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ON THE TEMPORAL ESTIMATES FOR THE INCOMPRESSIBLE NAVIER-STOKES

EQUATIONS AND HALL-MAGNETOHYDRODYNAMIC EQUATIONS

HANTAEK BAE, JINWOOK JUNG, AND JAEYONG SHIN

Abstract. In this paper, we derive decay rates of the solutions to the incompressible Navier-Stokes equa-
tions and Hall-magnetohydrodynamic equations. We first improve the decay rate of weak solutions of these
equations by refining the Fourier splitting method with initial data in the space of pseudo-measures. We
also deal with these equations with initial data in Lei-Lin spaces and find decay rates of solutions in Lei-Lin
spaces.

1. Introduction

In this paper, we study the large-time behavior of two parabolic systems: the incompressible Navier-Stokes
equations and Hall-magnetohydrodynamic (in short, Hall-MHD) equations in R3 although the incompressible
Navier-Stokes can be handled in R2. We begin with the incompressible Navier-Stokes equations and provide
several results of decay rates of solutions under appropriate assumptions to initial data. We then turn our
attention to Hall-MHD equations and do similar work.

Before proceeding further, we fix some notations. We assume that C0 is a constant depending on various
norms of initial data and the parameters in the statements of our results, but independent of time. Moreover,
f ∈ L∞([0,∞);X) means sup

0≤t<∞
‖f(t)‖X ≤ C0, where X is a Banach space. There are some function spaces

and inequalities holding in any dimensions, but we fix the spatial dimension to 3.

1.1. The incompressible Navier-Stokes equations. The incompressible Navier-Stokes equations are
given by

ut + u · ∇u+∇p− µ∆u = 0,

div u = 0,
(1.1)

where u is the fluid velocity and p is the pressure. µ > 0 is a viscosity coefficient, and we set µ = 1 for
simplicity. We begin with a weak solution of (1.1) in R3. The existence of a global-in-time weak solution
with a divergence-free initial datum u0 ∈ L2 is proved in [18] where u satisfies the energy inequality for all
t > 0:

‖u(t)‖2L2 + 2

ˆ t

0

‖∇u(τ)‖2L2 dτ ≤ ‖u0‖2L2. (1.2)

We also notice that the following question is raised in [18]: is ‖u(t)‖L2 convergent to 0 as t → ∞? This
question is answered in [21]. Later, the decay rate of a weak solution is obtained in [23] by using the Fourier
splitting method: if u0 ∈ L2 ∩ L1,

‖u(t)‖2L2 ≤ C0(1 + t)−
3
2 . (1.3)

We now define an invariant space of (1.1). We say X is an invariant space when u0 ∈ X implies u ∈
L∞([0,∞);X). Since u(t) is also in L1 for all t > 0, which is proved in Appendix A, X = L2 ∩ L1 is an
invariant space of (1.1). In this paper, we seek to find more invariant spaces which we employ to improve
(1.3). When u0 ∈ L1,

sup
ξ∈R3

|û0(ξ)| ≤ ‖u0‖L1.

So, to improve (1.3), it is natural to impose initial data in the space of pseudo-measures [7]:

Yσ :=
{
f ∈ S ′(R3) : sup

ξ∈R3

||ξ|σ f̂(ξ)| < ∞
}
.
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Theorem 1.1. Let u0 ∈ L2∩Yσ with div u0 = 0 and σ ∈ [−1, 1]. Let u be a weak solution of (1.1) satisfying
(1.2). Then, u ∈ L∞([0,∞);L2 ∩ Yσ) and u decays in time as follows:

‖u(t)‖2L2 ≤ C0(1 + t)−
3
2
+σ for all t > 0. (1.4)

We have the same decay rate of (1.3) when σ = 0, but L1 ⊂ Y0. Moreover, we improve (1.3) because σ
can be negative. Theorem 1.1 can be proved by using the approach in [30]: see Appendix B. However, we
could not use the same approach to Hall-MHD equations: instead, we take another method that treat (1.1)
and Hall-MHD equations in the same way.

When u0 ∈ L2 ∩ L1, we already mention that ‖u(t)‖L1 ≤ C0 for all t > 0. By combining this with (1.3),
the decay rate of Lp norms for p ∈ (1, 2) is given by

‖u(t)‖Lp ≤ ‖u(t)‖
2
p−1

L1 ‖u(t)‖2(1−
1
p )

L2 ≤ C0‖u(t)‖
2(1− 1

p )

L2 ≤ C0(1 + t)−
3
2
(1− 1

p ). (1.5)

Although we do not have the uniform L1 bound of u when u0 ∈ L2∩Yσ , we utilize the decay rate in Theorem
1.1 to bound u in negative Sobolev spaces.

Corollary 1.1. If σ ∈ [−1, 1] and 0 < δ < 3
2 − σ,

‖u(t)‖2Ḣ−δ ≤ C0(1 + t)−
3
2
+σ+δ. (1.6)

In particular, (1.5) with p ∈ (1, 2) and (1.6) with σ = 0 and δ ∈ (0, 32 ) have the same decay rate since

Lp ⊂ Ḣ−δ with 1 − 1
p = 1

2 − δ
3 . In [24], decay of higher-order norms of the solutions is derived using the

decay rate of ‖u(t)‖L2. As a corollary of Theorem 1.1 and [24], we can verify the following decay rates and
we skip the proof of it.

Corollary 1.2. Let u0 ∈ L2 ∩Yσ with div u0 = 0 and σ ∈ [−1, 1]. For each k ∈ N, there exist T0 > 0 and a
constant Ck depending on u0 and k, but independent of T0, such that

∥∥∇ku(t)
∥∥2
L2 ≤ Ck(1 + t)−

3
2
+σ−k for all t > T0.

If we take u0 in a function space different from L2, we normally take a smallness condition of u0 which
comes from the scaling-invariant property of u0: u0(x) 7−→ λu0 (λx). Along this direction, the best result is
[16] with initial data in BMO−1. However, since we want to restrict the function spaces defined in Fourier
variables, we investigate (1.1) with initial data in Lei-Lin spaces X σ:

X σ :=
{
f ∈ S ′(R3) :

ˆ

R3

|ξ|σ|f̂(ξ)| dξ < ∞
}
, σ ∈ R.

In [17], the global well-posedness of (1.1) is established with a small u0 ∈ X−1 where X−1 ⊂ BMO−1.
Moreover, the spatial analyticity of the solution in [17] is established in [2, 3] which provides decay rates of
derivatives of u. The decay of ‖u(t)‖X−1 when u0 ∈ X−1 ∩ L2 is studied in [6] as well. We here provide a
decay rate of ‖u(t)‖X k−1 when ‖u0‖X−1 is sufficiently small.

Theorem 1.2. Let k ≥ 0 and σ ∈ [−1, 1]. Let u0 ∈ X k−1 ∩ X−1 ∩ Yσ with div u0 = 0. There exists
ǫ > 0 such that if ‖u0‖X−1 ≤ ǫ, then (1.1) admits a unique solution u ∈ L∞([0,∞);X k−1 ∩ X−1 ∩ Yσ) ∩
L1((0,∞);X k+1 ∩ X 1). Furthermore,

‖u(t)‖X k−1 ≤ Ck(1 + t)−1+ σ
2
− k

2 for all t > 0.

The smallness condition is given by ‖u0‖X−1 < 1 (since we set µ = 1) in [17]. However, we need
‖u0‖X−1 ≤ ǫ with ǫ possibly smaller than 1 in the proof of Theorem 1.2. The case k = 0 shows the decay
rate of the solution in [17], and our paper goes further and covers the case k > 0 as well. The same argument
is applied to Theorem 1.4 below.
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1.2. Hall-magnetohydrodynamic equations. We observe that the methodology developed to (1.1) can
be utilized with the incompressible and resistive Hall-MHD equations:

ut + u · ∇u+∇p− µ∆u = (∇×B)×B, (1.7a)

Bt −∇× (u ×B)− ν∆B +∇× ((∇×B)×B) = 0, (1.7b)

div u = 0, divB = 0, (1.7c)

where u is the plasma velocity field, p is the pressure, and B is the magnetic field, respectively. µ, ν > 0 are
viscosity and resistivity coefficients, and we set µ = ν = 1 without loss of generality. ∇× ((∇× B)×B) is
called the Hall term. (1.7) is important in describing many physical phenomena [5, 13, 14, 19, 22, 25, 26, 29].
Moreover, (1.7) has been actively studied mathematically after [1, 8, 9, 10]: see [4] for a list of known results.

