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Lp-REGULARITY OF A GEOMETRICALLY NONLINEAR FLAT COSSERAT

MICROPOLAR MODEL IN SUPERCRITICAL DIMENSIONS

CHANG-YU GUO, MING-LUN LIU AND CHANG-LIN XIANG

Abstract. In a recent work [Ann. Inst. H. Poincaré C Anal. Non Linéaire 2024],

Gastel and Neff introduced an interesting system from a geometrically nonlinear flat

cosserat micropolar model and established interior regularity in the critical dimension.

Motived by this work, in this article, we establish both interior regularity and sharp L
p

regularity for their system in supercritical dimensions.

Mathematics Subject Classification 35B65 · 35J47 · 35G50

1. Introduction

Motivated by applications to a geometrically nonlinear flat Cosserat shell model in

continuum mechanics, Gastel and Neff [7] introduced the following interesting system:

DivS(∇m,R) = 0,(1.1)

∆R− ΩR · ∇R− skew (∇m ◦ S(∇m,R))R = 0,(1.2)

where the unknown functions (m,R) ∈ W 1,2(Bn,RN×SO(N)) with∇m,∇R ∈M2,n−2(Bn),

ΩR = −R∇RT ∈M2,n−2(Bn,Rn ⊗ so(N)),

S : RN×n × R
N×N → R

N×n is a mapping given in (2.1) and skew (∇m ◦ S(∇m,R)) is

defined by (2.2). Here, Bn is the unit ball in R
n and N > n.

This system couples a harmonic map type equation (1.2) with a uniformly elliptic

equation (1.1). In their main result, Gastel and Neff obtained the following interior

regularity result in the planar case, that is, n = 2 and N = 3.

Theorem A (Theorem 1.1, [7]). Every weak solution (m,R) ∈ W 1,2(B2,R3 × SO(3)) of

(1.1)-(1.2) (with n = 2, N = 3) is smooth.

As one easily observes, the function ΩR from (1.2) is the same as that in

(1.3) ∆R− ΩR · ∇R = 0,

which models harmonic mappings from Bn to SO(N) ⊂ R
N×N . In the planar case, that

is when n = 2, the regularity of harmonic mappings into manifolds was first obtained

by Morrey in his seminal work [18] on Plateau’s problem in Riemannian manifolds. In

particular, he showed that minimizing harmonic mappings are locally Hölder continuous

and thus are smooth when the Riemannian metric is smooth. This regularity result was

later extended to weakly harmonic mappings by Heléin in his celebrated work; see [12]
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for a comprehensive introduction on it. Partially building on Hélein’s idea, in another

significant work, Rivère [20] successfully rewrote the harmonic mapping equation (1.3) as

a conservation law, from which regularity and compactness follow routinely. An important

discovery of Rivière [20] is that the specific form of ΩR (as that of harmonic mappings)

is not really essential. The algebraic anti-symmetry of ΩR is sufficient for finding the

conservation law, based on earlier seminal work of Uhlenbeck [30]. We recommend the

interested readers to [21] for a comprehensive exploration of Rivière’s conservation law

approach.

Unfortunately, because of the appearance of an extra term skew (∇m ◦ S(∇m,R))R
in (1.2), the powerful conservation law approach of Heléin and Rivière does not work. The

key observation by Gastel and Neff [7] is that this extra term is indeed the product of a

gradient term ∇m, a divergence free vector field S(∇m,R) and a bounded term R, which

makes it enjoy better property than merely being in L1. Adapting the method of Rivière

and Struwe [22], Gastel and Neff succeeded in deriving local Hölder regularity and thus

also smoothness of weak solutions to (1.1)-(1.2).

As for the harmonic mapping equation (1.3), partial regularity results were known

since the fundamental work of Schoen and Uhlenebck [25], where an important ǫ-regularity

was established for minimizing harmonic mappings into manifolds. This work was later

extended to the case of stationary harmonic mappings into spheres by Evans [5] and into

general manifolds by Bethuel [2]. An alternative (but slightly more general) proof was

obtained later by Rivière and Struwe [22], partially based on observations from [20]. It

remains, however, open whether one can extend the conservation law approach of Rivière

[20] to study (partial) regularity of harmonic mappings in supercritical dimensions; see [10]

for some partial progress in this direction. It is then natural to ask whether one can derive

partial regularity or even sharp Lp regularity theory for weak solutions of (1.1)-(1.2) in

supercritical dimensions. Notice that, in [7, Remark 6.8], Gastel and Neff pointed out that

the proof for the critical dimension case does not directly extend to higher dimensions:

It is essential that we are working in the critical dimension n = 2 here, · · · , we would

not succeed in finding similarly good estimates in the corresponding Morrey spaces.

Note that in the case of (stationary) harmonic mappings, due to the monotonicity

formular, the gradient of a harmonic map lies in the Morrey spaceM2,n−2; see for instance

[22]. Thus for the latter question above, the natural Morrey spaces for a partial regularity

theory would be ∇m,∇R ∈M2,n−2.

Our main motivation of this paper is to provide an affirmative answer to the above

question. Our first main result concerns interior regularity of weak solutions.

Theorem 1.1 (Interior regularity). There exists some ǫ = ǫ(n,N) > 0 such that if (m,R) ∈
W 1,2(Bn,RN × SO(N)) is a weak solution of (1.1)-(1.2) with

‖∇m‖M2,n−2(Bn) ≤ ε and ‖∇R‖M2,n−2(Bn) ≤ ε,

then it is smooth in B 1
2
.

It should be noticed that Theorem 1.1 was not the first partial regularity result for

weak solutions of the nonlinear flat Cosserat micropolar model. Indeed, Gastel [6] al-

ready found interesting connections between Cosserat and harmonic maps and did partial
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regularity for minimizers in dimension 3. Later, Li and Wang [16] established the par-

tial regularity theory for stationary solutions in dimension 3 using the classical regularity

methods for stationary harmonic mappings (other than the method of Rivière and Struwe

[22]). The monotonicity formula there implies that for stationary solutions, the Morrey

regularity assumption as in Theorem 1.1 is satisfied. As was pointed out in [7], the main

difficulty to establish Theorem 1.1 is the (local) Hölder continuity of weak solutions. In

the proof of Theorem 1.1, we follow closely the idea of Gaste and Neff [7] and thus relies on

ideas of Rivière and Struwe [22], except that we refine some of the estimates using Hardy-

BMO inequalities (see Lemma 2.4 below). Once the Hölder continuity were established,

smoothness follows routinely.

Motivated by applications in the associated heat flow and energy identity, Lp-regularity

theory for harmonic mapping type equations has attracted great interest in the past

decades; see for instance [4, 14, 15, 17, 29, 24, 27, 26, 19, 32, 31] and the references

therein. Motivated by these works and potential applications, we aim at obtaining opti-

mal Lp-regularity estimates for the corresponding inhomogeneous system:

DivS(∇m,R) = 0,(1.4)

∆R− ΩR · ∇R− skew (∇m ◦ S(∇m,R))R = f,(1.5)

where the inhomogeneous term f ∈ Lp(Bn,RN×N).

Our second main result provides optimal Lp-regularity estimates for weak solutions of

(1.4)-(1.5).

Theorem 1.2 (Lp-regularity). Suppose f ∈ Lp(Bn,RN×N) for some p ∈ (n
2
,∞). There

exists some ǫ = ǫ(n,N) > 0 such that if (m,R) ∈ W 1,2(Bn,RN × SO(N)) is a weak

solution of (1.4)-(1.5) with

‖∇m‖M2,n−2(Bn) ≤ ε and ‖∇R‖M2,n−2(Bn) ≤ ε,

then (m,R) ∈ W 2,p(B 1
2
). Furthermore, there exists some C = C(n,N, p) > 0 such that

(1.6) ‖m‖W 2,p(B 1
2
) + ‖R‖W 2,p(B 1

2
) ≤ C

(
‖f‖Lp(B1) + 1

)2
.

As an immediate consequence of Theorem 1.2, we know that if f = 0, then the solution

(m,R) of the system (1.1)-(1.2) belongs to W 2,p
loc (B

n) for any p ∈ (1,∞).

