
Joint calibration to SPX and VIX Derivative
Markets with Composite Change of Time Models

Liexin Cheng, Xue Cheng, Xianhua Peng

August 2023

Abstract

The Chicago Board Options Exchange Volatility Index (VIX) is calcu-
lated from SPX options and derivatives of VIX are also traded in market,
which leads to the so-called “consistent modeling” problem. This paper
proposes a time-changed Lévy model for log price with a composite change
of time structure to capture both features of the implied SPX volatility and
the implied volatility of volatility. Consistent modeling is achieved naturally
via flexible choices of jumps and leverage effects, as well as the composition
of time changes. Many celebrated models are covered as special cases. From
this model, we derive an explicit form of the characteristic function for the
asset price (SPX) and the pricing formula for European options as well as
VIX options. The empirical results indicate great competence of the pro-
posed model in the problem of joint calibration of the SPX/VIX Markets.

Keywords: Time change; Lévy process; Option pricing; Consistent Mod-
eling
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1 Motivation and Formulation

1.1 Consistent Modeling Problem

By the definition from CBOE, Volatility Index (VIX), as an indicator of implied
volatility in the following 30 days, is given as

VIX2
t = −2

τ
EQ
[
ln
e−rτSt+τ

St

∣∣∣∣Ft

]
,

where τ = 30/365 and Q is the risk neutral measure of the equity market. If
continuity of the asset price process is assumed, then equivalently

VIX2
t =

1

τ
EQ [[lnS]t+τ − [lnS]t

∣∣Ft

]
=:

1

τ
EQ
[∫ t+τ

t

vVIX
s ds

∣∣∣∣Ft

]
,

(1)

where vVIX is the squared volatility of S. Even though the asset price is not

continuous, formula (1) only leads to a third-order error O

((
dSt

St−

)3)
, as shown

in Carr and Wu (2009). Hence the analysis below is still effective for general jump
models to a large degree.

Likewise, we have the formula of VVIX, the volatility of volatility computed
from VIX market:

VVIX2
t = −2

τ
EQ
[
ln
e−rτVIXt+τ

VIXt

∣∣∣∣Ft

]
=

1

τ
EQ [[ln VIX]t+τ − [ln VIX]t

∣∣Ft

]
=:

1

4τ
EQ
[∫ t+τ

t

vVVIX
s ds

∣∣∣∣Ft

]
,

(2)

where vVVIX is the variance of ln VIX2. It is important to note that the first equality
holds if we believe that measure Q is risk-neutral in both SPX option market and
the VIX market. That is, the two markets can be consistently modeled.

The problem of joint calibration for SPX market and VIX market is equivalent
to (or at least incorporates) the calibration of current VIX and VVIX, which can
be approximated by

√
vVIX and

√
vVVIX/2, volatility and volatility of volatility

respectively, if we consider a Markov setup and that τ is small. More generally, we
have VIX2

t = gM1 (vVIX
t ) and VVIX2

t = gM2 (vVVIX
t ) by equation (1) and (2), where

gM1 (·), gM2 (·) are functions determined by model parameters. Therefore, it is crucial
to study the relationship of vVIX and vVVIX in the problem of consistent modeling.
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In the past literature on consistent modeling, there have been a lot of research
on such volatility relationship. One line of work is aimed at reconstructing the
widely used stochastic volatility models (SVMs) by allowing for more realistic
and flexible vol-of-vol functionals. One such example is the 3/2 model in Drimus
(2012) and in Baldeaux and Badran (2014). Fouque and Saporito (2018) proposed
a Heston vol-of-vol model, where the vol-of-vol consists of additional stochastic
factors. Additionally, following the work of Gatheral et al. (2018), authors includ-
ing Bayer et al. (2016), Jacquier et al. (2018) and Gatheral et al. (2020) proposed
rough volatility models in the joint calibration of stock and volatility smiles. And
according to Lin and Chang (2010) and Kokholm and Stisen (2015), the role of
jumps were studied and highlighted in the consistent modeling. Moreover, Papan-
icolaou (2022) studied the consistency condition of recovering SVMs from market
models of the VIX futures term structure. Another category of models suggest a
multi-factor specification of volatility. The first attempt was made by Gatheral
(2008) and Bayer et al. (2013), who adopted a continuous diffusion model with
double mean reverting structure. Multifactor affine specification was considered in
Cont and Kokholm (2013), Cheng (2019) and Pacati et al. (2018). And Papanico-
laou and Sircar (2014) considered a regime-switching Heston model, where sharp
volatility regime shifts captures both volatility skews. Finally, there is some re-
cent research that characterizes the volatility relationship using a non-parametric
framework. Guo et al. (2022) introduced a time-continuous formulation of the
joint calibration problem, followed by Guyon (2020), who built a non-parametric
discrete-time model that achieved exact joint calibration.

While many models above achieves satisfactory consistent modeling results,
our approach, apart from having good joint calibration performance, is capable
of theoretically decoupling smiles from the two markets. Such nice interpretation
of our model is achieved via time change technique by representing the vol-of-vol
vVVIX in a linear mixture form of vVIX and another free factor. We present the
following examples to show how restrictive or implicit the volatility relationship is
in certain SVMs.

Example 1 (Heston Model){
dSt/St = rdt+

√
vtdWt,

dvt = κ(θ − vt)dt+ η
√
vtdZt

with E[WtZt] = ρt. We may compute the volatility of volatility under the assump-
tion that vt approximates VIXt:

vVVIX
t ≈ d[ln v]t

dt
=
η2

vt
=

η2

vV IX
t

.

Such an inverse relationship is unrealistic for VIX and VVIX, and therefore ex-
plains the unfavorable calibration result of Heston model. In fact, empirical results
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show that Heston models generates downward-sloping volatility smiles in VIX mar-
ket as opposed to the upward-sloping observed smile, as shown in Drimus (2012)
and Baldeaux and Badran (2014). The model is poorly fitted under consistent mod-
eling even if jump structures are incorporated, see Kokholm and Stisen (2015).

Example 2 (3/2 Model){
dSt/St = rdt+

√
vtdWt,

dvt = κvt(θ − vt)dt+ ηv
3
2
t dZt

with E[WtZt] = ρt. By the same reasoning, we obtain

vVVIX
t ≈ d[ln v]t

dt
= η2vt = η2vV IX

t ,

which is more close to empirical data, see figure 1.1. In fact, the correlation
between VIX and VVIX is high in the past ten years (2013-2023), usually around
0.7.