We begin with a weak solution of (1.7) with divergence-free initial data (u0, B0) ∈ L2. The existence of
a weak solution satisfying the following energy inequality is proved in [8]:

‖u(t)‖2L2 + ‖B(t)‖2L2 + 2

ˆ t

0

‖∇u(τ)‖2L2 dτ + 2

ˆ t

0

‖∇B(τ)‖2L2 dτ ≤ ‖u0‖2L2 + ‖B0‖2L2 for all t > 0. (1.8)

Moreover, the decay of a weak solution is established in [10] using the Fourier splitting method: if (u0, B0) ∈
L2 ∩ L1, then (u,B) decays in time as follows:

‖u(t)‖2L2 + ‖B(t)‖2L2 ≤ C0(1 + t)−
3
2 . (1.9)

As in the case of (1.1), we give a result improving (1.9).

Theorem 1.3. Let (u0, B0) ∈ (L2∩Yσ1 )×(L2∩Yσ2) with div u0 = divB0 = 0, σ1 ∈ [−1, 1] and σ2 ∈ [−1, 0].
Let (u,B) be a weak solution of (1.7) satisfying (1.8). Then, (u,B) ∈ L∞([0,∞);Yσ1 × Yσ2) and

‖u(t)‖2L2 ≤ C0(1 + t)−
3
2
+σ1 , ‖B(t)‖2L2 ≤ C0(1 + t)−

3
2
+σ2 for all t > 0.

In addition to improving [10], our result also shows that u0 and B0 may not be in the same space. Due
to the Hall term, the range of σ2 is set to be 1 smaller than that of σ1. The L1 space is still an invariant
space of u which can be shown as in Appendix A using (1.8) and (1.9), but the Hall term prevents us from
proving that L1 is an invariant space of B. However, at least, (L2 ∩ Yσ1)× (L2 ∩ Yσ2 ) is an invariant space
of (1.7). Using the argument in [24] applied to (1.7), decay rates of higher-order norms of the solutions are
derived in [10]. We here take the same approach to Theorem 1.3.

Corollary 1.3. Under the assumptions in Theorem 1.3, for each k ∈ N, there exist T0 > 0 and a constant
Ck depending on (u0, B0) and k, but independent of T0, such that

‖∇ku(t)‖2L2 ≤ Ck(1 + t)−
3
2
+σ1−k, ‖∇kB(t)‖2L2 ≤ Ck(1 + t)−

3
2
+σ2−k for all t > T0.

We also deal with (1.7) in Lei-Lin spaces X σ . The global well-posedness of (1.7) is established with when
(u0, B0) is sufficiently small in X−1 ∩X 0 [15] and (u0, B0,∇×B0) is sufficiently small in X−1 [20]. We here
establish the global well-posendess and derive the decay rate of (u,B) using Yσ.

Theorem 1.4. Let k ≥ 0 and σ ∈ [−1, 1]. Let u0 ∈ X k−1 ∩X−1 ∩Yσ and B0 ∈ X k−1 ∩X−1 ∩X 0 ∩Yσ with
div u0 = divB0 = 0. There exists ǫ > 0 such that if ‖u0‖X−1 + ‖B0‖X−1 + ‖B0‖X 0 ≤ ǫ, then (1.7) admits a
unique solution u ∈ L∞([0,∞);X k−1 ∩ X−1 ∩ Yσ) ∩ L1((0,∞);X k+1 ∩ X 1), B ∈ L∞([0,∞);X k−1 ∩ X−1 ∩
X 0 ∩ Yσ) ∩ L1((0,∞);X k+1 ∩ X 1 ∩ X 2). Furthermore,

‖u(t)‖X k−1 + ‖B(t)‖X k−1 ≤ Ck(1 + t)−1+ σ
2
− k

2 for all t > 0.

2. Preliminaries

All constants will be denoted by C and we follow the convention that such constants can vary from
expression to expression and even between two occurrences within the same expression. We also use the
simplified form of the integral of the spatial variables:

ˆ

=:

ˆ

R3

dx.

We begin with 2 inequalities:
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(1) For all x > 0 and p > 0

|xpe−ax2 | ≤ |xpe−ax2 |
∣∣∣∣
x=

√
p
2a

=
( p

2a

) p
2

e−
p
2 . (2.1)

(2) For 0 < α, β < 1 with α+ β = 1
ˆ t

0

(t− τ)−ατ−βdτ =

ˆ 1

0

(1− θ)−αθ−β dθ = B (α, β) ,

where B(·, ·) is the beta function.

We give the following Sobolev inequalities in 3D:

‖f‖L3 ≤ C‖f‖
1
2

L2‖∇f‖
1
2

L2, ‖f‖L6 ≤ C‖∇f‖L2,

and a product estimate which is called Leibniz rule [11], [28, Page 105]: for 1 < p < ∞ and 1 < p1, p2, p3, p4 ≤
∞ satisfying

1

p1
+

1

p2
=

1

p3
+

1

p4
=

1

p
,

∥∥∇k(fg)
∥∥
Lp ≤ C

∥∥∇kf
∥∥
Lp1

‖g‖Lp2 + C ‖f‖Lp3

∥∥∇kg
∥∥
Lp4

. (2.2)

We finally present 3 interpolation results in X σ:

σ ∈ (−1, 1) : ‖f‖X−σ ≤ C‖f‖
1+σ
2

X−1‖f‖
1−σ
2

X 1 , (2.3a)

σ ∈ (−1, 0) : ‖f‖X−σ ≤ C‖f‖
2+σ
2

X 0 ‖f‖
−σ
2

X 2 , (2.3b)

σ ∈ [0, k) : ‖f‖Xσ ≤ C‖f‖
k−σ
k+1

X−1‖f‖
σ+1

k+1

X k . (2.3c)

2.1. Main Lemmas. We now provide two lemmas being central to the proofs of our decay rates results.

Lemma 2.1. Let f be a smooth function satisfying

d

dt
‖f(t)‖2L2 + ‖∇f(t)‖2L2 ≤ 0

for all t > 0. Suppose there exists a positive constant C∗ > 0 and σ < 3
2 such that

sup
0≤t<∞

sup
|ξ|≤1

|ξ|σ
∣∣∣f̂(t, ξ)

∣∣∣ ≤ C∗.

Then,

‖f(t)‖2L2 ≤ C(1 + t)−
3
2
+σ for all t ≥ N − 1,

where N − 1 is a non-negative constant with N > 3
2 − σ.

Proof. By using the Plancherel’s theorem,

d

dt
‖f(t)‖2L2 ≤ −

ˆ

|ξ|2
∣∣∣f̂(t, ξ)

∣∣∣
2

dξ ≤ −
ˆ

{|ξ|2> N
1+t}

|ξ|2
∣∣∣f̂(t, ξ)

∣∣∣
2

dξ

≤ − N

1 + t

ˆ

{|ξ|2> N
1+t }

∣∣∣f̂(t, ξ)
∣∣∣
2

dξ

= − N

1 + t
‖f(t)‖2L2 +

N

1 + t

ˆ

{|ξ|2≤ N
1+t}

∣∣∣f̂(t, ξ)
∣∣∣
2

dξ.