The idea for the proof of Theorem 1.2 dates back to Sharp and Topping [27], but

with extra modifications from the recent works [26, 11, 9]. We will follow closely the

presentation by Guo-Wang-Xiang [9] using a finitely iteration method. The extra constant

1 appearing on the right hand side of (1.6) comes from the fact that

|∇m| − 1 . |S(∇m,R)| . |∇m|+ 1

and thus it cannot be removed.

This paper is organized as follows. After the introduction, we collect all the necesssary

auxillary results in Section 2. In Section 3, we prove Theorem 1.1 and in Section 4, we

prove Theorem 1.2.

Our notations are standard. By A . B we mean there exists a universal constant

C > 0 such that A ≤ CB.
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2. Preliminaries

2.1. Operators on matrices. For a matrix A = (aij)N×N ∈ R
N×N , we denote A =

(A1| · · · |AN), where Ai are the column vectors. The projection operator πn : RN×N →
R
N×n (on the first n columns) is defined by

πn(A) := π(A1| · · · |AN) = (A1| · · · |An) =



a11 · · · a1n
...

. . .
...

aN1 · · · aNn



N×n

.

The operator P : RN×N → R
N×N is defined by

P(A) :=
√
µ1devsym(A) +

√
µ2skew(A) +

√
κ
tr(A)

N
1N ,

where µ1, µ2 and κ are some positive constants, and we use

sym(A) =
1

2
(A+ AT ), skew(A) =

1

2
(A−AT )

to represent the symmetric and skew-symmetric parts of A, respectively; the first term

devsym(A) in the definition of P(A) is thus defined as

devsym(A) =
1

2
(A+ AT )− tr(A)

N
1N = sym(A)− tr(A)

N
1N

so as to denote the trace free deviatoric part. As a result, there holds

A = devsym(A) + skew(A) +
tr(A)

N
1N = sym(A) + skew(A),

which is an orthonormal decomposition for A.

Finally, we define

(2.1) S(∇m,R) := πn
(
2RP2

(
RT (∇m|0)− (1n|0)

))

and introduce an operation ◦ : RN×n × R
N×n → R

N×N by

AN×n ◦BN×n :=
1

2
ABT ∈ R

N×N .

Then we have

(2.2) skew (∇m ◦ S(∇m,R)) := 1

4

(
∇m (S(∇m,R))T − S(∇m,R)∇mT

)
.

2.2. Morrey spaces and Riesz operators. Let 1 ≤ p < ∞ and 0 ≤ s ≤ n. The Morrey

space Mp,s(U) consists of functions u ∈ Lp(U) such that

‖u‖Mp,s(U) ≡ sup
x∈U,0<r<diam(U)

r−s/p‖u‖Lp(Br(x)∩U) <∞.

The weak Morrey space Mp,s
∗ (U) consists of functions f ∈ Lp∗(U) such that

‖f‖Mp,s
∗ (U) ≡ sup

x∈U,0<r<diam(U)

r−s/p‖f‖Lp
∗(Br(x)∩U) <∞.

The space Mp,s
1 (U) consists of functions in Mp,s(U) whose weak gradient belongs to

Mp,s(U).

We need the following Hölder’s inequalities in Morrey spaces; see [9].
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Proposition 2.1. Let 1 ≤ p1, p2 ≤ ∞ and 0 ≤ q1, q2 ≤ n be such that

1

p
=

1

p1
+

1

p2
≤ 1 and q =

p

p1
q1 +

p

p2
q2.

Then, there hold

(2.3) ‖fg‖Mp,q(U) ≤ ‖f‖Mp1,q1 (U)‖g‖Mp2,q2 (U).

and

(2.4) ‖fg‖Mp,q
∗ (U) ≤ ‖f‖Mp1,q1

∗ (U)‖g‖Mp2,q2
∗ (U).

Let Iα(x) = cα,n|x|α−n, 0 < α < n, be the standard Riesz potentials in R
n. The fol-

lowing two propositions are well-known; see Theorem 3.1, Proposition 3.2 and Proposition

3.1 of Adams [1].

Proposition 2.2 ([1]). Let 0 < α < n and 0 ≤ λ < n. For 1 ≤ p < (n−λ)/α, 1
p̃
= 1

p
− α

n−λ
,

we have

(1) For every 1 < p < (n− λ)/α,

Iα :Mp,λ(Rn) →M p̃,λ(Rn)

is a bounded linear operator.

(2) For p = 1,

Iα :M1,λ(Rn) →M p̃,λ
∗ (Rn)

is also a bounded linear operator.

Proposition 2.3 ([1]). Let 0 < α < β ≤ n and 1 < p < ∞. There exists a constant

C = C(α, β, n, p) > 0 such that for f ∈M1,n−β(Rn) ∩ Lp(Rn), there holds

‖Iαf‖
L

pβ
β−α (Rn)

≤ C‖f‖
α
β

M1,n−β(Rn)
‖f‖1−

α
β

Lp(Rn).

2.3. Hardy-BMO inequality. As an application of the Hardy-BMO duality and div-curl

lemma (see [3, 5, 23]), we have the following Hardy-BMO inequality.

Lemma 2.4 (Hardy-BMO inequality). For any p ∈ (1,∞) and α ∈ (1, n), there exists a

constant C = C(n, p, α) > 0 such that the following holds:

(1). For all ballsBr(x0) ⊂ R
n, and functions a ∈Mα,n−α

1 (B2r(x0)), Γ ∈ Lq(Br(x0),R
n),

b ∈ W 1,p
0 ∩ L∞(Br(x0)) with

1
p
+ 1

q
= 1 and Div(Γ) = 0 in the weak sense on Br(x0), we

have ∣∣∣∣
ˆ

Br(x0)

〈∇a,Γ〉bdx
∣∣∣∣ ≤ C ‖Γ‖Lq(Br(x0))

‖∇b‖Lp(Br(x0))‖∇a‖Mα,n−α(B2r(x0)).

(2). For all balls Br(x0) ⊂ R
n, and functions ϕ ∈ C∞

0 (Br(x0)), Γ ∈ Lq(Br(x0),R
n)

and b ∈ Mα,n−α
1 ∩ L∞(B2r(x0)) with 1

p
+ 1

q
= 1 and Div(Γ) = 0 in the weak sense on

Br(x0), we have
∣∣∣∣
ˆ

Br(x0)

〈∇ϕ,Γ〉bdx
∣∣∣∣ ≤ C ‖Γ‖Lq(Br(x0))

‖∇ϕ‖Lp(Br(x0))‖∇b‖Mα,n−α(B2r(x0)).

We shall use the following technical inequality.

Lemma 2.5. If F ∈ M2,n−2(Rn,Rn) is a divergence free vector field, g ∈ W 1,2(Rn) and

∇g ∈M2,n−2(Rn), then for each compact K ⊂ R
n, we have

‖F · ∇g‖2H−1(K) ≤ C‖F‖L2‖F‖M2,n−2‖∇g‖L2‖∇g‖M2,n−2.
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Proof. By Corollary 1.8 in [26], we have

‖F · ∇g‖2H−1(K) ≤ C‖F · ∇g‖2h1‖F · ∇g‖2M1,n−2 .

The result follows then from the div-curl lemma and Hölder’s inequality in Morrey spaces.

�

2.4. Hodge decomposition. We shall use the following well-known Hodge decomposition

for Lp integrable vector fields; see for instance [13, Chapter 10.5].

Lemma 2.6 ([13]). Let p ∈ (1,∞). Every vector field V ∈ Lp(Br(x0),R
n), Br(x0) ⊂ R

n,

can be uniquely decomposed as

V = ∇a+∇⊥b+ h,

where a ∈ W 1,p(Br(x0)), b ∈ W 1,p
0 (Br(x0),

∧2
R
n) with db = 0, and h ∈ C∞(Br(x0),R

n)

is harmonic. Moreover, we have the estimate

‖a‖W 1,p(Br(x0)) + ‖b‖W 1,p(Br(x0)) + ‖h‖Lp(Br(x0)) ≤ C‖V ‖Lp(Br(x0)).

Here ∇⊥b := (δb)♯ ∈ Lp(Br(x0),R
n), where δ is the formal conjugate operator of d and ♯

is the sharp operator from
∧1

R
n to R

n.

We will also use the following“nonlinear Hodge decomposition”for a connection matrix

in certain Morrey space, proved by Rivière and Struwe [22].

