies implied by the
DAGs defined by Figure 1 as illustrated in Figure 2, resulting in three canonical DAGs in the literature (see
Appendix B for further discussion). Other DAGs that induce spurious correlations are outside the scope of

this work.
(20)— @

(a) Causal [Arjovsky et al., 2019]. (b)  Anticausal [Rosenfeld et al., (c) Fully Informative Causal
2020]. [Ahuja et al., 2021].

Figure 2: Generative Processes. Graphical models depicting the structure of possible data-generating
processes — shaded nodes indicate observed variables. X represents the observed features, Y represents
observed targets, and e represents domain influences (domain indexes in practice). There is an explicit
separation of domain-general Z4, and domain-specific Zs,, features; they are combined to generate observed
X . Dashed edges indicate the possibility of an edge.

Conditional independencies implied by identified DAGs (Figure 2).



Table 1: Generative Processes and Sufficient Conditions for Domain-Generality

Graphs in Figure 2
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Fig. 2a: Zg, 1l Zg,, |{Y,e}; Y 1L e]| Zg,.

This causal graphical model implies that the mapping from Z4, to its causal child Y is preserved and
consequently, Equation 1 holds [Pearl, 2010, Peters et al., 2016]. As an example, consider the task of
predicting the spread of a disease. Features may include causes (vaccination rate and public health
policies) and effects (coughing). e is the time of month; the distribution of coughing changes depending
on the season.

Fig. 2b: Zgg U Zg,, |{Y,€}; Zag WL Zopu | Y3 Y UL €| Zag, Zag AL e.

The causal graphical model does not directly imply that Zq; — Y is preserved across domains. However,
in this work, it represents the setting where the inverse of the causal direction is preserved (inverse:
Zgg — YY), and thus Equation 1 holds. A context where this setting is relevant is in healthcare where
medical conditions (Y) cause symptoms (Zq,), but the prediction task is often predicting conditions
from symptoms, and this mapping Zg; — Y, opposite of the causal direction, is preserved across
distributions. Again, we may consider e as the time of month; the distribution of coughing changes
depending on the season.

Fig. 2c: Y Ul e|Zag; Zag L e.

Similar to Figure 2a, this causal graphical model implies that the mapping from Zg, to its causal child Y’
is preserved, so Equation 1 holds [Pearl, 2010, Peters et al., 2016]. This setting is especially interesting
because it represents a Fully Informative Invariant Features setting, that is Zg,, 1L Y| Zg,
[Ahuja et al., 2021]. Said differently, Zsp, does not induce a backdoor path from e to Y that Zg, does
not block. As an example of this, we can consider the task of predicting hospital readmission rates.
Features may include the severity of illness, which is a direct cause of readmission rates, and also
include the length of stay, which is also caused by the severity of illness. However, length of stay may
not be a cause of readmission; the correlation between the two would be a result of the confounding
effect of a common cause, illness severity. e is an indicator for distinct hospitals.

We call the condition Y L e|Zgg the domain invariance property. This condition is common to all
the DAGs in Figure 2. We call the condition Zgg 1L Zspy |{Y, e} the target conditioned representation
independence (TCRI) property. This condition is common to the DAGs in Figure 2a, 2b. In the settings
considered in this work, the TCRI property is equivalently Zqg L Zgp,, | YVe € € since e will simply index
the set of empirical distributions available at training.

Domain generalization with conditional independencies. Kaur et al. [2022] showed that sufficiently
regularizing for the correct conditional independencies described by the appropriate DAGs can give domain-
general solutions, i.e., identifies Z4,. However, in practice, one does not (partially) observe the latent features
independently to regularize directly. Other works have also highlighted the need to consider generative pro-
cesses when designing robust algorithms to distribute shifts [Veitch et al., 2021, Makar et al., 2022]. However,
previous work has largely focused on regularizing for the domain invariance property, ignoring the conditional
independence property Zag L Zgpy | Y €.

Sufficiency of ERM under Fully Informative Invariant Features. Despite the known challenges of
learning domain-general features from the domain-invariance properties in practice, this approach persists,



likely due to it being the only property shared across all DAGs. We alleviate this constraint by observing
that Graph (Fig. 2c) falls under what Ahuja et al. [2021] refer to as the fully informative invariant features
settings, meaning that Zgp, is redundant, having only information about Y that is already in Zg,. Ahuja et al.
[2021] show that the empirical risk minimizer is domain-general for bounded features.

Easy vs. hard DAGs imply the generality of TCRI. Consequently, we categorize the generative
processes into easy and hard cases Table 1: (i) easy meaning that minimizing average risk gives domain-
general solutions, i.e., ERM is sufficient (Fig. 2c¢), and (%) hard meaning that one needs to identify Zy to
obtain domain-general solutions (Figs. 2a-2b). We show empirically that regularizing for Zg, Ll Zgp,, | YVe €
£ also gives a domain-general solution in the easy case. The generality of TCRI follows from its sufficiency
for identifying domain-general Zg, in the hard cases while still giving domain-general solutions empirically
in the easy case.

4 Proposed Learning Framework

We have now clarified that hard DAGs (i.e., those not solved by ERM) share the TCRI property. The
challenge is that Zg, and Zg,, are not independently observed; otherwise, one could directly regularize.
Existing work such as Kaur et al. [2022] empirically study semi-synthetic datasets where Zs, is (partially)
observed and directly learn Zg, by regularizing that ®(X) 1L Zg,, |Y, e for feature extractor ®. To our
knowledge, we are the first to leverage the TCRI property without requiring observation of Zg,,. Next, we
set up our approach with some key assumptions. The first is that the observed distributions are Markov to
an appropriate DAG.

Assumption 4.1. All distributions, sources and targets, are generated by one of the structural causal
models SCM that follow:

1 Zc(fg) ~ Péi)g ti ! Yie) ~ Py,
causa Y(e) . Z(E) anticausa Z(e) - - 7 Y + (e) 7
SCM(e) = = (Wiig: Zag) e (2) SCM(e) = | Lae ¢ (e X o (3)
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where Py, is the causal covariate distribution, w’s are linear generative mechanisms, n’s are exogenous
independent noise variables, and I' : Z45 X Zspy — X is an invertible function. It follows from having causal
mechanisms that we can learn a predictor wg, for Zgg that is domain-general (Equation 2-4) — wy, inverts
the mapping wq, in the anticausal case.