Hence, we attain
d

dt
‖f(t)‖2L2 +

N

1 + t
‖f(t)‖2L2 ≤ N

1 + t

ˆ

{|ξ|2≤ N
1+t}

∣∣∣f̂(t, ξ)
∣∣∣
2

dξ,

which implies

d

dt

[
(1 + t)N‖f(t)‖2L2

]
≤ N(1 + t)N−1

ˆ

{|ξ|2≤ N
1+t}

∣∣∣f̂(t, ξ)
∣∣∣
2

dξ. (2.4)
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Since
{
ξ : |ξ|2 ≤ N/(1 + t)

}
⊆ {ξ : |ξ| ≤ 1} for all t ≥ N −1, we use our assumption to bound the right-hand

side of (2.4) as follows:

d

dt

[
(1 + t)N‖f(t)‖2L2

]
≤ NC∗(1 + t)N−1

ˆ

{|ξ|2≤ N
1+t}

|ξ|−2σ dξ

≤ C(1 + t)N−1

ˆ

√
N/(1+t)

0

r2−2σ dr ≤ C(1 + t)N−1+σ− 3
2

when σ < 3
2 . Finally, we integrate the inequality with respect to time and obtain

‖f(t)‖2L2 ≤ ‖f(N − 1)‖2L2

(1 + t)N
+

C

N − 3
2 + σ

(1 + t)N− 3
2
+σ −NN− 3

2
+σ

(1 + t)N

≤ C0(1 + t)−
3
2
+σ

for t ≥ N − 1, where we use N > 3
2 − σ. This complete the proof of Lemma 2.1. �

Lemma 2.2. Let k ≥ 0 and θ > 0. Let f be a smooth function satisfying the following inequality

d

dt
‖f(t)‖X k−1 + θ‖f(t)‖X k+1 ≤ 0. (2.5)

for all t > 0. Suppose there exists a positive constant C∗ > 0 and σ < k + 2 such that

sup
0≤t<∞

sup
|ξ≤1

|ξ|σ
∣∣∣f̂(t, ξ)

∣∣∣ ≤ C∗. (2.6)

Then,

‖f(t)‖X k−1 ≤ C0(1 + t)−1+σ
2
−k

2 for all t ≥ N/θ − 1,

where N/θ − 1 is a non-negative constant with N > 1 + k
2 − σ

2 .

Proof. From (2.5),

d

dt
‖f(t)‖X k−1 ≤ −θ

ˆ

{θ|ξ|2> N
1+t}

|ξ|k+1
∣∣∣f̂(t, ξ)

∣∣∣ dξ

≤ − N

1 + t
‖f(t)‖X k−1 +

N

1 + t

ˆ

{θ|ξ|2≤ N
1+t}

|ξ|k−1
∣∣∣f̂(t, ξ)

∣∣∣ dξ.

Since
{
ξ : θ|ξ|2 ≤ N/(1 + t)

}
⊆ {ξ : |ξ| ≤ 1} for t ≥ N/θ − 1, we obtain

d

dt

[
(1 + t)N‖f(t)‖X k−1

]
≤ NC∗(1 + t)N−1

ˆ

{θ|ξ|2≤ N
1+t}

|ξ|k−σ−1 dξ

≤ C(1 + t)N−1

ˆ

√
N/(θ(1+t))

0

rk−σ+1 dr ≤ C(1 + t)N−1−1+σ
2
−k

2

from this we deduce that

‖f(t)‖X k−1 ≤ ‖f(N/θ − 1)‖X k−1

(1 + t)N
+

C

N − 1 + σ
2 − k

2

(1 + t)N−1+σ
2
− k

2 − (N/θ)N−1+σ
2
− k

2

(1 + t)N

≤ C0(1 + t)−1+σ
2
−k

2

for t ≥ N/θ − 1, where we use N > 1 + k
2 − σ

2 . This completes the proof of Lemma 2.2. �

3. Incompressible Naiver-Stokes equations

In this section, we prove the decay rates results for (1.1). Let

u(t) = et∆u0 −
ˆ t

0

e(t−τ)∆
P (div(u⊗ u)) (τ) dτ, (3.1)

where P is the Leray projection operator with its matrix valued Fourier multiplier m(ξ): for a vector field v,

Pv = v −∇∆−1 div v, mij(ξ) = δij −
ξiξj
|ξ|2 . (3.2)
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By taking the Fourier transform to (3.1), we have

û(t, ξ) = e−t|ξ|2 û0(ξ)−
ˆ t

0

e−(t−τ)|ξ|2m(ξ)iξ ·
(
û⊗ u

)
(τ, ξ)dτ. (3.3)

Since |mij(ξ)| ≤ 1, we may proceed to bound u as if m is absent. We also bound ‖f̂ g‖L∞

ξ
by Young’s

inequality and the Plancherel’s theorem:

‖f̂ g‖L∞

ξ
≤ ‖f‖L2‖g‖L2.

3.1. Proof of Theorem 1.1. Since we already have (1.2), we only need to show u ∈ L∞([0,∞);Yσ). Then,
Lemma 2.1 gives the desired decay rate in Theorem 1.1. To prove u ∈ L∞([0,∞);Yσ), we divide the range
of σ into 3 cases.

◮ (Case 1: σ = 1): By multiplying (3.3) by |ξ|

|ξ||û(t, ξ)| ≤ |ξ|e−t|ξ|2 |û0(ξ)| +
ˆ t

0

|ξ|2e−(t−τ)|ξ|2‖û⊗ u(τ)‖L∞

ξ
dτ

≤ ‖u0‖Y1 +

ˆ t

0

|ξ|2e−(t−τ)|ξ|2‖u(τ)‖2L2 dτ ≤ ‖u0‖Y1 + ‖u0‖2L2

ˆ t

0

|ξ|2e−(t−τ)|ξ|2 dτ ≤ C0

from which we deduce that

sup
0≤t<∞

‖u(t)‖Y1 ≤ C0.

◮ (Case 2: σ ∈ [0, 1)). For |ξ| ≤ 1, we obtain

|ξ||û(t, ξ)| ≤ |ξ|1−σ|ξ|σe−t|ξ|2 |û0(ξ)|+
ˆ t

0

|ξ|2e−(t−τ)|ξ|2‖u(τ)‖2L2 dτ ≤ ‖u0‖Yσ + ‖u0‖2L2 ≤ C0.

Then, Lemma 2.1 brings us

‖u(t)‖2L2 ≤ C0(1 + t)−
1
2 for all t > 0.

By (2.1),

|ξ|σ|û(t, ξ)| ≤ |ξ|σe−t|ξ|2|û0(ξ)| +
ˆ t

0

|ξ|1+σe−(t−τ)|ξ|2‖u(τ)‖2L2 dτ

≤ ‖u0‖Yσ + C0

ˆ t

0

(t− τ)−
1+σ
2 (1 + τ)−

1
2 dτ ≤ C0,

(3.4)

where we use
ˆ t

0

(t− τ)−
1+σ
2 (1 + τ)−

1
2 dτ ≤

ˆ t

0

(t− τ)−
1+σ
2 (1 + τ)−

1−σ
2 dτ ≤

ˆ t

0

(t− τ)−
1+σ
2 τ−

1−σ
2 dτ

=

ˆ 1

0

(1− θ)−
1+σ
2 θ−

1−σ
2 dθ = B

(
1− σ

2
,
1 + σ

2

)
.

(3.5)

◮ (Case 3: σ ∈ [−1, 0]) When σ ∈ [−1, 0], we have

sup
0≤t<∞

sup
|ξ|≤1

|ξ||û(t, ξ)| ≤ C0, and ‖u(t)‖2L2 ≤ C0(1 + t)−
1
2 for all t > 0

as in Case 2. For |ξ| ≤ 1 we obtain

|û(t, ξ)| ≤ e−t|ξ|2|û0(ξ)|+
ˆ t

0

|ξ|e−(t−τ)|ξ|2‖u(τ)‖2L2 dτ ≤ ‖u0‖Yσ + C0

ˆ t

0

(t− τ)−
1
2 (1 + τ)−

1
2 dτ ≤ C0,

which implies

‖u(t)‖2L2 ≤ C(1 + t)−
3
2 for all t > 0.

So, we bound u as

|ξ|σ|û(t, ξ)| ≤ |ξ|σe−t|ξ|2|û0(ξ)| +
ˆ t

0

|ξ|1+σe−(t−τ)|ξ|2‖u(τ)‖2L2 dτ

≤ ‖u0‖Yσ + C0

ˆ t

0

(t− τ)−
1+σ
2 (1 + τ)−

3
2 dτ ≤ C0.

(3.6)
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Thus, we use Lemma 2.1 to obtain the desired temporal decay and this completes the proof of Theorem 1.1.