Moreover, 3/2 model generates upward sloping volatility smiles and captures
the behavior of VIX better than a variety of stochastic volatility models in Goard
and Mazur (2013).

Despite its success in volatility market, the 3/2 model is restrictive in the sit-
uation of consistent modeling in the sense that vV V IX is directly determined by
vV IX .

Figure 1: The time series of the VVIX and VIX between January 2013 and De-
cember 2022.
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Example 3 (Multi-factor Heston Model) In the multi-factor Heston specifi-
cation for volatility process, we have, by a reasoning similar to the Heston model,

vVVIX
t ≈

∑n
i=1 η

2
i v

(i)
t

(
∑n

i=1 v
(i)
t )2

,

where v(i), i = 1, . . . , n are volatility factors and ηi, i = 1, . . . , n the corresponding
coefficients. However, it is implicit how each factor v(i) acts upon the volatility of
volatility.

Example 4 (Heston vol-of-vol; Fouque and Saporito (2018))
dSt/St = r dt+

√
vtSt dWt,

dvt = κ (θ − vt) dt+ ηt
√
vt dBt,

dWt dBt = ρ dt

where ηt = η
(
Y ε
t , Z

δ
t

)
is a stochastic factor correlated with W and B. Then

vV V IX
t ≈ d[ln v]t

dt
=

η2t
vV IX
t

.

Although the randomness of η improves the calibration of vV V IX , η directly depends
on vV IX and hence is not flexible enough.

1.2 Decoupling Smiles via Composite Time Change Ap-
proach

To study the volatility relationship in composite time change (CTC) models . We
first introduce some background knowledge on time change approaches. Time
changes can be interpreted as the intensity of business activities that drives the
variation in volatility of an asset. The original clock {t, t ≥ 0} is referred to
as calendar time and time change process T is called business time. The log-
price process of an asset is originally thought to be stationary and of independent
increment, i.e. a Lévy process L. Every time a market event happens and drives
the variation in volatility, the change is reflected in the time change, either via
accelerating or slowing the business clock. And the real market price of the asset
is updated under the business clock, namely LT .

Originally, Clark (1973) and Geman et al. (2001) proposed a subordinated
Brownian motion model for log price. The time change introduces jumps in volatil-
ity. Carr et al. (2003) and Carr and Wu (2004) introduced time-changed Lévy
models, where the time change is absolutely continuous, through which stochastic
volatility is introduced. Luciano and Schoutens (2006), Luciano and Semeraro
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(2007) and Eberlein and Madan (2009) modeled the dependence of multi-assets
via correlation of subordinated Brownian motions. Mendoza-Arriaga et al. (2010)
extented the time-chanegd Lévy model by considering the combination of time
change and a certain type of composite time change. And recently, Ballotta and
Rayée (2022) established a unified TCLM structure that allows leverage via diffu-
sion as well as jumps.

But like SVMs, TCMs with specifications shown in Carr and Wu (2004) are
restricted by the relationship vVVIX

t = f(vVIX
t ) for a model-determined function f .

But when extended to composite time change, the model may generate the form
of vol-of-vol as

vVVIX
t = avVIX

t + bvIt , (3)

where vI is the idiosyncratic component of vVVIX and a, b are determined by model
parameters, which are typically considered steady in short periods. The linear
combination satisfies both the need for the dependence of VVIX on VIX and the
flexibility of VVIX. vVIX is calibrated to the SPX market while a free factor vI is
calibrated to the VIX market.

Definition 1 A composite time change has the form T co = TV , where T = {Tt, t ≥
0} and V = {Vt, t ≥ 0} are time changes, i.e., {Tt}, {Vt} are non-decreasing and
right-continuous, and Tt, Vt are stopping times for every t ≥ 0.

Here we assume time changes to be absolutely continuous and the base Lévy
process to be a standard Brownian motion. Specifically, dTt = utdt and dVt = vtdt,
where u and v are two independent Itô processes. Then the instantaneous variance

of the model is vVIX
t =

dTVt

dt
= uVtvt. Then the product rule

dvVIX
t = d(uVtvt) = uVtdvt + vtduVt + d[uV· , v·]t

gives

vVVIX
t ≈ d[ln vVIX]t

dt
=

1

v2t

d[v]t
dt

+
1

(uVt)
2

d[uV ]t
dt

. (4)

Equation (4) results in different linear mixture forms according to the specification
of activity rate process. And the ideal form of equation (3) can be achieved by the
composite 3/2 model proposed in section 3.2. In addition, the model parameters
in time change T and V are naturally separated and linearly combined in form.

1.3 Organization of the Paper

The article is organized as follows. In section2, we summarize the theory of time-
changed Lévy models developed by Carr and Wu (2004) and Ballotta and Rayée
(2022) and we show how the technique of leverage neutral measure change helps
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form the characteristic function; section 3 develops the theory of composite time
change models, where a general form is considered and characteristic fuctions
derived. We also discusses some useful specifications of CTC models. In Section 4,
we introduce the application of the model in derivative pricing, including European
options and VIX options. We show that the European option pricing in CTC
models can be conducted quite efficiently. In section 5, we perform real-market
joint calibration and discusses the results. And the last section concludes.

2 Preliminaries: time-changed Lévy processes

2.1 Lévy processes

Definition 2 A Lévy process, L(t), on a filtered probability space
(
Ω,F, {Ft}t≥0 ,P

)
is a continuous-time process with independent and stationary increments with a
characteristic function ϕL(m; t) = etΨL(m),m ∈ R with characteristic exponent

ΨL(m) = iαm− m2

2
σ2 +

∫
R

(
eimx − 1 − imx1|x|≤1

)
ν(dx),

where α ∈ R, σ ∈ R+ and ν is a positive measure on R such that v({0}) =
0,

∫
R (|x|2 ∧ 1) v(dx) <∞. The triplet (α, σ2, v(dx)) determines the Lévy process

and is referred to as differential characteristics.

A subordinator T = {Tt, t ≥ 0} is a Lévy process such that t 7→ Tt is non-
decreasing.

2.2 Time-changed Lévy Processes

Leverage neutral measure, first introduced in Carr and Wu (2004), is a complex-
valued measure change technique that enables the explicit computation of the
characteristic function (Ch.f.) of time-changed Lévy process LT , especially when
L and T are not independent.

Assumption 1 The Lévy processes L considered in this paper are sufficiently in-
tegrable. That is,

∫
|x|>1

emxν(dx) <∞ for all m ∈ R.