These structural causal models (Equation 2-4) correspond to causal graphs Figures 2a-2c, respectively.
Assumption 4.2 (Structural). Causal Graphs and their distributions are Markov and Faithful [Pearl, 2010].

Given Assumption 4.2, we aim to leverage TCRI property (Zgg Ll Zgp, | YVe € &) to learn the latent
Zgg without observing Zg,, directly. We do this by learning two feature extractors that, together, recover
Zag and Zg,, and satisfy TCRI (Figure 3). We formally define these properties as follows.

Definition 4.3 (Total Information Criterion (TIC)). ® = ®q, @ Pgpy satisfies TIC with respect to random
variables X, Y, e if for ®(X°) = [@gg(X®); Pspu(X®)], there exists a linear operator 7 s.t., T(®(X°)) =
(258, Z5, Ve € Eur.
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Figure 3: Modeling approach. During training, both representations, ®q., and ®gp,, generate domain-
general and domain-specific predictions, respectively. However, only the domain-invariant representa-
tions/predictions are used during testing — indicated by the solid red arrows.

In other words, a feature extractor that satisfies the total information criterion recovers the complete
latent feature sets Zgg, Zspy. This allows us to define the proposed implementation of the TCRI property
non-trivially — the conditional independence of subsets of the latents may not have the same implications
on domain generalization. We note that X 1l Y|Z4s, Zspy, so X has no information about Y that is not in
Zag, Lspu-

Definition 4.4 (Target Conditioned Representation Independence). ® = ®qq B Ppy satisfies TCRI with
respect to random variables X, Y, e if ®4g(X) 1L Oy, (X) [YVe € £.

Proposition 4.5. Assume that ®44(X) and ®spu(X) are correlated with Y. Given Assumptions 4.1-4.2 and
a representation ® = @ g, ® Pgpy, that satisfies TIC, @qy(X) = Z4y <= P satisfies TCRI. (see Appendiz C

for proof).

Proposition 4.5 shows that TCRI is necessary and sufficient to identify Zq, from a set of training domains.
We note that we can verify if ®q4(X) and ®gp, (X) are correlated with Y by checking if the learned predictors
are equivalent to chance. Next, we describe our proposed algorithm to implement the conditions to learn
such a feature map. Figure 3 illustrates the learning framework.

Learning Objective: The first term in our proposed objective is
Ly,, = R(0. 0 Pgg),

where @4, @ X — R™ is a feature extractor, . : R™ +— ) is a linear predictor, and R¢(f. o ®qy) =
E[é (y, 0. - @(z))] is the empirical risk achieved by the feature extractor and predictor pair on samples from
domain e. @4, and 6. are designed to capture the domain-general portion of the framework.

Next, to implement the total information criterion, we use another feature extractor ®¢,, : X — R,
designed to capture the domain-specific information in X that is not captured by ®4,. Together, we have
O = Py, ® Pypy where @ has domain-specific predictors . : R™T° — Y for each training domain, allowing
the feature extractor to utilize domain-specific information to learn distinct optimal domain-specific (non-

general) predictors:
Lo = Re(He o fI)).

Lp aims to ensure that @4, and Py, capture all of the information about Y in X — total information
criterion. Since we do not know o, m, we select them to be the same size on our experiments; o, m could be
treated as hyperparameters though we do not treat them as such.

Finally, we implement the TCRI property (Definition 4.4). We denote Lrcpgr to be a conditional
independence penalty for @4, and ®g,,. We utilize the Hilbert Schmidt independence Criterion (HSIC)
[Gretton et al., 2007] as Lrcrr. However, in principle, any conditional independence penalty can be used
in its place. HSIC:

1 —— y=k 1 1 y=k
LTCRI((I)dg; ‘I)Spu) = — Z HSIO((I)dg(X), ‘I)Spu(X)) = — Z Ftr(Kq)danqu)Spank) y
ke{0,1} kefo,1} K



where k, indicates which class the examples in the estimate correspond to, C'is the number of classes, Kg,, €
Rexme Ko € R™ ™ are Gram matrices, Kg' = £(®qg(X)i, Pag(X);), Kfl;zpu = w(Pspu(X)i, Pspu(X);)
with kernels k,w are radial basis functions, H,, = I, — n%llT is a centering matrix, I, is the ny x ny
k
dimensional identity matrix, 1,, is the nji-dimensional vector whose elements are all 1, and ' denotes the
transpose. We condition on the label by taking only examples of each label and computing the empirical
HSIC; then, we take the average.
Taken together, the full objective to be minimized is as follows:

1

E =
Etr

Re (90 o (I)dg) + Re (66 o (I)) + BETCRI ((I)dgu (I)spu) 3
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where § > 0 is a hyperparameter and FEy, is the number of training domains. Figure 3 shows the full
framework. We note that when 8 = 0, this loss reduces to ERM.

Note that while we minimize this objective with respect to ®,60.,60;,...,0g,,, only the domain-general
representation and its predictor, 6. - @4, are used for inference.

5 Experiments

We begin by evaluating with simulated data, i.e., with known ground truth mechanisms; we use Equation 5
to generate our simulated data, with domain parameter o, ; code is provided in the supplemental materials.

Table 2: Continuous Simulated Results — Feature Extractor
with a dummy predictor 6. = 1., i.e., ¥ = x - gy - w, where
r € RVX2 Pyy, By € RPXL w € R. Oracle indicates the
_ coeflicients achieved by regressing y on z. directly.

25~ (0.02) c

1Y e;

SCM(es) =4yt = 2§ + N (0,02), Algorithm (®ag)o (®ag)1
Zégﬁ) —yle) 4 A (07031_) ' (i.e., Zg, weight) | (i.e., Zg,, weight)
(5) ERM 0.29 0.71
IRM 0.28 0.71
TCRI 1.01 0.06
Oracle 1.04 0.00

We observe 2 domains with parameters o.—o = 0.1, 0¢=! = 0.2 with o, = 0.25, 5000 samples, and linear
feature extractors and predictors. We use partial covariance as our conditional independence penalty Lrcor;.
Table 2 shows the learned value of ®q,, where ‘Oracle’ indicates the true coeflicients obtained by regressing
Y on domain-general Zg, directly. The ideal ®q4 recovers Zg, and puts zero weight on Zgp,,.

Now, we evaluate the efficacy of our proposed objective on non-simulated datasets.