3.2. Proof of Corollary 1.1. We decompose ‖u‖2Ḣ−δ as follows:

‖u‖2Ḣ−δ =

ˆ

|ξ|≤M

|ξ|−2δ |û(ξ)|2 dξ +
ˆ

|ξ|≥M

|ξ|−2δ |û(ξ)|2 dξ ≤ (I) +M−2δ‖u‖2L2,

where M is decided below. We now bound (I): when δ < 3
2 − σ

(I) =

ˆ

|ξ|≤M

|ξ|−2δ−2σ|ξ|2σ |û(ξ)|2 dξ ≤ C‖u‖2Yσ

ˆ M

0

r−2δ−2σ+2dr = C‖u‖2YσM−2δ−2σ+3.

By taking M satisfying

M−2δ‖u‖2L2 = ‖u‖2YσM−2δ−2σ+3,

we have

‖u(t)‖2Ḣ−δ ≤ C‖u(t)‖
2δ

3/2−σ

Yσ ‖u(t)‖
3−2σ−2δ
3/2−σ

L2 ≤ C0(1 + t)−
3
2
+σ+δ,

which implies the desired estimate.

3.3. Proof of Theorem 1.2. From [17], we deduce that if ‖u0‖X−1 ≤ ǫ < 1, then u ∈ L∞([0,∞);X−1) ∩
L1([0,∞);X 1) and

‖u(t)‖X−1 + (1− ǫ)

ˆ t

0

‖u(τ)‖X 1 dτ ≤ ǫ for all t > 0.

Moreover, u satisfies (2.5) with k = 0 and θ = 1− ǫ.

We now show u ∈ L∞([0,∞);Yσ): in doing so, we use

1 ≤ |η|α
2|ξ − η|α +

|ξ − η|α
2|η|α . (3.7)

◮ (Case 1: σ = 1) By using (3.7) with α = 1, we obtain

|ξ||û(t, ξ)| ≤ |ξ|e−t|ξ|2 |û0(ξ)|+
ˆ t

0

|ξ|2e−(t−τ)|ξ|2
ˆ

|û(τ, ξ − η)||û(τ, η)| dηdτ

≤ ‖u0‖Y1 + sup
0≤τ≤t

(‖u(τ)‖Y1‖u(τ)‖X−1)

ˆ t

0

|ξ|2e−(t−τ)|ξ|2 dτ

≤ ‖u0‖Y1 + Cǫ sup
0≤τ≤t

‖u(τ)‖Y1

and so we have

sup
0≤τ≤t

‖u(τ)‖Y1 ≤ ‖u0‖Y1 + Cǫ sup
0≤τ≤t

‖u(τ)‖Y1 .

◮ (Case 2: σ ∈ [−1, 1)) When σ ∈ (−1, 1), we use (3.7) with α = σ to estimate u as

|ξ|σ|û(t, ξ)| ≤ |ξ|σe−t|ξ|2|û0(ξ)|+
ˆ t

0

|ξ|1+σe−(t−τ)|ξ|2
ˆ

R3

|û(τ, ξ − η)||û(τ, η)| dηdτ

≤ ‖u0‖Yσ +

ˆ t

0

|ξ|1+σe−(t−τ)|ξ|2‖u(τ)‖X−σ‖u(τ)‖Yσ dτ

≤ ‖u0‖Yσ + sup
0≤τ≤t

‖u(τ)‖Yσ

(ˆ t

0

|ξ|2e−(t−τ) 2
1+σ |ξ|2 dτ

) 1+σ
2
( ˆ t

0

‖u(τ)‖
2

1−σ

X−σ dτ
) 1−σ

2

≤ ‖u0‖Yσ + C sup
0≤τ≤t

‖u(τ)‖Yσ

(
sup

0≤τ≤t
‖u(τ)‖X−1

) 1+σ
2
(ˆ t

0

‖u(τ)‖X 1 dτ
) 1−σ

2

≤ ‖u0‖Yσ + Cǫ sup
0≤τ≤t

‖u(τ)‖Yσ ,
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where we also use (2.3a) to handle ‖u(τ)‖X−σ . When σ = −1, we use (3.7) with α = 1 to get

|ξ|−1|û(t, ξ)| ≤ |ξ|−1e−t|ξ|2 |û0(ξ)| +
ˆ t

0

e−(t−τ)|ξ|2
ˆ

|û(τ, ξ − η)||û(τ, η)| dηdτ

≤ ‖u0‖Y−1 + sup
0≤τ≤t

‖u(τ)‖Y−1

ˆ t

0

‖u(τ)‖X 1 dτ.

◮ By collecting all the bounds together, we arrive at

sup
0≤t<∞

‖u(t)‖Yσ ≤ ‖u0‖Yσ + Cǫ sup
0≤t<∞

‖u(t)‖Yσ

for all σ ∈ [−1, 1]. By restricting the size of ǫ as 2Cǫ < 1, we obtain u ∈ L∞([0,∞);Yσ). The desired decay
rates follow by Lemma 2.2.

◮ Finally when k > 0, we need to show that u ∈ L∞([0,∞);X k−1) ∩ L1([0,∞);X k+1) and u satisfies (2.5)
with k > 0. By using (2.3c), we obtain

d

dt
‖u(t)‖X k−1 + ‖u(t)‖X k+1 ≤

ˆ ˆ

|ξ|k|û(t, ξ − η)||û(t, η)| dηdξ ≤ C‖u(t)‖X 0‖u(t)‖X k

≤ C‖u(t)‖X−1‖u(t)‖X k+1 ≤ Cǫ‖u(t)‖X k+1.

Then we take a sufficiently small ǫ satisfying θ = 1−Cǫ > 0 to have (2.5) with k > 0 and direct application
of Lemma 2.2 completes the proof.

4. Hall-magnetohydrodynamic equations

In this section, we prove the decay rates results for Hall MHD (1.7). We first write

(∇×B)×B = B · ∇B − 1

2
∇|B|2 = div(B ⊗B)− 1

2
∇|B|2,

∇× ((∇×B)×B) = ∇×
(
div(B ⊗B)− 1

2
∇|B|2

)
= ∇× div(B ⊗B),

and express (u,B) as the integral form

u(t) = et∆u0 −
ˆ t

0

e(t−τ)∆
P (div(u⊗ u)− div(B ⊗B)) (τ) dτ, (4.1a)

B(t) = et∆B0 +

ˆ t

0

e(t−τ)∆ (∇× (u×B)−∇× div(B ⊗B)) (τ) dτ. (4.1b)

By taking the Fourier transform to (4.1), we have

û(t, ξ) = e−t|ξ|2 û0(ξ)−
ˆ t

0

e−(t−τ)|ξ|2m(ξ)iξ ·
(
û⊗ u− B̂ ⊗B

)
(τ, ξ)dτ,

B̂(t, ξ) = e−t|ξ|2B̂0(ξ) +

ˆ t

0

e−(t−τ)|ξ|2iξ × (û×B)(τ, ξ)dξ −
ˆ t

0

e−(t−τ)|ξ|2iξ × iξ · (B̂ ⊗B)(τ, ξ)dξ.

4.1. Proof of Theorem 1.3. As a preliminary step for the proof of Theorem 1.3, we give two lemmas.

Lemma 4.1. Under the assumptions in Theorem 1.3,

u ∈ L∞([0,∞);Yσ1 ) and sup
0≤t<∞

sup
|ξ|≤1

|B̂(t, ξ)| ≤ C0.

Moreover,

‖u(t)‖2L2 + ‖B(t)‖2L2 ≤ C0(1 + t)−
3
2
+max{σ1,σ2} for all t > 0.

Proof of Lemma 4.1. Although (4.1a) contains B ⊗ B, we can use (1.8) to bound u as in the case of (1.1).
So, we just copy the bounds of u from Section 3.1 and focus on estimating B. During the proof of Lemma
4.1, we will repeatedly use Lemma 2.1 with ‖f‖2L2 = ‖u‖2L2 + ‖B‖2L2 and ‖∇f‖2L2 = ‖∇u‖2L2 + ‖∇B‖2L2 .