Assumption 2 There are three versions of assumptions in the order of restric-
tiveness.

1. (Type 1) T satisfies sufficient regularity conditions. That is, the Laplace
transforms considered in this paper always exist for every t > 0.
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2. (Type 2) condition of type 1 and T is in synchronization with some adapted
process X, i.e. X is constant a.s. on the interval [Tt−, Tt] for each t > 0.

3. (Type 3) condition of type 1 and the time change is absolutely continuous
with Tt =

∫ t

0
vsds, vt > 0 a.s. or an independent Lévy subordinator.

Proposition 1 Let the Lévy process L satisfy the assumption and time change T
be of type 1. The log-price is Xt = LTt.
1. If T is independent of L, then the Ch.f. of Xt is

ϕX(m; t) := E
[
eimXt

]
= ϕT (−iΨL(m); t)

2. Otherwise,

ϕX(m; t) := E
[
eimXt

]
= EQ [eTtΨL(m)

]
= ϕQ

T (−iΨL(m); t) ,

where E[·] and EQ[·] denote expectations under measures P and Q, respectively. The
new class of complex-valued measures Q(m) is absolutely continuous with respect
to P and is defined by

dQ(m)

dP

∣∣∣∣
Ft

= Mt(m),

with
Mt(m) := exp (imLt + tΨL(m)) , m ∈ R.

Moreover, the Ch.e. of L under the leverage neutral measure is given by

ΨQ
L(z) = ΨL(z +m) − ΨL(m), m, z ∈ R.

Remark 1 Since the result above is a bit different from those proposed in Carr
and Wu (2004) and Ballotta and Rayée (2022), we leave the proof in Appendix A.

Extra conditions for T is required if we want to characterise the time-changed
process X. Specifically, if T is of type 2, then semimartingale X has local charac-
teristics

(αdTt−, σ
2dTt−, ν(dx)dTt−),

where (α, σ2, ν(dx)) is the Lévy characteristic of L (see Küchler and Sorensen
(2006)). Such an extra assumption makes the model identifiable, i.e., L and time
change T are unique up to a constant multiplication.
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3 Composite Time Change Models

In this section, we assume a composite time change model Xt = LTVt
, where

both time changes T and V are absolutely continuous with activity rates u and
v, respectively. Furthermore, we assume P to be the risk-neutral measure and F
the original filtration under which the base Lévy process L is adapted and T , V
are time changes. We denote by FX with FX

t := σ(FTVt
) ∨ σ(FVt) the filtration

generated by X, TV and V . Denote by Et [·] the expectation taken under filtration
FX

t .

3.1 Model Theory

Under such assumptions, the model is specified as follows
dL(t) = −Ψ(−i)dt+ σdW (t) + ηdJ(t),
du(t) = αT (u(t))dt+ βT (u(t))dZ(Tt) + γT (u(t))dJT (Tt),
dv(t) = αV (v(t))dt+ βV (v(t))dB(Vt) + γV (v(t))dJV (Vt),

where W,Z,B are (P,F)-Brownian motions, J, JT , JV are (P,F)-subordinators
and Ψ(m) = −m2

2
σ2 + ΨJ (ηm). In addition, αi(·), βi(·), γi(·), i = T, V are unspec-

ified functions. Finally, γi(·) ≥ 0, i = T, V to guarantee the positivity of u and
v.

To introduce leverage effect, we assume that [W,Z]t = ρT t, [W,B]t = ρV t but
Z and B are independent. We also assume that J and JT have joint distribution
FT , J and JV have joint distribution FV . JT and JV are independent.

Note that if we let αi(·) be affine and βi(·), γi(·) be constant, then u, v both
have an affine structure.

Next, we introduce the leverage neutral measure that will be useful for the
computation with composite time change. The leverage neutral measure Q(m) is
defined by

dQ(m)

dP

∣∣∣∣
Ft

= Mm
t ,

where
Mm

t = exp (imLt + tΨL(m)).

is a (P,F)-exponential martingale.
Then we have the following result of the Ch.f. of X.

Theorem 1 The Ch.f. of the composite time-changed process X is given by

ϕX(m; t) := E
[
eimXt

]
= EQ [ϕQ

T (−iΨL(m);Vt)
]

(5)

where, under the leverage neutral measure Q(m), uQ and vQ are given by
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duQ(t) =
(
αT (uQ(t)) + imρTσv

Q(t)βT (uQ(t))
)
dt+ βT (uQ(t))dZQ(Tt) + γT (uQ(t))dJQ

T (Vt)

dvQ(t) =
(
αV (vQ(t)) + imρV σv

Q(t)βV (vQ(t))
)
dt+ βV (vQ(t))dBQ(Vt) + γV (vQ(t))dJQ

V (Vt),

where BQ, ZQ are (Q,F)-Brownian motions. The Ch.e. of JQ
i , i = T, V are given

by
ΨQ

Ji
(z) = ΨJ,Ji(ηm, z) − ΨJ(ηm), (6)

where ΨJ,Ji(m, z) is the Ch.e. of mJ + zJi.

Remark 2 Note that the time changes T and V are still real-valued and positive
under the new measure. The dynamics of activity rates above is only effective when
Ch.f. is computed.

Proof By the independence of T and V ,

ϕX(m; t) = EQ[eTVtΨL(m)]

= EQ[EQ[eTVtΨL(m) | Vt]]
= EQ[ϕQ

T (−iΨL(m);Vt)].

Next, we derive the dynamics of T and V under the risk-neutral measure Q.
By theorem 1, the Ch.e. of L under measure Q is given by

ΨQ
L(z) = ΨL(z +m) − ΨL(m).

By the independence of Brownian motions and jump processes, the Ch.e. of W
under measure Q is

ΨQ
W (z) = ΨW (z + σm) − ΨW (σm) = −1

2
z2 − σmz.

Therefore WQ(t) := W (t) − imσt is a (Q,F)-Brownian motion. And by the
correlation [W,Z]t = ρT t, Z

Q(t) := W (t) − imρTσt is a (Q,F)-Brownian motion.
BQ is defined likewise.

Next we show the Ch.f. of JT and JV . We note that the single joint distribution
determines the joint distribution of J(t) and Ji(t), i = T, V at all time t > 0.
Under the leverage neutral measure, the Ch.f. of JV becomes

ϕQ
JV

(z; t) = E exp (izJV (t) + imηJ(t) − tΨJ(ηm))

= exp (t(ΨJ,JV (ηm, z) − ΨJ(ηm)),

where ΨJ,JV (m, z) is the Ch.e. of mJ + zJV . It follows that

ΨQ
JV

(z) = ΨJ,JV (ηm, z) − ΨJ(ηm).