5.1 Semisynthetic and Real-World Datasets

Algorithms: We compare our method to baselines corresponding to DAG properties: Empirical Risk Mini-
mization (ERM, [Vapnik, 1991]), Invariant Risk Minimization (IRM [Arjovsky et al., 2019]), Variance Risk
Extrapolation (V-REx, [Krueger et al., 2021]), [Li et al., 2018a]), Group Distributionally Robust Optimiza-
tion (GroupDRO), [Sagawa et al., 2019]), and Information Bottleneck methods (IB_ ERM/IB IRM,
[Ahuja et al., 2021]). Additional baseline methods are provided in the Appendix A.

We evaluate our proposed method on the semisynthetic ColoredMNIST [Arjovsky et al., 2019] and real-
world Terra Incognita dataset [Beery et al., 2018]. Given observed domains &, = {e: 1,2,..., E.}, we train
on & \ e; and evaluate the model on the unseen domain e;, for each e € &;..

ColoredMNIST: The ColoredMNIST dataset [Arjovsky et al., 2019] is composed of 7000 (2 x 28 x 28, 1)
images of a hand-written digit and binary-label pairs. There are three domains with different correlations
between image color and label, i.e., the image color is spuriously related to the label by assigning a color to



each of the two classes (0: digits 0-4, 1: digits 5-9). The color is then flipped with probabilities {0.1,0.2,0.9}
to create three domains, making the color-label relationship domain-specific because it changes across do-
mains. There is also label flip noise of 0.25, so we expect that the best accuracy a domain-general model
can achieve is 75%, while a non-domain general model can achieve higher. In this dataset, Z4, corresponds
to the original image, Zg,, the color, e the label-color correlation, Y the image label, and X the observed
colored image. This DAG follows the generative process of Figure 2a [Arjovsky et al., 2019].

Spurrious PACS: Variables. X: images, Y: non-urban (elephant, giraffe, horse) vs. urban (dog, guitar,
house, person). Domains. {{cartoon, art painting}, {art painting, cartoon}, {photo}} [Li et al., 2017]. The
photo domain is the same as in the original dataset. In the {cartoon, art painting} domain, urban examples
are selected from the original cartoon domain, while non-urban examples are selected from the original art
painting domain. In the {art painting, cartoon} domain, urban examples are selected from the original art
painting domain, while non-urban examples are selected from the original cartoon domain. This sampling
encourages the model to use spurious correlations (domain-related information) to predict the labels; however,
since these relationships are flipped between domains {{cartoon, art painting} and {art painting, cartoon},
these predictions will be wrong when generalized to other domains.

Terra Incognita: The Terra Incognita dataset contains subsets of the Caltech Camera Traps dataset
[Beery et al., 2018] defined by [Gulrajani and Lopez-Paz, 2020]. There are four domains representing differ-
ent locations {L100, L38, 143, L46} of cameras in the American Southwest. There are 9 species of wild
animals {bird, bobcat, cat, coyote, dog, empty, opossum, rabbit, raccoon, squirrel} and a ‘no-animal’ class
to be predicted. Like Ahuja et al. [2021], we classify this dataset as following the generative process in
Figure 2c¢, the Fully Informative Invariant Features (FIIF) setting. Additional details on model architecture,
training, and hyperparameters are detailed in Appendix 5.

Model Selection. The standard approach for model selection is a training-domain hold-out validation
set accuracy. We find that model selection across hyperparameters using this held-out training domain
validation accuracy often returns non-domain-general models in the ‘hard’ cases. One advantage of our
model is that we can do model selection based on the TCRI condition (conditional independence between the
two representations) on held-out training domain validation examples to mitigate this challenge. In the easy
case, we expect the empirical risk minimizer to be domain-general, so selecting the best-performing training-
domain model is sound — we additionally do this for all baselines (see Appendix A.1 for further discussion).
We find that, empirically, this heuristic works in the examples we study in this work. Nevertheless, model
selection under distribution shift remains a significant bottleneck for domain generalization.

5.2 Results and Discussion

Table 3: E\etest — €rest (model selection on held-out source domains validation set). The ‘mean’ column
indicates the average generalization accuracy over all three domains as the e s distinctly; the ‘min’ column
indicates the worst generalization accuracy.

ColoredMNIST Spurious PACS Terra Incognita
Algorithm average worst-case average worst-case average worst-case
ERM 51.6 + 0.1 10.0 £ 0.1 57.2 £ 0.7 312+ 1.3 442 £ 1.8 35.1 + 2.8
IRM 51.7 £ 0.1 9.9 +0.1 54.7 £ 0.8 30.3 £ 0.3 38.9 + 3.7 32.6 + 4.7
GroupDRO 52.0 £ 0.1 9.9 +0.1 58.5 £ 04 377+ 0.7 478 £0.9 39.9 £ 0.7
VREx 51.7 £ 0.2 10.2 £ 0.0 58.8 £ 04 375+ 1.1 451+ 04 38.1+1.3
IB_ERM 51.5 £ 0.2 10.0 £ 0.1 56.3 £ 1.1 355+ 04 46.0 + 1.4 393+ 1.1
IB_IRM 51.7 £ 0.0 9.9 +£ 0.0 55.9 + 1.2 33.8 + 2.2 37.0 + 2.8 29.6 +£ 4.1
TCRI_HSIC | 59.6 + 1.8 | 45.1 + 6.7 | 63.4 = 0.2 | 62.3 £ 0.2 | 49.2 £ 0.3 | 404 + 1.6




Table 4: Total Information Criterion: Domain General (DG) and Domain Specific (DS) Accuracies. The DG
classifier is shared across all training domains, and the DS classifiers are trained on each domain. The first
row indicates the domain from which the held-out examples are sampled, and the second indicates which
domain-specific predictor is used. {+90%, +80%, -90%} indicate domains — {0.1,0.2,0.9} digit label and
color correlation, respectively.

DG Classifier DS Classifier on +90 DS Classifier on 80 DS Classifier on -90
Test Domain | +90% +80% -90% | +90% +80% -90% | +90% +80% -90% | +90% +80% -90%
No DS clf.

+90% 68.7 69.0 68.5 - 90.1 9.8 - 79.9 20.1 - 10.4 89.9
+80% 63.1 624 644 76.3 - 24.3 70.0 - 30.4 24.5 - 76.3
-90% 65.6 63.4  44.1 75.3 75.3 - 69.2 69.5 - 29.3 26.0 -

Table 5: TIC ablation for Colored MNIST.