◮ (Case 1: σ1 ∈ [0, 1], σ2 ∈ [−1, 0]) Using (1.8) we first have

sup
0≤t<∞

sup
|ξ|≤1

|ξ||û(t, ξ)| ≤ C0. (4.2)
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For B, we note that for |ξ| ≤ 1,

|ξ||B̂(t, ξ)| ≤ |ξ|e−t|ξ|2 |B̂0(ξ)|+
ˆ t

0

|ξ|2e−(t−τ)|ξ|2‖u(τ)‖L2‖B(τ)‖L2 dτ +

ˆ t

0

|ξ|3e−(t−τ)|ξ|2‖B(τ)‖2L2 dτ

≤ ‖B0‖Yσ2 + 2(‖u0‖2L2 + ‖B0‖2L2)

ˆ t

0

|ξ|2e−(t−τ)|ξ|2 dτ ≤ C0.

By combining this with (4.2),

sup
0≤t<∞

sup
|ξ|≤1

(
|ξ||û(t, ξ)|+ |ξ||B̂(t, ξ)|

)
≤ C0.

Hence, we apply σ = 1 to Lemma 2.1 to get

‖u(t)‖2L2 + ‖B(t)‖2L2 ≤ C0(1 + t)−
1
2 for all t > 0. (4.3)

Then we use (4.3) and proceed similarly to (3.4) to obtain

sup
0≤t<∞

‖u(t)‖Yσ1 ≤ C0.

This also implies that for |ξ| ≤ 1

|B̂(t, ξ)| ≤ |ξ|−σ2 |ξ|σ2e−t|ξ|2 |B̂0(ξ)|+
ˆ t

0

|ξ|e−(t−τ)|ξ|2‖u(τ)‖L2‖B(τ)‖L2 dτ +

ˆ t

0

|ξ|2e−(t−τ)|ξ|2‖B(τ)‖2L2 dτ

≤ ‖B0‖Yσ2 + C0

ˆ t

0

(t− τ)−
1
2 (1 + τ)−

1
2 dτ + C0 ≤ C0.

Since σ1 ∈ [0, 1], we arrive at

sup
0≤t<∞

sup
|ξ|≤1

(
|ξ|σ1 |û(t, ξ)|+ |ξ|σ1 |B̂(t, ξ)|

)
≤ C0,

and by Lemma 2.1,

‖u(t)‖2L2 + ‖B(t)‖2L2 ≤ C0(1 + t)−
3
2
+σ1 for all t > 0.

◮ (Case 2: σ1 ∈ [−1, 0], σ2 ∈ [−1, 0]): Here, we proceed as Case 1 so that

sup
0≤t<∞

sup
|ξ|≤1

(
|û(t, ξ)|+ |B̂(t, ξ)|

)
< ∞,

and hence
‖u(t)‖2L2 + ‖B(t)‖2L2 ≤ C(1 + t)−

3
2 for all t > 0.

Then we use the above inequality and argue similarly to (3.6) to yield

sup
0≤t<∞

‖u(t)‖Yσ1 ≤ C0

and for B,

|ξ|σ2 |B̂(t, ξ)| ≤ |ξ|σ2e−t|ξ|2 |B̂0(ξ)|+
ˆ t

0

|ξ|1+σ2e−(t−τ)|ξ|2‖u(τ)‖L2‖B(τ)‖L2 dτ

+

ˆ t

0

|ξ|2+σ2e−(t−τ)|ξ|2‖B(τ)‖2L2 dτ

≤ ‖B0‖Yσ2 + C0

ˆ t

0

(t− τ)−
1+σ2

2 (1 + τ)−
3
2 dτ + C0

ˆ t

0

(t− τ)−
2+σ2

2 (1 + τ)−
3
2 dτ ≤ C0.

(4.4)

Hence we arrive at

sup
0≤t<∞

sup
|ξ|≤1

|ξ|max{σ1,σ2}
(
|û(t, ξ)|+ |B̂(t, ξ)|

)
≤ C0

from which we obtain the desired temporal decay by Lemma 2.1. This completes the proof of Lemma 4.1. �

Lemma 4.2. Under the assumptions in Theorem 1.3, for each k ∈ N there exists T0 > 0 and a constant Ck

depending on (u0, B0) and k, but independent of T0, such that

‖∇ku(t)‖2L2 + ‖∇kB(t)‖2L2 ≤ Ck(1 + t)−
3
2
+max {σ1,σ2}−k for all t > T0.
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Proof of Lemma 4.2. Lemma 4.2 can be proved by simply modifying the argument in [10] with Lemma 4.1,
so we omit the proof. �

Now we are ready to prove Theorem 1.3 by estimating u and B separately.

4.1.1. Decay rate of u. When σ1 ≥ σ2, ‖u(t)‖2L2 ≤ C0(1 + t)−
3
2
+σ1 from Lemma 4.1. So, we only consider

σ1 < σ2 ≤ 0. Then, by Lemma 4.1 and Lemma 4.2, we have

‖u(t)‖2L2 + ‖B(t)‖2L2 ≤ C0(1 + t)−
3
2
+σ2 , ‖∇u(t)‖2L2 + ‖∇B(t)‖2L2 ≤ C0(1 + t)−

5
2
+σ2 for all t > T0.

By taking L2 inner product of (1.7a) with u, we obtain

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 =

ˆ

(B · ∇B) · u ≤ C‖∇u‖L2‖B‖L6‖B‖L3

≤ 1

2
‖∇u‖2L2 + C‖B‖L2‖∇B‖3L2 .

Hence, for t > T0

d

dt
‖u‖2L2 + ‖∇u‖2L2 ≤ C0(1 + t)−

9
2
+2σ2 .

By modifying Lemma 2.1, we discover

d

dt

[
(1 + t)N‖u(t)‖2L2

]
≤ N(1 + t)N−1

ˆ

{|ξ|2≤ N
1+t}

|û(t, ξ)|2dξ + C(1 + t)N− 9
2
+2σ2

≤ C(1 + t)N−1− 3
2
+σ1 + C(1 + t)N− 9

2
+2σ2 ≤ C(1 + t)N−1− 3

2
+σ1 .

By integrating this in time, we derive

‖u(t)‖2L2 ≤ C0(1 + t)−
3
2
+σ1 for all t > T0.

The decay rates of u for all t > 0 follows from (1.8).

4.1.2. Decay rate of B. When σ1 ≤ σ2, ‖B(t)‖2L2 ≤ C0(1+t)−
3
2
+σ2 and B ∈ L∞([0,∞);Yσ2) from Lemma

4.1 and (4.4). So, we consider σ1 > σ2. Then, we have

‖u(t)‖2L2 + ‖B(t)‖2L2 ≤ C0(1 + t)−
3
2
+σ1 .

By taking L2 inner product of (1.7b) with B, we obtain

1

2

d

dt
‖B‖2L2 + ‖∇B‖2L2 =

ˆ

(B · ∇u) · B ≤ C∗‖u‖L3‖∇B‖2L2 ,

and note that there exists t0 ≥ 0 such that

‖u(t)‖L3 ≤ ‖u(t)‖1/2L2 ‖∇u(t)‖1/2L2 <
1

2C∗ for all t ≥ t0.

Hence, one has
d

dt
‖B‖2L2 + ‖∇B‖2L2 ≤ 0 for all t ≥ t0.

Since
sup

0≤t<∞
sup
|ξ|≤1

|B̂(t, ξ)| ≤ C0

from Lemma 4.1, Lemma 2.1 yields

‖B(t)‖2L2 ≤ C0(1 + t)−
3
2 .

If σ2 6= −1, then σ1 − σ2 < 2. So. we obtain

|ξ|σ2 |B̂(t, ξ)| ≤ ‖B0‖Yσ2 +

ˆ t

0

|ξ|1+σ2e−(t−τ)|ξ|2‖u(τ)‖L2‖B(τ)‖L2 dτ +

ˆ t

0

|ξ|2+σ2e−(t−τ)|ξ|2‖B(τ)‖2L2 dτ

≤ ‖B0‖Yσ2 + C0

ˆ t

0

(t− τ)−
1+σ2

2 (1 + τ)−
3
2
+

σ1
2 dτ + C0

ˆ t

0

(t− τ)−
2+σ2

2 (1 + τ)−
3
2 dτ ≤ C0,

where we use
ˆ t

0

(t− τ)−
1+σ2

2 (1 + τ)−
3
2
+

σ1
2 dτ ≤

ˆ t

0

(t− τ)−
1+σ2

2 τ−
1
2
+

σ2
2 dτ = B

(
1− σ2

2
,
1 + σ2

2

)
.
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Hence, by Lemma 2.1

‖B(t)‖2L2 ≤ C0(1 + t)−
3
2
+σ2 .