□
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Corollary 1 When affine structure is imposed, that is, αT (u(t)) = κT (θT − u(t)),
αV (v(t)) = κV (θV − v(t)) and βi(·) ≡ σi, γi(·) ≡ ηi, i = T, V , then Ch.f. of X is
explicit as follows:

ϕX(m; t) =
1

π

∫ ∞

0

∫ ∞

0

f(s;m) Re
[
e−zsϕQ

V (−iz; t)
]

dzIds, (7)

where z = zR + izI with zR > 0 and

ϕQ
V (m; t) = ebV (t)v(0)+cV (t),

with the affine exponents bV (t), cV (t) solutions to the system of Riccati-type ODEs

bV (t)′ = im− κQV bV (t) +
σ2
V

2
bV (t)2 + ΨQ

JV
(iηV bV (t))

cV (t)′ = κV θV bV (t).
(8)

with bV (0) = cV (0) = 0, κQV = κV − imρV σV σ. The function f is given by

f(t;m) = ebT (t)u(0)+cT (t) (9)

with coefficients satisfying

bT (t)′ = ΨL(m) − κQT bT (t) +
σ2
T

2
bT (t)2 + ΨQ

JT
(iηT bT (t))

cT (t)′ = κT θT bT (t).
(10)

with bT (0) = cT (0) = 0, κQT = κT − imρTσTσ. The Ch.e. of Ji, i = T, V are given
in equation (6).

Proof By the inverse Laplace transform,

ϕX(m; t) = EQ[ϕQ
T (−iΨL(m);Vt)]

=
1

π

∫ ∞

0

∫ ∞

0

f(s;m) Re
[
e−zsϕQ

V (−iz; t)
]

dzIds,

where z = zR + izI with zR > 0 and f(t) = ϕQ
T (−iΨL(m); t) (Here we denote

f(t;m) by f(t) for simplicity). If an affine structure is imposed for T and V , then
as is given in Filipović (2001), the Laplace transform of Tt is given by

f(t) = ebT (t)u(0)+cT (t),

where coefficients bT and cT are given by the equation (10). Likewise, the Ch.f. of
ϕV has coefficients given by the equation (8). □
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3.2 Specifications

Example 5 (Composite 3/2 Model)
L(t) = −1

2
dt+ dW (t),

dut = κTut(θT − ut)dt+ σTutdZTt ,
dvt = κV vt(θT − vt)dt+ σV vtdBVt

with E [WtZt] = ρT t, E [WtBt] = ρV t and E [ZtBt] = 0.

In this specification, we have by equation (4) that

vVVIX
t ≈ d[ln vVIX]t

dt
=

(σV uVt)
2v3t + (σTvt)

2(u3Vt
vt)

(vVIX
t )2

= σ2
V vt + σ2

Tv
VIX
t ,

a linear combination of factors as in equation (3).
We clearly see a separation of effects, including the effect of VIX and the

idiosyncratic component. The SPX market calibrates vVIX
t and implies a general

relationship of model parameters σV and σT , while the VIX market calibrates v
and determines the model parameters. In other specifications likewise, we also
obtain a linear combination of factors.

To derive the Ch.f. under composite 3/2, we note that, according to Carr and
Sun (2007), the Laplace transform of V has

EQ(m)
(

e−λ
∫ τ
t vs ds | vt

)
=

Γ(γV − αV )

Γ(γV )

(
2

σ2
V y (t, vt)

)αV

M

(
αV , γV ,

−2

σ2
V y (t, vt)

)
,

where

y (t, vt) = vt
eκV θV (τ−t) − 1

κV θV
,

αV = −
(

1

2
− pV
σ2
V

)
+

√(
1

2
− pV
σ2
V

)2

+ 2
λ

σ2
V

γV = 2

(
α + 1 − pV

σ2
V

)
,

pV = −κQV := −κV + iσV ρVm,

and M(α, γ, z) is the confluent hypergeometric function, defined as

M(α, γ, z) =
∞∑
n=0

(α)n
(γ)n

zn

n!
,
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and
(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1).

And

f(t;m) = ϕQ
T (−iΨL(m); t)

=
Γ(γT − αT )

Γ(γT )

(
2

σ2
TyT (0, u0)

)αT

M

(
αT , γT ,

−2

σ2
TyT (0, u0))

)
where

yT (0, u0) = u0
eκT θT t − 1

κT θT
,

αT = −
(

1

2
− pT
σ2
T

)
+

√(
1

2
− pT
σ2
T

)2

+ 2
qT
σ2
T

γT = 2

(
αT + 1 − pT

σ2
T

)
,

pT = −κQT := −κT + iσTρTm,

qT =
im

2
+
m2

2
.

Despite its nice interpretation, the composite 3/2 can be time-consuming in
pricing, particularly in VIX pricing. A modified version of composite 3/2 model
is constructed: 

L(t) = −1
2
dt+ dW (t),

dut = κTut(θT − ut)dt+ σTutdZTt ,
dvt = κV (θT − vt)dt+ σV dBVt .

(11)

That is, the second time change V is substituted by a CIR process. It’s shown in
the section of VIX pricing that such formation is efficient in the method of exact
simulation.

Example 6 (Composite 3/2 + Jump)
L(t) = −Ψ(−i)dt+ dW (t) + ηdJ(t),
dut = κTut(θT − ut)dt+ σTutdZTt ,
dvt = κV vt(θT − vt)dt+ σV dBVt

with E [WtZt] = ρT t, E [WtBt] = ρV t, E [ZtBt] = 0 and J is a Lévy process. Under
the specification, we only change qT as

qT = −ΨL(m) =
im+m2

2
+ imΨJ(−ηi) − Ψ(ηm).
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Example 7 (Composite Heston Model)
L(t) = −1

2
dt+ dW (t),

du(t) = κT (θT − u(t))dt+ σTdZ(Tt),
dv(t) = κV (θV − v(t)dt+ σV dB(Vt).

(12)

where E[WtZt] = ρT t, E[WtBt] = ρV t and E[ZtBt] = 0.