Algorithm | average | worst-case
TCRI_HSIC (No TIC) | 51.8 £5.9 27.7 £ 8.9
TCRI_HSIC 59.6 £ 1.8 | 45.1 + 6.7

Worst-domain Accuracy. A critical implication of domain generality is stability — robustness in worst-
domain performance up to domain difficulty. While average accuracy across domains provides some insight
into an algorithm’s ability to generalize to new domains, the average hides the variance of performance
across domains. Average improvement can be increased while the worst-domain accuracy stays the same or
decreases, leading to incorrect conclusions about domain generalization. Additionally, in real-world challenges
such as algorithmic fairness where worst-group performance is considered, some metrics or fairness are
analogous to achieving domain generalization [Creager et al., 2021].

Results. TCRI achieves the highest average and worst-case accuracy across all baselines (Table 3). We
find no method recovers the exact domain-general model’s accuracy of 75%. However, TCRI achieves over
7% increase in both average accuracy and worst-case accuracy. Appendix A.2 shows transfer accuracies
with cross-validation on held-out test domain examples (oracle) and TCRI again outperforms all baselines,
achieving an average accuracy of 70.0% + 0.4% and a worst-case accuracy of 65.7% =+ 1.5, showing that
regularizing for TCRI gives very close to optimal domain-general solutions.

Similarly, for the Spurious-PACS dataset, we observe that TCRI outperforms the baselines. TRCI
achieves the highest average accuracy of 63.4% + 0.2 and worst-case accuracy of 62.3% 4 0.1 with the
next best, VREx, achieving 58.8 + 1.0 and 33.8 £ 0.0, respectively. Additionally, for the Terra-Incognita
dataset, TCRI achieves the highest average and worst-case accuracies of 49.2% 4 0.3% and 40.4% + 1.6%
with the next best, GroupDRO, achieving 47.8 £ 0.9 and 39.9 + 0.7, respectively.

Appendix A.2 shows transfer accuracies with cross-validation held-out target domain examples (oracle)
where we observe that TCRI also obtains the highest average and worst-case accuracy for Spurrious-PACS
and Terra Incognita.

Overall, regularizing for TCRI gives the most domain-general solutions compared to our baselines, achiev-
ing the highest worst-case accuracy on all benchmarks. Additionally, TCRI achieves the highest average
accuracy on ColoredMNIST and Spurious-PAC and the second highest on Terra Incognita, where we expect
the empirical risk minimizer to be domain-general.

Additional results are provided in the Appendix A.

The Effect of the Total Information Criterion. Without the TIC loss term, our proposed method is
less effective. Table 5 shows that for Colored MNIST, the hardest ‘hard’ case we encounter, removing the
TIC criteria, performs worse in average and worst case accuracy, dropping over 8% and 18, respectively.

Separation of Domain General and Domain Specific Features . In the case of Colored MNIST, we
can reason about the extent of feature disentanglement from the accuracies achieved by the domain-general
and domain-specific predictors. Table 4 shows how much each component of ®, &4, and P, behaves as
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expected. For each domain, we observe that the domain-specific predictors’ accuracies follow the same trend
as the color-label correlation, indicating that they capture the color-label relationship. The domain-general
predictor, however, does not follow such a trend, indicating that it is not using color as the predictor.

For example, when evaluating the domain-specific predictors from the +90% test domain experiment
(row +90%) on held-out examples from the +80% training domain (column "DS Classifier on +80%"), we
find that the +80% domain-specific predictor achieves an accuracy of nearly 79.9% — exactly what one
would expect from a predictor that uses a color correlation with the same direction ‘+’. Conversely, the
-90% predictor achieves an accuracy of 20.1%, exactly what one would expect from a predictor that uses a
color correlation with the opposite direction ‘-’. The -90% domain has the opposite label-color pairing, so a
color-based classifier will give the opposite label in any ‘+’ domain.

Another advantage of this method, exemplified by Table 4, is that if one believes a particular domain is
close to one of the training domains, one can opt to use the close domain’s domain-specific predictor and
leverage spurious information to improve performance.

On Benchmarking Domain Generalization. Previous work on benchmarking domain generalization
showed that across standard benchmarks, the domain-unaware empirical risk minimizer outperforms or
achieves equivalent performance to the state-of-the-art domain generalization methods [Gulrajani and Lopez-Paz,
2020]. Additionally, Rosenfeld et al. [2022] gives results that show weak conditions that define regimes where
the empirical risk minimizer across domains is optimal in both average and worst-case accuracy. Conse-
quently, to accurately evaluate our work and baselines, we focus on settings where it is clear that (i) the
empirical risk minimizer fails, (ii) spurious features, as we have defined them, do not generalize across the
observed domains, and (iii) there is room for improvement via better domain-general predictions. We discuss
this point further in the Appendix A.1.

Oracle Transfer Accuracies. While model selection is an integral part of the machine learning develop-
ment cycle, it remains a non-trivial challenge when there is a distribution shift. While we have proposed a
selection process tailored to our method that can be generalized to other methods with an assumed causal
graph, we acknowledge that model selection under distribution shift is still an important open problem. Con-
sequently, we disentangle this challenge from the learning problem and evaluate an algorithm’s capacity to
give domain-general solutions independently of model selection. We report experimental reports using held-
out test-set examples for model selection in Appendix A Table 6. We find that our method, TCRI HSIC,
also outperforms baselines in this setting.

6 Conclusion and Future Work

We reduce the gap in learning domain-general predictors by leveraging conditional independence properties
implied by generative processes to identify domain-general mechanisms. We do this without independent
observations of domain-general and spurious mechanisms and show that our framework outperforms other
state-of-the-art domain-generalization algorithms on real-world datasets in average and worst-case across
domains. Future work includes further improvements to the framework to fully recover the strict set of
domain-general mechanisms and model selection strategies that preserve desired domain-general properties.
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A Additional Results and Discussion

A.1 On Benchmarking Domain Generalization

Table 6: Oracle (model selection on held-out target domain validation set) \etest — €test- The ‘mean’
column indicates the average generalization accuracy over all three domains as the e distinctly; the ‘min’
column indicates the worst generalization accuracy.