Lemma 2.7 ([22]). There exists ε(n,N) > 0 such that for every Ω ∈ M2,n−2(Bn,RN ⊗
so(N)) with

‖Ω‖2M2,n−2(Bn) < ε(n,N),

there exist P ∈ W 1,2(Bn, SO(N)), ξ ∈ W 1,2(Bn, so(N)⊗
∧2

R
n) such that

−P−1∇P + P−1ΩP = ∇⊥ξ in Bn

and

‖∇P‖2M2,n−2(Bn) + ‖∇ξ‖2M2,n−2(Bn) ≤ C‖Ω‖2M2,n−2(Bn) ≤ Cε(n,N).

3. Interior regularity

In this section, we shall prove Theorem 1.1. The key step towards it is the following

Hölder continuity for weak solutions of (1.1)-(1.2).

Theorem 3.1. There exists some ǫ = ǫ(n,N) > 0 such that if (m,R) ∈ W 1,2(Bn,RN ×
SO(N)) is a weak solution of (1.4)-(1.5) with

‖∇m‖M2,n−2(Bn) ≤ ε and ‖∇R‖M2,n−2(Bn) ≤ ε,

then there exists β > 0 such that m and R are C0,β-Hölder continuous on B1/2.

Proof. Fix any x0 ∈ Bn and write Br for the ball Br(x0) ⊂ Bn, where r is small enough

such that B2r(x0) ⊂ Bn. Assume ε ∈ (0, ε0) for some ε0 = ε0(n,N) > 0 to be determined

later.

Note that

‖∇m‖M2,n−2(Bn) ≤ ε and ‖ΩR‖M2,n−2(Bn) ≈ ‖∇R‖M2,n−2(Bn) ≤ ε.
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According to Lemma 2.7, there exist P ∈ W 1,2(Bn, SO(N)), ξ ∈ W 1,2(Bn, so(N)⊗∧2
R
n)

such that

−P−1∇P + P−1ΩRP = ∇⊥ξ in Bn

and

‖∇P‖2M2,n−2(Bn) + ‖∇ξ‖2M2,n−2(Bn) ≤ C‖ΩR‖2M2,n−2(Bn) ≤ Cε(n,N).

Then direct computation shows

(3.1)

Div(P−1∇R) = ∇(P−1) · ∇R + P−1∆R

= −P−1(∇P )P−1 · ∇R + P−1ΩR · ∇R + P−1skew (∇m ◦ S(∇m,R))R
= P−1skew (∇m ◦ S(∇m,R))R + (∇⊥ξ)P−1∇R.

By the Hodge decomposition, Lemma 2.6, we may find functions a ∈ W 1,2(Br,R
N×N),

b ∈ W 1,2
0 (Br,R

N×N ⊗
∧2

R
n) and a component-wise harmonic h ∈ C∞(Br,R

N×N ⊗ R
n)

such that

P−1∇R = ∇a+∇⊥b+ h in Br.

Define an operator Div⊥ : Rn →
∧2

R
n as Div⊥V := d(V ♭), where ♭ is the flat operator

from R
n to

∧1
R
n. Then for any b ∈

∧2
R
n with db = 0 we have

Div⊥∇⊥b = d(∇⊥b)♭ = d ∗ d ∗ b = ∆Rnb,

Div⊥∇ = d ◦ ♭ ◦ ♯ ◦ d = d ◦ d = 0

and

Div∇⊥ = Div ◦ (♯ ∗ d∗) = ∗d ∗ ♭♯ ∗ d∗ = 0.

Using operators Div and Div⊥ to act on both sides of the equation, we obtain

(3.2) ∆a = Div(P−1∇R) = P−1skew (∇m ◦ S(∇m,R))R + (∇⊥ξ)P−1∇R
and

(3.3) ∆b = d(P−1dR) = dP−1 ∧ d(R− R0),

for any constant R0 ∈ R
N×N .

To ease our notation, we set λ = n+1
n
, whose Hölder conjugate index is n+1. In order

to estimate ‖∇a‖Lλ(Br) and ‖∇⊥b‖Lλ(Br), we define

T :=
{
ϕ ∈ C∞

0 (Br,R
N×N) : ‖∇ϕ‖Ln+1(Br) ≤ 1

}
.

Then

(3.4)

‖∇a‖Lλ(Br) . sup
ϕ∈T

ˆ

Br

〈∇a,∇ϕ〉 dx

. sup
ϕ∈T

ˆ

Br

〈
P−1skew (∇m ◦ S(∇m,R))R + (∇⊥ξ)P−1∇R,−ϕ

〉
dx.

Note that n−λ
λ

=
n−n+1

n
n+1
n

= n2−n−1
n+1

, 2−λ
2λ

= n−1
2n+2

. Write ξ = (ξij), P
−1 = (P−1

ij ), R = (Rij)

and ϕ = (ϕij) and observe that
〈
(∇⊥ξ)P−1∇R,ϕ

〉
=
〈
∇⊥ξij ,∇Rkl

〉
P−1
jk ϕil.
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Since Div(∇⊥ξij) = 0, we may apply Lemma 2.4 (1) with Γ = ∇⊥ξij ∈ L2, a = Rkl ∈
Mλ,n−λ

1 and b = P−1
jk ϕil ∈ W 1,2

0 ∩ L∞ to obtain

(3.5)

ˆ

Br

〈
(∇⊥ξ)P−1∇R,ϕ

〉
dx

.‖∇R‖Mλ,n−λ(B2r)‖∇⊥ξ‖L2(Br)‖∇(P−1)‖L2(Br)‖ϕ‖L∞(Br)

+ ‖∇R‖Mλ,n−λ(B2r)‖∇⊥ξ‖L2(Br)‖∇ϕ‖Ln+1(Br)‖1‖L 2n+2
n−1 (Br)

‖P−1‖L∞(Br)

.‖∇R‖Mλ,n−λ(B2r) · r
n−2
2 ε · r n−2

2 ε · ‖∇ϕ‖Ln+1(Br)r
1− n

n+1

+ ‖∇R‖Mλ,n−λ(B2r) · r
n−2
2 ε · r n(2−λ)

2λ ‖∇ϕ‖Ln+1(Br)

.εr
n−λ
λ ‖∇R‖Mλ,n−λ(B2r)‖∇ϕ‖Ln+1(Br),

where in the second inequality we used the estimates

‖∇⊥ξ‖L2(Br) . r
n−2
2 ‖∇ξ‖M2,n−2(Br) . εr

n−2
2 ,

‖∇(P−1)‖L2(Br) . ‖∇P‖L2(Br) . r
n−2
2 ‖∇P‖M2,n−2(Br) . εr

n−2
2 .

Similarly, since Div(S(∇m,R)) = 0, we may apply Lemma 2.4 (1) with Γ = S(∇m,R)ks ∈
L2, a = mjs ∈ Mλ,n−λ

1 and b = P−1
ij Rklϕil ∈ W 1,2

0 ∩ L∞ to obtain

(3.6)

ˆ

Br

〈
P−1skew (∇m ◦ S(∇m,R))R,ϕ

〉
dx

. ‖∇m‖Mλ,n−λ(B2r)‖S(∇m,R)‖L2(Br)‖∇P‖L2(Br)‖ϕ‖L∞(Br)

+ ‖∇m‖Mλ,n−λ(B2r)‖S(∇m,R)‖L2(Br)‖∇ϕ‖L2(Br)

+ ‖∇m‖Mλ,n−λ(B2r)‖S(∇m,R)‖L2(Br)‖∇R‖L2(Br)‖ϕ‖L∞(Br)

. r
n(2−λ)

2λ ‖∇m‖Mλ,n−λ(B2r)‖S(∇m,R)‖L2(Br)‖∇ϕ‖Ln+1(Br).

Note that the definition of S(∇m,R) implies that there exists a constant C such that

(3.7) C−1 (|∇m| − 1) ≤ |S(∇m,R)| ≤ C (|∇m|+ 1) .

Then it follows

(3.8)

‖S(∇m,R)‖L2(Br) ≤ C
(
‖∇m‖L2(Br) + ‖1‖L2(Br)

)

≤ C
(
r

n−2
2 ‖∇m‖M2,n−2(B2r) + r

n
2

)

≤ Cr
n−2
2 (r + ε),

and

(3.9) C−1‖∇m‖Lλ(Br) − Cr
n
λ ≤ ‖S(∇m,R)‖Lλ(Br) ≤ C‖∇m‖Lλ(Br) + Cr

n
λ .