Likewise, we have

vVVIX
t ≈ d[ln vVIX]t

dt

=
(σV uVt)

2vt + (σTvt)
2(uVtvt)

(vVIX
t )2

=
σ2
V

vt
+

σ2
T

vVIX
t

The composite version of Heston inherits the inverse relationship between VIX
and VVIX, but a linear mixture effect is incorporated.

Example 8 Brought up in Mendoza-Arriaga et al. (2010), the composite time
change T co = TV is a pure-jump process. T and V are independent of L as well
as of each other.

E
[
eiuXt

]
= E [E [exp (TVtΦL(u)) | Vt]] = E[ϕT (−iΨL(u);Vt)].

The model exhibits stochastic jump intensity even if L has no jumps.
However, the model is theoretically redundant in the sense that LT is in fact a

Lévy process under the model assumption. Nevertheless, the composite version of
Lévy process is convenient in exhibiting flexible moments of distribution, which is
usually meaningful in practice.

Example 9 (Leverage via Reflected Jumps){
Lt = −Ψ(−i)dt+ ηdJ(t),
dvt = κ(θ − vt)dt− ηJdJ

T (Tt),

where JT = J− is the negative part of the CGMY process J .
The model has shown superior performance in Ballotta and Rayée (2022).

Example 10 (Compound Poisson With General Leverage)
L(t) = −Ψ(−i)t+ η

∑Nt

i=1 Ji,

du(t) = κT (θT − u(t))dt+ ηTd
(∑NTt

i=1 J
T
i

)
,

dv(t) = κV (θV − v(t))dt+ σV dB(Vt)
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where the jump sizes J and JT are correlated with the joint distribution F (x, y).
Under the leverage neutral measure, the Ch.e. of Yt :=

∑Nt

i=1 J
T
i becomes

ΨQ
Y (z) = λ(E exp (izJ1 + iuJT

1 ) − ϕJ(u)) = λϕJ(u)(ϕu
JT (z) − 1),

where

ϕu
JT (z) =

∫
eizy

(
eiux−ΨJ (u)dF (x, y)

)
.

It can be interpreted as a new (complex-valued) compound Poisson process with
jump intensity λΨJ(u) and jump size with a tilted distribution ϕu

JT (z).

Example 11 (Composite Jump Heston)
L(t) = −Ψ(−i)t+ ηJ(t),
du(t) = κT (θT − u(t))dt− ηTdJ(Tt)

−,
dv(t) = κV (θV − v(t))dt+ ηV dZ(Vt),

(13)

where J(t)− is the negative component of the CGMY processes J(t), and Z is a
Brownian motion. In this specification, leverage is introduced purely by simulta-
neous jumps of return and volatility. Ballotta and Rayée (2022) demonstrate a
superior performance of a single time change JH model over other classic models,
e.g. Heston, BNS.

Example 12 (Multifactor) It has been shown in empirical study that risks re-
flected in diffusion and jumps are of different sources. It is therefore natural to
consider a TCL of the form

X = BT + LV .

4 Application In Derivatives Pricing

4.1 CTC-COS Method

Since we’ve obtained the expression for the Ch.f. of log price process X, the
pricing of European options follows directly. For example, readers may consider
acceleration methods such as FFT ( Carr and Madan (1999)) or COS method
(Fang and Oosterlee (2009)), to efficiently compute option prices.

In our CTC model, we show how the Ch.f. and option prices can be efficiently
computed with a CTC-COS method as follows.

Theorem 2 (CTC-COS) Given current time t and expiry date s, the price of a
European call option with strike K is numerically approximated by

C (K, τ) ≈ e−rτ 2

c

∫ c

0

(
N−1∑
k=0

′ Re

{
f(y;

kπ

b− a
)Ak

}
Vk

)(
M−1∑
l=0

′ Re

{
ϕQ
V (
lπ

c
; s)

}
cos(

lπy

c
)

)
dy

(14)

16



where a, b, c are integration range and f is given in (9).

Proof According to the cosine expansion method,

C (K, τ) ≈ e−rτ

N−1∑
k=0

′ Re

{
ϕX

(
kπ

b− a
; s

)
Ak

}
Vk

= e−rτ

N−1∑
k=0

′ Re

{
EQ
[
f

(
Vs;

kπ

b− a
)

)]
Ak

}
Vk

= e−rτ

N−1∑
k=0

′
M−1∑
l=0

′ Re

{
ϕQ
V (
lπ

c
; s)

}
Re{UklAk}Vk

≈ e−rτ 2

c

∫ c

0

(
N−1∑
k=0

′ Re

{
f(y;

kπ

b− a
)Ak

}
Vk

)(
M−1∑
l=0

′ Re

{
ϕQ
V (
lπ

c
; s)

}
cos(

lπy

c
)

)
dy

Ukl =
2

c

∫ c

0

f(y;
kπ

b− a
) cos(

lπy

c
)dy,

Ak = exp

{
−ikπ a

b− a
+
ikπ(lnSt/K + rτ)

b− a

}
(15)

and

Vk =
2

b− a

∫ b

0

K(ey − 1) cos

(
kπ
y − a

b− a

)
dy. (16)

□
What we do in the transformation above is performing double cosine series

expansions and then re-ordering the summation and integration. Since the double
summations are separate, the overall complexity is O(ND) under affine specifica-
tions, where D is the discretization degree of numerical integration. Such com-
putation cost is only slightly higher than those of one-factor models with affine
structure, e.g. Heston model.

In practice, when pricing the whole volatility surface, the number of strike
prices does not add computational complexity since fourier-based methods like
COS allows for a separation of strikes and the underlying asset. Meanwhile, the
temporal discretization in the solving process of ODEs in function f and g, enabling
the computation on all maturities at once. Therefore, we may price the whole
volatility surface as efficently as in the case of a single option.

It’s surprising that the CTC models have the same order of complexity as the
single TCMs. Table 5.3 shows the speed of pricing the volatility surface (containing
4316 option quotes on Janurary, 9, 2023), where the composite Jump Heston and
composition Heston models finish the pricing within 15s and 10s respectively.
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4.2 VIX Options

To price VIX derivatives, it’s common practice to first derive the relationship
between the VIX and spot variance at maturity since the distribution of VIX is
not directly available. It’s known that VIX2 is linearly dependent on the spot
variance for the Heston model. However, for most other models, such relationship
is implicit and requires simulation or a numerical procedure to derive.

Example 13 (Rough Bergomi) As shown in Jacquier et al. (2018) for rough
Bergomi models, the VIX2

T is expressed as an integral form and a computationally
costly simulation is needed to obtain samples of VIXT .