ColoredMNIST Spurious PACS Terra Incognita
Algorithm average worst-case average worst-case average worst-case
ERM 57.8 + 0.2 384+ 1.4 59.2 + 1.3 384+14 | 52.9 + 0.8 | 42.0+ 0.6
IRM 68.9 £ 1.6 62.0 + 4.9 67.5 + 5.8 53.9 £ 6.6 42.6 + 4.0 42.7 + 1.2
GroupDRO 61.1 + 1.3 37.6 + 3.6 61.8 + 1.8 40.0 £ 1.6 50.7 £ 1.0 42.7 + 1.2
VREx 68.0 £ 2.5 59.4 £ 7.3 62.8 + 2.4 38.7+ 0.9 43.2 + 2.0 349 £ 4.2
IB_ERM 65.0 £ 0.1 50.6 + 0.3 67.3 £ 3.7 53.1 £ 8.0 49.0 £ 0.3 39.9 + 0.8
IB_IRM 68.4 + 1.0 58.5 + 2.8 69.0+ 1.3 | 62.3 £ 0.3 | 32.8 £6.6 204+ 7.5
TCRI_HSIC | 70.4 + 0.4 | 65.7 =+ 1.5 | 69.5 + 1.1 | 62.3 £ 0.2 51.2 + 0.1 43.0 £ 0.4

Oracle Transfer Accuracies. While model selection is an integral part of the machine learning develop-
ment cycle, it remains a non-trivial challenge when there is a distribution shift. While we have proposed a
selection process tailored to our method that can be generalized to other methods with an assumed causal
graph, we acknowledge that model selection under distribution shift is still an important open problem.
Consequently, we disentangle this challenge from the learning problem and evaluate an algorithm’s capacity
to give domain-general solutions independently of model selection. We report experimental reports using
held-out test-set examples for model selection in Appendix A Table 6.

In this case, we find that there is indeed a separation between ERM and some domain-generalization
algorithms, suggesting that model selection might be a substantial bottleneck for learning domain-general
predictors. Nevertheless, we still find that our method, TCRI HSIC, also outperforms baselines in this
setting.

Challenges of Benchmarking Domaing Generalization. We show some results below that illustrate
the challenge of accurately evaluating the efficacy of an algorithm for domain generalization. We first note
that we expect ERM (naive) to perform poorly in domain generalization tasks, certainly so when we observe
worst-case shifts at test time. However, like other works [Gulrajani and Lopez-Paz, 2020|, we observe that
ERM performs as well as other baselines during transfer on various benchmark datasets. Previous theoretical
results [Rosenfeld et al., 2022] suggest that this observation is indicative of properties of the benchmark
domains that may be sufficient for ERM to give domain-general solutions - specifically that the distribution
(and equivalently the loss) of the target domain can be written as a convex combination of the those in the
source domains.

To further investigate this, we develop additional experiments motivated by the ColoredMNIST [Arjovsky et al.,
2019] — since its generative process is well understood. We note that in the +90%, +80%, and -90% domains
of ColoredMNIST, the -90% domain has the opposite relationship between the spurious correlation and the
label, so the use of spurious correlations from {+90%, +80%} generalizes catastrophically to the -90% do-
main. In this setting, the baseline algorithms we present, including ERM, achieve poor accuracy in the -90%
domain while maintaining high accuracy in the +90% and +80% domains. Consequently, we investigate two
settings, setting a: observe {4+90%, +80%, +70%, -90%} domains and setting b: observe {+90%, +80%,
-80%, -90%} domains — we focus on generalizing to the -90% domain. In setting a, we add another domain
with the majority direction in the relationship between spurious correlation and labels. In setting b, we
add another domain with the minority direction. Note that in setting a, the closest domain to -90% that
can be generated with a convex combination of the other domains still has a ‘+’ correlation between the
color and label. In setting b, however, one can generate a domain with a ‘-’ correlation between color and
label with a convex combination of the other domains. Thus, we expect the empirical risk minimizer to give
domain-general solutions in setting b but not in setting a.
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We use Oracle model selection (held-out target data) to remove the effect of model selection for all
methods in the results. We find that in setting a, where we add a domain (+70%), we observe that the
generalization accuracy to the -90% domain is still very different from the other domains (Table 7).

Table 7: ColoredMNIST setting a.  Columns {+90%, +80%, +70%, -90%} indicate domains —
{0.1,0.2,0.3,0.9} digit label and color correlation, respectively. We report domain accuracies over 3 tri-

als each. We use the oracle selection method — held out target data. E\etest — €test-

Algorithm +90% +-80% +70% -90%

ERM 728 203 | 7147+ 03 | 73.3 0.1 | 16.3 £ 1.5
IRM 49.0+ 0.1 | 54.2 + 2.0 | 50.3 = 0.3 | 43.8 + 2.8
GroupDRO 71.0+06 | 722+ 0.3 | 70.7 £ 0.9 | 364 £ 4.2
VREx 741 4+13 | 726 £ 05 | 721 +£0.5 | 195 £ 5.5
TCRI_HSIC | 721+ 1.5 | 736 £ 04 | 72.6 £ 0.4 | 49.9 + 0.3

However, in setting b, where we add a domain (-80%), we observe that the generalization accuracy to
the -90% domain is on par with the other domains (Table 8).

Table 8: ColoredMNIST setting b.  Columns {+90%, +80%, -80%, -90%} indicate domains —
{0.1,0.2,0.8,0.9} digit label and color correlation, respectively. We report the average domain accuracies
over 3 trials each. We use the oracle selection method — held out target data. E\etest — €test-

Algorithm +90% +-80% -80% -90%

ERM 584 4+ 1.3 | 67.0 £ 0.5 | 64.2 2.0 | 52.6 £ 3.2
IRM 56.7 & 3.3 | 56.6 = 2.8 | 51.6 = 0.7 | 51.7 + 0.7
GroupDRO 69.7+ 08 | 71.7+ 0.3 | 720+ 0.2 | 71.4+ 1.9
VREx 674+19|704+0.1] 71.24+0.2 | 59.4 + 4.3
TCRI_HSIC | 622 +44 | 700 £1.3 | 679+ 1.4 | 65.4 + 2.8

This illustrates the challenge of accurately evaluating an algorithm’s ability to give domain-general pre-
dictions. We note that it is generally difficult to distinguish between setting a and setting b. The pri-
mary signature we see is some consistency between the empirical risk minimizer and the other baselines.
Gulrajani and Lopez-Paz [2020] observe a similar trend for standard benchmarks for domain generalization.
Hence, we focus our empirical evaluations in this work on settings where we know that the ERM solution
fails by design.