If σ2 = −1, when |ξ| ≤ 1 we have

|ξ|− 1
2 |B̂(t, ξ)| ≤ ‖B0‖Y−1 +

ˆ t

0

|ξ| 12 e−(t−τ)|ξ|2‖u(τ)‖L2‖B(τ)‖L2 dτ +

ˆ t

0

|ξ| 32 e−(t−τ)|ξ|2‖B(τ)‖2L2 dτ

≤ ‖B0‖Y−1 + C0

ˆ t

0

(t− τ)−
1
4 (1 + τ)−

3
2
+

σ1
2 dτ + C0

ˆ t

0

(t− τ)−
3
4 (1 + τ)−

3
2 dτ ≤ C0,

which implies

‖B(t)‖2L2 ≤ C0(1 + t)−2.

Thus, we bound

sup
0≤t<∞

‖B(t)‖Y−1 ≤ C0

and obtain the desired decay rate of B by Lemma 2.1.

4.2. Proof of Corollary 1.3. We derive higher-order norms of (u,B) by applying Theorem 1.3 and Lemma
4.2. We note that T0 > 0 can vary from expression to expression in this section.

4.2.1. Decay rate of ∇ku. When σ1 ≥ σ2, decay rates of ∇ku are straightforward from Lemma 4.2. So,
we consider the case σ1 < σ2 ≤ 0.

By taking ∇k to (1.7a) and by taking the inner product with ∇ku, and (2.2), we obtain

1

2

d

dt

∥∥∇ku
∥∥2
L2 +

∥∥∇k+1u
∥∥2
L2 = −

ˆ

∇k(u · ∇u) · ∇ku+

ˆ

∇k(B · ∇B) · ∇ku

=

ˆ

∇k(u⊗ u) : ∇k∇u−
ˆ

∇k(B ⊗B) : ∇k∇u

≤ C‖u‖L3

∥∥∇k+1u
∥∥2
L2 + C‖B‖L3

∥∥∇k+1B
∥∥
L2

∥∥∇k+1u
∥∥
L2

≤ C‖u‖L3

∥∥∇k+1u
∥∥2
L2 + C‖B‖2L3

∥∥∇k+1B
∥∥2
L2 +

1

4

∥∥∇k+1u
∥∥2
L2

from which we deduce from Theorem 1.3 and Corollary 1.3 that for t > T0

d

dt

∥∥∇ku
∥∥2
L2 +

∥∥∇k+1u
∥∥2
L2 ≤ C‖B‖2L3

∥∥∇k+1B
∥∥2

L2 ≤ C‖B‖L2‖∇B‖L2

∥∥∇k+1B
∥∥2
L2 ≤ Ck(1 + t)−

9
2
+2σ2−k.

By modifying Lemma 2.1, we derive

d

dt

[
(1 + t)N‖∇ku(t)‖2L2

]
≤ N(1 + t)N−1

ˆ

{|ξ|2≤ N
1+t }

|ξ|2k|û(t, ξ)|2 + Ck(1 + t)N− 9
2
+2σ2−k

≤ Ck(1 + t)N− 5
2
+σ1−k + Ck(1 + t)N− 9

2
+2σ2−k ≤ Ck(1 + t)N− 5

2
+σ1−k.

By integrating this in time, we obtain

‖Λku(t)‖2L2 ≤ Ck(1 + t)−
3
2
+σ1−k for all t > T0.

4.2.2. Decay rate of ∇kB. We only consider the case σ1 > σ2. By taking ∇k to (1.7b) and by taking the
inner product with ∇kB, and using (2.2), we obtain

1

2

d

dt

∥∥∇kB
∥∥2

L2 +
∥∥∇k+1B

∥∥2

L2 =

ˆ

∇k(u ×B) · ∇k∇×B −
ˆ

∇k div(B ⊗B) · ∇k∇×B

≤ C ‖u‖L3

∥∥∇k+1B
∥∥2

L2 + C ‖B‖L3

∥∥∇k+1u
∥∥
L2

∥∥∇k+1B
∥∥
L2 + C ‖B‖L∞

∥∥∇k+1B
∥∥2
L2

≤ C ‖u‖L3

∥∥∇k+1B
∥∥2

L2 + C ‖B‖2L3

∥∥∇k+1u
∥∥2
L2 +

1

4

∥∥∇k+1B
∥∥2

L2 + C ‖B‖L∞

∥∥∇k+1B
∥∥2
L2 ,

and so Theorem 1.3 and Lemma 4.2 imply that for t > T0

d

dt

∥∥∇kB
∥∥2
L2 +

∥∥∇k+1B
∥∥2
L2 ≤ C‖B‖L2‖∇B‖L2‖∇k+1u‖2L2 ≤ Ck(1 + t)−

9
2
+

3σ1+σ2
2

−k.
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As we bound u above, we attain

d

dt

[
(1 + t)N‖∇kB(t)‖2L2

]
≤ Ck(1 + t)N− 5

2
+σ2−k + Ck(1 + t)N− 9

2
+

3σ1+σ2
2

−k ≤ Ck(1 + t)N− 5
2
+σ2−k

since 3σ1 − σ2 ≤ 4. Hence, we derive

‖∇kB(t)‖2L2 ≤ Ck(1 + t)−
3
2
+σ2−k for all t > T0.

4.3. Proof of Theorem 1.4. From [20], we deduce that if ‖u0‖X−1 + ‖B0‖X−1 + ‖B0‖X 0 ≤ ǫ is sufficiently
small, u ∈ C([0,∞);X−1) ∩ L1((0,∞);X 1), B ∈ C([0,∞);X−1 ∩ X 0) ∩ L1((0,∞);X 1 ∩ X 2), and

‖u(t)‖X−1 + ‖B(t)‖X−1 + ‖B(t)‖X 0 + (1 − Cǫ)

ˆ t

0

(‖u(τ)‖X 1 + ‖B(τ)‖X 1 + ‖B(τ)‖X 2) dτ ≤ Cǫ (4.5)

for all t > 0. So, we only need to show (u,B) ∈ L∞([0,∞);Yσ) and derive the decay rate in X−1.

4.3.1. Bounds in Yσ. We split the estimates of (u,B) into 3 cases as in the proof of Theorem 1.3. For
this, we repeatedly use (4.5) when we bound (u,B) in Yσ. However, since we can bound u as in the proof
of Theorem 1.2, we only deal with B in details.

◮ (Case 1: σ = 1) We first have

|ξ||û(t, ξ)| ≤ ‖u0‖Y1 + Cǫ sup
0≤τ≤t

(‖u(τ)‖Y1 + ‖B(τ)‖Y1) .

We now estimate B. In this case, we use

B(t) = et∆B0 +

ˆ t

0

e(t−τ)∆ (∇× (u×B)−∇× ((∇×B)×B)) (τ) dτ

instead of (4.1b). Then, using (3.7) with α = 1, we have

|ξ||B̂(t, ξ)| ≤ |ξ|e−t|ξ|2 |B̂0(ξ)|+
ˆ t

0

|ξ|2e−(t−τ)|ξ|2
ˆ

R3

|û(τ, ξ − η)||B̂(τ, η)| dηdτ

+

ˆ t

0

|ξ|2e−(t−τ)|ξ|2
ˆ

R3

|∇̂ ×B(τ, ξ − η)||B̂(τ, η)| dηdτ

≤ ‖B0‖Y1 + sup
0≤τ≤t

(‖u(τ)‖Y1‖B(τ)‖X−1 + ‖B(τ)‖Y1‖u(τ)‖X−1)

ˆ t

0

|ξ|2e−(t−τ)|ξ|2 dτ

+ sup
0≤τ≤t

(‖B(τ)‖Y1‖B(τ)‖X 0)

ˆ t

0

|ξ|2e−(t−τ)|ξ|2 dτ

≤ ‖B0‖Y1 + Cǫ sup
0≤τ≤t

(‖u(τ)‖Y1 + ‖B(τ)‖Y1) .