Substituting (3.8) into (3.6) gives

(3.10)

ˆ

Br

〈
P−1skew (∇m ◦ S(∇m,R))R,ϕ

〉
dx

≤ Cr
n−λ
λ (r + ε)‖∇m‖Mλ,n−λ(B2r)‖∇ϕ‖Ln+1(Br).

For convenience, we define

Φ(x0, s) := ‖∇m‖Mλ,n−λ(Bs(x0)) + ‖∇R‖Mλ,n−λ(Bs(x0)).
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Combining (3.4), (3.5) with (3.10), we conclude

(3.11) ‖∇a‖Lλ(Br) ≤ Cr
n−λ
λ (r + ε)Φ(x0, 2r).

Now we estimate the Ln+1-norm of ∇⊥b using (3.3). Suppose b =
∑

1≤s<t≤n bstdx
s ∧

dxt, dP−1 = ∂sP
−1dxs, dR = ∂tRdx

t. Then we have

∆bst = ∂sP
−1∂tR− ∂tP

−1∂sR = ∇⊥
stP

−1 · ∇R,
where∇⊥

st := (0, · · · , 0,−∂t, 0, · · · , 0, ∂s, 0, · · · , 0) for 1 ≤ s < t ≤ n. Note that Div∇⊥
stP

−1 =

0 for any 1 ≤ s < t ≤ n. Then we use Lemma 2.4 (1) with b = ϕ ∈ C∞
0 , Γ = ∇⊥

st(P
−1
ij ) ∈

Lλ and a = Rjk ∈ Mλ,n−λ
1 ∩ L∞ as follows:

‖∇bst‖Lλ(Br) . sup
ϕ∈T

ˆ

Br

〈∇bst,∇ϕ〉 dx

. sup
ϕ∈T

ˆ

Br

−∆bstϕdx

. sup
ϕ∈T

ˆ

Br

−∇⊥
stP

−1 · ∇Rϕdx

. sup
ϕ∈T

‖∇R‖Mλ,n−λ(B2r)‖∇ϕ‖Ln+1(Br)‖∇P‖Lλ(Br)

. εr
n−λ
λ ‖∇R‖Mλ,n−λ(B2r).

where in the last inequality we used the estimate

‖∇P‖Lλ(Br) . r
n(2−λ)

2λ ‖∇P‖L2(Br) . r
n(2−λ)

2λ
+n−2

2 ‖∇P‖M2,n−2(Br) . εr
n−λ
λ .

Thus

(3.12) ‖∇⊥b‖Lλ(Br) ≤ εr
n−λ
λ ‖∇R‖Mλ,n−λ(B2r)

For the harmonic term h, standard estimate for harmonic functions implies that for

any 0 < ρ < r, there holds

(3.13)

ˆ

Bρ

|h|λdx ≤ C
(ρ
r

)n ˆ

Br

|h|λdx.

Combining (3.11), (3.12) with (3.13), we infer

(3.14)

‖∇R‖Lλ(Bρ) . ‖P−1∇R‖Lλ(Bρ)

. ‖h‖Lλ(Bρ) + ‖∇a‖Lλ(Bρ) + ‖∇⊥b‖Lλ(Bρ)

.
(ρ
r

)n
λ ‖h‖Lλ(Br) + ‖∇a‖Lλ(Br) + ‖∇⊥b‖Lλ(Br)

.
(ρ
r

)n
λ ‖∇R‖Lλ(Br) + r

n−λ
λ (r + ε)Φ(x0, 2r)

+ εr
n−λ
λ ‖∇R‖Mλ,n−λ(B2r)

.
(ρ
r

)n
λ ‖∇R‖Lλ(Br) + (r + ε)r

n−λ
λ Φ(x0, 2r).

It remains to estimate ‖∇m‖Lλ(Br). Applying the Hodge decomposition to the diver-

gence free matrix S(∇m,R) ∈ R
N×1 ⊗ R

n, we obtain

(3.15) πn
(
2RP2

(
RT (∇m|0)− (1n|0)

))
= ∇⊥α+ χ,
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where α ∈ W 1,2
0 (Br,R

N×1 ⊗ ∧2
R
n) and χ ∈ C∞(Br,R

N×1 ⊗ R
n) is (component-wise)

harmonic. Due to (1.1), we do not have terms of the form ∇ζ on the right side.

For convenience, we define a linear map PR as ξ 7→ 2RP(RT ξ). Using operator Div⊥

to act on both sides of the equation, we obtain

(3.16)

∆α = Div⊥∇⊥α

= Div⊥
[
πn(PR(∇m|0)− 2RP2(1n|0))

]

= dPR ∧ dm−Div⊥
[
πn(2RP

2(1n|0))
]
.

Similar as the previous case, set U :=
{
ψ ∈ C∞

0 (Br,R
N×1 ⊗

∧2
R
n) : ‖∇⊥ψ‖Ln+1(Br) ≤ 1

}
.

It follows then from Lemma 2.4 (2) and Poincaré’s inequality that

(3.17)

‖∇⊥α‖Lλ(Br) . sup
ψ∈U

ˆ

Br

〈
∇⊥α,∇⊥ψ

〉
dx

= sup
ψ∈U

ˆ

Br

(〈
(dPR)m,∇⊥ψ

〉
−
〈
πn(2(R−RBr)P

2(1n|0)),∇⊥ψ
〉)
dx

. sup
ψ∈U

‖∇⊥ψ‖Ln+1(Br)‖dPR‖Lλ(Br)‖∇m‖Mλ,n−λ(B2r)

+ sup
ψ∈U

‖∇⊥ψ‖Ln+1(Br)‖R− RBr‖Lλ(Br)

. sup
ψ∈U

[
‖∇⊥ψ‖Ln+1(Br)

(
‖∇R‖Lλ(Br)‖∇m‖Mλ,n−λ(B2r) + r‖∇R‖Lλ(Br)

)]

.
(
εr

n−λ
λ ‖∇m‖Mλ,n−λ(B2r) + r

n
λ‖∇R‖Mλ,n−λ(B2r)

)

. (r + ε)r
n−λ
λ Φ(x0, 2r),

where in the third inequality we used the estimate

‖∇R‖Lλ(Br) . r
n(2−λ)

2λ ‖∇R‖L2(Br) . r
n(2−λ)

2λ
+n−2

2 ‖∇R‖M2,n−2(Br) . εr
n−λ
λ .

Returning to (3.9), by (3.17) we have

(3.18)

‖∇m‖Lλ(Bρ) . ‖χ‖Lλ(Bρ) + ‖∇⊥α‖Lλ(Bρ) + ρ
n
λ

.
(ρ
r

)n
λ ‖χ‖Lλ(Br) + ‖∇⊥α‖Lλ(Br) + ρ

n
λ

.
(ρ
r

)n
λ ‖∇m‖Lλ(Br) + (ε+ r)r

n−λ
λ Φ(x0, 2r) + ρ

n
λ .

Combining (3.14) with (3.18), we conclude

ρ−
n−λ
λ

(
‖∇m‖Lλ(Bρ) + |∇R‖Lλ(Bρ)

)

. ρr−
n
λ

(
‖∇m‖Lλ(Br) + |∇R‖Lλ(Br)

)
+ (ε+ r)

(
r

ρ

)n−λ
λ

Φ(x0, 2r) + ρ

.

(
ρ

r
+ (ε+ r)

(
r

ρ

)n−λ
λ

)
Φ(x0, 2r) + ρ.
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We may assume r ≤ ε ≤ ε0, where ε0 will be determined soon. Adding ρ on both

sides leads to the estimate

(3.19)

ρ−
n−λ
λ

(
‖∇m‖Lλ(Bρ) + |∇R‖Lλ(Bρ)

)
+ ρ

≤ C0

(
ρ

r
+ (ε+ r)

(
r

ρ

)n−λ
λ

)
(Φ(x0, 2r) + 2r)

for suitable positive constant C0 that depends only on the data.