A.2 ColoredMNIST

ColoredMNIST: The ColoredMNIST dataset [Arjovsky et al., 2019] is composed of 7000 (2x 28 x 28, 1) images
of a hand-written digit and binary-label pairs. There are three domains with different correlations between
image color and label, i.e., the image color is spuriously related to the label by assigning a color to each of the
two classes (0: digits 0-4, 1: digits 5-9). The color is then flipped with probabilities {0.1,0.2,0.9} to create
three domains, making the color-label relationship domain-specific because it changes across domains. There
is also label flip noise of 0.25, so we expect that the best accuracy a domain-general model can achieve is
75%, while a non-domain general model can achieve higher. In this dataset, Zq, corresponds to the original
image, Zspy the color, e the label-color correlation, Y the image label, and X the observed colored image.
This DAG follows the generative process of Figure 2a

We use MNIST-ConvNet [Gulrajani and Lopez-Paz, 2020] backbones for the MNIST datasets (Table 10).
Both &4, and @, are linear layers of size 128 x 128 that are appended to the backbone. The predictors
(classification hyperplanes) 6., {61, 62} are also parameterized to be linear and appended to the &4, and P,
respectively.

We do a random search to select hyperparameters using the same scheme as Gulrajani and Lopez-Paz
[2020] (https://github.com/facebookresearch/DomainBed). We select 25 hyperparameters with 5 random
restarts each to generate error bars.
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Table 9: ColoredMNIST Hyperparameters. Additional hyperparameters are provided in
https://github.com/olawalesalaudeen /teri.

Algorithm | Hyperparameter | Default | Random Distribution
All Learning Rate 173 1QUniform(—4.5,-2.5)
Batch Size 64 gUniform(3,9)
penalty weight 100 1oUniform(_15)
TCRL S annealing steps 500 1oUniform (9 5 5y

Table 10: MNIST ConvNet architecture. All convolutions use 3x3 kernels and "same" padding.

# Layer

1 Conv2D (in=d, out=64)
2 ReLU

3 GroupNorm (groups=8)
4 | Conv2D (in=64, out=128, stride=2)
) ReLU

6 GroupNorm (groups=8)
7 Conv2D (in=128, out=128)
8 ReLU

9 GroupNorm (groups=8)
10 Conv2D (in=128, out=128)
11 ReLU

12 GroupNorm (8 groups)
13 Global average-pooling

We show transfer accuracies with both source and target domain validation for model selection in Tables
11-12. We find that TCRI outperforms all baselines in average and worst-case accuracy.

Table 11: ColoredMNIST Transfer Accuracy — model selection on held-out source validation set. Columns
{+90%, +80%, -90%} indicate domains — {0.1,0.2,0.9} digit label and color correlation, respectively.
g\etest — Ctest-

Domains Domain Accuracy Statistics

Algorithm +90% +80% -90% Avg Std Min
ERM 716 £03 73.1+£01 10.0£0.1 | 51.6£0.1 294 £ 0.1 10.0 £ 0.1
IRM 721 +£01 73.0+£03 99+£0.1 51.7+ 0.1 29.5 £ 0.1 99+ 0.1
GroupDRO 726 £02 734+£02 99+0.1 52.0 £0.1 29.8 £ 0.1 99+ 0.1
VREx 7224+02 727+£03 102+0.0 | 51.7£0.2 29.3 £ 0.1 10.2 £ 0.0
IB_ERM 71.0+04 734+£03 10.0+0.1 | 51.5£0.2 294 +£ 0.1 10.0 = 0.1
IB_IRM 71.7+£02 734+£01 99+£0.0 51.7 + 0.0 29.5 £ 0.0 9.9 4+ 0.0
TCRI_HSIC | 672+ 23 65.6+34 459+6.9| 59.6 +1.8 11.4 + 3.3 45.1 + 6.7

A.3 Spurrious PACS

Spurious—PACS. Variables. X: images, Y: non-urban (elephant, giraffe, horse) vs. urban (dog, guitar,
house, person). Domains. {{cartoon, art painting}, {art painting, cartoon}, {photo}} [Li et al., 2017]. The
photo domain is the same as in the original dataset. In the {cartoon, art painting} domain, urban examples
are selected from the original cartoon domain, while non-urban examples are selected from the original art
painting domain. In the {art painting, cartoon} domain, urban examples are selected from the original art
painting domain, while non-urban examples are selected from the original cartoon domain. This sampling
encourages the model to use spurious correlations (domain-related information) to predict the labels; however,
since these relationships are flipped between domains {{cartoon, art painting} and {art painting, cartoon},
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Table 12: Oracle ColoredMNIST Transfer Accuracy — model selection on held-out target validation set
accuracy. Columns {+90%, +80%, -90%} indicate domains — {0.1,0.2,0.9} digit label and color correlation,
respectively. E\etest — Etest-

ColoredMNIST Spurious PACS Terra Incognita
Algorithm average worst-case average worst-case average worst-case
ERM 57.8 £ 0.2 384+ 14 59.2 £ 1.3 384+ 14 | 52.9 + 0.8 | 42.0+ 0.6
IRM 68.9 + 1.6 62.0 + 4.9 67.5 + 5.8 53.9 + 6.6 42.6 £ 4.0 427+ 1.2
GroupDRO 61.1 + 1.3 37.6 + 3.6 61.8 + 1.8 400 £ 1.6 50.7 + 1.0 427+ 1.2
VREx 68.0 £ 2.5 594+ 7.3 62.8 £ 2.4 38.7 £ 0.9 43.2 £ 2.0 34.9 £ 4.2
IB_ERM 65.0 £ 0.1 50.6 £ 0.3 67.3 £ 3.7 53.1 £ 8.0 49.0 £ 0.3 39.9 £ 0.8
IB_IRM 68.4 £ 1.0 58.5 £ 2.8 69.0 £ 1.3 | 62.3 £ 0.3 | 32.8 £6.6 204 £7.5
TCRI_HSIC | 70.4 £ 0.4 | 65.7 + 1.5 | 69.5 £ 1.1 | 62.3 + 0.2 | 51.2+ 0.1 | 43.0 + 0.4
these predictions will be wrong when generalized to other domains.
Table 13: Spurrious PACS Hyperparameters. Additional hyperparameters provided in
https://github.com/olawalesalaudeen /teri.
Algorithm | Hyperparameter | Default Range
All Learning Rate 1-3 10Uniform(74.5,72.5)
Batch Size 64 2Uniform(3,9)
penalty weight 100 1oUmitorm(_1 5)
TCRI A annealing steps 500 1oUniform (9 5 5

We use a ResNet-50 backbone [He et al., 2016]. ®4, and @y, are linear layers of size 2048 x 2048 that
are appended to the backbone. The predictors (classification hyperplanes) 0., {61,02,03} are linear and
appended to ®4, and ® layers, respectively.