From these two bounds, we have

sup
0≤τ≤t

(‖u(τ)‖Y1 + ‖B(τ)‖Y1 ) ≤ ‖u0‖Y1 + ‖B0‖Y1 + Cǫ sup
0≤τ≤t

(‖u(τ)‖Y1 + ‖B(τ)‖Y1) .

◮ (Case 2: σ ∈ (−1, 1)) In this case, we bound u as

‖u(t)‖Yσ ≤ ‖u0‖Yσ + Cǫ sup
0≤τ≤t

(‖u(τ)‖Yσ + ‖B(τ)‖Yσ ) .

For B, we have

|ξ|σ|B̂(t, ξ)| ≤ |ξ|σe−t|ξ|2 |B̂0(ξ)|+
ˆ t

0

|ξ|1+σe−(t−τ)|ξ|2
ˆ

|û(τ, ξ − η)||B̂(τ, η)| dηdτ

+

ˆ t

0

|ξ|2+σe−(t−τ)|ξ|2
ˆ

|B̂(τ, ξ − η)||B̂(τ, η)| dηdτ

≤ ‖B0‖Yσ + (I) + (II).
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Using (3.7) with α = σ and (2.3a), we first bound (I) as

(I) ≤
ˆ t

0

|ξ|1+σe−(t−τ)|ξ|2 (‖u(τ)‖Yσ‖B(τ)‖X−σ + ‖B(τ)‖Yσ‖u(τ)‖X−σ) dτ

≤ sup
0≤τ≤t

‖u(τ)‖Yσ

(ˆ t

0

|ξ|2e−(t−τ) 2
1+σ |ξ|2 dτ

) 1+σ
2
(ˆ t

0

‖B(τ)‖
2

1−σ

X−σ dτ
) 1−σ

2

+ sup
0≤τ≤t

‖B(τ)‖Yσ

( ˆ t

0

|ξ|2e−(t−τ) 2
1+σ |ξ|2 dτ

) 1+σ
2
( ˆ t

0

‖u(τ)‖
2

1−σ

X−σ dτ
) 1−σ

2

≤ C sup
0≤τ≤t

‖u(τ)‖Yσ

(
sup

0≤τ≤t
‖B(τ)‖X−1

) 1+σ
2
(ˆ t

0

‖B(τ)‖X 1 dτ
) 1−σ

2

+ C sup
0≤τ≤t

‖B(τ)‖Yσ

(
sup

0≤τ≤t
‖u(τ)‖X−1

) 1+σ
2
( ˆ t

0

‖u(τ)‖X 1 dτ
) 1−σ

2

≤ Cǫ sup
0≤τ≤t

(‖u(τ)‖Yσ + ‖B(τ)‖Yσ ) .

When σ ∈ [0, 1), using

|ξ|σ ≤ (|ξ − η|+ |η|)σ ≤ C(|ξ − η|σ + |η|σ), (4.6)

we bound

(II) ≤ C

ˆ t

0

|ξ|2e−(t−τ)|ξ|2
ˆ

|ξ − η|σ|B̂(τ, ξ − η)||B̂(τ, η)| dηdτ

+ C

ˆ t

0

|ξ|2e−(t−τ)|ξ|2
ˆ

|B̂(τ, ξ − η)||η|σ |B̂(τ, η)| dηdτ

≤ C sup
0≤τ≤t

‖B(τ)‖Yσ sup
0≤τ≤t

‖B(τ)‖X 0

ˆ t

0

|ξ|2e−(t−τ)|ξ|2 dτ ≤ Cǫ sup
0≤τ≤t

‖B(τ)‖Yσ .

When σ ∈ (−1, 0), we use (2.3b) to obtain

(II) ≤
ˆ t

0

|ξ|2+σe−(t−τ)|ξ|2‖B(τ)‖Yσ‖B(τ)‖X−σ dτ

≤ sup
0≤τ≤t

‖B(τ)‖Yσ

(ˆ t

0

|ξ|2e−(t−τ) 2
2+σ |ξ|2 dτ

) 2+σ
2
( ˆ t

0

‖B(τ)‖
2

−σ

X−σ dτ
)−σ

2

≤ C sup
0≤τ≤t

‖B(τ)‖Yσ

(
sup

0≤τ≤t
‖B(τ)‖X 0

) 2+σ
2
( ˆ t

0

‖B(τ)‖X 2 dτ
)−σ

2 ≤ Cǫ sup
0≤τ≤t

‖B(τ)‖Yσ .

We combine the above estimates to yield

sup
0≤τ≤t

(‖u(τ)‖Yσ + ‖B(τ)‖Yσ ) ≤ ‖u0‖Yσ + ‖B0‖Yσ + Cǫ sup
0≤τ≤t

(‖u(τ)‖Yσ + ‖B(τ)‖Yσ ) .

◮ (Case 3: σ = −1) In this case, we simply use (3.7) with α = 1 to get

|ξ|−1|û(t, ξ)| ≤ ‖u0‖Y−1 + sup
0≤τ≤t

‖u(τ)‖Y−1

ˆ t

0

‖u(τ)‖X 1 dτ + sup
0≤τ≤t

‖B(τ)‖Y−1

ˆ t

0

‖B(τ)‖X 1 dτ,
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and

|ξ|−1|B̂(t, ξ)| ≤ ‖B0‖Y−1 + sup
0≤τ≤t

‖u(τ)‖Y−1

ˆ t

0

‖B(τ)‖X 1 dτ + sup
0≤τ≤t

‖B(τ)‖Y−1

ˆ t

0

‖u(τ)‖X 1 dτ

+

ˆ t

0

|ξ|e−(t−τ)|ξ|2‖B(τ)‖Y−1‖B(τ)‖X 1dτ

≤ ‖B0‖Y−1 + sup
0≤τ≤t

‖u(τ)‖Y−1

ˆ t

0

‖B(τ)‖X 1 dτ + sup
0≤τ≤t

‖B(τ)‖Y−1

ˆ t

0

‖u(τ)‖X 1 dτ

+ sup
0≤τ≤t

‖B(τ)‖Y−1

(ˆ t

0

|ξ|2e−2(t−τ)|ξ|2 dτ
) 1

2
( ˆ t

0

‖B(τ)‖2X 1dτ
) 1

2

≤ ‖B0‖Y−1 + sup
0≤τ≤t

‖u(τ)‖Y−1

ˆ t

0

‖B(τ)‖X 1 dτ + sup
0≤τ≤t

‖B(τ)‖Y−1

ˆ t

0

‖u(τ)‖X 1 dτ

+ C sup
0≤τ≤t

‖B(τ)‖Y−1

(
sup

0≤τ≤t
‖B(τ)‖X 0

) 1
2
(
ˆ t

0

‖B(τ)‖X 2 dτ

) 1
2

.

Therefore, we have

sup
0≤τ≤t

(‖u(τ)‖Y−1 + ‖B(τ)‖Y−1 ) ≤ ‖u0‖Y−1 + ‖B0‖Y−1 + Cǫ sup
0≤τ≤t

(‖u(τ)‖Y−1 + ‖B(τ)‖Y−1) .

◮ By collecting the bounds together, we arrive at

sup
0≤t<∞

(‖u(t)‖Yσ + ‖B(t)‖Yσ ) ≤ ‖u0‖Yσ + ‖B0‖Yσ + Cǫ sup
0≤t<∞

(‖u(t)‖Yσ + ‖B(t)‖Yσ )

for all σ ∈ [−1, 1]. By restricting the size of ǫ as 2Cǫ < 1, we finally obtain

sup
0≤t<∞

(‖u(t)‖Yσ + ‖B(t)‖Yσ ) ≤ 2 (‖u0‖Yσ + ‖B0‖Yσ ) .