Example 14 (3/2 Model) The VIX-Spot relationship is also implicit for a 3/2
model. A numerical differentiation is needed and leads to additional computational
cost in numerical pricing.

Next, we will show that both single time change models and CTC models have
simple VIX-Spot forms if the time changes have affine activity rates. Non-affine
VIX-Spot relationship are also discussed.

4.2.1 Single Time Change Models

Proposition 2 When a single time change T =
∫ ·
0
vsds is considered with an

affine process v,
VIX2

t = avt + b

with
a = 2(Ψ(−i) − ηEJ(1))ϕ(m)

b = 2(Ψ(−i) − ηEJ(1))
κθ

m
(ϕ(m) − 1)

and ϕ(x; τ) = exτ−1
xτ

and we denote ϕ(x) for short if there is no confusion.

Proof

VIX2
t = −2

τ
Et

[
ln
e−rτSt+τ

St

]
= −2

τ
Et [Xt+τ −Xt]

=
2

τ
(Ψ(−i)Et [Tt+τ − Tt] − Et [η (J(Tt+τ ) − J(Tt))])

= 2(Ψ(−i) − ηEJ(1))g(vt; τ),
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where τ = 30/365 and g(vt; τ) = 1
τ
Et [Tt+τ − Tt]. Since

Evt = v0 + κθt+m

∫ t

0

Evsds,

where m = ηJEJ
T
1 − κ < 0. Differential form gives

g′t = κθ +mgt,

with initial condition g0 = 0. The solution is

E[vt|vs] = vse
m(t−s) +

κθ

m
(em(t−s) − 1).

Then we have

g(vt; τ) = vtϕ(m) +
κθ

m
(ϕ(m) − 1).

□
Since the Ch.f. of v is easily obtained by solving an ODE system, the pricing

formula of VIX options is given as:

Proposition 3 (Lian and Zhu (2013))

CV (K, τ) =
e−rτ

2a
√
π

×
∫ ∞

0

Re

[
eφb/aϕv(φ; s)

1 − erf(K
√
φ/a)

(
√
φ/a)3

]
dφI

where φ = φR+φIi is a complex variable with ϕR > 0. ϕv(φ; s) is the characteristic
function of vs and a, b are given in Proposition 2.

4.2.2 CTC Models

For the case of affine CTC models, the VIX-spot relationship is still explicit and
easy to obtain.

Proposition 4 For a CTC model with affine activity rates,

VIX2
t = A(vt)uVt +Bvt + C(vt), (17)

where coefficients

A(vt) = M
ϕV (−imT ; t, t+ τ) − 1

mT τ
,

19



B = M
κT θTϕ(mV )

mT

and

C(vt) = M

(
−κTκV θT θV (ϕ(mV ) − 1)

mTmV

+
κT θT
m2

T τ
(ϕV (−imT ; t, t+ τ) − 1)

)
with a common multiplier

M = 2(Ψ(−i) − ηEJ(1)).

Proof

VIX2
t =

2(Ψ(−i) − ηEJ(1))

τ
Et

[
TVt+τ − TVt

]
=

2(Ψ(−i) − ηEJ(1))

τ
Et

[
E
[
TVt+τ − TVt | Ft, Vt+τ

]]
=

2(Ψ(−i) − ηEJ(1))

τ
Et

[
uVt∆V (τ)ϕ(mT ; ∆V (τ)) +

κT θT
mT

∆V (τ) (ϕ(mT ; ∆V (τ)) − 1)

]
= 2(Ψ(−i) − ηEJ(1))

{
(mTuVt + κT θT )(Ete

mT∆V (τ) − 1)

(mT )2τ

−κT θT
mT

(
vtϕ(mV ) +

κV θV
mV

(ϕ(mV ) − 1)

)}
= 2(Ψ(−i) − ηEJ(1))

{
ϕV (−imT ; t, t+ τ) − 1

mT τ
uVt −

κT θTϕ(mV )

mT

vt + Const

}
,

(18)
where ∆V (τ) = Vt+τ − Vt and constant

Const = −κTκV θT θV (ϕ(mV ) − 1)

mTmV

+
κT θT
m2

T τ
(ϕV (−imT ; t, t+ τ) − 1) .

□
For other specification of time changes, there generally does not exist explicit

expression for VIXt. Still, we could recover it from the Laplace transform. That
is,

VIXt =
2(Ψ(−i) − ηEJ(1))

τ
g(vt, uVt , τ), (19)

where

g(vt, uVt , τ) := − ∂

∂l
E
[
exp {−l(TVt+τ − TVt)} | uVt , vt

]∣∣∣∣
l=0
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The Laplace transform can be explicitly computed via

E
[
exp {−l(TVt+τ − TVt)} | uVt , vt

]
≈

M−1∑
k=0

Re{ϕV (
kπ

c
; τ)}

(
2

c

∫ c

0

LT (l; y) cos(
kπy

c
)dy

)

=
2

c

∫ c

0

LT (l; y)
M−1∑
k=0

(
Re{ϕV (

kπ

c
; τ)} cos(

kπy

c
)

)
dy

where ϕV and LT are computed conditional on uVt , vt.
In practice, the formula above is computed based on a large amount of simuated

vt and uVt and the whole time cost is high. But in the special case where an affine
v is considered, but not necessarily u, the Ch.f. ϕV is exponentially-affine with
respect to vt and, based on such explicit linear dependence, the computation is
significantly faster.

4.2.3 Exact Simulation of Spot Variances

Despite its explicit VIX-Spot relationship, a simulation procedure for uVs and vs
is still needed. While Monte Carlo method is commonly slow in practice, we argue
that there exists exact simulation methods for certain models. That is, we only
need to simulation the distributions at maturity as opposed to the whole trajecto-
ries. As a result, there is no discretization error and the simulation procedure can
be quite fast.

We assume that the Ch.f. of u is available and v follows a CIR process, our
main concern is to simulate vT and uVT

. Then the sample of VIX is obtained from
formula (17).

Step 1 Simulate vT from a non-central chi-square distribution.

Step 2 Simulate the conditional distribution (VT | v0, vT ) by the method of
Glasserman and Kim (2011).

By the independence of u and v, we may simulate VT first and then simulate
uVT

with a non-central chi-square distribution. Therefore, the conditional

distribution of VT , in the form of
(∫ T

0
vsds | v0, vT

)
, needs to be derived. This

is the exactly same problem faced in the Heston simulation, as brought up in
Broadie and Kaya (2006). We then apply the method of gamma expansion in
Glasserman and Kim (2011), where the conditional distribution is efficiently
simulated as a sum of independent variables.