Now we fix ρ = θr, θ = 1
8C0

, and ε0 =
1
2
(8C0)

−n
λ . Then (3.19) gives

(3.20) (θr)−
n−λ
λ

(
‖∇m‖Lλ(Bθr) + |∇R‖Lλ(Bθr)

)
+ θr ≤ 1

4
(Φ(x0, 2r) + 2r) ,

which holds for all Bθr(x0) and B2r(x0) ⊂ Bn. Clearly we can replace B2r(x0) with any

Bs(y0) ⊂ Bn containing B2r(x0), provided that s ≤ ε. Thus (3.20) implies

(θr)−
n−λ
λ

(
‖∇m‖Lλ(Bθr(x0)) + |∇R‖Lλ(Bθr(x0))

)
+ θr ≤ 1

4
(Φ(y0, s) + s) ,

which is valid for all r, s, x0, y0 such that B2r(x0) ⊂ Bs(y0) ⊂ Bn. Note that the family of

balls {Bθr(x0)} forms an open cover of B θs
2
(y0). Thus we can take the supremum over all

admissible Br(x0) to find

(3.21) Φ(y0,
θs

2
) +

θs

2
≤ 1

2
(Φ(y0, s) + s) .

Setting Ψ(y0, r) := Φ(y0, r) + r and then iterating (3.21), we obtain

Ψ(y0,

(
θ

2

)k
s) ≤ 2−kΨ(y0, s) for all k ∈ N.

For r ≈
(
θ
2

)k
s, we select k ≈ log(r/s)

log(θ/2)
. Then 2−k ≈ (r/s)

log 2
log(2/θ) =: (r/s)β. This implies

that for all r ≤ s ≤ ε0, we have the estimate

Ψ(y0, r) ≤ Crβs−βΨ(y0, s).

We may choose s = s0 > 0, depending only on the data, such that for all r ≤ s0/2, there

holds

Φ(y0, r) ≤ Ψ(y0, r) ≤ Crβs−β0 Ψ(y0, s0),

which gives

∇m,∇R ∈Mλ,n−λ+λβ
loc (Bn).

Finally, Morrey’s Dirichlet growth theorem (see for instance [8]) implies (m,R) ∈ C0,β
loc .

The proof of Theorem 3.1 is thus complete. �

Proof of Theorem 1.1. With Theorem 3.1 at hand, the proof follows directly from that of

Gastel-Neff [7, Section 6.2]. �

4. Lp regularity theory

In this section, we shall prove Theorem 1.2. The proof relies on ideas from earlier

works on similar problems in [27, 26, 11, 9]. In the first step, we show a quantitative

Hölder continuity result for weak solutions of (1.4)-(1.5).

Proposition 4.1. Under the same assumptions as Theorem 1.2, when n
2
< p < n, we have

(m,R) ∈ C0,γ(B1/2,R
N × SO(N)), where γ = 2 − n/p ∈ (0, 1). Moreover, there exists
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some C = C(n,N, p) > 0 such that

(4.1) [m]C0,γ (B1/2) + [R]C0,γ (B1/2) ≤ C
(
ε+ ‖f‖Lp(B1)

)
.

Proof. Similar to the proof of Theorem 3.1, we write Br for a fixed ball Br(x0) ⊂ B1/2,

where r is small enough such that B2r(x0) ⊂ Bn.

Note that

‖∇m‖M2,n−2(Bn) ≤ ε and ‖ΩR‖M2,n−2(Bn) ≈ ‖∇R‖M2,n−2(Bn) ≤ ε.

According to Lemma 2.7, there exist P ∈ W 1,2(Bn, SO(N)), ξ ∈ W 1,2(Bn, so(N)⊗
∧2

R
n)

such that

−P−1∇P + P−1ΩRP = ∇⊥ξ in Bn

and

‖∇P‖2M2,n−2(Bn) + ‖∇ξ‖2M2,n−2(Bn) ≤ C‖ΩR‖2M2,n−2(Bn) ≤ Cε(n,N).

A straightforward computation gives

(4.2)

Div(P−1∇R) = ∇(P−1) · ∇R + P−1∆R

=− P−1(∇P )P−1 · ∇R + P−1ΩR · ∇R + P−1skew (∇m ◦ S(∇m,R))R + P−1f

=P−1skew (∇m ◦ S(∇m,R))R + (∇⊥ξ)P−1∇R + P−1f

By the Hodge decomposition, Lemma 2.6, there exist a ∈ W 1,2(Br,R
N×N), b ∈

W 1,2
0 (Br,R

N×N ⊗
∧2

R
n) and a component-wise harmonic h ∈ C∞(Br,R

N×N ⊗R
n) such

that

(4.3) P−1∇R = ∇a+∇⊥b+ h in Br.

Then a and b satisfy

(4.4) ∆a = Div(P−1∇R) = P−1skew (∇m ◦ S(∇m,R))R + (∇⊥ξ)P−1∇R + P−1f,

and

(4.5) ∆b = Div⊥(P−1∇R) = dP−1 ∧ dR = dP−1 ∧ d(R− R0)

for any constant R0 ∈ R
N×N .

As in the proof of Theorem 3.1, let T :=
{
ϕ ∈ C∞

0 (Br,R
N×N) : ‖∇ϕ‖Ln+1(Br) ≤ 1

}

and set λ = n+1
n
. Then, we have

‖∇a‖Lλ(Br) . sup
ϕ∈T

ˆ

Br

〈∇f,∇ϕ〉 dx

. sup
ϕ∈T

ˆ

Br

〈
P−1skew (∇m ◦ S(∇m,R))R + (∇⊥ξ)P−1∇R + P−1f,−ϕ

〉
dx.

Note that n + 1
n+1

− n
p
= n−λ

λ
+ 2 − n

p
= n−λ

λ
+ γ. Using Hölder’s inequality and

Sobolev’s inequality, we deduce

(4.6)

ˆ

Br

〈
P−1f, ϕ

〉
dx . ‖P‖L∞(Br)‖f‖Lp(Br)‖1‖L p

p−1 (Br)
‖ϕ‖L∞(Br)

. ‖f‖Lp(Br) · rn(1−
1
p) · r 1

n+1‖∇ϕ‖Ln+1(Br)

. r
n−λ
λ

+γ‖f‖Lp(Br)‖∇ϕ‖Ln+1(Br).
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As in the previous proof, we define

Φ(x0, s) := ‖∇m‖Mλ,n−λ(Bs(x0)) + ‖∇R‖Mλ,n−λ(Bs(x0)).

Combining (4.6) with (3.5) and (3.10), we infer

(4.7) ‖∇a‖Lλ(Br) ≤ Cr
n−λ
λ

(
(r + ε)Φ(x0, 2r) + rγ‖f‖Lp(Br)

)
.

Combining (4.7) with (3.12) and (3.13), we conclude

‖∇R‖Lλ(Bρ) ≤ C
(ρ
r

)n
λ ‖∇R‖Lλ(Br) + Cr

n−λ
λ

(
(r + ε)Φ(x0, 2r) + rγ‖f‖Lp(Br)

)
.

This together with (3.18) gives

(4.8)

ρ−
n−λ
λ

(
‖∇m‖Lλ(Bρ) + |∇R‖Lλ(Bρ)

)
+ ρ

≤Cρr−n
λ

(
‖∇m‖Lλ(Br) + |∇R‖Lλ(Br)

)

+ C

(
r

ρ

)n−λ
λ (

(r + ε)Φ(x0, 2r) + rγ‖f‖Lp(Br)

)
+ Cρ

≤C0

(
ρ

r
+ (ε+ r)

(
r

ρ

)n−λ
λ

)
Φ(x0, 2r) + C0

(
r

ρ

)n−λ
λ

rγ‖f‖Lp(B1) + C0ρ

for some C0 depending only on the data.

Now select ε small enough such that (2ε)
λ
n = 1

2
(2C0)

2
γ−1 . Then let ρ = θr, r ≤ ε and

θ ∈
(
(2ε)

λ
n , (2C0)

2
γ−1

)
. It follows

C0

(
ρ

r
+ (ε+ r)

(
r

ρ

)n−λ
λ

)
≤ C0θ

(
1 + 2εθ−

n
λ

)
≤ 2C0θ ≤ θ

γ+1
2 .