4.3.2. Decay rates. We now investigate the temporal decay rate of (u,B) in X−1 using Lemma 2.2. Since
the uniform bound of (u,B) in Yσ implies (2.6), we only need to show that (u,B) satisfies (2.5) with k = 0.
In fact, by using (3.7) with α = 1, we obtain

d

dt
‖u(t)‖X−1 + ‖u(t)‖X 1 ≤

ˆ ˆ

|û(t, ξ − η)||û(t, η)| dηdξ +
ˆ ˆ

|B̂(t, ξ − η)||B̂(t, η)| dηdξ

≤ ‖u(t)‖X−1‖u(t)‖X 1 + ‖B(t)‖X−1‖B(t)‖X 1 ≤ Cǫ (‖u(t)‖X 1 + ‖B(t)‖X 1)

and

d

dt
‖B(t)‖X−1 + ‖B(t)‖X 1 ≤ 2

ˆ ˆ

|û(t, ξ − η)||B̂(t, η)| dηdξ +
ˆ ˆ

|∇̂ ×B(t, ξ − η)||B̂(t, η)| dηdξ

≤ ‖u(t)‖X−1‖B(t)‖X 1 + ‖B(t)‖X−1‖u(t)‖X 1 + ‖B(t)‖X 0‖B(t)‖X 1

≤ Cǫ (‖u(t)‖X 1 + ‖B(t)‖X 1) .

By combining these two estimates with ǫ restricted to satisfy θ = 1− Cǫ > 0, we have

d

dt
(‖u(t)‖X−1 + ‖B(t)‖X−1) + θ (‖u(t)‖X 1 + ‖B(t)‖X 1) ≤ 0

and hence, the desired decay rate in X−1 follows from Lemma 2.2.

4.3.3. Decay rates in X k−1. Since we already have the uniform bound of (u,B) in Yσ, we only need to
show that (u,B) satisfies (2.5). Using (4.6) and (2.3c),

d

dt
‖u(t)‖X k−1 + ‖u(t)‖X k+1 ≤

ˆ ˆ

|ξ|k|û(t, ξ − η)||û(t, η)| dηdξ +
ˆ ˆ

|ξ|k|B̂(t, ξ − η)||B̂(t, η)| dηdξ

≤ C‖u(t)‖X 0‖u(t)‖X k + C‖B(t)‖X 0‖B(t)‖X k

≤ C‖u(t)‖X−1‖u(t)‖X k+1 + C‖B(t)‖X−1‖B(t)‖X k+1

≤ Cǫ (‖u(t)‖X k+1 + ‖B(t)‖X k+1)
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and
d

dt
‖B(t)‖X k−1 + ‖B(t)‖X k+1 ≤ 2

ˆ ˆ

|ξ|k|û(t, ξ − η)||B̂(t, η)| dηdξ +
ˆ ˆ

|ξ|k+1|B̂(t, ξ − η)||B̂(t, η)| dηdξ

≤ C‖u(t)‖X 0‖B(t)‖X k + C‖B(t)‖X 0‖u(t)‖X k + C‖B(t)‖X 0‖B(t)‖X k+1

≤ C‖u(t)‖X−1‖u(t)‖X k+1 + C‖B(t)‖X−1‖B(t)‖X k+1 + C‖B(t)‖X 0‖B(t)‖X k+1

≤ Cǫ (‖u(t)‖X k+1 + ‖B(t)‖X k+1) .

By combining these two estimates with ǫ restricted to satisfy θ = 1− Cǫ > 0, we have

d

dt
(‖u(t)‖X k−1 + ‖B(t)‖X k−1) + θ (‖u(t)‖X k+1 + ‖B(t)‖X k+1) ≤ 0

and again, the decay rate follows from Lemma 2.2. This completes the proof.

Appendix A. L1 bound of u

The decay rate in [23] implies that L1 is an invariant space for all t > 0. To show this, we first note that

d

dt
‖u‖L1 ≤ ‖P(u · ∇u)‖L1 ,

where P is the Leray projection operator defined in (3.2). Since u · ∇u ∈ H (the Hardy space) with
‖u · ∇u‖H ≤ C‖u‖L2‖∇u‖L2 [12] and P : H → L1 [27], we obtain

d

dt
‖u‖L1 ≤ C ‖u · ∇u‖H ≤ C ‖u‖L2 ‖∇u‖L2 .

Integrating this in time,

‖u(t)‖L1 ≤ ‖u0‖L1 + C

ˆ t

0

(1 + τ)−
3
4 ‖∇u(τ)‖L2 dτ

≤ ‖u0‖L1 + C

[
ˆ t

0

‖∇u(τ)‖2L2 dτ

] 1
2
[
ˆ t

0

(1 + τ)−
3
2 dτ

] 1
2

≤ ‖u0‖L1 + C ‖u0‖L2

for all t > 0.

Appendix B. Alternative proof of Theorem 1.1

To prove Theorem 1.1, we take two steps. We first estimate
∥∥et∆u0

∥∥
L2 using u0 ∈ L2 ∩ Yσ from which

we arrive at the decay rate of u in Theorem 1.1 by [30]. We then bound u ∈ Yσ using the decay rate of u.

◮ We recall the argument in [30]: if
∥∥et∆u0

∥∥2
L2 ≤ C(1 + t)−α0 , then a weak solution of (1.1) decays in time:

‖u(t)‖2L2 ≤ C0(1 + t)−min{α0,
5
2}.

We now bound
∥∥et∆u0

∥∥
L2 with u0 ∈ L2 ∩ Yσ:

‖et∆u0‖2L2 =

ˆ

e−2t|ξ|2 |û0(ξ)|2 dξ =

ˆ

|ξ|≤1

e−2t|ξ|2 |û0(ξ)|2 dξ +
ˆ

|ξ|≥1

e−2t|ξ|2 |û0(ξ)|2 dξ = (I)+(II).

We first deal with (I):

(I) = (2t)−
3
2
+σ

ˆ

|ξ|≤1

(2t|ξ|2)−σe−2t|ξ|2 (|ξ|σ|û0(ξ)|)2 (2t)
3
2 dξ

≤ Ct−
3
2
+σ‖u0‖2Yσ

ˆ

|η|≤
√
2t

|η|−2σe−|η|2dη ≤ Ct−
3
2
+σ‖u0‖2Yσ ,

where we use the change of variables η =
√
2tξ and

ˆ

|η|−2σe−|η|2 dη = C

ˆ ∞

0

r2−2σe−r2dr ≤ C

ˆ 1

0

r2−2σdr + C

ˆ ∞

1

e−r2dr ≤ C

when σ < 3
2 . Using (2.1) and the condition σ < 3

2 , we now bound (II):

(II) = (2t)−
3
2
+σ

ˆ

|ξ|≥1

(2t|ξ|2) 3
2
−σe−2t|ξ|2 |ξ|2σ−3|û0(ξ)|2 dξ ≤ Ct−

3
2
+σ

ˆ

|û0(ξ)|2 dξ ≤ Ct−
3
2
+σ‖u0‖2L2 .
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Therefore, these two bounds lead to

‖et∆u0‖2L2 ≤ Ct−
3
2
+σ

(
‖u0‖2Yσ + ‖u0‖2L2

)
.

Since α0 = 3
2 − σ ≤ 5

2 when σ ≥ −1, we arrive at the desired decay rate of u in Theorem 1.1.

◮ We here show that u ∈ Yσ using (1.4). When σ = 1, we first have

|ξ||û(t, ξ)| ≤ |ξ|e−t|ξ|2 |û0(ξ)| +
ˆ t

0

|ξ|2e−(t−τ)|ξ|2‖u(τ)‖2L2 dτ

≤ ‖u0‖Y1 + ‖u0‖2L2

ˆ t

0

|ξ|2e−(t−τ)|ξ|2 dτ ≤ C0

from which we deduce that

sup
0≤t<∞

‖u(t)‖Y1 ≤ C0.

When σ ∈ [−1, 1), we bound u as (3.5):

|ξ|σ|û(t, ξ)| ≤ |ξ|σe−t|ξ|2|û0(ξ)| +
ˆ t

0

|ξ|1+σe−(t−τ)|ξ|2‖u(τ)‖2L2 dτ

≤ ‖u0‖Yσ + C0

ˆ t

0

(t− τ)−
1+σ
2 (1 + τ)−

3
2
+σ dτ ≤ C0.

So, we have

sup
0≤t<∞

‖u(t)‖Yσ ≤ C0.
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