Step 3 Simulate uVT
by inverting the Ch.f. of u at VT .
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The Ch.f. of u is explicit for some models, e.g. Heston and 3/2 models
given in Carr and Sun (2007). For composite JH model (13), we can ease the
computation by precomputing the Ch.f. of ut for a range of t ∈ [0,maxVT ]
along the numerical discretization of the corresponding ODE. The sample of
uVT

is then obtained by matching the precomputed values with VT samples.

Step 4 Obtain VIXT by formula (17) and compute CV (K,T ) by taking the mean
of the payoff.

To sum up, we price European options by

Algorithm 1 Calculate Call Option Prices

Input: Maturity T , strike K, discretization parameters N,M,Q, integration
range a, b, c.
for y = c

Q
, . . . , c do

for k = 0, · · · , N − 1 do
Compute Ak, Vk according to (15) and (16)
Compute f(y; kπ

b−a
according to (9)

end for
for l = 0, · · · ,M − 1 do

Compute ϕQ
V ( lπ

c
;T ) and cos( lπy

c
)

end for
Compute the call price C(K,T ) by summing up according to (14)

end for
Output: C(K,T )

Algorithm 2 Calculate VIX Option Prices

Input: Maturity T , strike K.
Simulate vT that follows a non-central chi-square distribution
Simulate the conditional distribution (VT | v0, vT ) by the method of Glasserman
and Kim (2011)
Given VT , simulate uVT

by inverting the Ch.f. of u
Obtain the sample of VIXT according to (17)
Compute the call price CV (K,T ) by taking the mean of the payoff function

Output: CV (K,T )
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5 Joint Calibration

5.1 Data

The data we consider spans two years, containing the implied volatility surfaces of
the S&P 500 and the VIX from January 3, 2023, to February 28, 2023. The implied
volatility is calculated using futures prices that are inferred from the put-call parity
with ATM options.

Following the procedure of Bardgett et al. (2019), we clean the data by remov-
ing options with time to maturity less than 7 days or more than one year. Options
quotes with negative bid-ask spreads, zero bid price, zero traded volume / open
interest are also removed. For SPX options, we further exclude data with money-
ness below 0.5 or above 1.4. We also remove all the ITM options and recover the
corresponding futures prices using the ATM put-call parity. For VIX options, we
exclude data with moneyness below 0.4 or above 3.3 and all the put options. If a
VIX ITM call is illiquid, we use the put-call parity to infer the liquid price of the
call from a more liquid VIX OTM put (Pacati et al. (2018)).

The final sample is made of 162,438 SPX options (daily average 4,165) and
10,254 VIX options (daily average 263).

We calibrate on a sample by solving the optimization problem below.

Θ̂ = arg min
Θ

1

NS

NS∑
i=1

(
σi
S(Θ) − σ̂i

S

)2
+

1

NV

NV∑
i=1

(
σi
V (Θ) − σ̂i

V

)2
,

where NS and NV are the number of SPX and VIX options in the sample.

5.2 Calibration Procedure

Calibrate the model based on the data on some specific dates. For example, we may
choose the dates with remarkably high or low VIX / VVIX to test the robustness
of the model in different market scenarios.

Since the calibration of VIX market is more challenging, we typically calibrate
to VIX option data first, and then take the initial set of parameters in joint cali-
bration based on the result in VIX calibration.

5.3 Calibration Results

The next table is the calibration result of SPX market. The RMSE in the table
below is the root mean squared error of implied volatilities.
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Models Time Elapse (s) RMSE
Heston 7.81 0.01722

Composite Heston 14.129 0.01272
JH 9.72 0.01052

Composite JH 47.808 0.00593
2 Factor 10.229 0.00862

3/2 10.859 0.02288
Composite 3/2 97.781 0.01438
3/2 + Jump 12.641 0.00791

Composite 3/2 + Jump 121.916 0.00599

Table 1: Calibration Results. Time elapse is the time needed for pricing the whole
volatility surface (2600 option quotes)

Figure 2: Calibration of 2 Factor Model
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Figure 3: Calibration of 3/2 + Jump Model
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Figure 4: Calibration of Composite Jump Heston (Affine CGMY) Model
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Figure 5: Calibration of Composite 3/2 + Jump Model

5.4 Joint Calibration

First, we test the performance of joint calibration on date 2023.01.13 (with VIX =
18.35) and date 2020.04.24 (with VIX = 35.93). We specifically consider the JH
model, the composite JH model and the 2-factor JH model.

Models N. Parameter RMSE MAE
JH 9 0.04663 (0.03471 + 0.05855) 0.03784

Composite JH 13 0.04113 (0.03391 + 0.04834) 0.03099
2 Factor TCM 13 0.03693 (0.01693 + 0.05693) 0.02822

Table 2: Results of Joint Calibration based on RMSE. Date 2023.1.13.
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Models N. Parameter RMSE MAE MSRE
JH 9 0.0440 (0.0431 + 0.0448) 0.0352 0.0086

Composite JH 13 0.0375 (0.0344 + 0.0406) 0.0286 0.0036
2 Factor TCM 13 0.0419 (0.0384 + 0.0454) 0.0334 0.0085

Table 3: Results of joint calibration on date 2020.04.24.

To make comparison with other benchmark models, we compare the perfor-
mances with the results in Kokholm and Stisen (2015) on 2008.10.22 and 2012.05.16.

Models N. parameters ARPE (%) ARBAE (%) Loss
SV* 5 12.0 5.6 -
SVJ* 8 9.25 2.9 -
SVJJ* 10 9.15 2.75 -

JH 9 8.93 2.52 0.01354
2 Factor TCM 13 8.95 2.40 0.01348
Composite JH 13 6.78 0.86 0.01026

Table 4: Results of joint calibration on 2008.10.22. VIX value 69.65. Numbers of
options: 440 + 78 + 5 (Original), 463 + 82 (Composite JH).