This together with (4.8) gives

Φ(x0, θr) + θr ≤ θ
γ+1
2 (Φ(x0, 2r) + 2r) + C1r

γ‖f‖Lp(B1),

where C1 is a constant depending only on the data. By a standard iteration argument,

we eventually obtain

Φ(x0, θr) + θr ≤ C
(
θγΦ(x0, 2r) + 2θγr + rγ‖f‖Lp(B1)

)
.

This implies
Φ(x0, r) ≤ Crγ

(
ε+ ‖f‖Lp(B1)

)
,

from which we conclude that ∇m,∇R ∈Mλ,n−λ+γλ
loc . By Morrey’s Dirichlet growth theo-

rem, this further implies that m,R ∈ C0,γ
loc together with the desired estimate (4.1).

�

Next, we prove an improved Morrey regularity estimate, in the spirit of [27, Lemma

7.3] (or [26, Proposition 2.1]).

Proposition 4.2. Under the same assumption as Theorem 1.2, when n
2
< p < n, we have

(m,R) ∈M2,n−2+2γ
loc (Bn,RN×SO(N)), where γ = 2−n/p ∈ (0, 1). Moreover, there exists

some C = C(n,N, p) > 0 such that

(4.9) ‖∇m‖M2,n−2+2γ (B1/2) + ‖∇R‖M2,n−2+2γ (B1/2) ≤ C
(
‖f‖Lp(B1) + ε

)
.
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Proof. We shall use (4.4), (4.5) and (3.16) to estimate ‖∇m‖M2,n−2+2γ and ‖∇R‖M2,n−2+2γ .

First of all, we extend m,R, P, ξ, f to R
n with compact support in a norm-bounded way.

Step 1. Estimate ‖∇R‖L2(Bρ).

Rewriting (4.4) as before, we have

(4.10)
∆a = P−1skew (∇m ◦ S(∇m,R))R + (∇⊥ξ)∇

(
P−1(R− Rx0,r)

)

− (∇⊥ξ)∇
(
P−1

)
(R−Rx0,r) + P−1f,

where Rx0,r = −

´

Br(x0)
Rdx. Now we calculate H−1-norm of the right hand side of (4.10).

We abbreviate S(∇m,R) as S. For the first item on the right hand side of (4.10), we

have

P−1skew (∇m ◦ S)R =
1

4
P−1(∇m)STR− 1

4
P−1S(∇mT )R

and
P−1(∇m)STR = ∇

(
P−1(m−mx0,r)S

TR
)

− (∇P−1)(m−mx0,r)S
TR− P−1(m−mx0,r)S

T (∇R).
Thus, according to (3.7), we may estimate the first term above as follows:

(4.11)

‖∇
(
P−1(m−mx0,r)S

TR
)
‖H−1(Br) . ‖P−1(m−mx0,r)S

TR‖L2(Br)

. ‖P−1‖L∞(Br)‖(m−mx0,r)‖L∞(Br)‖S‖L2(Br)‖R‖L∞(Br)

. rγ[m]C0,γ (Br)‖S‖L2(Br) . r
n−2
2

+γ[m]C0,γ (Br)

(
r + ‖∇m‖M2,n−2(Br)

)
.

For the middle term, we may apply Lemma 2.5 to obtain

(4.12)

‖(∇P−1)(m−mx0,r)S
TR‖H−1(Br)

. ‖R‖L∞(Br)‖(m−mx0,r)‖L∞(Br)‖(∇P−1)ST‖H−1(Br)

. rγ[m]C0,γ (Br)‖∇P−1‖
1
2

L2(Br)
‖∇P−1‖

1
2

M2,n−2(Br)
‖∇S‖

1
2

L2(Br)
‖∇S‖

1
2

M2,n−2(Br)

. r
n−2
2

+γ [m]C0,γ(Br)‖∇R‖M2,n−2(Br)

(
r + ‖∇m‖M2,n−2(Br)

)

and

(4.13)

‖P−1(m−mx0,r)S
T (∇R)‖H−1(Br)

. ‖P−1‖L∞(Br)‖(m−mx0,r)‖L∞(Br)‖ST (∇R)‖H−1(Br)

. rγ[m]C0,γ(Br)‖∇S‖
1
2

L2(Br)
‖∇S‖

1
2

M2,n−2(Br)
‖∇R‖

1
2

L2(Br)
‖∇R‖

1
2

M2,n−2(Br)

. r
n−2
2

+γ[m]C0,γ (Br)‖∇R‖M2,n−2(Br)

(
r + ‖∇m‖M2,n−2(Br)

)
.

Combining (4.11), (4.12) with (4.13), we conclude

(4.14)

‖P−1skew (∇m ◦ S)R‖H−1(Br)

. r
n−2
2

+γ[m]C0,γ (Br)

(
1 + ‖∇R‖M2,n−2(Br)

) (
r + ‖∇m‖M2,n−2(Br)

)

. r
n−2
2

+γ(r + ε)[m]C0,γ(Br).

For the second item on the right hand side of (4.10), we introduce

T :=
{
ϕ ∈ C∞

0 (Br,R
N×N) : ‖∇ϕ‖L2(Br) ≤ 1

}
.
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Then we have∣∣∣∣
ˆ

Br

(∇⊥ξ)∇
(
P−1(R− Rx0,r)

)
ϕ

∣∣∣∣ =
∣∣∣∣−
ˆ

Br

(∇⊥ξ)P−1(R− Rx0,r)∇ϕ
∣∣∣∣

. ‖P−1‖L∞(Br)‖∇⊥ξ‖L2(Br)‖∇ϕ‖L2(Br)‖R −Rx0,r‖L∞(Br)

. r
n−2
2 ‖∇⊥ξ‖M2,n−2(Br) · rγ[R]C0,γ (Br) · ‖∇ϕ‖L2(Br),

which implies

(4.15) ‖(∇⊥ξ)∇
(
P−1(R− Rx0,r)

)
‖H−1(Br) ≤ Cr

n−2
2

+γ‖∇R‖M2,n−2(Br)[R]C0,γ (Br).

For the third term on the right hand side of (4.10), we have

(4.16)

‖(∇⊥ξ)∇
(
P−1

)
(R− Rx0,r)‖H−1(Br)

. ‖(R−Rx0,r)‖L∞(Br)‖(∇⊥ξ)∇
(
P−1

)
‖H−1(Br)

. rγ[R]C0,γ(Br)‖∇⊥ξ‖
1
2

L2(Br)
‖∇⊥ξ‖

1
2

M2,n−2(Br)
‖∇P‖

1
2

L2(Br)
‖∇P‖

1
2

M2,n−2(Br)

. r
n−2
2

+γ[R]C0,γ (Br)‖∇⊥ξ‖M2,n−2(Br)‖∇P‖M2,n−2(Br)

. r
n−2
2

+γ[R]C0,γ (Br)‖∇R‖2M2,n−2(Br)
.

For the last term on the right hand side of (4.10), we simply apply the embedding

L
2n
n+2 →֒ H−1 to derive

(4.17) ‖P−1f‖H−1(Br) ≤ C‖f‖
L

2n
n+2 (Br)

≤ Cr
n
2
+1−n

p ‖f‖Lp(Br) ≤ Cr
n−2
2

+γ‖f‖Lp(Br).

Combining (4.14), (4.15), (4.16) with (4.17), we conclude

(4.18) ‖∇a‖L2(Br) ≤ Cr
n−2
2

+γ
[
‖f‖Lp(Br) + (r + ε)

(
[m]C0,γ(Br) + [R]C0,γ(Br)

)]
,

where we used the assumption

‖ΩR‖M2,n−2(Br) ≤ C‖∇R‖M2,n−2(Br) ≤ ε and ‖∇m‖M2,n−2(Br) ≤ ε.

Now we estimate ∇b via (4.5). For any 2-form ϕ whose component belongs to T , we

have ∣∣∣∣
ˆ

Br

〈
d
(
(dP−1)(R−Rx0,r)

)
, ϕ
〉∣∣∣∣ =

∣∣∣∣
ˆ

Br

(
〈
dP−1)(R− Rx0,r),∇⊥ϕ

〉∣∣∣∣

. ‖R− Rx0,r‖L∞(Br)‖dP−1‖L2(Br)‖∇⊥ϕ‖L2(Br)

. r
n−2
2

+γ [R]C0,γ(Br)‖ΩR‖M2,n−2(Br)‖ϕ‖W 1,2(Br).