Hyperparameters: We do a random search to select hyperparameters using the same scheme as Gulrajani and Lopez-Paz
[2020] (https://github.com/facebookresearch/DomainBed). We select 5 hyperparameters with 3 random
restarts each to generate error bars.
We show transfer accuracies with both source and target domain validation for model selection in Tables
14-15. We find that TCRI outperforms all baselines in average and worst-case accuracy.

Table 14: Spurious—PACS Transfer Accuracy — model selection on held-out source validation set. £\etest —
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Etest-
Domains Domain Accuracy Statistics

Algorithm Cx A AxC P mean std min
ERM 312+ 13| 428+ 0.7 976 +0.2 | 57.2+0.7 290+04 31.2+13
IRM 303+03]390+1.3|949+14| 547+08 28.6+0.8 303+0.3
GroupDRO 377+07|421+16 | 95.7+0.5 | 585 +04 264+0.3 37.7+0.
VREx 375+1.1|430+05 | 957+ 15| 588 +04 262+1.0 37.5+1.1
IB_ERM 35,5 +04 | 486 +33|84.8+06| 563+1.1 208+ 0.6 355+04
IB_IRM 33.8+22|388+30|95.1+15]| 559+1.2 278+ 1.5 338+04
TCRI_HSIC | 62.8 £ 0.1 | 623+ 0.2 | 65.0 +04 | 63.4 + 0.2 1.2+ 0.2 62.3 + 0.2
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Table 15: Oracle Spurious—PACS Transfer Accuracy — model selection on held-out target validation set.
g\etest — Ctest-

Domains Domain Accuracy Statistics
Algorithm Cx A AxC P mean | std min
ERM 384+1.4]|434+19 ] 9594+06 | 59.2 26.0 | 384
IRM 62.8 +£0.1 | 53.9 £ 6.6 | 85.8 82 | 67.5 134 | 53.9
GroupDRO 400 £ 1.6 | 49.7+2.9 | 95.7 £ 0.6 | 61.8 24.3 | 40.0
VREx 55.8 £5.5 | 387+09 | 93.8+ 08| 6238 23.0 | 38.7
IB_ERM 53.1 +8.0 | 55.4 £ 5.7 | 935 £ 18 [ 67.3 18.5 | 53.1
IB_IRM 62.8 +£0.1 | 623+0.3 | 81.8+70]| 69.0 9.1 | 62.3
TCRI_HSIC | 64.0 £ 0.7 | 623+ 0.2 | 82.4 £ 5.7 | 69.5 9.1 | 62.3

A.4 Terra Incognita

The Terra Incognita dataset contains subsets of the Caltech Camera Traps dataset [Beery et al., 2018| defined
by [Gulrajani and Lopez-Paz, 2020]. Four domains represent different locations {L.100, L38, 143, L46} of
cameras in the American Southwest. There are 10 different species of wild animals {bird, bobcat, cat, coyote,
dog, empty, opossum, rabbit, raccoon, squirrel} (classes) to be predicted. Like Ahuja et al. [2021], we classify
this dataset as following the generative process in Figure 2¢, the Fully Informative Invariant Features (FIIF)
setting.

Table 16: Terra Incognita Hyperparameters. Additional hyperparameters provided in
https://github.com/olawalesalaudeen /tcri.
Algorithm | Hyperparameter | Default Range
All Learning Rate 1-3 10Uniform(74.5,72.5)
Batch Size 64 9 Uniform(3,9)
penalty weight 100 1oUniform(_1 5y
TCRL S annealing steps 500 1oUniform () 4

We use a ResNet-50 backbone [He et al., 2016]. ®q; and @y, are linear layers of size 2048 x 2048 that
are appended to the backbone. The predictors (classification hyperplanes) ., {61, 02, 05,04} are linear and
appended to ®4, and ® layers, respectively.

Hyperparameters: We do a random search to select hyperparameters using the same scheme as Gulrajani and Lopez-Paz
[2020] (https://github.com/facebookresearch/DomainBed). We select 5 hyperparameters with 3 random
restarts each to generate error bars.
We show transfer accuracies with both source and target domain validation for model selection in Tables
17-18. We find that TCRI outperforms all baselines except ERM on average and outperforms all baselines
in worst-case accuracy.
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Table 17: Terra Incognita Transfer Accuracy — model selection on held-out source validation set. £\egest —

Etest-
Domains Domain Accuracy Statistics

Algorithm L100 L38 L43 L46 Avg Std Min

ERM 436 +39 452+06 53.0+12 351+28]| 442+18 68+1.0 351+238
IRM 4394+ 33 35.7+£40 377+78 383+24| 389+37 54+£1.8 32.6+47
GroupDRO 53.8 +4.6 405+0.7 553+15 418+ 11| 478+09 77+09 399+0.7
VREx 488 +20 381+13 5444+06 390+14 ] 451+04 T70+£09 381+1.3
IB_ERM 46.1 +4.5 40.7£0.7 552+08 422+1.1| 460+14 64+08 393+1.1
IB_IRM 39.7+ 73 408 +23 347+43 329+26 | 37.0+£28 6.7+13 29.6+4.1
TCRI_HSIC | 54.6 £ 24 486+20 532+10 404+16]4924+03 61+11 40.4+1.6

Table 18: Oracle Terra Incognita Transfer Accuracy — model selection on held-out target validation set.
5\etest — €test-

Domains Domain Accuracy Statistics

Algorithm L100 L38 L43 L46 Avg Std Min

ERM 585 +18 520+13 59.2+02 420+£06 | 529 +0.8 7005 42.0+0.6
IRM 53.0£09 480+1.8 363+96 332+39| 426+40 96+1.7 30.8+54
GroupDRO 56.2 £3.0 4524+23 5H80x£02 433+0.7 | 50.7£1.0 6909 427+£1.2
VREx 432+ 15 493+12 415+£78 389+1.1 | 432+£20 6518 349+42
IB_ERM 556 £ 1.7 4724+ 11 53407 399+08| 49003 64+05 39908
IB_IRM 40.2 £8.2 319+ 11.8 294+44 297+38 | 328+£66 82+1.0 204+£75
TCRI_HSIC | 57.7+ 1.8 50.1+18 5414+06 43.0+04 | 51.2+0.1 5.8+ 0.7 43.0+ 0.4

B DAGs

Figure 4: Partial Ancestral Graph (PAG). Dashed edges indicate that the edge may or may not exist. The
combination of Y — Zgg — Zspu, and Y — Zgg, € = Zgg is not allowed.