Models N. parameters ARPE (%) ARBAE (%) Loss
SV* 5 13.75 6.45 -
SVJ* 8 11.7 5.0 -
SVJJ* 10 10.4 3.7 -

JH 9 10.62 4.21 0.02384
2 Factor TCM 13 11.21 4.45 0.02440
Composite JH 13 9.56 3.67 0.02672

Table 5: Results of joint calibration on 2012.5.16. VIX value 22.27. Calibration
is based on optimizing RMSRE of option prices. Option numbers: 477 + 138 + 5
(Original), 622 + 146 (Composite JH)

It’s shown in the results that, compared with 2-factor JH, composite JH models
generally performs better. This demonstrates the effectiveness of time composition
v.s. time combination. In particular, when the market volatility is large, composite
JH models become even better.

6 Conclusion

Specifically, the contributions of our work are three-folded.

28



Firstly, we develop a generalized form of composite time-changed Lévy models.
These models have the advantage of exhibiting various variance, skewness and
kurtosis. Moreover, as we show in detail in section 4, CTC models typically have
good tractability. It only requires a complexity of O(N) if the affine structure of
time changes is imposed.

Secondly, we theoretically demonstrate the effectiveness of our model in con-
sistent modeling. Unlike historical works of consistent modeling, the composite
time change models provide explicit interpretation in its decoupling mechanism of
volatility and volatility of volatility.

And finally, we validates the superiority of our proposed model in the consistent
modeling problem. We develop its option pricing theory and test its performance
in the joint calibration problem of SPX and VIX option market. As shown in
section 5, the composite time change models successfully calibrate the joint smiles
in real market.

A Proof of Theorem 1

Lemma 1 Consider a filtered space (Ω,F ,P,Q) with probability measure P and a
complex-valued measure Q. Assume that Q is locally dominated by P with Radon-
Nikodym derivative M , i.e.,

Mt =
dQ
dP

∣∣∣∣
Ft

, t ≥ 0

Then for any finite stopping time T , we have QT ≪ PT and

MT =
dQ
dP

∣∣∣∣
FT

The lemma is an extension of Jacod and Shiryaev (2013) (Theorem III.3.4.(ii)).
Proof Since FT∧n ⊆ Fn, we see that QT∧n ≪ PT∧n, and as τ ∧ n is a bounded
stopping time, it follows by the optional stopping theorem that

dQ
dP

∣∣∣∣
FT∧n

= EP[Mn | FT∧n] = MT∧n.

To prove the theorem, it is enough to show Q(A) =
∫
A
MTdP for A ∈ FT .

Then choose A ∈ FT , we have

EP (1AMT ) =
∑
n≥1

EP (1A1{n−1≤T<n}E
P[Mn | FT ]

)
=
∑
n≥1

EP (1A1{n−1≤T<n}Mn

)
=
∑
n≥1

Q(A ∩ {n− 1 ≤ T < n}) = Q(A).
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And the result follows. □
Now we begin our proof of Theorem 1.

Proof When T is an independent time change, use iterated conditioning:

E
[
eiuXt

]
= E[E

[
eiuLTt | Tt

]
] = E[eTtΨL(u)] = ϕT (−iΨL(u); t).

When X is not independent of T . First we show that M is a (P,FT )-martingale.
Denote

Nt = exp (iuLt − tΨL(u)).

which is a complex-valued martingale. As a result of lemma 1, M = NT is a
(P,FT )-martingale. And the Ch.f. of Xt follows from direct computation.

Since L is a Lévy process under filtration F , we have that

ϕQ
L(z; t) = E exp (izLt)Nt

= E exp (i(u+ z)Lt)/e
tΨL(u)

= exp (t(ΨL(u+ z) − ΨL(u)).

Thus, we have ΨQ
L(z) = ΨL(u+ z) − ΨL(u). □

B COS Method for VIX Options

According to COS method in Fang and Oosterlee (2009), the price at time t0 of a
European style option is

v (x, t0) ≈ e−r∆t

N−1∑
k=0

Re

{
ϕ

(
kπ

b− a
;x

)
e−ikπ a

b−a

}
Vk,

where a, b are integration range and

Vk :=
2

b− a

∫ b

a

v(y, T ) cos

(
kπ
y − a

b− a

)
dy,

where v(y, T ) is the payoff function w.r.t. the underlying asset with value y.
The analytically formula of Vk for call options is known if the log-asset price has
analytical Ch.f.

V call
k =

2

b− a

∫ b

0

K(ey − 1) cos(kπ
y − a

b− a
)dy.
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Since St = S0e
rt+LVt−ΨL(−i)Vt ,

V IXt = −2

τ
E[ln

e−rτSt+τ

St

| Ft]

=
2

τ

(
ΨL(−i)E[Vt+τ − Vt | Ft] − E[LVt+τ − LVt | Ft]

)
=

2

τ
E[Vt+τ − Vt | Ft](ΨL(−i) − EL1)

=
2

τ
(ΨL(−i) − EL1)f(vt).

In affine models, we can show that V IXt = mvt + n for some constants m and m.
Let a = max (0, K

2−n
m

), for VIX options, we have the analytical expression for
the Ch.f. of VIX2, then

V VIX
k =

2

b

∫ b

a

(
√
my + n−K) cos(

kπy

b
)dy =

2

b

∫ b

a

√
my + n cos(

kπy

b
)dy−2K

b
ψk(a, b),

the integral can be done numerically. Then the pricing formula becomes

CVIX (vt0 , t0) ≈ e−r∆t

N−1∑
k=0

Re

{
ϕv

(
kπ

b
; vt0

)}
V VIX
k .

C Calibration Details

Spot index prices like SPX and VIX are not used in the calibration because they
are not directly traded in the market, see also Lian and Zhu (2012). They are
recovered from the market according to the put-call parity as discounted futures
price. Meanwhile, such implied spot prices contain the term structure of future
dividend expectations.

• SPX options with AM settlement are specially treated with 1 day less ma-
turity

• The risk-free rate is quoted from daily U.S. treasury bond rates with Spline
interpolation

• Implied volatility is a function of moneyness kt = K
Ft

(and no additional
rates) because

e−rτEt[ST −K]+ = Ct(K,T ) ≡ CBS (kt, K, τ, IVt)

= Ke−rτ
[
ektΦ (d1) − Φ (d2)

]
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yields

ektΦ (d1 (kt, IVt, τ)) − Φ (d2 (kt, IVt, τ)) = Et

[
ekT − 1

]
+
.

To price and compute IV, it’s enough to obtain the moneyness. By put-call
parity,

C − P = e−rτ (F −K),

if r is known, then

kt =
K

K + (Ct − Pt)erτ
.
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Hélyette Geman, Dilip B Madan, and Marc Yor. Time changes for lévy processes.
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