This gives

(4.19) ‖∇b‖L2(Br) ≤ Cεr
n−2
2

+γ[R]C0,γ (Br).

Combining (4.18), (4.19) with the standard estimate for h, we conclude

(4.20)

‖∇R‖L2(Bρ) ≤ ‖h‖L2Bρ
+ ‖∇a‖L2(Bρ) + ‖∇⊥b‖L2(Bρ)

.
(ρ
r

)n
2 ‖h‖L2(Br) + ‖∇a‖L2(Bρ) + ‖∇⊥b‖L2(Bρ)

.
(ρ
r

)n
2 ‖∇R‖L2(Br) + Cρ

n−2
2

+γ
[
‖f‖Lp(Bρ) + (ρ+ ε)

(
[m]C0,γ (Bρ) + [R]C0,γ(Bρ)

)]
.

Step 2. Estimate ‖∇m‖L2(Bρ).



16 C.-Y. GUO, M.-L. LIU AND C.-L. XIANG

Applying the Hodge decomposition to the divergence free matrix S(∇m,R), we obtain
(3.15) as in the proof of Theorem 3.1.

To estimate ∇⊥α, we shall use the following equation for α?

(4.21) ∆α = dPR ∧ d(m−mx0,r)− Div⊥
[
πn(2RP

2(1n|0))
]
.

Let U :=
{
ψ ∈ C∞

0 (Br,R
N×n ⊗∧2

R
n) : ‖∇⊥ψ‖L2(Br) ≤ 1

}
. Then we have

‖∇⊥α‖L2(Br) . sup
ψ∈U

ˆ

Br

〈
∇⊥α,∇⊥ψ

〉
dx

. sup
ψ∈U

ˆ

Br

(〈
(dPR)(m−mx0,r),∇⊥ψ

〉
−
〈
πn(2(R−Rx0,r)P

2(1n|0)),∇⊥ψ
〉)
dx

. sup
ψ∈U

‖∇⊥ψ‖L2(Br)‖dPR‖L2(Br)‖m−mx0,r‖L∞(Br)

+ sup
ψ∈U

‖∇⊥ψ‖L2(Br)‖R− Rx0,r‖L∞(Br)‖1‖L2(Br)

. ‖∇R‖L2(Br) · rγ[m]C0,γ (Br) + rγ[R]C0,γ (Br) · r
n
2

. r
n−2
2

+γ(r + ε)
(
[m]C0,γ (Br) + [R]C0,γ (Br)

)
.

Finally, we may can estimate ∇m as follows:

(4.22)

‖∇m‖L2(Bρ) .
(
‖χ‖Bρ + ‖∇⊥α‖L2(Bρ) + ρ

n
2

)

.
(ρ
r

)n
2 ‖χ‖L2(Br) + ρ

n−2
2

+γ(ρ+ ε)
(
[m]C0,γ (Bρ) + [R]C0,γ(Bρ)

)
+ ρ

n
2

.
(ρ
r

)n
2 ‖∇m‖L2(Br) + ρ

n−2
2

+γ(ρ+ ε)
(
[m]C0,γ(Bρ) + [R]C0,γ(Bρ)

)
+ ρ

n
2 .

Step 3. Iteration.

Define Ψ(x0, r) = ‖∇m‖L2(Br) + ‖∇R‖L2(Br). Combining (4.20) with (4.22), we have

Ψ(x0, ρ) ≤ C0

(ρ
r

)n
2
Ψ(x0, r) + C0ρ

n−2
2

+γΓ,

where
Γ = (ρ+ ε)

(
[m]C0,γ (Bρ) + [R]C0,γ(Bρ)

)
+ ‖f‖Lp(Bρ) + ρ1−γ

≤ C
(
‖f‖Lp(B1) + ε

)
=: Γ0.

A standard iteration argument gives

Ψ(x0, r) ≤ r
n−2
2

+γC
(
‖f‖Lp(B1) + ε

)
,

from which we obtain (4.9). The proof of Proposition 4.2 is thus complete. �

Proof of Theorem 1.2. We shall consider separately two cases.

Case 1. p ∈ (n
2
, n).

By Proposition 4.2 and Hölder’s inequality (see Proposition 2.1), we have

ΩR · ∇R ∈M1,n−2+2γ
loc →֒ M1,n−2+γ

loc ,

skew (∇m ◦ S(∇m,R))R ∈M1,n−2+2γ
loc →֒ M1,n−2+γ

loc .

Extend m,R and f from Bn into R
n with compact support in a norm-bounded way.
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Let Iα = c|x|α−n be the standard Riesz potential. Set

R1 = I2 (ΩR · ∇R + skew (∇m ◦ S(∇m,R))R) and R2 = I2 (f)

so that R3 = R− R1 −R2 is harmonic.

Note that 2−γ
1−γ

> 2 and ζ = 1
2

(
2−γ
1−γ

)
> 1. Then Proposition 2.2, together with

Propositions 2.1 and 4.2, implies that for any x0, r such that B2r(x0) ⊂ B1/2, we have

(4.23)

‖∇R1‖M2ζ,n−2+γ
∗ (Br)

. ‖ΩR · ∇R + skew (∇m ◦ S(∇m,R))R)‖M1,n−2+γ(Br)

. ‖∇R‖M2,n−2(Br)‖∇R‖M2,n−2+2γ(Br)

+ ‖∇m‖M2,n−2(Br)‖S(∇m,R)‖M2,n−2+2γ(Br)

(3.7)

. ε‖∇R‖M2,n−2+2γ(Br) + ε‖∇m‖M2,n−2+2γ(Br)

+ ‖∇m‖M2,n−2(Br)‖1‖M2,n−2+2γ(Br)

. ε
(
‖∇R‖M2,n−2+2γ (Br) + ‖∇m‖M2,n−2+2γ (Br) + 1

)

. ε
(
‖f‖Lp(B1) + 1

)
,

where in the fourth inequality we used the estimate

‖∇m‖M2,n−2(Br)‖1‖M2,n−2+2γ(Br) ≤ εr1−γ ≤ ε.

By standard elliptic regularity theory, we have R2 ∈ W 2,p(Br) with

‖∇R2‖
L

np
n−p (Br)

≤ ‖R2‖W 2,p(Br) ≤ C‖f‖Lp(B1).

Applying the Hodge decomposition to the divergence free matrix S(∇m,R), there
exist α ∈ W 1,2

0 (Br,R
N×1 ⊗

∧2
R
n) and a harmonic χ ∈ C∞(Br,R

N×1 ⊗ R
n) such that

S(∇m,R) = ∇⊥α + χ.

Moreover,

∆α = dPR ∧ dm−Div⊥
[
πn(2RP

2(1n|0))
]
,

where the linear map PR is defined by ξ 7→ 2RP(RT ξ).

Similarly, dPR ∧ dm ∈ M1,n−2+2γ
loc and Div⊥ [πn(2RP

2(1n|0))] ∈ M2,n−2+2γ
loc . It follows

again from Proposition 2.1 and Proposition 4.2 that

(4.24)

‖∇α‖M2ζ,n−2+γ
∗ (Br)

. ‖dPR ∧ dm− Div⊥
[
πn(2RP

2(1n|0))
]
‖M1,n−2+γ(Br)

. ‖∇R‖M2,n−2(Br)‖∇m‖M2,n−2+2γ (Br) + ‖∇R‖M1,n−2+γ(Br)

. ε
(
‖∇R‖M2,n−2+2γ (Br) + ‖∇m‖M2,n−2+2γ (Br)

)

. ε
(
‖f‖Lp(B1) + 1

)
.