B.1 On Valid DAGS:

We consider other edges that could be introduced to Figure 4 where Zqs /L Zgpu|Y, €, Zspu ML Y | Zyg, or
are not included in Figure 5. We then show that these edges either make the problem intractable or require
new assumptions about the generative process — note we do not discuss edges that induce a cycle, thus, are
invalid.

(i) e—Y: we cannot have a direct edge in either direction e between Y otherwise, Y is always dependent
on ¢ and the problem becomes intractable.

(ii) e — X: we cannot have a direct edge from e — X without making additional parametric assumptions
about the role of e in I'(Zqg, Zspu, €)-

(i) Zspu — Y: we cannot have both Zgz — Y and Zs,, — Y, since then, both mechanisms are domain
general. WLOG, we let Zg,, denote the features that never have domain-general mechanisms to Y.
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(iv) Y = Zygg = Zspu and Y — Zy, < e: conditioning on Zg, and/or Zs,, make Y dependent on e, so Y
is always dependent on e and the problem becomes intractable.

) 0 @ 0 @ (€
SONEN SO =2
(c)

(a) (b)

Figure 5: Generative Processes. Graphical model depicting the structure of our data-generating process -
shaded nodes indicate observed variables. X represents the observed features, Y represents observed targets,
and e represents domain influences. There is an explicit separation of domain-general Zj, and domain-
specific Zg,, features combined to generate observed X. Dashed edges indicate the possibility of an edge.

Table 19: Generative Processes and Sufficient Conditions for Domain-Generality

Graphs in Figure 5

(@) | (b) | ()
Zag 1L Zopu | 1Y, €} | v X

Identifying Zqg is necessary | v | v X

Table 20: Generative Processes and Sufficient Algorithms

Graphs in Figure 5
@) | )| (9
Solved by ERM | X X v
Solved by TCRI | v | vV v

B.2 Fully Informative Invariant Features

We briefly summarize Ahuja et al. [2021]’s results on minimax-optimality of Empirical Risk Minimization in
the Fully Informative Invariant Features setting (their Lemma 4). First, we informally state their assump-
tions.

Assumption 2: Linear structural equation model.
Assumption 3-4: Bounded Features.

Assumption 8: wq, partitions Z up to noise ny .

These assumptions are implied by our Assumption 4.1.

B.2.1 Proof Sufficiency of ERM [Ahuja et al., 2021]

If Assumptions 2, 4, and 8 hold, then there exists a classifier that puts a non-zero weight on the spurious
feature and continues to be Bayes optimal in all the training environments.
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Proof. Choose an arbitrary non-zero vector and derive a bound on the margin of (wgg, v), where wqg is
the true (optimal) linear predictor of ¥ from Z4,. Recall domain-general and domain-specific features
Zdg € Zdg, Zspu € Zspu, respectively. Let y* = sign(wqg - 2ag). The margin of (wqg, 7)) at point (zdg, Zspu)
with respect to y* is defined as:
Y* (wag - zag) +Y* (7 - Zspu)-
Using Cauchy-Schwartz inequality, we get

ly™ (7 - Zsrm)l =|y- 25pu| < HHVHZSPu”'

C

Since Zspy is bounded, one can set v sufficiently small enough to control y* (- Zspu). If ||7|| < 5555, then
|7 - Zspu| < §, where 2P satisfies that ||z|| < 2°"PVz € Z,,. From Assumption 8, 3¢ > 0 s.t.,

y* (wag - 2dg) > C.

Using |7 - zspu| < £

<3, the margin becomes

* * C
Yy (wdg : ng) + Yy (7 - Zspu) Z Cc— |’7 . Zspu| 2 5
From the above equation, it follows that sign ((wdg,w) - (2dg, zspu)) = sign ((wdg, 0) - (#dg, zspu))deg €
ng7 Zspu € Zspu-
Now, this condition is used to compute the error of a spurious classifier, i.e., based on (,7). Define
sou = 1 0 (Wae,y) o ™1, where I(-) is an indicator function that returns 1 if its input is > 0. The error
Gsp g Y

achieved by gspu is

The error achieved by gspu is then due to the noise in observed Y and is, therefore, optimal in all
domains. O

It follows from above that since gsp, is Bayes optimal in every domain, it is also the empirical risk
minimizer (ERM) as it minimizes the sum of risks across training domains.

C Proof of Proposition 4.5

Assume that @4,(X) and P, (X) are correlated with Y. Given Assumptions 4.1-4.2 and a representation
O = Py @ Pgpy that satisfies TIC, Pqq(X) = Zgs <= P satisfies TCRI.

Proof. ‘only if’. Assume that ®qe(X) = Zgs. By the Total Information Criterion, we have that ®g,,(X) =
Zspu- We observe the following paths from Zgz to Zgpu: (1) Zag = Y = Zspu, (1) Zag ¢+ € = Zgpu, and
(iii) Zgg = X — Zspu. Conditioning on Y, e blocks both paths (i) and path (ii); path (iii) contains a collider
(Zag and Zgp, are common causes of X), so this path is blocked when X is not in the conditioning set. So,
Zspu UL Zag | Y, e and therefore ®qq(X) 1L $epu(X) | Y, e, which completes this direction.

‘if’. Assume that ® satisfies TCRI. We proceed by contradiction. Let ® = [®4g; Pspu]. We consider the
following scenario for ®q, # Zgg.

Scenario 1 (causal aggregation): Assume that ®gx(X) C Zge. From TIC, we have that Z;g C Pypu(X),

where Z;g C Zgg is the subset of Zqg not captured by ®4,. Since ®qq(X) and Z;g are colliders on Y, given
both are subsets of Zqg, Pag(X) L Pspu(X)|Y, e, violating TCRI and giving a contradiction. So, Zqs C ®(X)
Scenario 2 (anticausal exclusion): Assume that ®q5(X) C Zspy. From TIC, we have that ZJ,, C ®gpu(X),
where ZSTpu C Zspy is the subset of Zg,, not captured by ®q,. From Assumption 4.2 (faithfulness), we have
that ®qq(X) L Pepu(X)|Y, €, violating TCRI and giving a contradiction. So, Zgpy ¢ Pag(X).
Combining scenarios 1-2, it follows that ®4u(X) = Zgs. O
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