Since R3, χ ∈ C∞, ∇m,∇R ∈ L2ζ,∞(Br). Using standard estimates for harmonic

functions and (4.23), we infer that for all 0 < ρ < r ≤ 1
2
, there holds

‖∇R‖L2ζ,∞(Bρ) . ‖∇R3‖L2ζ,∞(Bρ) + ‖∇R1‖L2ζ,∞(Bρ) + ‖∇R2‖L2ζ,∞(Bρ)

.
(ρ
r

) n
2ζ ‖∇R3‖L2ζ,∞(Br) + ‖∇R1‖L2ζ,∞(Br) + ‖∇R2‖

L
np
n−p (Br)

.
(ρ
r

) n
2ζ ‖∇R‖L2ζ,∞(Br) + ε

(
‖f‖Lp(B1) + 1

)
+ ‖f‖Lp(B1)

.
(ρ
r

) n
2ζ ‖∇R‖L2ζ,∞(Br) + ‖f‖Lp(B1) + ε.
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Similarly, with (4.24), we derive

‖S(∇m,R)‖L2ζ,∞(Bρ) . ‖∇α‖L2ζ,∞(Bρ) + ‖χ‖L2ζ,∞(Bρ)

.
(ρ
r

) n
2ζ ‖χ‖L2ζ,∞(Br) + ‖∇α‖L2ζ,∞(Br)

.
(ρ
r

) n
2ζ ‖S(∇m,R)‖L2ζ,∞(Br) + ε‖f‖Lp(B1) + ε.

Thus a standard iteration argument gives

‖∇R‖L2ζ,∞(Br) + ‖S(∇m,R)‖L2ζ,∞(Br) . ‖f‖Lp(B1) + ε.

Note that n
2ζ

= n− p. With (3.7) we have the estimate

(4.25) ‖∇m‖L2ζ,∞(Br) + ‖∇R‖L2ζ,∞(Br) . ‖f‖Lp(B1) + ε+ rn−p . ‖f‖Lp(B1) + 1.

If 2ζ > np
n−p

, then Hölder’s inequality implies ∇m,∇R ∈ L
np
n−p (Br) with the estimate

‖∇m‖
L

np
n−p (Br)

+ ‖∇R‖
L

np
n−p (Br)

. ‖f‖Lp(B1) + 1.

If 2ζ ≤ np
n−p

, then ∇m,∇R ∈ Lqloc for any q ∈ (2, 4ζ
1+ζ

) ⊂ (2, 2ζ). By the definition of

ΩR, P, (3.7) and Hölder’s inequality, we have

ΩR · ∇R ∈M1,n−2+γ
loc ∩ L

q
2
loc,

skew (∇m ◦ S(∇m,R))R ∈M1,n−2+γ
loc ∩ L

q
2

loc,

and

dPR ∧ dm− Div⊥
[
πn(2RP

2(1n|0))
]
∈M1,n−2+γ

loc ∩ L
q
2
loc.

Next, we estimate the Lqζ norm of ∇R1 and ∇α. By (4.23) and (4.24), we have

(4.26)
‖ΩR · ∇R + skew (∇m ◦ S(∇m,R))R)‖M1,n−2+γ(Br)

. ε
(
‖f‖Lp(B1) + 1

)

and

(4.27)
‖dPR ∧ dm− Div⊥

[
πn(2RP

2(1n|0))
]
‖M1,n−2+γ(Br)

. ε
(
‖f‖Lp(B1) + 1

)
.

Since q/2 > 1, using Hölder’s inequality and (4.25), we have

(4.28)

‖ΩR · ∇R + skew (∇m ◦ S(∇m,R))R)‖
L

q
2 (Br)

. ‖ΩR · ∇R + skew (∇m ◦ S(∇m,R))R)‖
L

2ζ
1+ζ

,∞
(Br)

. ‖∇R‖L2(Br)‖∇R‖L2ζ,∞(Br) + ‖S(∇m,R)‖L2(Br)‖∇m‖L2ζ,∞(Br)

. ‖∇R‖L2ζ,∞(Br) + ‖∇m‖L2ζ,∞(Br)

. ‖f‖Lp(B1) + 1.
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Similarly, using (4.25), we obtain

(4.29)

‖dPR ∧ dm− Div⊥
[
πn(2RP

2(1n|0))
]
‖
L

q
2 (Br)

. ‖dPR ∧ dm−Div⊥
[
πn(2RP

2(1n|0))
]
‖
L

2ζ
1+ζ

,∞
(Br)

. ‖∇R‖L2(Br)‖∇m‖L2ζ,∞(Br) + ‖∇R‖L2(Br)‖∇R‖L2ζ,∞(Br)

. ε
(
‖∇R‖L2ζ,∞(Br) + ‖∇m‖L2ζ,∞(Br)

)

. ε
(
‖f‖Lp(B1) + 1

)
.

Applying Proposition 2.3, (4.26) and (4.28), we infer

‖∇R1‖Lqζ(Br) . ‖ΩR · ∇R + skew (∇m ◦ S(∇m,R))R)‖
1

2−γ

M1,n−2+γ(Br)

· ‖ΩR · ∇R + skew (∇m ◦ S(∇m,R))R)‖1−
1

2−γ

L
q
2 (Br)

. ‖f‖Lp(B1) + 1.

Similarly, using (4.27) and (4.29), we derive

‖∇α‖Lqζ(Br) . ‖dPR ∧ dm− Div⊥
[
πn(2RP

2(1n|0))
]
‖

1
2−2γ

M1,n−2+γ(Br)

· ‖dPR ∧ dm−Div⊥
[
πn(2RP

2(1n|0))
]
‖1−

1
2−2γ

L
q
2 (Br)

. ε
(
‖f‖Lp(B1) + 1

)
.

Thus we find the following iteration:

∇m,∇R ∈ Lq(Br) =⇒ ∇m,∇R ∈ Lqζ(Br)

together with the estimate

‖∇m‖Lqζ(Br) + ‖∇R‖Lqζ(Br) ≤ C0

(
‖f‖Lp(B1) + 1

)
,

where C0 is independent of q.

Since ζ > 1, there exists some k ≥ 1 such that ζkq ≤ np
n−p

< ζk+1q. After finitely

many times iteration, we shall have ∇m,∇R ∈ L
np
n−p (Br) with the estimate

‖∇m‖
L

np
n−p (Br)

+ ‖∇R‖
L

np
n−p (Br)

. ‖f‖Lp(B1) + 1.

Now we can estimate the Lp norms of ΩR·∇R and skew (∇m ◦ S(∇m,R))R as follows:

‖ΩR · ∇R‖Lp(Br) . ‖∇R‖Ln(Br)‖∇R‖L np
n−p (Br)

. ‖∇R‖2
L

np
n−p (Br)

.
(
‖f‖Lp(B1) + 1

)2

and

‖skew (∇m ◦ S(∇m,R))R‖Lp(Br) . ‖∇m‖Ln(Br)‖S(∇m,R)‖L np
n−p (Br)

(3.7)

. ‖∇m‖
L

np
n−p (Br)

(
‖∇m‖

L
np
n−p (Br)

+ ‖1‖
L

np
n−p (Br)

)

. ‖∇m‖2
L

np
n−p (Br)

+ r
2(n−p)

p .
(
‖f‖Lp(B1) + 1

)2
.
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Thus, we have ∆R ∈ Lp via (1.5). Furthermore, by the usual elliptic regularity theory,

(4.9) and the above estimates, we have

(4.30) ‖R‖W 2,p(Br) .
(
‖f‖Lp(B1) + 1

)2
.

By [7, Section 6.2], the linear operator LR : ξ 7→ πn(2RP
2(RT (ξ|0))) is uniformly

positive with

〈LR(ξ), ξ〉 = 〈πn(2RP2(RT (ξ|0))), ξ〉 = 〈2RP2(RT (ξ|0)), (ξ|0)〉
= 〈2P(RT (ξ|0)),P(RT (ξ|0))〉 ≥ 2λ̂|RT (ξ|0)|2 = 2λ̂|ξ|2.

Observe that (1.4) can be rewrirren as an elliptic equation

DivLR(∇m) = Div(πn(2RP
2(RT (1n|0)))).

Since the coefficients are Hölder continuous, (1.6) follows from the Calderon-Zygmund

theory and (4.30).

Case 2. p ≥ n.

In this case, f ∈ Lq for any q ∈ (n
2
, n). Repeating the previous argument, we conclude

that ∇m,∇R ∈ L
nq
n−q

loc with the estimate

‖∇m‖
L

nq
n−q (Br)

+ ‖∇R‖
L

nq
n−q (Br)

. ‖f‖Lp(B1) + 1.

This implies that R1, α ∈
⋂

1<s<∞
W 1,s

loc and so m,R ∈ W 2,p
loc with (1.6) by a similar

argument as in Case 1. �
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